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Live Power Generation Predictions via AI-Driven
Resilient Systems in Smart Microgrids

Xueyi Wang, Shancang Li, and Muddesar Iqbal

Abstract—The 5G technology can significantly benefit smart consumer devices powered by microgrids in several ways, enhancing

their efficiency, reliability, and overall performance, which play a pivotal role in advancing consumer electronics by providing a more

reliable, efficient, and sustainable source of power for these devices. The growing environmental awareness and emergence of new

technologies have made smart microgrids a good renewable and resilient power to serve consumer electronics. This work developed a

secure AI-driven predictable and resilient power generation system for efficient microgrid energy use and management. Specifically, we

first developed an intelligent power generation forecasting model based on a joint distribution of power generation and weather data;

then, a resilient eXtreme Gradient Boosting (XGBoost) power generation forecast model was proposed that allows incorporating the

weather intermittency in the joint distribution. The scheme has been validated using real-time power generation data together with

weather data. The experimental results show that the proposed scheme can provide a more accurate and robust prediction of the

microgrid against weather intermittency.

Index Terms—Smart Microgrid, Artificial Intelligence, Resilient and Sustainability, Power Prediction, XGBoost.

✦

1 INTRODUCTION

The integration of cutting-edge technologies, including
5G and artificial intelligence (AI), empowers microgrids
to significantly enhance consumer electronics in various
ways. These advanced technologies contribute to a more
dependable, efficient, and sustainable power supply for
electronic devices, promoting their optimal performance [1].
Electricity plays a pivotal role in fostering economic devel-
opment and advancing technological progress, particularly
in the context of rapid consumer electronics [2], [3]. With
the increasing demand for energy, electricity generation and
distribution have been considered as the base of industrial
and nation [4]. Among all electricity generation methods,
renewable energy sources like wind, tide, and solar energy
provide sufficient and clean energy. In particular, solar en-
ergy is one of the most stable and efficient renewable energy
resources to generate electricity [5], [6]. The development
of renewable energy reduces the dependency on traditional
fossil and fuel resources, which are not only freely available
all around the world, but also reduce carbon emissions
whilst generating electricity [7].

According to the United Nations Development Pro-
gramme (UNDP), solar energy resource has a worldwide
potential of 1,600 to 49,800 exajoules (4.4 × 1014 to 1.4 ×
1016kWh) per year [8]. Considering the huge generating
potential and environmental benefits of solar energy, solar
photovoltaic (PV) panels have been widely installed [9].
The Chinese government continues to dominate both new
and cumulative capacity, which added 106 GW in 2022 and
reached 414.5 GW cumulative capacity. In 2022, at least 240
GW PV panels were installed worldwide, which made the
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total PV installed capacity reach at least 1185 GW [9].
As a part of smart production, the topics of smart grids,

like energy prediction and cyber security have been metic-
ulously studied recently [10], [11]. On the one hand, from
the national grid perspective, with the Net Zero strategy
by 2050, the UK’s renewable energy took 42.1% of the total
electricity generation in Quarter 2 2023 [12]. According to
the UK Energy Trends Report 2023, 8.6% of total electricity
generation is from solar PV generation and it was 6.3% in
2022, with the 1.1 GW solar PV capacity increasing [12].
On the other hand, from a microgrid perspective, many
electricity storage systems like PV systems have been used
to support electricity in individual houses and autonomous
devices also design active generators [5], [13].

However, the fluctuating and uncertain output is still
a significant drawback in PV energy systems and the con-
cern of research [14], [15]. Facing the situation that the
usage of PV panels sharply increasing and intermittency
problems of PV generation in smart grid national-wide
and microgrid individual use, an effective and resilient
method estimating the electricity generation of the PV panel
needs to be researched and developed eagerly [15]. The live
predictive analytics can play a crucial role in addressing
security concerns in smart microgrids, e.g., anomaly detec-
tion, early warning, incident response, behavioral analytics,
threats intelligence integration, etc., enhancing the overall
security and resilience of the smart microgrids. Depending
on the predicting time span, PV generation prediction in
smart microgrids can be divided into short-term prediction
(under one day ahead), medium-term prediction (1 week
to 1 month ahead), and long-term prediction (one month
to one year ahead). Short-term predictions heavily rely on
high-frequency factors such as changes in 24-hour weather
conditions, cloud cover, and solar radiation. Medium-term
predictions involve forecasting based on more generalized
(1 week to 1 month) weather patterns and climate mod-
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els. Long-term predictions require consideration of seasonal
variations and climate trends, which range from one month
to a year. Overall, the various temporal input features decide
different time durations of PV generation forecasting.

Short-term prediction can help in power dispatching,
storage, and smoothing; medium-term prediction can help
in power system management and scheduling; long-term
prediction can help in grid device distribution and oper-
ation planning. For short-term prediction, statistical and
numerical methods show advantages, however, for medium
and long terms, physical models like numerical weather
prediction, and sky/satellite image models have better per-
formance [16]. Figure. 1 illustrates the varied time duration,
highlighting the purposes and benefits of PV generation
prediction.

Fig. 1. Microgrid power generation prediction in different time duration

In this paper, we tried to improve the performance and
resilience of short-term weather-based machine learning
methods in PV electricity generation prediction. We used the
locally collected PV generation and weather data to create
the dataset and make the prediction based on that. The
newly developed time-series concerned Machine Learning
algorithms: Random Forest (RF) and XGBoost are compared
with the traditional multi-variable Long Short-Term Mem-
ory model. The performances of the models are evaluated
via R2 and nRMSE scores. The main contributions of this
work can be summarised as follows:

1) Using machine learning models (RF, XGBoost, LSTM),
integrated historical PV generation predictive models along
with weather data were developed;

2) A short-term PV generation resilient model was de-
veloped by combining time-related data and historical PV
generation data.

3) A use case using the MIDAS UK dataset and Sheffield
PV live data is developed to demonstrate the proposed
models.

2 RELATED WORKS

A host of reports [17], [18], [19] have delved into the intricate
landscape of smart grids, particularly focusing on the appli-
cation of deep learning algorithms. These algorithms have

emerged as formidable tools, facilitating energy forecasting,
bolstering security detection, and optimizing the manage-
ment of smart grid operations. Moreover, they play a pivotal
role in enhancing resiliency in the face of contingencies and
addressing customer demands [17], [20].

The existing research and literature review the preva-
lence of three distinct methodological approaches. These
approaches can be categorized as follows: 1) Statistical time
series relies on historical PV generation data to construct
predictive models for PV generation; 2) Physical models
leverage Numerical Weather Prediction (NWP) data, sky
images, or satellite images to craft models that predict
PV generation patterns; 3) Machine learning approaches to
harness the power of multi-variable weather data, utilizing
machine learning algorithms to predict PV generation [21],
[22].

Several reports have employed time-series algorithms
to tackle the challenge of PV generation in short-term
forecasting. Kardakos and his research team, for instance,
leveraged the seasonal ARIMA time-series algorithm as a
foundation for their predictions, augmenting its accuracy by
incorporating solar radiation data derived from the Numeri-
cal Weather Prediction (NWP) model. This synergy between
SARIMA and NWP enhanced the precision of their fore-
casts, which has an 11.12% annual basis in nRMSE [23].
In a different approach, Maria Malvoni sought to forecast
PV generation one day in advance, employing the Group
Least Square Support Vector Machine (GLSSVM) time-series
algorithm in conjunction with Least Square Support Vec-
tor Machines (LS-SVM) and the Group Method of Data
Handling (GMDH) algorithm. These methods, designed to
handle multiple weather variables, aimed to refine the pre-
diction process [24]. On the other hand, a study by Hindawi
concluded that, in the context of short-term PV generation
prediction, ARIMA models outperformed Artificial Neural
Networks (ANN) models [22]. In a similar vein, another
study [21] conducted a comparative analysis of SARIMA,
SARIMAX, modified SARIMA, and ANN algorithms in the
context of short-term prediction of PV generation.

Some reports have delved into constructing purely phys-
ical models for PV generation prediction. In [25], the author
mentioned that PV power fully depends on uncertain me-
teorological factors, like solar irradiance, temperature, wind
direction, wind pressure, and humidity. In one such study
[26], Sun proposed a method that captured instantaneous
images around PV panels to monitor cloud movements,
which could impact PV electricity output. This information
was then analyzed using a Convolutional Neural Network
(CNN) to predict PV electricity generation based on sky
image analysis. Additionally, our previous work introduced
the Plane of Array (POA) PV system model, developed by
Sandia National Laboratories to predict PV generation [27].
Graditi et al. compared the physical PV prediction model
(Schokley-Sandia) with the MLP model and regression
model. Also, they mentioned the identification of minimum
and representative training dataset selection methods.

For reports centered on predicting PV generation us-
ing multi-variable weather data through machine learn-
ing methods, Artificial Neural Network (ANN) models
emerged as the preferred choice [22]. Stanley and his team,
for instance, presented a short-term prediction strategy, fore-
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casting 20 minutes ahead using the Multilayer Perceptron
(MLP) model, which achieved an impressive PV generation
prediction accuracy ranging from 82% to 95% [7]. Another
study [28] explored four distinct models for short-term PV
generation prediction: Multilayer Perceptron (MLP), Elman
Recurrent Neural Network (ENN), Radial Basis Function
neural network (RBF), and Time Delayed Neural Network
(TDNN). Among these models, MLP exhibited the best
performance, with an error rate of 0.62 in PV electricity
generation prediction [28]. In [29], Empirical Mode De-
composition (EMD) and Support Vector Machine (SVM)
methods were employed to analyze PV generation. SVM, a
supervised machine learning model known for its prowess
in generalized linear classification, featured prominently in
the report. Notably, the report underscored that Artificial
Neural Networks (ANN) and SVM were the two most
frequently utilized prediction methods and emphasized the
crucial role of daily temperature as a key weather factor
influencing PV panel electricity output. Recently, Huawei
Cloud published Pangu-Weather, which is an AI prediction
model and has more competitive accuracy than traditional
NWP methods. Pangu-weather utilizes a 3D transformer
structure to capture spatial dependencies and many sub-
researches have been conducted based on the model [30]
[31].

3 METHODOLOGY

3.1 Problem Formulation

Assume the forecast lead time is t, the power generation
data xt:(t+i·∆) during ∆ periods and the corresponding
weather data is wt:(t+i·∆). The combined power generation
qt:(t+i·∆) can be expressed with the conditional joint proba-
bility distribution

qt:(t+i·∆) ∼ p(xt:(t+i·∆)|wt:(t+i·∆)) (1)

in which i is the number of samples. For sampling i = N
times, the power generation samples can be represented by

QN = {qt:(t+N ·∆)} = {(x1, w1), . . . , (xN , wN )} (2)

Assume the combined power generation QN follow a
prior distribution p(η) and can be represented using a
neural network as

qt:(t+i·∆) = M(η,xt:(t+i·∆), θ) ∼ p(xt:(t+i·∆)|wt:(t+i·∆))
(3)

in which M is a generative models and θ is the learning
parameter of the neural network. These parameters are
learned during the training process to capture the under-
lying patterns and dependencies in the data.

We use xi and wi to denote xt:(t+i·∆) and wt:(t+i·∆),
respectively. The power generation samples xi ∼ p(xi). As-
suming the prior distribution xi ∼ N (0, 1) is a multivariate
Gaussian distribution. It represents a stochastic process for
generating power generation samples over time. Then we
have

xn =
√

1− βnxn−1 + βnϵ, ϵ ∼ N (0,1) (4)

in which β ∈ (0, 1) is the scaling factor. The following
equation specifies the conditional probability distribution of
xn and xn−1 in the stochastic process can be described by

p(xn|xn−1) = N (
√

1− βnxn−1, βn1) (5)

The power generation samples can be described as

p (xn | x0) =
∏

n

p (xn | xn−1) (6)

The weather distribution can be modeled using an auto-
regressive (AR) integrated moving average (ARIMA) model,
which includes three number (np, nd, nq), in which np

denotes the number of auto-regressive terms, nd denote
the number of nonseasonal differences, and nq denote the
number of lagged forecast errors. Then the weather can be
modeled as

wt = φ1wt−1 + · · · · · ·+ φpwt−np
+ et (7)

in which wt is the value at time t, φ1 is AR coefficient, et is
error value at time t.

The forecast error e is transformed into a posterior
sample of w. The forecast error en is obtained by subtracting
the ê from the measured power e. During the time ∆, the
generated power can be modeled as

q = x̂+ e0 = fd(z,x, θ) + fc(w, θe) (8)

in which θd and θe are the learnable parameters of the net-
work; fd(·) and fe(·) are the mapping functions of network,
respectively.

As shown in Figure. 2, the proposed PV generation fore-
casting process consists following steps: 1) Data Alignment:
PV generation data and local weather data are synchronized
based on their date and time stamps; 2) Data Pre-processing:
This phase begins with merging weather data and time-
related data. Subsequently, the combined dataset undergoes
pre-processing to eliminate any missing data and includes a
filter to exclude hours of no electricity generation during
nighttime. Additionally, historical PV generation data is
incorporated into the dataset; 3) Prediction Models: Using
Random Forest, XGBoost, and LSTM algorithms to predict
PV generation in the short term. Furthermore, the study
explores resilient models for PV generation prediction.

3.2 Random Forest

As an ensemble learning algorithm, the random forest (RF)
is one of the powerful traditional machine learning algo-
rithms that excels at making predictions for forecasting
tasks. A random forest model is a meta estimator, that
combines all the output predictions from multiple decision
trees and calculates the average predicting values for the
final output. All the classifying decision trees are trained
and fitted on sub-samples from the training dataset. The
max-sample parameter in the Random Forest model is to
adjust the sub-sample size for training to prevent over-
fitting and improve model performance [32].

The core of the RF algorithm relies on its ability to
combine the predictive strength of numerous decision trees.
It achieves this through an ingenious process known as
bootstrap aggregating. The RF algorithm starts by creating
multiple random subsets from the original training dataset.
These subsets are generated by randomly selecting data
points with replacements. This process introduces diversity
into the training data for each decision tree, making them
distinct and robust.
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Fig. 2. Microgrid PV generation prediction framework

In RF, individual decision trees are trained on these boot-
strapped samples. Each tree is a separate entity, oblivious to
the existence of others. This isolation ensures that they make
diverse and independent predictions. In RF, the calculation
of coefficient Gini can be obtained by Eq. (9), which is
commonly used as a measure of impurity.

Gini(S) = 1−
m
∑

i=1

P 2
i (9)

in which Pi denotes the probability of category Cj in the
sample set. To calculate the coefficient formula of the split
node,

Ginisplit(S) =
|S1|

|S|
Gini (S1) +

|S2|

|S|
Gini (S2) (10)

in which |S| is the number of samples in sample set S, S1

and S2 are both subsets of S. The Gini impurity is used to
evaluate the quality of a split, e.g., how often a randomly
chosen element would be incorrectly labeled.

The profound beauty of the Random Forest algorithm
lies in its ability to remember the data splits and target
variable values during training. This memory serves as a
valuable reference when new data is introduced. With this
knowledge, the algorithm can seamlessly compute the target
variables for the new data by replicating the same data-
splitting process utilized during training. This elegant ap-
proach ensures the model’s adaptability and makes Random
Forest a stalwart tool for regression tasks and predictive
modeling [32].

3.3 XGBoost Model

The XGBoost algorithm is a powerful supervised machine
learning technique, particularly in regression tasks. It lever-
ages the principles of gradient boosting and ensemble
learning, harnessing the collective strength of numerous
CART (Classification and Regression Tree) trees. For sam-

ples D = {(xi,wi)}, i = 1 . . .n, we can use an ensemble
learning model

q̂i = ϕ(xi) =
K
∑

k=1

fk (xi) , fk ∈ F (11)

in which F = {f(x) = ws(x)} is CART tree. CART trees
are non-parametric decision tree algorithms used for both
classification and regression tasks. In regression, for this
paper, they predict numerical values other than class labels.
The fundamental operation of a CART tree involves recur-
sively splitting the input dataset based on attributes, aiming
to find the best threshold for maximizing homogeneity in
each subset. This process continues until a pure subset is
achieved or a predefined maximum node depth is reached,
culminating in the creation of leaf nodes, which hold the
final decisions.

XGBoost, on the other hand, takes the concept of CART
trees to the next level. It is an ensemble model that integrates
multiple CART trees into a single, robust predictive model.
The magic behind XGBoost lies in its optimized objective
function, which consists of a training loss and a regulariza-
tion term. The training loss function L measures the model’s
predictive performance by comparing the predicted values
(q̂i) to the actual measurements (qi), as

L (ϕ) =
∑

i

l (q̂i, qi) +
∑

k

Ω (fk) (12)

in which the regularization term Ω (f) = γT + 1
2λ ∥w∥2

controls model complexity, preventing overfitting by penal-
izing certain aspects of the tree structure [5]. λ and γ are
both constants, which control the strength of regularization
and the strength of penalizes, respectively [33].

XGBoost optimizes this objective function by iterative
adding new trees that simulate the residuals (differences
between predictions and actual values) from the previous
iteration. The goal is to find the optimal fp value that
minimizes the objective function, effectively reducing the
prediction error. For a dataset D = (xi,wi) where xi rep-
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resents examples and wi represents features, the objective
function L(p) is represented as:

L(D, fp) =

n
∑

i=1

l(wi, ŵ
(p−1)
i + ft(xi)) +Ω(fp) (13)

in which ŵ
(p)
i represents the prediction value on the p-th

iteration for the i-th instance.
It can be seen that the XGBoost enhances the predictive

power of CART trees by strategically combining them and
optimizing an objective function. This makes it a formidable
choice for regression tasks, allowing it to capture com-
plex relationships in the data while preventing overfitting
through regularization.

3.4 Long Short-Term Memory Network (LSTM)

A LSTM is a variant of Recurrent Neural Networks (RNNs)
that effectively addresses the challenges of exploding and
vanishing gradients, particularly in tasks involving long-
term dependencies. LSTMs employ recurrent neurons to
process input data through a series of activations, allow-
ing them to retain and utilize information over extended
sequences of data [34]. LSTMs excel in solving sequence-
related problems, a feat achieved by their ability to over-
come the limitations of Simple Recurrent Networks [35]. To
illustrate the architecture of a typical vanilla LSTM model
[34], [36], one can envision it as a composition of multiple
memory blocks, as depicted in Figure. 3 .

Fig. 3. LSTM memory block demonstration

The input gate receives the previous memory state
(ct−1), the previous output (ht−1), and the current input
signal (Xt) as its input. It processes this information to
determine which new information should be added to the
current memory state.

it = σ(WxiXt +Whiht−1 +Wcict−1 + bi) (14)

in which the forget gate decides what information should be
discarded from the previous memory state (ct−1) based on
the current input signal (Xt) and the previous output (ht−1).
It ensures that irrelevant information is not carried forward.

ft = σ(WxfXt +Whfht−1 +Wcfct−1 + bf ) (15)

in which the output gate generates the current output by
combining the current input signal (Xt), the previous mem-
ory state (ct−1), and the previous output (ht−1). It controls
the flow of information to the next layer in the network.

ot = σ(WxoXt +Whoht−1 +Wcoct + bo) (16)

This iterative process continues as more input data is fed
into the LSTM model. In multi-variables regression tasks,
where multiple input features are used to predict a numer-
ical output, LSTM networks shine. They capture complex
dependencies between variables, making them well-suited
for tasks such as time series forecasting, natural language
processing, and many others.

The LSTM networks, with their intricate memory blocks
and recurrent connections, excel in handling data sequences,
making them a potent choice for multi-variable regression
tasks where capturing temporal dependencies and intricate
patterns is paramount.

4 EVALUATION

4.1 Data Preparation

The quality of the training dataset may affect the train-
ing model’s performance and accuracy [37]. In this work,
for the Random Forest, XGBoost, and LSTM algorithms,
4 years of London area’s PV electricity generation record
from Sheffield open-source PV live data and weather data
from MIDAS UK open weather data were used1. Both
of the datasets (PV and weather) start from 2016/01/01
to 2019/12/31, recording every 60 minutes. Due to the
synchronisation failure, and misoperations, there are some
repeated data or vacant data. In the data pre-processing
step, we removed the repeat data in both datasets according
to the date and time. As a result, both the PV generation
dataset and weather dataset have in total of 35065 records.

The PV generation data itself is recorded in Megawatts,
and hourly generation records can reach up to thou-
sands megawatts, sometimes even more than 5 thousand
Megawatts. The weather data air temperature are stored in
the degree Celsius; the global solar irradiance mount is
stored in KJ/m2; cloud cover is measured in okta, in the
scale of [0,8]; precipitation amount measured in millimeters
(mm); relative humidity expressed in percentage. Because
there is no electricity generation during the night-time,
this work removes the night-time 0 PV generation data by
filtering the 0 solar irradiance records from the weather
dataset.

4.2 Data Analyse

The utilisation of the Pearson correlation coefficient model
serves as a valuable tool for exploring the interrelation-
ships among the input features. This technique provides a
normalised assessment of the covariance between any two
feature combinations, shedding light on the strength and
direction of their linear correlation [38].

In our analysis, we explored different weather-related
features to find inner connections between time-related fac-
tors and PV generation. Figure. 4 visually illustrates these
correlations. Among all the weather data, global radiance
has high correlations with cloud cover, relative humidity
(increase when precipitate), and temperature (related to sea-
son and weather conditions). Upon closer inspection of the
feature correlations within the dataset, it becomes evident
that pure temporal features such as hour, month, day, and

1. https://catalogue.ceda.ac.uk/uuid/dbd451271eb04662beade68da43546e1
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Fig. 4. Heatmap of PV Generation Features Correlation

weekday exhibit negligible direct correlation with hourly
PV generation, with correlation values hovering around 0.

In comparison with the temporal features, antecedent
records of global radiance (0.93), relative humidity (-0.64),
temperature (0.48), and cloud cover (-0.3) reveal substantial
correlations with PV generation for the following hour pre-
diction, shown in the bottom row of Figure. 4. This suggests
that these weather-related variables play a pivotal role in
our predictive model. An intriguing revelation arises in the
form of the correlation between humidity and PV genera-
tion: heightened humidity levels lead to the formation of a
water vapor layer above the PV panels, resulting in energy
loss through absorption and reflection [39].

Turning our focus to another dimension of the analysis,
the relationship between the PV generation of the past 24
hours and the current PV generation has been studied as
well. The heatmap of correlations between historical PV
records spanning 24 hours and the contemporaneous PV
generation values is presented in Figure. 5. Here, ”P 24”
signifies PV generation from 24 hours ago, while ”P 0”
represents PV generation in the forthcoming hour, which
is the target of our prediction model.

Figure. 5 shows features P 1 to P 3 (previous 3 hours)
and P 21 to P 24 (yesterday 3 hours after) PV generation
both have high correlations (in red value above 0.6) to the
future one-hour PV generation value. The high correlations
of features P 1 to P 3 are attributed to the continuity of
weather conditions and the temporal dependency of PV
generation. Features P 21 to P 24 demonstrate strong corre-
lations due to the predictability of mid-term solar irradiance
patterns, indicating similar PV generation at corresponding
hours across successive days. The future 1-hour PV genera-
tion has 0.95, 0.82, and 0.64 high statistic correlations to the
previous 3-hour PV generation, respectively.

In fact, statistical and numerical solutions have been
proven to perform well in short-term prediction, which only
uses historical PV generation data to predict. Incorporating

historical PV generation data into the input is crucial for
accurate predictions. However, relying solely on statistical
methods may have limitations when it comes to handling
unexpected events like sudden weather changes. Including
additional weather data as input can help compensate for
these limitations by serving as an adjustment to the statisti-
cal predictions.

In this work, the weather data, including information
like cloud cover, temperature, wind speed, and precipita-
tion, can provide context and insights into how these exter-
nal factors influence PV generation. By adding weather data
as input features, the model can learn to associate specific
weather conditions with deviations in PV generation. This
allows the model to make more accurate predictions, espe-
cially when unusual weather events occur. Essentially, the
weather data acts as a supplementary source of information
that helps the model fine-tune its predictions and account
for deviations from the statistical norms.

4.3 Random Forest

This work used a total of 35065 records (from 2016/01/01
0:00 to 2019/12/31 23:00) to train the random forest model.
The original pure weather dataset is developed in 10
columns: hour, month, day, weekday, cloud cover, global
radiation, precipitation amount, relative humidity, tempera-
ture, and capacity. In order to validate the model around
the whole year time span, we randomly separated the
training (70%) and testing dataset (30%) splits. The green
line in Figure. 6, which only plots a part of the testing
dataset, shows that the Random Forest model’s performance
is trained by pure 10-column weather data, which has an
average of 0.9116 R2 score and 0.0676 nRMSE value.

After analysing the historical PV data, which shows that
features P 1, P 2, and P 3 have very high correlations with
the future PV generation value. Also, on the other hand,
the historical PV generation data is not hard to acquire, if
it is measured and stored securely. In Figure. 6, the blue
line refers to the same Random Forest model as the green
line but added the 3 historical PV records (P 1, P 2, and
P 3) to improve the performance. The blue line is part of
the prediction in the testing dataset and has an average of
0.9848 R2 score and 0.028 nRMSE value.

4.4 XGBoost

As a comparison group, we used XGBoost model on both
training input with and without 3-hour historical PV records
along with the weather data. The XGBoost model predicts
future PV generation based on the previous 1-hour weather
data and the time data without the data normalisation
process to keep the original data features. As a result, PV
generation prediction uses megawatts as its measurement
unit. In Figure. 7, the green line is the training model
without applying the 3-hour historical PV sequence, which
has 0.9321 R2 score and 0.0591 nRMSE and the blue line is
the training model with the 3-hour historical PV sequence,
which has 0.9842 R2 score and 0.0286 nRMSE value. All
the values are evaluated by calculating the average of 10
model fits. A small part of two PV generation prediction
comparisons are illustrated in Figure. 7.
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Fig. 5. Heatmap of PV Generation 24-hour Sequence Correlation

Fig. 6. Random Forest PV generation prediction

Fig. 7. XGBoost PV generation prediction

Figure. 8 shows the different feature importance between
the pure weather data model (left) and the model combined
weather and historical PV sequence (right). It is interest-
ing to see that in the left figure, the pure weather data
model, global radiation has the dominating position (above
70% importance) in the XGBoost PV generation prediction

model. On the other hand, the other weather features do not
contribute much to the model, even the relatively important
weather features mentioned in other work like temperature
and cloud cover.

However, when the dataset added the 3-hour historical
PV sequence data (lag 1, lag 2, and lag 3 in the right of
Figure. 8), the dominant prediction feature switches from
global radiation to lag 1, which is the previous 1 hour PV
generation record. On the contrary, the weather feature –
global radiation, has much less importance than in the pure
weather dataset prediction (with an over 60% importance
drop).

For the short-term PV generation prediction, this XG-
Boost model is very accurate and the feature importance
contributes to the model makes sense as well, which mainly
utilizes the historical PV sequence (the statical model) to
predict and then associate weather conditions (global radi-
ation, cloud cover, temperature, etc.) to the deviations in
predicting PV generation.

4.5 LSTM

The LSTM model is used to conduct one-step ahead PV gen-
eration prediction as a comparison group with the Random
Forest and XGBoost models. We set the look-back window
as 3 (last 3-hour records) so that the LSTM algorithm will
take previous 3-hour PV sequence records to predict the next
hour PV generation value, which should work the same as
the proposed crafted dataset.

The LSTM model contains 100 neurons; mean absolute
error as loss function; and the adam optimizer. LSTM
model’s average score (R2) is around 0.9739, average
nRMSE is around 0.037. Also, different from the Random
Forest and XGBoost models, LSTM model requires data
normalization to guarantee performance. LSTM short-term
prediction using 3-hour historical PV sequence has a rela-
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Fig. 8. XGBoost PV generation prediction feature importance

tively good performance. Part of the LSTM multi-variable
weather-based model can be illustrated in Figure. 9:

Fig. 9. LSTM PV generation prediction

4.6 Proposed Resilient PV Prediction Model

As discovered in the feature importance Figure. 8, lag 1,
global radiation, and hour are the three main features to
predict the PV generation in the historical PV generation
included dataset. However, global radiation, hour, cloud
cover, and relative humidity are the main features in pure
weather data prediction. In this work, we research more into
the short-term resilient PV generation prediction that aims
at using minimum data to achieve high performance.

When the random forest/XGBoost models are purely
trained by feature lag 1 (previous 1-hour PV generation), the
models’ R2 scores are around 0.83 and nRMSE is around
0.09.

However, using our proposed model building method,
when just combining feature lag 1 with the date time
features (hour, month, day, weekday), which are already
known and do not require any measurement. The Random
Forest/XGBoost models can perform up to 0.9804 R2 score
and 0.0318 nRMSE value. It is a resilient and effective
way to conduct short-term PV generation, which in fact

Fig. 10. Comparison between historical PV generation dataset
with/without time-related data

only requires the measurement of 1 record of historical PV
generation (the previous hour’s PV generation).

The comparison of the performances between pure his-
torical PV generation dataset and time-related data plus
historical PV generation dataset can be illustrated in Figure.
10, in which the red line is the true value; the green line is
the only 1-hour PV generation model; and the blue line only
added the time-related features, respectively. It is surprising
that just purely adding the time-related data (hour, month,
day, weekday), the performance of the model sharply will
increase by 15% in R2 score.

4.7 Result Comparison

In this work, we compared the multi-variable time-series PV
generation algorithm LSTM, Random Forest, and XGBoost,
which use previous PV generation data combined with
weather data to predict future PV generations. Two common
evaluation methods R square score (R2) and Normalised
Root Mean Squared Error (nRMSE) were used.

R2 score, which also means coefficient of determination,
describes the accuracy of dependent variable changes ac-
cording to the prediction of independent variables. In other
words, it explains how well the data fit the model and where
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TABLE 1
Comparison Between Random Forest, XGBoost, and LSTM Models

LSTM RF-S XGBoost-S RF-W XGBoost-W RF-L XGBoost-L RF-R XGBoost-R

R2 0.9739 0.8286 0.8462 0.9116 0.9321 0.9848 0.9842 0.9803 0.9831
nRMSE 0.037 0.0944 0.0898 0.0676 0.0591 0.028 0.0286 0.0319 0.0295

R2 = 1 represents the perfect fit. Where yi denotes the true
value of the dataset, ŷi denotes the predicted value, and yi
denotes the mean value.

R2 = 1−

∑

i(yi − ŷi)
2

∑

i(yi − yi)
2

(17)

RMSE is the square root of the MSE value, which
measures the standard deviation of residuals and can be
calculated as

RMSE =

√

1

n

∑

i

(yi − ŷi)2 (18)

However, because different works use different datasets
and various data-processing methods, RMSE is sensitive to
the scale of the dataset, on the contrary, normalised RMSE
(nRMSE) provides a measure of the error relative to the
range of the data, making it easier to interpret between
predicted and observed values, which can be calculated as
follows:

nRMSE =
RMSE

max(yi)−min(yi)
(19)

Table. 1 shows the evaluation results of three models
trained with different datasets: ’-S’ denotes the dataset
that only uses 3-hour historical PV records for training
and prediction, which only have around 0.83 R2 score; ’-
W’ denotes the dataset that only includes weather-related
features: cloud cover, global radiation, precipitation amount,
relative humidity, and temperature, which requires a lot of
accurate measurements to conduct the prediction.

The prediction results are relatively good but not very ac-
curate (0.9321 R2 score), in which ’-L’ refers to the proposed
dataset that combines weather data with the 3-hour lagging
PV generation data. The dataset including the historical
PV generation has significant performance improvement in
predicting PV generation, which has 7.32% improvement
in the random forest model and 5.21% improvement in the
XGBoost model. Also, our crafted historical PV generation
prediction dataset has around 1% more accuracy on random
forest and XGBoost compared to the multi-variable LSTM
model; and ’-R’ in the table refers to the proposed resilient
dataset that combines time-related data (hour, month, day,
and weekday) and historical PV generation data, which
does not require any additional weather data. With only
1-hour historical PV data and predicting time features, the
confidence of the proposed model can reach up to 0.9831 R2

with 0.0295 nRMSE.

5 CONCLUSION

Accurate power generation in smart microgrids can signif-
icantly enhance the performance and security of 5G com-
munication for consumer devices. Aiming at improving the

performance of predicting short-term PV panel electricity
generation in microgrids, this work developed power gen-
eration resilient models using machine models. Specifically,
models based on Random Forest, XGBoost, and LSTM were
developed and evaluated. The experimental results demon-
strate the efficacy of the proposed resilient short-term PV
generation models, particularly when combining weather
data with historical PV data and when incorporating time-
related data alongside historical PV data. The robust perfor-
mance is attributed to the accuracy and availability of cor-
rectly collected and stored historical PV sequence records.
The resilient model can perform around 0.983 R2 score and
0.029 nRMSE value on average.
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