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We define unbounded twisted complexes and bicomplexes 
generalising the notion of a (bounded) twisted complex over 
a DG category [6]. These need to be considered relative 
to another DG category B admitting countable direct sums 
and shifts. The resulting DG category of unbounded twisted 
complexes has a fully faithful convolution functor into Mod -B
which factors through B if the latter is closed under twisting. 
As an application, we rewrite definitions of A∞-structures in 
terms of twisted complexes to make them work in an arbitrary 
monoidal DG category or a DG bicategory.

© 2024 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://
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1. Introduction

The notion of a twisted complex of objects in a DG category was introduced by 
Bondal and Kapranov [6]. It was used as a tool to study and construct DG enhancements 
of triangulated categories. A one-sided twisted complex over a DG category A can be 
thought of as a lift to A of a bounded complex of objects in its homotopy category H0(A). 
The lift includes the maps in the complex, the homotopies up to which the consecutive 
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maps compose to zero, and then the higher homotopies. In addition to the complex of 
objects in H0(A), such data specifies a choice of its convolution together with a collection 
of Postnikov systems computing this convolution [3, §2.4]. Taking the category of one-
sided twisted complexes over A is a DG realisation of taking the triangulated hull of 
H0(A). Now twisted complexes are ubiquitous in working with DG categories and their 
modules [11] [17][13][2][5].

This paper generalises the notion of a twisted complex to include unbounded com-
plexes. The authors came to need it, and expected the generalisation to be straightfor-
ward. It turned out to involve numerous subtleties. The purpose of this short note is to 
write down these subtleties for the benefit of others. We also give the original application 
we had in mind: rewriting the definitions of A∞-structures [10][12][14] in terms of twisted 
complexes. This decouples them from the differential m1 and allows them to work in an 
arbitrary monoidal DG category.

We now describe our results in more detail. In §2 we recall the original definition:

Definition 1.1 ([6]). A twisted complex over a DG category A comprises

• ∀ i ∈ Z, an object ai of A, non-zero for only finite number of i,
• ∀ i, j ∈ Z, a degree i − j + 1 morphism αij : ai → aj in A,

satisfying

(−1)jdαij +
∑
k

αkj ◦ αik = 0. (1.1)

The twisted complex condition should be thought of as follows. We have Yoneda 
embedding A ↪→ Mod -A. Consider the object 

⊕
ai[−i] in Mod -A. The sum 

∑
αij

is its degree 1 endomorphism. Let dnat be the natural differential on 
⊕

ai[−i]. The 
condition (1.1) is equivalent to dnat +

∑
αij squaring to zero.

In other words, a twisted complex is the data which modifies dnat to a new differen-
tial on 

⊕
ai[−i]. The resulting new object of Mod -A is called the convolution of the 

twisted complex (ai, αij). In the special case of twisted complexes of form a0 → a1 the 
convolution is simply the cone construction.

Degree n morphisms (ai, αij) → (bi, βij) of twisted complexes are collections {fij} of 
morphisms fij : ai → bj in A of degree n + i − j. Their composition and differentiation 
are defined so as to ensure that the convolution becomes a fully faithful embedding of the 
resulting DG category TwA into Mod -A, see Definition 2.2. Indeed, the assignment of 
the module 

⊕
ai[−i] to a collection of objects {ai} determines the rest of the definitions 

of twisted complexes and their morphisms.
These definitions can be replicated for an infinite collection {ai} resulting in a notion of 

an unbounded twisted complex {ai, αij} that we are going to call an absolute unbounded 
twisted complex see Definition 3.2. The sum 

∑
αij is now infinite and doesn’t necessarily 

define a degree 1 endomorphism of 
⊕

ai[−i] in Mod -A, so we impose this as an extra 
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condition. It means that only a finite number αij �= 0 for any i ∈ Z, and similarly for the 
components fij of morphisms of twisted complexes. We again have Tw±

abs A ↪→ Mod -A.
However, often the category Tw±

abs A is not what we want. Firstly, when A is not 
small the category Mod -A isn’t well-defined. The definition of Tw±

abs A is still valid, 
but to have the convolution functor we need to enlarge the universe to make A small. 
More importantly, even small A might admit countable shifted direct sums 

⊕
ai[−i] of 

its objects.
The main subtlety is then that infinite direct sums, unlike finite, do not commute 

with the Yoneda embedding A ↪→ Mod -A (Example 3.1). The direct sum 
⊕

ai[−i]
assigned to a twisted complex (ai, αij) can thus be taken in Mod -A or in A. The 
former leads to the category Tw±

abs A, while the latter to a strictly larger category Tw±
A A

where infinite number of αij can be non-zero for any i ∈ Z as long as 
∑

αij is still an 
endomorphism of 

⊕
ai[−i] in A. The difference between Tw±

abs A and Tw±
A A lies only 

in unbounded twisted complexes. If A is closed under twisting (Definition 3.5), the 
convolution functor takes values in A. All these considerations apply when A = Mod -C
for small C (Example 3.3).

This motivates our §3 where we define unbounded twisted complexes relative to an 
embedding of A into another DG category B:

Definition 1.2 (see Definition 3.4). Let A be a DG category with a fully faithful embed-
ding into a DG category B which has countable direct sums and shifts.

An unbounded twisted complex over A relative to B consists of

• ∀ i ∈ Z, an object ai of A,
• ∀ i, j ∈ Z, a degree i − j + 1 morphism αij : ai → aj in A,

satisfying

•
∑

αij is an endomorphism of 
⊕

i∈Z ai[−i] in B,
• The twisted complex condition (1.1).

The DG category Tw±
B (A) of unbounded twisted complexes over A relative to B is 

defined in the unique way which yields fully faithful convolution functor

Tw±
B (A) → Mod -B, (1.2)

which sends any (ai, αij) to 
⊕

ai[−i] with its natural differential modified by 
∑

αij .

Any B as above is closed under twisting if and only if it admits convolutions of 
unbounded twisted complexes. In such case for any A ⊆ B the convolution functor (1.2)
takes values in B (Lemma 3.7). We can thus use unbounded twisted complexes over 
non-small categories without running into set-theoretic issues.
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In §4 we generalise twisted complexes in another direction and define a twisted bicom-
plex (Definition 4.1) over A. These are bigraded twisted complexes. To work with the 
unbounded ones, we again fix an embedding of A into a DG category B. We denote the 
resulting category of unbounded twisted complexes by Twbi±B (A). A twisted bicomplex 
is not a twisted complex of its rows or of its columns. It only becomes one after a sign 
twist. We write this down explicitly as a pair of functors

Cxrow, Cxcol : Tw±
B
(
Tw±

B (A)
)
→ Twbi±B (A).

We relate the images of these functors and show that both become isomorphisms if we 
only work with one-sided twisted complexes and bicomplexes (Proposition 4.3).

Finally, in §5 we give the main application we had in mind: to reformulate and gener-
alise the definitions of A∞-algebras and modules [12, §2] in terms of twisted complexes. 
This disposes with the necessity to work explicitly with the operation m1 (the differen-
tial) and makes the definitions work in an arbitrary DG monoidal category A (or, more 
generally, a DG bicategory).

In §5.1 we give the resulting definitions. They all ask for the bar constructions of the 
A∞-operations to be a twisted complex. Since these constructions involve infinite number 
of objects, we need the theory of unbounded twisted complexes. These definitions are 
studied further in [4] whose §3.2 explains at length how they generalise the classical 
definitions [12, §2] [14]. Note that in bar constructions there is only a finite number of 
arrows emerging from each element of the twisted complex. Hence, our definitions of 
an A∞-algebra or an A∞-module are independent of the ambient category B we use to 
define unbounded twisted complexes. In [4, §6] analogous definitions of A∞-coalgebras 
and A∞-comodules are given in terms of cobar constructions. There, infinite number of 
arrows can emerge from a single element of twisted complex, and thus the choice of B
matters.

In §5.2 we look at twisted complexes of A∞-modules. As per §5.1 let Nod∞-A be the 
category of A∞-modules over an A∞-algebra A in a monoidal DG category A. We define 
twisted complexes over Nod∞-A neither relative to Mod -(Nod∞-A) nor to Nod∞-A. 
Instead, we embed A into a cocomplete closed monoidal DG category B with convolutions 
of unbounded twisted complexes and define twisted complexes relative to Nod∞-AB, the 
category of A∞-A-modules in B. As Nod∞-AB also admits convolutions of unbounded 
twisted complexes (Corollary 5.14), convolutions of twisted complexes over Nod∞-A
take values in Nod∞-AB. We can always set B = Mod -A with the induced monoidal 
structure [8, §4.5]. However, we may need to choose differently e.g. for A∞-modules in a 
category of A∞-modules.

We then use the twisted bicomplex techniques we developed in §4 to prove that a 
twisted complex of A∞-modules defines an A∞-module structure on the twisted com-
plex of their underlying objects in a way that gives a fully faithful embedding of the 
corresponding categories (Proposition 5.12). It follows that the DG category Nod∞-A
of A∞-modules over an A∞-algebra A is pretriangulated (resp. admits convolutions of 
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unbounded twisted complexes) if and only if DG monoidal category A we work is (resp. 
does) (Corollary 5.13).

In the Appendix we describe a homotopy transfer of structure for A∞-modules.
We are aware of an alternative definition of the DG category of unbounded twisted 

complexes in [7]. It ignores the subtleties we consider by imposing no finiteness conditions 
on the differentials αij in twisted complexes and the components fij of their morphisms. 
The resulting category admits no convolution functor and is better suited to purposes 
different from ours.

Acknowledgments: We would like to thank Sergey Arkhipov, Alexander Efimov, and 
Dmitri Kaledin for useful discussions. The first author would like to thank Kansas State 
University for providing a stimulating research environment while working on this paper. 
The second author would like to offer similar thanks to Cardiff University and to Max-
Planck-Institut für Mathematik Bonn.

2. Preliminaries

2.1. DG categories

For a brief introduction to DG-categories, DG-modules and the technical notions 
involved we direct the reader to a survey in [1], §2-4. Other nice sources are [9], [16], 
[17], and [13].

We summarise the key notions relevant to this paper. Throughout the paper we work 
in a fixed universe U of sets containing an infinite set. We also fix the base field or 
commutative ring k we work over.

We define Mod -k to be the category of U -small complexes of k-modules. It is a 
cocomplete closed symmetric monoidal category with monoidal operation ⊗k and unit 
k. A DG category is a category enriched over Mod -k. In particular, any DG category 
is locally small.

If a DG category A is small, we write Mod -A for the DG category of (right) A-
modules. These are functors Aopp → Mod -k, so Mod -A = DGFun(Aopp, Mod -k). 
Note that if A is not small, then Mod -A doesn’t make sense. It isn’t even a DG category 
in the above sense - its morphism spaces are no longer small and hence do not lie in 
Mod -k.

We can always enlarge our universe U to a universe V where A is small. This enlarges 
Mod -k and hence Mod -A depends on choice of V . However, in this paper we only 
work with Mod -A as a target for the convolution of twisted complexes over A. For 
these purposes, the choice of V doesn’t matter - the only part of Mod -A we interact 
with are countable direct sums of shifts of objects of A with modified differential.

Thus, when A is not small, we mean by Mod -A the module category of A taken in 
any appropriate enlargement V of U . Moreover, the constructions in this paper, such 
as that of the category of twisted complexes over A taken relative to a DG category B, 
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were devised precisely to enable us to replace Mod -A with something more appropriate
when A is not small.

2.2. Key isomorphism

Let A be a DG-category, let E, F ∈ Mod -A and i, j ∈ Z. The theory of twisted com-
plexes [6] which we summarise in §2.3 depends crucially on the choice of an isomorphism

HomA(E,F )[j − i] ∼−−−−−→ HomA(E[i], F [j]). (2.1)

The simplest such isomorphism is:

Definition 2.1. Let A be a DG-category, let E, F ∈ Mod -A and i, j ∈ Z. Define the 
isomorphism of graded k-modules

ψ : HomA(E,F )[j − i] ∼−−−−−→ HomA(E[i], F [j]) (2.2)

to be the map which sends any f ∈ Homp
A(E, F ) to itself considered as an element of 

Homp−j+i(E[i], F [j]). In other words, forgetting the grading, in every fibre over every 
a ∈ A the map ψ(f) is the same map of k-vector spaces as f .

Note that ψ is not compatible with the differentials:

dHomA(E[i],F [j]) ◦ ψ = (−1)iψ ◦ dHomA(E,F )[j−i].

There are at least two natural ways to fix this. Define

ψ1, ψ2 : HomA(E,F )[j − i] ∼−−−−−→ HomA(E[i], F [j])

to be the maps which send f ∈ Homp
A(E, F ) to (−1)ipψ(f) and (−1)i(p−j+i)ψ(f). The 

difference between the two lies in whether we multiply i by the degree of f in HomA(E, F )
or its degree in HomA(E, F )[j − i].

Both ψ1 and ψ2 are isomorphisms of DG k-modules. However, they are incompatible 
with the composition. By this we mean the following: let E, F, G ∈ Mod -A and i, j, k ∈
Z, then e.g. the isomorphism

ψ1(E, i,G, k) : HomA(E,G)[k − i] ∼−−−−−→ HomA(E[i], G[k])

is not a composition of ψ1(E, i, F, j) and ψ1(F, j, G, k). On the other hand, ψ, while 
incompatible with differentials, is compatible with composition.

The theory of twisted complexes and its fundamental definitions depend on the choice 
of an isomorphism (2.1). The definition of the DG category Tw(A) of twisted complexes 
over A is set up so as to ensure that there exists a fully faithful functor Tw(A) ↪→ Mod -A
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called convolution, cf. §2.3. This functor is defined using the isomorphism (2.1), thus 
different choices would lead to different formulas in the definition of Tw(A).

The incompatibility of ψ with differentials introduces in these formulas a simple sign 
to every appearance of the differential dA of A, cf. (2.3) and (2.5). On the other hand, 
the incompatibility of ψ1 and ψ2 with composition introduces into the same formulas a 
complicated sign to every composition of two morphisms of A.

We choose to use the graded module isomorphism ψ to identify HomA(E, F )[j − i]
with HomA(E[i], F [j]) when defining twisted complexes. We fix this choice and use it 
implicitly in the sections below.

2.3. Bounded twisted complexes

Here we summarise some known facts about the usual, bounded twisted complexes. 
This notion was originally introduced by Bondal and Kapranov in [6]:

Definition 2.2. A twisted complex over a DG category A is a collection of

• ∀ i ∈ Z, an object ai of A, non-zero for only finite number of i,
• ∀ i, j ∈ Z, a degree i − j + 1 morphism αij : ai → aj in A,

a0 a1 a2 a3 a4

α00

α01

α02

α03

α04

α11

α10
α12

α13

α14

α22
α20

α21
α23

α24

α33

α30

α31

α32
α34

α44

α40

α41

α42

α43

satisfying the condition

(−1)jdαij +
∑
k

αkj ◦ αik = 0. (2.3)

Define the DG category Tw(A) of twisted complexes over A by setting

Hom•
Tw(A)

(
(ai, αij), (bi, βij)

)
:=

⊕
Homq

A(ak, bl) (2.4)

q,k,l∈Z
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where each f ∈ Homq
A(ak, bl) has degree q + l − k and

df := (−1)ldAf +
∑
m∈Z

(
βlm ◦ f − (−1)q+l−kf ◦ αmk

)
, (2.5)

where dA is the differential on morphisms in A.

This definition ensures that Tw(A) is isomorphic to the full subcategory of Mod -A
consisting of the DG A-modules whose underlying graded modules are of form ⊕i∈Zai[−i]
with only finite number of ai ∈ A non-zero. Indeed:

• The twisted complex condition (2.3) is equivalent to dnat +
∑

i,j αij being another 
differential on ⊕i∈Zai[−i]. Here dnat is its natural differential.

• The Hom-complex (2.5) is defined to have the same underlying graded k-module as

Hom•
Mod -A

(⊕
k∈Z

ak[−k],
⊕
l∈Z

bl[−l]
)

=
⊕
k,l∈Z

Hom•−l+k
A (ak, bl) , (2.6)

and the differential (2.5) is defined so as to coincide under this identification with the 
one obtained on (2.6) by endowing the two direct sums with their new differentials.

We thus have a fully faithful convolution functor

Conv: Tw(A) ↪→ Mod -A

which sends each (ai, αij) to the A-module 
⊕

ai[−i] equipped with the new differential 
dnat +

∑
αij . Note, that the existence of this functor can be used as the definition of 

the category Tw(A) once one fixes the assignment of the graded module 
⊕

ai[−i] to any 
collection {ai}i∈Z.

A twisted complex is called one-sided if αij = 0 for all i ≥ j.

a0 a1 a2 a3 a4α01

α02

α03

α04

α12

α13

α14

α23

α24

α34

(2.7)
If (ai, αij) is a one-sided twisted complex over A, then (ai, αij) is a (usual) complex 
over H0(A). Thus one-sided twisted complexes can be considered as homotopy lifts to 
A of usual complexes in H0(A). The full subcategory of Tw(A) consisting of one-sided 
twisted complexes is called the pretriangulated hull of A and is denoted Pre-Tr(A). We 
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say that a DG category is pretriangulated (resp. strongly pretriangulated) if the natural 
embedding A ↪→ Pre-Tr(A) is a quasi-equivalence (resp. equivalence).

The reason for the term “pretriangulated” is that H0(Pre-Tr(A)) is the triangulated 
hull of H0(A) in H0(Mod -A), or indeed any H0(B) for any fully faithful embedding of 
A into a pretriangulated DG category B.

3. Unbounded twisted complexes

In this section we generalise the notions in §2.3 to unbounded twisted complexes. The 
generalisation seems straightforward, but there are subtleties regarding infinite direct 
sums. Unlike finite direct sums, these are not preserved by all DG-functors. In particular, 
they are not preserved by the Yoneda embedding

Υ: A ↪→ Mod -A, a �→ HomA(−, a) ∀ a ∈ A

which we used implicitly in defining the convolution of a twisted complex.

Example 3.1. Let {ai}i∈Z be objects in A such that 
⊕

i∈Z ai exists in A. Then

⊕
i∈Z

Υ(ai) =
⊕
i∈Z

HomA(−, ai),

Υ
(⊕

i∈Z
ai

)
= HomA(−,

⊕
i∈Z

ai),

are two different A-modules, with the former being a strict submodule of the latter. Let 
b ∈ A, the morphisms from Υ(b) to the former module are the finite sums of b → ai. 
On the other hand, the morphisms from Υ(b) to the latter are the morphisms from b
to 

⊕
i∈Z ai, which includes some infinite sums of b → ai. In particular, if b =

⊕
i∈Z ai, 

then Idb is the infinite sum of Idai
.

To define an unbounded twisted complex of objects {ai}i∈Z of A, we need to choose 
in which category we take the infinite direct sum 

⊕
i∈Z ai[−i]. We can always do it in 

Mod -A. Then, proceeding as before, we arrive at the following definition. In it, we allow 
infinite number of non-zero objects ai, but then, both for twisted differentials and for 
the morphisms of twisted complexes, we disallow an infinite number of non-zero maps 
to emerge from any one object ai:

Definition 3.2 (Absolute version). An absolute unbounded twisted complex over a DG 
category A consists of

• ∀ i ∈ Z, an object ai of A,
• ∀ i, j ∈ Z, a degree i − j + 1 morphism αij : ai → aj in A,
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satisfying

• For any i ∈ Z only finite number of αij are non-zero,
• The twisted complex condition (2.3).

Define DG category Tw±
abs(A) of such twisted complexes over A by

Hom•
Tw±

abs(A)
(
(ai, αij), (bi, βij)

)
:=

⊕
q∈Z

∏
k∈Z

⊕
l∈Z

Homq
A(ak, bl) (3.1)

where the degree of Homq
A(ak, bl) is q + l − k and the differential is defined by (2.5).

As before, this results in the fully faithful convolution functor

Conv: Tw±
abs(A) ↪→ Mod -A.

Apriori, this is the only definition we can make for an arbitrary DG category A. Indeed, 
unless specifically mentioned otherwise, we write Tw±(A) for Tw±

abs(A).
However, in some cases it is useful to define Tw±(A) to be bigger than Tw±

abs(A):

Example 3.3. Let A = Mod -C for some small DG category C. Assign to a collection 
{ai}i∈Z the representable A-module Υ(

⊕
i∈Z ai[−i]), instead of the non-representable 

A-module 
⊕

i∈Z Υ(ai[−i]). This yields the definition of Tw±(A) which is analogous to 
the one above, except we do allow infinite number of twisted differentials αij to emerge 
from a single object ai as long as 

∑
αij defines an endomorphism of 

⊕
i∈Z ai[−i] in 

A, and similarly for morphisms of twisted complexes. As before, this definition ensures 
that we have the fully faithful convolution functor Tw±(A) ↪→ Mod -A. However, since 
A = Mod -C is closed under twisting, this convolution factors through the Yoneda 
embedding. Thus we have the fully faithful functor

Conv: Tw±(A) → A.

In fact, it is an equivalence, since it has a right inverse - the tautological embedding 
A ↪→ Tw±(A) which sends any a ∈ A to itself considered as a trivial twisted complex 
concentrated in degree zero. We thus see that A = Mod -C is closed under convolutions 
of all unbounded twisted complexes in Tw±(A).

Finally, even when A does not admit all small direct sums, there might still be a better 
category to take these in than Mod -A. For example, A might be a full subcategory of 
some Mod -C containing some infinite direct sums, but not all of them. Another example, 
which indeed motivated these considerations, can be found in §5.2. We thus define the 
following:
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Definition 3.4. Let A be a DG category with a fully faithful embedding into a DG 
category B which has countable direct sums and shifts.

An unbounded twisted complex over A relative to B consists of

• ∀ i ∈ Z, an object ai of A,
• ∀ i, j ∈ Z, a degree i − j + 1 morphism αij : ai → aj in A,

satisfying

•
∑

αij is an endomorphism of 
⊕

i∈Z ai[−i] in B,
• The twisted complex condition (2.3).

Define DG category Tw±
B (A) of unbounded twisted complexes over A relative to B by 

setting

Hom•
Tw±

B (A)
(
(ai, αij), (bi, βij)

)
:= Hom•

B(
⊕
k∈Z

ak[−k],
⊕
l∈Z

bl[−l]) (3.2)

with its natural grading and the differential defined by (2.5).

Where the choice of B is clear or was fixed, we shall write Tw±(A) for Tw±
B (A).

As before, our definition ensures that we have a fully faithful convolution functor

Conv: Tw±
B (A) → Mod -B.

We have the commutative square of fully faithful embeddings

A B

Mod -A Mod -B.

I

Υ Υ

I∗

(3.3)

Since all DG-functors preserve finite direct sums, we see that on bounded twisted com-
plexes the convolution functor into Mod -B is simply the composition of the usual 
convolution functor into Mod -A and I∗.

Observe that setting B = Mod -A recovers the definition of Tw±
abs(A) with the con-

volution into Mod -A. On the other hand, when we have A = Mod -C for some small 
DG-category C, setting B = A recovers the category constructed in Example 3.3 with 
its convolution into Mod -A which factors through A.

Definition 3.5. A DG category B is closed under twisting if for all b ∈ B and f ∈
Hom1

B(b, b) with df + f2 = 0 the module in Mod -B which has the underlying graded 
module of HomB(−, b) and the differential dHomB(−,b) + f is representable.
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Definition 3.6. A DG category B admits convolutions of unbounded twisted complexes if it 
admits countable direct sums and shifts and the convolution functor Tw±

B (B) ↪→ Mod -B
factors through B ↪→ Mod -B.

We do not need to specify for which unbounded twisted complexes B admits convo-
lutions, because for the convolution to be representable the infinite direct sum needs to 
be taken in B itself. Thus we need to consider unbounded twisted complexes relative to 
B itself.

If B admits convolutions of unbounded twisted complexes, then the convolution

Tw±
B (B) ↪→ B

is necessarily an equivalence. It is fully faithful and has a right inverse which sends any 
b ∈ B to itself considered as trivial twisted complex in degree zero.

Lemma 3.7. Let B be a DG-category which admits countable direct sums and shifts. The 
following are equivalent:

(1) B is closed under twisting.
(2) B admits convolutions of unbounded twisted complexes.
(3) The embedding B ↪→ Tw±

B (B) which sends any b ∈ B to itself considered as a trivial 
twisted complex in degree zero is an equivalence.

(4) For any DG-category A with an embedding into B, Tw±
B (A) → Mod -B factors 

through B ↪→ Mod -B.

Proof. (1) ⇒ (2): This is the same argument as in Example 3.3.
(2) ⇔ (3): The composition

B ↪→ Tw±
B (B) ↪→ Mod -B

is the Yoneda embedding. Thus Tw±
B (B) ↪→ Mod -B factors through the Yoneda embed-

ding if and only if B ↪→ Tw±
B (B) admits a right quasi-inverse. A fully faithful functor 

admits a right quasi-inverse if and only if it is an equivalence.
(2) ⇔ (4):
The “if” implication is obvious. The “only if’ one results from the following commu-

tative triangle of fully faithful functors:

Tw±
B (A) Mod -B.

Tw±
B (B)

Conv

Conv
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(2) ⇒ (1):
Let b ∈ B and f ∈ Hom1

B(b, b) with df + f2 = 0. Then the complex consisting of b in 
degree 0 with a single differential f from b to itself is a twisted complex. Its convolution 
in Mod -B has the same graded module as b and the differential db + f . Since B admits 
convolutions of twisted complexes, it is representable. �

Finally, for any version of Tw±(A), we define Tw+(A) and Tw−(A) to be its 
full subcategories consisting of all bounded above twisted complexes and all bounded 
below twisted complexes, respectively. We also define Pre-Tr±(A), Pre-Tr+(A), and 
Pre-Tr−(A) to be the full subcategories of Tw±(A), Tw+(A), and Tw−(A) consisting of 
one-sided twisted complexes.

4. Twisted bicomplexes

The following is a natural generalisation of the notion of a twisted complex:

Definition 4.1. A twisted bicomplex (aij , αijkl) over a DG category A comprises

• ∀ i, j ∈ Z, an object aij of A, non-zero for only finite number of pairs (i, j),
• ∀ i, j, k, l ∈ Z, a degree (i + j) − (j + k) + 1 morphism αijkl : aij → akl in A,

satisfying

(−1)k+ldαijkl +
∑
m,n

αijmn ◦ αmnkl = 0. (4.1)

Define the DG category Twbi(A) of twisted bicomplexes over A by setting

Hom•
Tw(A)

(
(aij , αijkl), (bij , βijkl)

)
:=

⊕
q,k,l,m,n∈Z

Homq
A(akl, bmn) (4.2)

where each f ∈ Homq
A(akl, bmn) has degree q + (m + n) − (k + l) and

df := (−1)m+ndAf +
∑

p,q∈Z

(
βmnpq ◦ f − (−1)q+(m+n)−(k+l)f ◦ αpqkl

)
, (4.3)

where dA is the differential on morphisms in A.
We think of indices i and j of each aij as the row index and the column index, 

respectively. We say that a twisted bicomplex is horizontally one-sided (resp. vertically 
one-sided) if αijkl = 0 when l ≤ j (resp. k ≤ i). We say that a twisted bicomplex is 
one-sided if it is both vertically and horizontally one-sided.

The categories Twbi±(A), Twbi+(A) and Twbi−(A) of absolute unbounded, un-
bounded below, and unbounded above twisted bicomplexes, as well as their versions 
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relative to another DG category B are defined similarly to the way they are defined in 
§3 for twisted complexes. We also use Twbivos, Twbihos and Twbios to denote the full 
subcategories consisting of one-sided twisted bicomplexes.

Finally, we note that the category of twisted bicomplexes is naturally isomorphic to 
the category of twisted complexes of twisted complexes, but in two different ways: the 
complex of sign-twisted rows and the complex of sign-twisted columns. For this result, 
the twisted complexes over A need to be considered relative to some B which admits the 
convolutions of unbounded twisted complexes, cf. Lemma 3.7. This is always true when 
B = Mod -C for some DG-category C.

Definition 4.2. Let A be DG category and fix its embedding into a DG-category B which 
admits convolutions of unbounded twisted complexes. Define

Cxrow: Tw±
B
(
Tw±

B (A)
)
→ Twbi±B (A), (4.4)

Cxcol : Tw±
B
(
Tw±

B (A)
)
→ Twbi±B (A), (4.5)

as follows. Let (Ei, αik) be an object of Tw±
B
(
Tw±

B (A)
)
. Write

• Ei,j for the objects of each Ei and αi,jl : Ei,j → Ei,l for its differentials.
• αik,jl : Ei,j → Ek,l for the components of αik : Ei → Ek.

We then define:

• Cxrow(Ei, αik) to be the twisted bicomplex whose ij-th object is Ei,j and whose 
ijkl-th differential is αik,jl if i �= k and αii,jl + (−1)iαi,jl if i = k.

• Cxcol(Ei, αik) to be the twisted bicomplex whose ij-th object is Ej,i and whose 
ijkl-th differential is αjl,ik if j �= l and αjj,ik + (−1)jαj,ik if j = l.

Similarly, let f : (Ei, αik) → (Fi, βik) be a morphism in Tw±
B
(
Tw±

B (A)
)
. Write fik

for its Ei → Fk component, and then fik,jl for Ei,j → Fk,l component of that. We then 
define:

• Cxrow(f) to be the bicomplex map whose ijkl-th component is fik,jl,
• Cxcol(f) to be the bicomplex map whose ijkl-th component is fjl,ik.

In other words, Cxrow(Ei, αik) is the bicomplex whose i-th row is the twisted complex 
(−1)iEi to whose differentials we further add all the components of αii. The differentials 
between i-th and j-th rows for i �= j are the components of αij . Similarly, Cxcol(Ei, αik)
is the bicomplex whose columns are (−1)iEi modified by αii and whose intercolumn 
differentials are αij . On morphisms, both functors simply map a morphism of complexes 
of complexes to the bicomplex morphism with the same components.
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By our assumption on B, the convolution functor embeds Tw±
B (A) fully faithfully into 

B. We thus have a double convolution functor:

Conv Conv: Tw±
B
(
Tw±

B (A)
)
↪→ B. (4.6)

Proposition 4.3. Let A be a DG category with a fully faithful functor into a DG cat-
egory B which admits convolutions of unbounded twisted complexes. Let (Ei, αik) ∈
Tw±

B
(
Tw±

B (A)
)
. Then:

(1) Functors Cxrow and Cxcol in Definition 4.2 are well-defined. The data they assign 
to an object of Tw±

B
(
Tw±

B (A)
)

satisfies the twisted bicomplex condition (4.1) and 
the finiteness condition of the sum of its differentials being a morphism in B. The 
data they assign to a morphism satisfies the finiteness condition of the sum of its 
components being a morphism in B.

(2) The following diagram commutes:

Tw±
B
(
Tw±

B (A)
)

B.

Twbi±B (A)

Conv Conv

Cxrow or Cxcol Conv
(4.7)

(3) The following diagram commutes:

Tw±
B
(
Tw±

B (A)
)

Twbi±B (A).

Twbi±B (A)

Cxrow

Cxcol
Reflect

(4.8)

Here Reflect is a self-inverse automorphism of Twbi±B (A) which reflects it along the 
diagonal: a bicomplex (Eij , αijkl) is sent to (Eji, (−1)δik+δjlαjilk), while a morphism 
(fijkl) is sent to (fjilk).

(4) Functor Cxrow restricts to the isomorphism

Cxrow: Pre-Tr±B
(
Tw±

B (A)
) ∼−→ Twbi±,vos

B (A),

while Cxcol restricts to the isomorphism

Cxcol : Pre-Tr±B
(
Tw±

B (A)
) ∼−→ Twbi±,hos

B (A).

Both functors restrict to the isomorphisms

Cxrow, Cxcol : Pre-Tr±B
(
Pre-Tr±B (A)

) ∼−→ Twbi±,os
B (A).
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Proof. Straightforward computation. �
The resulting “monodromy” Cxrow−1 ◦ Cxcol of Pre-Tr±B

(
Pre-Tr±B (A)

)
is a non-trivial 

autoequivalence which takes a complex of complexes and slices up the resulting bigraded 
data of objects and differentials in the other direction to produce a different complex 
of complexes out of the same data, while sign-twisting purely horizontal and vertical 
differentials.

5. Application: A∞-structures in monoidal DG categories

The main application we had in mind for unbounded twisted complexes is to reformu-
late and generalise the definitions of A∞-algebras and modules [12, §2]: we define these 
structures in an arbitrary DG monoidal category A (or, more generally, a DG bicate-
gory). This disposes with the necessity to work explicitly with the operation m1, i.e. the 
differential.

Traditionally, A∞-algebra formalism was defined for objects in the DG category 
Mod -k of DG complexes of k-modules with its natural monoidal structure given by 
the tensor product of complexes [12, §2]. In Mod -k the internal differential of each 
object, that is – its differential as a complex of k-modules, exists as a degree 1 endo-
morphism of the object. It can therefore be a part of the definition of an A∞-algebra or 
A∞-module in Mod -k. This is no longer true if we work with an arbitrary monoidal DG 
category A. In Mod -A the internal differentials of objects do not appear as their degree 
1 endomorphisms. Moreover, if we wanted to try and set up A∞-formalism to work in 
A itself, its objects do not possess an internal differential.

The language of twisted complexes solves both of these problems. It implicitly em-
beds the objects of A into Mod -A as Hom-complexes of A. These do have an internal 
differential: the differential dA of A. The twisted complex condition (2.3) involves dA
and makes it possible to define an A∞-algebra or module structure on an object a ∈ A
while referring explicitly only to operations {mi}i≥2.

The resulting definitions all ask for the corresponding bar construction of the A∞-
operations to be a twisted complex. These twisted complexes have to be unbounded, 
thus necessitating the theory developed in this paper and its subtleties. We note that in 
the bar constructions there is only a finite number of arrows emerging from each element 
of the twisted complex. Hence, our definitions of an A∞-algebra or an A∞-module are 
independent of the ambient category B we use to define unbounded twisted complexes. 
We see another example of these subtleties coming into play when we consider twisted 
complexes of A∞-modules in §5.2.

In §5.1 we give the key definitions which are studied further [4]. An interested reader 
should consult §3.2 of that paper for further explanation of the way in which these 
definitions generalise the classical ones in [12, §2].

In §5.2 we use the twisted bicomplex techniques we developed in §4 to prove several 
theorems about twisted complexes of A∞-modules. We first relate a twisted complex 
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of A∞-modules to an A∞-module structure on the twisted complex of their underlying 
objects. This allows us to show that the DG category Nod∞-A of A∞-modules over 
an A∞-algebra A is strongly pretriangulated (resp. pretriangulated) if and only if DG 
monoidal category A we work in is. Hence if we expand A to Mod -A with the induced 
monoidal structure [8, §4.5] all the categories of A∞-modules over all A∞-algebras in it 
become strongly pretriangulated.

5.1. Definitions

Throughout this section we assume that DG monoidal category A we work with comes 
with a fixed choice of a monoidal embedding

A ↪→ B

into a closed monoidal DG category B which admits convolutions of unbounded twisted 
complexes. Note, that we can always set B = Mod -A with the induced monoidal struc-
ture [8, §4.5], enlarging our universe if necessary when A is not small. All the unbounded 
twisted complexes over A are then defined relative to this ambient category B.

The condition that B is closed under convolutions of unbounded twisted complexes 
can be replaced throughout by B being closed under the convolutions of bounded above 
twisted complexes and/or bounded below twisted complexes.

Given any object A ∈ A, we write Ai to denote the i-fold tensor product A⊗i.

Definition 5.1. Let A be a monoidal DG category, let A ∈ A and let {mi}i≥2 be a 
collection of degree 2 − i morphisms Ai → A.

The (non-augmented) bar-construction Bna
∞ (A) of A is the collection of objects Ai+1

for all i ≥ 0 each placed in degree −i and of degree k − 1 maps d(i+k)i : Ai+k → Ai

defined by

d(i+k)i := (−1)(i−1)(k+1)
i−1∑
j=0

(−1)jk Idi−j−1 ⊗mk+1 ⊗ Idj . (5.1)

. . . A4 A3 A2 A
deg.0A3m2−A2m2A+

+Am2A
2−m2A

3

A2m3+Am3A+m3A
2

Am4−m4A

m5

A2m2−Am2A+m2A
2

−Am3−m3A

m4

Am2−m2A

m3

m2

(5.2)
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We say that the bar construction in Definition 5.1 is non-augmented because in the 
standard sources on A∞-algebras [12] two bar constructions are used: the non-augmented 
one is as in Definition 5.1 and the augmented one would in our context be the direct sum 
of the non-augmented and IdA, the unit of the monoidal structure on A. The augmented 
bar construction has a natural structure of a strictly counital strict coalgebra, a point of 
view much exploited in [12].

Definition 5.2. Let A be a monoidal DG category. An A∞-algebra (A, mi) in A is an 
object A ∈ A equipped with operations mi : Ai → A for all i ≥ 2 which are degree 2 − i

morphisms in A such that their non-augmented bar-construction Bna
∞ (A) is a twisted 

complex over A.

We define morphisms of A∞-algebras in A in a similar way:

Definition 5.3. Let (A, mk) and (B, nk) be A∞-algebras in A. Let (fi)i≥1 be a collection 
of degree 1 − i morphisms Ai → B.

The bar-construction B∞(f•) is the morphism Bna
∞ (A) → Bna

∞ (B) in Pre-Tr−(A)
whose Ai+k → Bi component is

∑
t1+···+ti=i+k

(−1)
∑i

l=2(1−tl)
∑l

n=1 tnft1 ⊗ . . .⊗ fti .

. . . A4 A3 A2 A

. . . B4 B3 B2 B.

f1f1f1f1

f1f1f2−f1f2f1+f2f1f1

f1f3+f2f2+f3f1

f4

f1f1f1

−f1f2+f2f1

f3

f1f1

f2

f1

Definition 5.4. A morphism f• : (A, mk) → (B, nk) of A∞-algebras is a collection (fi)i≥1

of degree 1 − i morphisms Ai → B whose bar construction is a closed degree 0 morphism 
of twisted complexes.

We define left and right A∞-modules over such (A, m•) in a similar way:

Definition 5.5. Let (A, mi) be an A∞-algebra in a monoidal DG category A. Let E ∈ A
and let {pi}i≥2 be a collection of degree 2 − i morphisms E ⊗Ai−1 → E.

The right module bar-construction B∞(E) of (E, pi) comprises objects E⊗Ai for i ≥ 0
placed in degree −i and degree 1 − k maps E ⊗Ai+k−1 → E ⊗Ai−1 defined by
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d(i+k)i := (−1)(i−1)(k+1)

⎛
⎝i−2∑

j=0

(
(−1)jk Idi−j−1 ⊗mk+1 ⊗ Idj

)
+ (−1)(i−1)kpk+1 ⊗ Idi−1

⎞
⎠.

(5.3)

. . . EA3 EA2 EA E
deg.0

.
EA2m2−EAm2A+

+Em2A
2−p2A

3

EAm3+Em3A+p3A
2

Em4−p4A

p5

EAm2−Em2A+p2A
2

−Em3−p3A

p4

Em2−p2A

p3

p2

(5.4)

Definition 5.6. For E ∈ A and a collection {pi}i≥2 of degree 2 −i morphisms Ai−1⊗E →
E, its left module bar-construction B∞(E) comprises objects Ai ⊗E for all i ≥ 0 placed 
in degree −i and degree 1 − k maps Ai+k−1 ⊗ E → Ai−1 ⊗ E defined by

d(i+k)i := (−1)(i−1)(k+1)

⎛
⎝i−1∑

j=1

(
(−1)jk Idi−j−1 ⊗mk+1 ⊗ Idj

)
+ Idi−1 ⊗pk+1

⎞
⎠ . (5.5)

. . . A3E A2E AE E
deg.0

.
A3p2−A2m2E+

+Am2AE−m2A
2E

A2p3+Am3E+m3AE

Ap4−m4E

p5

A2p2−Am2E+m2AE

−Ap3−m3E

p4

Ap2−m2E

p3

p2

(5.6)

Definition 5.7. Let A be a monoidal DG category and let (A, mi) be an A∞-algebra in 
A. A right (resp. left) A∞-module (E, pi) over A is an object E ∈ A and a collection 
{pi}i≥2 of degree 2 −i morphisms E⊗Ai−1 → E (resp. Ai−1⊗E → E) such that B∞(E)
is a twisted complex.

Definition 5.8. Let A be a monoidal DG category and let (A, mi) be an A∞-algebra in 
A. Let (E, pk) and (F, qk) be right A∞-modules over A in A.

A degree j morphism f• : (E, pk) → (F, qk) of right A∞-A-modules is a collection 
(fi)i≥1 of degree j− i + 1 morphisms E⊗Ai−1 → F . Its bar-construction B∞(f•) is the 
morphism B∞(E) → B∞(F ) in Pre-Tr−(A) whose components are

E ⊗Ai+k−1 → F ⊗Ai−1 : (−1)j(i−1)fk+1 ⊗ Idi−1 .
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We illustrate the case when f• is of odd degree:

. . . EA3 EA2 EA E

. . . FA3 FA2 FA F.

−f1A
3

f2A
2

−f3A

f4

f1A
2

−f2A

f3

−f1A

f2

f1

The corresponding definition for the left A∞-modules differs only in signs:

Definition 5.9. Let A be a monoidal DG category and let (A, mi) be an A∞-algebra in 
A. Let (E, pk) and (F, qk) be left A∞-modules over A in A.

A degree j morphism f• : (E, pk) → (F, qk) of left A∞-A-modules is a collection (fi)i≥1

of degree j−i +1 morphisms Ai−1⊗E → F . Its bar-construction B∞(f•) is the morphism 
B∞(E) → B∞(F ) in Pre-Tr−(A) whose components are

Ai+k−1 ⊗ E → Ai−1 ⊗ F : (−1)(j+k)(i−1) Idi−1 ⊗fk+1.

We define the DG categories of left and right modules over A in the unique way which 
makes the left and right module bar constructions into faithful DG functors from these 
categories to Pre-Tr−(A):

Definition 5.10. Let A be a monoidal DG category and A be an A∞-algebra in A. Define 
the DG category Nod∞-A of right A∞-A-modules in A by:

• Its objects are right A∞-A-modules in A,
• For any E, F ∈ ObNod∞A, the complex Hom•

Nod∞A(E, F ) consists of A∞-
morphisms f• : E → F with their natural grading. The differential and the com-
position are defined by differentiating and by composing the corresponding twisted 
complex morphisms.

• The identity morphism of E ∈ Nod∞A is the morphism (f•) with f1 = IdE and 
f≥2 = 0 whose corresponding twisted complex morphism is IdB∞(E).

The DG category A-Nod∞ of left A∞-A-modules in A is defined analogously.

The letter ‘N’ in Nod∞ stands for ‘non-unital’. Both classical A∞-algebras and our 
generalisations of them are not required to be equipped with a unitality structure, and 
A∞-modules over them are not subject to any unitality constraints.

Similar definitions exist for A∞-coalgebras and A∞-comodules, see [4, §6].
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5.2. Twisted complexes of A∞-modules

The notion of an A∞-module over an A∞-algebra (A, m•) in a monoidal DG category 
A which we defined in §5.1 differs in several ways from the usual notion which corresponds 
to the case A = Mod -k.

One is that the DG-category of usual A∞-modules is strongly pretriangulated, while 
in our generality Nod∞-A doesn’t have to be. In this section we show that Nod∞-A is 
strongly pretriangulated if and only if A is strongly pretriangulated.

First, we need to fix our conventions. As in §5.1 we assume that our monoidal DG 
category A comes with a monoidal embedding into a closed monoidal DG category B
which has convolutions of unbounded twisted complexes. Recall that we can always set 
B = Mod -A with the induced monoidal structure [8, §4.5].

We define Tw± A and Tw± B relative to B. Thus twisted complexes in Tw± A and 
Tw± B can have infinite number of differentials and/or morphism components emerge 
from a single object, but only if their sum still defines a morphism in B. By Lemma 3.7, 
since B admits convolutions of unbounded twisted complexes, the convolution functor 
Tw± B ↪→ B is an equivalence.

Let (A, m•) be an A∞-algebra in A. In §5.1 we define the DG category Nod∞-A of 
right A∞-A-modules in A. Using the monoidal embedding we can view (A, m•) as an 
A∞-algebra in B. We write Nod∞-AB for the category of right A∞-A-modules in B. 
Note that we have tautological embedding Nod∞-A ↪→ Nod∞-AB.

We now want to define Tw± Nod∞-A. Working with absolute twisted complexes gives 
us a convolution into Mod - (Nod∞-A), but it isn’t the category we want to work with. 
Instead, we have an embedding of Nod∞-A into Nod∞-AB, and we want Nod∞-AB to 
be the target for the convolution of twisted complexes of Nod∞-A.

The category Nod∞-AB is closed under shifts and direct sums because B is. Indeed, 
(E, p•)[n] = (E[n], (−1)np•) and ⊕i(Ei, pi•) = (⊕iEi, 

∑
i pi•). To see that 

∑
i pi• define 

an A∞-module structure on ⊕iEi, note that since B is closed monoidal its monoidal 
structure commutes with infinite direct sums. We thus define both Tw± Nod∞-A and 
Tw± Nod∞-AB relative to Nod∞-AB. This yields fully faithful convolution functors 
from both into Mod -

(
Nod∞-AB). We now want to show that Nod∞-AB admits con-

volutions of unbounded twisted complexes, and thus both convolution functors take 
values in Nod∞-AB.

For this, we prove below that a twisted complex of A∞-modules defines the structure 
of an A∞-module on the underlying twisted complex of objects of A. But first, we define 
what such structure is. The category Tw± A is not apriori monoidal as a tensor product 
of two twisted complexes over A should have as objects direct sums of objects of A. 
These do not apriori exist in A, but they do exist in B. Indeed, Tw± B is a monoidal 
category equivalent to B.



R. Anno, T. Logvinenko / Journal of Algebra 647 (2024) 794–822 815
Definition 5.11. Let ATw± A denote A considered as a trivial twisted complex in Tw± A. 
Define Nod∞-ATw± A to be the full subcategory of Nod∞-AB consisting of the A∞-
modules whose underlying objects of B lie in Tw± A ⊆ Tw± B � B.

Explicitly, an object of Nod∞-ATw± A is a twisted complex (Ei, αij) over A together 
with degree 2 − k twisted complex morphisms

pk : (Ei ⊗Ak−1, αij ⊗ Id) → (Ei, αij)

such that their right-module bar-construction is a twisted complex of twisted complexes 
(Ei ⊗Ak−1, αij ⊗ Id).

We can now state the main result of this subsection:

Proposition 5.12. There exist fully faithful embeddings of DG-categories:

Φ: Tw± (Nod∞-A) ↪→ Nod∞-ATw± A, (5.7)

Φ: Tw± (
Nod∞-AB) ↪→ Nod∞-AB. (5.8)

These preserve boundedness and one-sidedness of twisted complexes. We can replace 
Tw± with any of Tw+, Tw−, Tw, Pre-Tr±, Pre-Tr+, Pre-Tr−, or Pre-Tr.

Note that the embedding A ↪→ B and the convolution functor Tw± A ↪→ B induces 
fully faithful functors from the LHS and the RHS of (5.7) to those of (5.8). Our con-
struction of Φ in the proof below ensures that (5.7) is the restriction of (5.8).

Proof. The bar-construction functor B∞ : Nod∞-A → Pre-Tr−A induces a functor 
Tw±(B∞) : Tw± Nod∞-A → Tw± (

Tw± A
)
. Composing it with Cxcol (see Defini-

tion 4.2) we get a functor

Cxcol ◦Tw±(B∞) : Tw± (Nod∞-A)) → Twbi±B (A).

Similarly, composing B∞ : Nod∞-ATw±(A) → Pre-Tr−
(
Tw±(A)

)
with Cxrow gives

Cxrow ◦B∞ : Nod∞-ATw±(A) → Twbi±B (A).

The functors B∞, Cxcol, and Cxrow are injective on objects and faithful. Hence so are 
Cxcol ◦ Tw±(B∞) and Cxrow ◦B∞.

This proof is based on the observation that the image of Cxcol ◦ Tw±(B∞) is mapped 
into the image of Cxrow ◦B∞ by the automorphism σ of Twbi±B (A) which multiplies 
every differential αijkl and morphism component fijkl by (−1)ij+kl. Thus there exists a 
unique functor Φ which makes the following square commute:
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Tw± (Nod∞-A) Twbi±B (A)

Nod∞-ATw±(A) Twbi±B (A).

Cxcol ◦Tw±(B∞)

Φ σ

Cxrow ◦B∞

(5.9)

Explicitly, Φ has the following description. Let ((Ei, pi•), αij•) ∈ Tw± (Nod∞-A). 
Set Pk+1 : (Ei, αij1) ⊗ Ak → (Ei, αij1) to be the morphism of twisted complexes whose 
components are (−1)ikαijk + δij(−1)i(k+1)pi,k+1. Then

Φ((Ei, αij•)) = ((Ei, αij1), P•) (5.10)

Φ((fij•)) =
(
(−1)i•fij•

)
. (5.11)

Taking the above as the definition of Φ in (5.7), one can now verify by direct com-
putation that Φ is well-defined and that it makes (5.9) commute. Its fully faithfullness 
follows immediately from (5.11).

An identical bicomplex argument applies to Tw± (
Nod∞-AB) leading to the identical 

definition of Φ in (5.8) via the same formulas (5.10) and (5.11) which is well-defined and 
fully faithful for the same reasons. �

It follows that Nod∞-A is pretriangulated if and only if A is:

Corollary 5.13. The natural embedding

Nod∞-A ↪→ Tw± (Nod∞-A) (5.12)

is an equivalence (resp. quasi-equivalence) if and only if A ↪→ Tw± (A) is. The same 
holds if Tw± is replaced by any of its subcategories Tw• or Pre-Tr•.

Note that A ↪→ Tw± A is never an equivalence. Let {ai} be a twisted complex with 
zero differentials. We define Tw± A relative to Mod -A, so any morphism from some 
b ∈ A to {ai} only has a finite number of non-zero components b → ai. So it can not 
have a right inverse. Thus, by above Corollary, Nod∞-A never admits the convolutions 
of unbounded twisted complexes taken relative to Nod∞-AB.

Proof. All arguments in this proof work identically if we replace Tw± with any of its 
full subcategories Tw• or Pre-Tr•.

“If”: Since (5.12) is fully faithful, it is an equivalence (resp. quasi-equivalence) if so is 
its composition Nod∞-A ↪→ Nod∞-ATw± A with (5.7).

If A ↪→ Tw± (A) is an equivalence, it is clear that so is Nod∞-A ↪→ Nod∞-ATw± A. 
If A ↪→ Tw± (A) is only a quasi-equivalence, Nod∞-A ↪→ Nod∞-ATw± A is also a 
quasi-equivalence, but this requires more work. Let ((Ei, αij), p•) ∈ Nod∞-ATw± A. 
By assumption, (Ei, αij) is homotopy equivalent in Tw± (A) to some F ∈ A. By the 
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homotopy transfer of structure (Theorem A.2) we can transfer the A∞-structure p•
from (Ei, αij) to F . We thus obtain an A∞-A-module (F, q•) homotopy equivalent to 
((Ei, αij), p•), as desired.

“Only if”: The forgetful functor Nod∞-A → A has a right inverse: the functor A →
Nod∞-A which sends any object a ∈ A to (a, p•) with pi = 0 for all i and sends any 
morphism f : a → b to (f•) with f1 = f and fi = 0 for i > 1. �

Since B ↪→ Tw± B is an equivalence, the same argument as in Corollary 5.13 gives:

Corollary 5.14. Nod∞-AB has convolutions of unbounded twisted complexes.

It follows by Lemma 3.7, that the convolutions of unbounded twisted complexes in 
Nod∞-A and Nod∞-AB take value in Nod∞-AB, as desired.

Data availability

No data was used for the research described in the article.

Appendix A. Homotopy transfers of structure for A∞-modules

In [15] Markl described the homotopy transfer of structure for (the usual) A∞-algebras 
over a commutative ring. In this section we give its analogue for A∞-modules over an 
A∞-category. One of the reasons to write this down in detail, is to convince ourselves 
that it works just the same for our new notion of A∞-modules over an A∞-algebra in a 
DG monoidal category A introduced in §5.

Another is that the bar construction for morphisms of modules, unlike that for mor-
phisms of algebras, is additive. As result, we can give simple explicit formulas for the 
transfer in terms of the bar construction.

First we describe the homotopy transfer of structure for classical A∞-modules.
Let A be a small A∞-category over a commutative ring k in the sense of [12] As usual, 

denote by kA the minimal k-linear category with the same objects as A: HomkA(a, b)
is 0 when a �= b and k when a = b. The category of graded kA-kA-bimodules has a 
natural monoidal structure given by ⊗k. The A∞-category A can be naturally viewed as 
an A∞-algebra in this category, and A∞-A-modules — as A∞-modules over this algebra 
in the category of graded kA-modules.

For our purposes, it is more natural to consider A to be an A∞-algebra in the category 
kA-Mod-kA of differentially graded kA-kA-bimodules. In other words, what is usually 
known as the operation m1 becomes the intrinsic data of the differential of the DG-kA-kA-
bimodule A. The structure m• of an A∞-algebra on this DG-bimodule consists then of 
kA-Mod-kA maps

mi : A⊗ki → A ,deg(mi) = 2 − i, i ≥ 2.
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Write B∞A for the bar construction of A [12, §1.2.2]. It is a DG-coalgebra in kA-Mod-kA
equal as a graded coalgebra to the free tensor coalgebra 

⊕∞
i=0 A⊗ki.

Let P be a right A∞-module over A. We consider it, again, as a DG-kA-module with 
an A∞-structure μ• given by Mod-kA maps

μi : P ⊗k A⊗k(i−1) → P, deg(μi) = 2 − i, i ≥ 2.

Write B∞P for the bar construction of A [12, §2.3.3]. It is a DG-B∞A-comodule equal 
as a graded comodule to the free comodule P ⊗k B∞A.

Suppose that there is another kA-module Q and two morphisms

f : P → Q,

g : Q → P,

in Mod-kA such that gf = Id+dh for some degree −1 map h : P → P .

Theorem A.1. A homotopy transfer of A∞-structure from P to Q exists:

(1) A structure ν• of a right A∞-module over A on Q;
(2) A closed degree zero map of A∞-modules φ• : P → Q extending f ;
(3) A closed degree zero map of A∞-modules ψ• : P → Q extending g;
(4) A degree −1 map of A∞-modules H• : P → P extending h, such that

ψ• ◦ φ• = Id +d(H•).

To prove this, we use the bar-construction as a fully faithful embedding of the 
DG-category of A∞-A-modules into the DG-category of DG-B∞A-comodules. See [12, 
§2.3.3]. We give a brief summary. Let E and F be two A∞-A-modules. Let x• : E → F

be a degree n morphism of A∞-modules. By definition, it is an arbitrary collection of 
degree n + 1 − i maps

xi : E ⊗k A⊗k(i−1) → F i ≥ 1,

in Mod-kA. Such collection is equivalent to the data of a degree n Mod-kA map

x• : B∞E → F,

because as a graded module B∞E is just E⊗kB∞A. By universal property of free graded 
comodules, there is a bijective correspondence of kA-module morphisms

B∞E → F,

with the morphisms of DG-B∞A-comodules
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B∞E → B∞F.

It sends x• to the map

x̄ : E ⊗k B∞A Id⊗Δ−−−−→ E ⊗k B∞A⊗k B∞A x•⊗Id−−−−→ F ⊗k B∞A, (A.1)

and, conversely, sends any morphism x̄ of DG-B∞A-comodules to

x• : E ⊗k B∞A x̄−→ F ⊗k B∞A Id⊗ε−−−→ F.

Here Δ and ε are the comultiplication and the counit of B∞A.

Proof. By our convention, the A∞-structure μ• on P is a collection of μi for i ≥ 2. View 
it as the data of a degree one A∞-morphism μ• : P → P with μ1 = 0. The differential 
on the bar construction B∞P is

μ̄ + dnat,

where μ̄ is the bar construction of the A∞-morphism μ• as per (A.1) and dnat is the 
natural differential on the tensor product P ⊗k B∞A. We then have

(μ̄ + dnat)2 = μ̄2 + μ̄ ◦ dnat + dnat ◦ μ̄ = μ̄2 + d(μ̄),

and therefore

dnat(μ̄) = −μ̄2.

Here dnat(−) denotes the differentiation as an endomorphism of P ⊗k B∞A, as opposed 
as an endomorphism of B∞P .

Now define

ρ̄ = μ̄ + μ̄h̄μ̄ + μ̄h̄μ̄h̄μ̄ + ...

where h̄ is the bar construction of h viewed as a strict A∞-morphism. Note that

ρhμ = μhρ = ρ− μ,

dnat(ρ̄) = ρ̄2 − ρ̄dhρ̄.

Since

dnat(h̄) = dh = gf − Id,

we conclude that
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dnat(ρ̄) = −ρ̄ḡf̄ ρ̄.

Define the DG-B∞A-module morphism ν̄ : Q ⊗k B∞A → Q ⊗k B∞A by

ν̄ = f̄ ρ̄ḡ.

Since f and g are closed of degree 0, we have

dnat(ν̄) = f̄dnat(ρ̄)ḡ = −f̄ ρ̄ḡf̄ ρ̄g = −ν̄2.

We therefore have

(ν̄ + dnat)2 = 0,

so ν̄+dnat defines a new differential on Q ⊗nB∞A. Let ν• be the corresponding structure 
of A∞-A-module on Q.

Define next

φ̄ = f̄(Id +ρ̄h̄),

ψ̄ = (Id +h̄ρ̄)ḡ,

H̄ = h̄(Id +ρ̄h̄) = (Id +h̄ρ̄)h.

We have:

df = (ν + dnat)f − f(μ + dnat) = νf − fμ + dnat(f) = fρgf − fμ = f(ρgf − μ),

and similarly:

dg = · · · = (μ− gfρ)g,

dh = · · · = μh + hμ + gf − Id,

d(Id +ρh) = · · · =
(
μ− ρgf

) (
Id +ρh

)
,

d(Id +hρ) = · · · =
(
μ− gfρ

) (
Id +hρ

)
.

We thus finally compute

d(φ̄) = d
(
f
) (

ρh + Id
)

+ fd
(
ρh + Id

)
=

= f
(
ρgf − μ

)
(ρh + Id) + f

(
μ− ρgf

) (
Id +ρh

)
= 0,

d(ψ̄) = · · · = 0,

d(H) = · · · = ψφ− Id,

as desired. �
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It follows that the transfer of structure across a homotopy equivalence produces a 
homotopy equivalent A∞-module:

Corollary A.1. If f and g are mutually inverse homotopy equivalences, then the A∞-A-
module (Q, ν•) obtained from (P, μ•) by the homotopy transfer of structure along (f, g)
is homotopy equivalent to (P, μ•).

Proof. As part of the homotopy transfer of structure constructed in Theorem A.1, we 
have obtained a closed degree zero A∞-morphism

φ• : (P, μ•) → (Q, ν•)

extending f , i.e. φ1 = f . Thus φ1 is a homotopy equivalence of DG-kA-modules, and 
therefore φ• is a homotopy equivalence of A∞-A-modules [12, 2.4.1.1]. �

The method we used to prove Theorem A.1 can be easily applied to the notion of 
A∞-algebras and A∞-modules in a DG monoidal category introduced in §5:

Theorem A.2. Let (A, m•) be an A∞-algebra in a monoidal DG category A. Let (a, p•) ∈
Nod∞-A. Let b be an object of A. Suppose there exist morphisms f : a → b and g : b → a

in A such that gf = Id +dh for some degree −1 morphism h : a → a.
Then a homotopy transfer of A∞-structure from (a, p•) to b exists:

(1) A structure q• of an A∞-A-module on b;
(2) A closed degree 0 map of A∞-A-modules φ• : (a, p•) → (b, q•) extending f ;
(3) A closed degree 0 map of A∞-A-modules ψ• : (b, q•) → (a, p•) extending g;
(4) A degree -1 map of A∞-A-modules H• : (a, p•) → (a, p•) extending h with

ψ• ◦ φ• = Id +d(H•).

Proof. For A∞-A-modules, the bar construction was defined in §5.1 as a DG-functor

B∞ : Nod∞(T ) → Pre-Tr−(A).

Take the data p• of the A∞-T -module structure on a and consider it as the data of a 
morphism of A∞-A-modules with p1 = 0. Let p̄ be its bar construction:

p̄ : B∞(a, p•) → B∞(a, p•).

Consider now two twisted complexes: B∞(a, p•) and B∞(a, 0). They have the same 
objects. Denote by dnat(−) the operation of differentiating an endomorphism of B∞(a, p•)
as if it was an endomorphism of B∞(a, 0). Since the differential on B∞(a, p•) is the sum 
of the differential on B∞(a, 0) and p̄, we have
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dnat(p̄) = −p̄2.

We can now proceed in the same way and with the same computations as in the 
proof of Theorem A.1, only with all bar constructions being twisted complexes instead 
of DG-comodules. �
Corollary A.2. If f and g are mutually inverse homotopy equivalences in A, then the 
A∞-A-module (b, q•) obtained from (a, p•) by the homotopy transfer of structure along 
(f, g) is homotopy equivalent to (a, p•).
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