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a b s t r a c t 

The entorhinal cortex is a crucial component of our memory and spatial navigation systems and is one 

of the first areas to be affected in dementias featuring tau pathology, such as Alzheimer’s disease and 

frontotemporal dementia. Electrophysiological recordings from principle cells of medial entorhinal cortex 

(layer II stellate cells, mEC-SCs) demonstrate a number of key identifying properties including subthresh- 

old oscillations in the theta (4–12 Hz) range and clustered action potential firing. These single cell prop- 

erties are correlated with network activity such as grid firing and coupling between theta and gamma 

rhythms, suggesting they are important for spatial memory. As such, experimental models of dementia 

have revealed disruption of organised dorsoventral gradients in clustered action potential firing. 

To better understand the mechanisms underpinning these different dynamics, we study a conduc- 

tance based model of mEC-SCs. We demonstrate that the model, driven by extrinsic noise, can capture 

quantitative differences in clustered action potential firing patterns recorded from experimental models 

of tau pathology and healthy animals. The differential equation formulation of our model allows us to 

perform numerical bifurcation analyses in order to uncover the dynamic mechanisms underlying these 

patterns. We show that clustered dynamics can be understood as subcritical Hopf/homoclinic bursting in 

a fast-slow system where the slow sub-system is governed by activation of the persistent sodium current 

and inactivation of the slow A-type potassium current. In the full system, we demonstrate that clustered 

firing arises via flip bifurcations as conductance parameters are varied. Our model analyses confirm the 

experimentally suggested hypothesis that the breakdown of clustered dynamics in disease occurs via in- 

creases in AHP conductance. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The entorhinal cortex occupies a key role in the cortical-

ippocampal circuit, acting as a gateway between the neocortex

nd hippocampus ( Canto et al., 2008 ) and playing a pivotal role in

orking memory processing and spatial navigation ( McNaughton

t al., 2006; Moser et al., 2008 ). Many different functional cell

ypes involved in the coding of spatial representation are found

n the entorhinal cortex, including grid cells, border cells, head di-

ection cells and speed cells ( Giocomo et al., 2014; Hafting et al.,
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005; Kropff et al., 2015; Solstad et al., 2008 ). Spatial information

rom these cells is transferred from Layer II of the entorhinal cor-

ex to place cells in the hippocampus, which in turn feed back into

he entorhinal cortex ( Barak et al., 2015; Deng et al., 2010; O’Keefe

t al., 1998 ). 

The principle neurons in layer II of the medial entorhinal

ortex are reported to be predominantly (60–70%) stellate cells

mEC-SCs) ( Alonso and Klink, 1993; Booth et al., 2016 ). Analy-

is of recordings of mEC-SCs in brain slices demonstrates a num-

er of key identifying electrophysiological properties, including a

arge membrane potential sag mediated by a hyperpolarisation ac-

ivated cation current ( I h ), subthreshold oscillations in the theta

4–12 Hz) range and clustered action potential firing ( Alonso and

link, 1993 ). Dorsoventral gradients in these electrophysiologi-
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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cal properties ( Booth et al., 2016; Dodson et al., 2011; Garden

et al., 2008; Giocomo and Hasselmo, 20 08; 20 09; Giocomo et al.,

2007 ) reflect similar dorsoventral gradients in grid cell spacing

( Hafting et al., 2005 ), implying a key role in spatial memory. 

The disruption of memory systems is one of the hallmarks of

dementia ( McGowan et al., 2006 ). The most common cause of de-

mentia, Alzheimer’s disease, has been shown to affect the entor-

inhal cortex early in disease progression ( Braak and Braak, 1991 ).

One of the two primary pathologies of Alzheimer’s disease is the

presence of neurofibrillary tangles caused by mutant forms of tau

proteins (the other being plaques formed by amyloid beta). Exper-

imental models of tau pathology have revealed that neurofibrillary

tangles cause spatial memory deficits ( Fu et al., 2017 ) that may be

underpinned by alterations in the intrinsic cellular dynamics de-

scribed above ( Booth et al., 2016; Fu et al., 2017 ). It is therefore

crucial if we wish to develop treatments and therapries to build

our understanding of the mechanisms underlying mEC-SC dynam-

ics so that we can further elucidate the cellular and network bases

of spatial memory, and ultimately the causes and consequences of

Alzheimer’s disease. 

There are many potential dynamical frameworks within which

to mathematically model clustered firing of neurons or the gener-

ation of subthreshold oscillations. Phenomenological models have

used extrinsic rhythmic inputs to drive integrate-and-fire type neu-

rons across bifurcations ( Pastoll et al., 2013; Solanka et al., 2015 ),

thus producing temporal periods of quiescence interspersed with

bursts of action potentials, that may be reminiscent of clustered

firing. Low dimensional neuronal models such as the Izhikevic neu-

ron (which is a non-linear integrate-and-fire type neuron) have

been used to model mEC-SC firing patterns ( Izhikevich, 2007; Shay

et al., 2016 ) but are also constructed from a phenomenological, dy-

namical systems perspective and do not offer mechanistic insight

at the single neuron level. For example, they do not allow un-

derstanding of the relationship between properties of membrane

channels and the aforementioned dynamic firing patterns. 

In order to develop a mechanistic, biophysical understand-

ing, Fransén et al. (2004) developed a detailed, compartmen-

tal model of an mEC-SC, based on the Hodgkin–Huxley for-

mulation. In addition to standard Hodgkin–Huxley ion channels,

hyperpolarisation-activated, cation non-selective channels ( I h ) were

incorporated along with calcium-gated potassium channels includ-

ing a potassium-mediated after-hyperpolarisation (AHP) current. It

was demonstrated that this combination of channels was sufficient

to describe limit cycle subthreshold oscillations in the theta (4–

12 Hz) range and clustered action potential firing. A simulation

study of the noise driven system demonstrated a dependence of

clustered firing on the AHP conductance and the time scale of

the slow I h component ( Fransén et al., 2004 ). To investigate the

role that stochastic effects could play in generating stellate cell dy-

namics, Dudman and Nolan (2009) formulated a high dimensional,

Markov chain model of stochastic ion channel gating and demon-

strated that this model could reproduce the aforementioned dy-

namics due to intrinsic ion channel noise. Clustered action poten-

tial firing was generated by a transient increase in probability of

action potential firing during recovery from the AHP. This required

the I h current, since simulations and experimental investigation of

an I h knockout resulted in loss of clustering. 

These previous models have provided insight into the potential

biophysical mechanisms underpinning the clustered action poten-

tial firing and subthreshold oscillations of mEC-SC. However, the

dynamic mechanisms underpinning clustered action potential fir-

ing were not elucidated, which precludes a thorough understand-

ing of the ways in which changes in parameters affect dynamics.

Such understanding would help to build a more complete picture

of the reasons why different firing patterns can emerge, for exam-

ple due to diseases such as Alzheimer’s disease. Furthermore, pre-
ious models have been cumbersome, either due to their depen-

ence on calcium gated-channels or stochastic simulations. A sim-

ler model would allow us to extend more readily into neuronal

etworks in the future in order to better understand the spatial

tructures underpinning memory processing in health and disease.

In order to advance such a framework, in this study, the model

f Dudman and Nolan (2009) is converted to the deterministic

odgkin-Huxley formulation. This results in an ordinary differen-

ial equation (ODE) model that retains the key components of I h 
nd I AHP . As a single compartment model with only voltage-gated

on channels, this model is simpler than the multi-compartment

odel of Fransén et al. (2004) which includes both voltage- and

alcium-gated ion channels. Upon introducing extrinsic noise to

he membrane potential in a stochastic differential equation (SDE)

ramework, numerical simulations are used to demonstrate that

his model is capable of generating clustered action potential firing

s well as subthreshold membrane potential fluctuations with peak

ower in the theta band, in line with experimental results. Numer-

cal bifurcation analyses demonstrate that clustered firing in the

odel arises due to a flip bifurcation ( Barrio and Shilnikov, 2011;

hannell et al., 2007 ). Clustered action potential firing can, in turn,

e understood in terms of a fast-slow system, in which the acti-

ation of the persistent sodium (NaP) and inactivation of the slow

-type potassium (Kas) channels act as slow variables, driving the

ast sub-system through a hysteresis loop via subcritical Hopf and

omoclinic bifurcations. Thus, in terms of the underlying dynam-

cs, this model can be classified as a subcritical Hopf/homoclinic

urster ( Izhikevich, 20 0 0 ). This model allows for clustered action

otential firing to be controlled, making it a suitable model to

tudy the role of dorsoventral gradients in clustering. It is thereby

roposed that alterations to AHP or I h conductances could mediate

he quantitative changes in clustering observed experimentally. In

xperimental models of dementia (rTg4510), loss of clustered firing

s found to correlate with significant changes to AHP amplitude but

o change in I h mediated sag ( Booth et al., 2016 ). Hence our results

uggest a possible path through parameter space that account for

he differences in patterned firing in rTg4510. 

. Materials and methods 

.1. Mathematical model 

The stochastically gated Markov Chain model of layer II

edial entorhinal cortex stellate cells (mEC-SCs) presented by

udman and Nolan (2009) was converted to a system of stochastic

ifferential equations (SDEs) in the Hodgkin–Huxley formulation

 Hodgkin and Huxley, 1952 ). For a given ion channel, Markov Chain

odels calculate the voltage dependent probability of a closed gate

pening, α( V ), and an open gate closing, β( V ) in order to estimate

he fraction of gates open at a given time. Under the assumption

hat the number of ion channels is sufficiently high, we can make

 density approximation; i.e. the fraction of gates open is equal to

he probability of gates being open, and hence we can write 

dx 

dt 
= αx (V )(1 − x ) − βx (V ) x, (1)

here x is the fraction of open gates for x in the set of ion chan-

els. The presence of noisy fluctuations in the dynamics due to the

ntrinsic stochastic channel gating are not modelled explicitly, but

pproximated through the addition of extrinsic additive noise on

he membrane potential. 

The membrane potential is given by 

 

dV 

dt 
= I app − I NaT − I NaP − I Kdr − I Kaf − I Kas − I h − I AHP − I L + ση(t) 

(2)
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here the term ση( t ) is the extrinsic noise term, where σ is

he noise variance and 〈 η(t) 〉 = 0 and 〈 η(t) , η(t ′ ) 〉 = δ(t − t ′ ) . Each

onic current is given by 

 X = g X ψ X (V − E X ) . (3)

ere, X labels the set of ionic currents, g X is the maximal conduc-

ance of current X, ψ X is the fraction of channels in the conducting

tate (see Appendix A ), and E X is the equilibrium potential of the

urrent. 

The transient sodium (NaT) and potassium delay rectifier (Kdr)

re those of the classic Hodgkin–Huxley model and mediate action

otential initiation and recovery respectively. Also included in the

odel are a persistent sodium (NaP) current, fast and slow potas-

ium A-type currents (Kaf and Kas respectively), an Ohmic leak (L),

nd an inward hyperpolarisation activated (h) current. 

Furthermore, a phenomenological spike-dependent outward af-

er hyperpolarisation (AHP) current is included in the model. This

urrent is modelled with α(V ) = 1 . 5 exp (−(t − t spike ) /τ ) and β =
 . 6 . Here, t spike is the time of the last spike (defined as membrane

otential rising through 0 mV) and τ = 60 ms such that the AHP

asts approximately 100 ms ( Booth et al., 2016 ). 

Noise variance was selected as follows. Having fixed all pa-

ameters but those being studied ( g h and g AHP ), these remaining

wo free parameters of the deterministic system were chosen such

hat the inter-spike interval of the model reflected experimen-

al results ( Booth et al., 2016 ) ( g h = 2 . 8 , g AHP = 0 . 425 ). The sys-

em was simulated for a range of noise values to identify plau-

ible values with realistic clustering dynamics as quantified by

 C ( Nolan et al., 2007 ) (see Figs. S1 and S2, and description be-

ow). This yielded a value of σ = 0 . 197 μA · cm 

−2 , or equivalently

/C = 0 . 135 mV · ms −1 . This value was used in all stochastic simu-

ations unless stated otherwise. 

Simulations use the stochastic Heun method with a time step

f 0.01 ms. Parameters are those given in Table 1 unless stated

therwise. For spectral analyses, the multitapered power spec-

rum was calculated using the CHRONUX toolbox ( http://chronux.

rg/ )( Mitra and Bokil, 2008 ) with 9 tapers and time-bandwidth

roduct of 5. 

A cluster of action potentials is defined as two or more spikes

ith an inter-spike interval of < 250 ms, preceded and followed

y a quiescent period of > 300 ms. Clustering is quantified by P C ,

hich is the ratio of spikes defined to be within a cluster to total

umber of spikes ( Nolan et al., 2007 ). Calculation of P C is demon-

trated in Fig. S1. 

.2. Bifurcation analysis 

In order to understand the underlying dynamics, the ordinary

ifferential equation (ODE) formalism is given by the above sys-

em with σ = 0 in Eq. (2) . This ODE formalism allows for a bifur-

ation analysis of the system. To conduct the bifurcation analysis, a

umber of methods were used. Equilibria were found using either

PPAUT ( Ermentrout, 2002 ) or Matlab’s fsolve ( MathWorks®, 2017 )

unctions in a reduced system with no AHP current. This reduction

s made since the AHP current is spike dependent and decays to

ero in the absence of spikes. 

Periodic orbits in the full model with AHP could not be anal-

sed in XPPAUT due to the non-smooth nature of the AHP current.

nstead, the Poincaré return map on the Poincaré section at V = 0

at which non-smoothness due to the AHP current arises) was

dentified using Matlab. For tonic spiking, high precision numeri-

al solutions were found using a boundary value solver in Matlab.

ue to the high dimensionality and complexity of the model, for

oublets and other multiplets this could not be implemented. In-

tead solutions were found using Matlab’s ode45 (with tolerances

et to 10 −12 ) with high precision event detection, and the return
ap identified using Picard iterations; i.e. for each crossing of the

oincaré section, the Euclidian distance to all past crossing of the

oincaré section was calculated and a periodic orbit identified as

his distance being less than 10 −12 . The Jacobian of the map was

onstructed by calculating Fréchet derivatives, and eigenvalues of

he Jacobian used to assess stability and identify bifurcations in the

ap. Lyapunov exponents of the Poincaré return map were calcu-

ated to identify chaotic regimes ( Sprott, 2003 ), where a negative

aximum Lyapunov exponent ( MLE map ) represents a steady state

n the map (corresponding to a stable limit cycle in the flow) and

 positive MLE map represents a chaotic regime. 

. Results 

.1. Identifying parameter regimes of clustered firing 

A number of experimental and modelling studies implicate the

fter hyperpolarisation (AHP) and hyperpolarisation activated cur-

ent ( I h ) in playing a role in clustered action potential firing ( Booth

t al., 2016; Dudman and Nolan, 2009; Fransén et al., 2004; Nolan

t al., 2007 ). Motivated by these studies, the effect of the AHP

nd h-current conductances ( g AHP and g h respectively) on cluster-

ng was studied in our model. 

To do so, we simulated 10 model neurons for 20 s over a range

f values of g AHP and g h . P C , which quantifies the proportion of

lustered firing (see Section 2 and Fig. S1), was calculated for each

arameter set. A summary of our results depicted as a heatmap of

 C values and illustrated via exemplar membrane potential traces

s shown in Fig. 1 (A) and (B). For low values of g h , the model cells

nly fire sporadic action potentials due to noise occasionally bring-

ng the membrane potential above threshold (dark blue regions in

ig. 1 (A)). For very low g AHP , as g h is increased the system moves

nto a regime of tonic firing (yellow region in Fig. 1 (A)). For in-

ermediate values of g AHP , as g h is increased clustered parameter

egimes occur (orange regions in Fig. 1 (A)) . For values of g AHP suf-

ciently high for clustering to occur, as g h is increased the sys-

em moves from very low P C towards a peak at P C ≈ 0.8, and then

ack down to lower P C ( Fig. 1 (A)). Therefore, spontaneous activity

n the model arises due to a combination of noise and the ap-

lied current. Time courses associated with these values can be

een in Fig. 1 (B). For these simulations, noise variance was set to

/C = 0 . 135 mV · ms −1 (see Section 2 ). Fig. S3 demonstrates that

hese results are robust to different values of noise, with noise val-

es scaling P C in the clustered regimes. The effect of noise on P C 
or a single parameter regime is shown in Fig. S2. 

In order to understand these dynamics, the deterministic sys-

em was also simulated over the same range of parameters. A

eatmap representing the number of spikes per cluster and exem-

lar membrane potential traces are plotted in Fig. 1 (C) and (D). To

irectly compare the dynamics of the deterministic system to the

tochastic system, in Fig. S4 we present the heatmap of the deter-

inistic system juxtaposed with heatmaps for the stochastic sys-

em at three different levels of noise variance. It can be seen in Fig.

4 that the heatmaps for the deterministic and stochastic system

ppear qualitatively similar in terms of the number of spikes per

luster (similar positioning of coloured regions in the heatmaps). In

rder to quantify this similarity we calculated the Pearson’s corre-

ation between the number of spikes per cluster in the simulations

f the deterministic system with the average number of spikes per

luster in the stochastic system. These values, which are indicated

n the left hand corner of panels B–D of Fig. S4, were above 0.86,

uggesting that an understanding of the deterministic clustering

ynamics can be informative for understanding the clustering dy-

amics of the stochastic system. 

A two-parameter bifurcation analysis was performed over g h 
nd g ( Fig. 2 ). For low values of g , the deterministic system
AHP h 

http://chronux.org/
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Fig. 1. Clustered parameter regimes in two parameter space. (A) Heatmap of P C over a range of values of g AHP and g h . Points marked by red shapes correspond to the time 

series in B. (B) Time series demonstrating exemplar simulated cells for the regimes marked in A. The red shapes to the right of the time series correspond to the location 

in parameter space in A. (C) Heatmap of spikes per cluster in the underlying deterministic system. In the colourbar, ‘SS’ refers to a steady state, ‘T’ refers to tonic firing, 

‘C’ refers to chaotic/irregular firing, and integers indicate number of spikes per cluster. (D) Time series demonstrating the deterministic dynamics underlying the stochastic 

traces in B. The red shapes to the right of the time series correspond to the location in parameter space in C. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Parameters used in the model. 

Parameter Value Parameter Value 

C 1.46 μ F · cm 

−2 g NaT 24 mS · cm 

−2 

I app 0.3 μ A · cm 

−2 g NaP 0.075 mS · cm 

−2 

E Na 55 mV g Kdr 11 mS · cm 

−2 

E K −85 mV g Kaf 0.1 mS · cm 

−2 

E h −30 mV g Kas 0.5 mS · cm 

−2 

E L −88.5 mV g L 0.15 mS · cm 

−2 

(  

o  

t  

A  

a  

b  

d

 

v  

v  

t  

v  

t  

t  

l  
is in a stable steady state. This corresponds to the region of sub-

threshold sporadic excitability that generates occasional spiking in

the stochastic system. As g h is increased, a homoclinic bifurcation

occurs at g HC 
h 

= 2 . 5477 , resulting in bistability between the steady

state and a periodic orbit. This periodic orbit may be either period

1 (corresponding to tonic action potentials) or period > 1 (corre-

sponsing to clustering in the stochastic system) depending on g AHP .

As g h is increased further to g SN 
h 

= 2 . 7484 , the stable steady state

collides with an unstable steady state in a saddle node bifurcation,

resulting in periodic solutions corresponding to action potential fir-

ing being the only stable solutions. The location of the saddle node

and homoclinic bifurcations are independent of g AHP . The saddle

node bifurcation g SN 
h 

is indicated by a dashed red line in two pa-

rameter space in Fig. 2 . 

For g h > g SN 
h 

, only a stable periodic orbit exists, generated by

the homoclinic bifurcation at g HC 
h 

. Orbits with a range of number

of spikes per period can be found beyond this bifurcation. Period 1

orbits correspond to tonic action potentials, whilst period > 1 or-

bits correspond to firing in multiplets, i.e. bursting. By comparing

Fig. 2 (A) and (B), one can observe that the regimes of period > 1 in

the deterministic system correspond to clustered action potential

firing in the stochastic system. The transitions between orbits of

different periods (e.g., from period 2 doublets to period 3 triplets)

occur via flip bifurcations ( Barrio and Shilnikov, 2011; Channell

et al., 2007 ), drawn in Fig. 2 by dotted red lines. The transition

between period 1 orbits (tonic spiking) and orbits with period > 1

c  
bursting) is indicated by a solid red line in Fig. 2 . Seen in terms

f decreasing values of g h , the bifurcation underlying this transi-

ion is a flip bifurcation of the period 1 orbit into period 2 regime.

s g h is decreased further, the system undergoes a flip or spike

dding cascade into chaotic dynamics, before a stable period 5 or-

it is established. Poincaré return maps and Lyapunov exponents

emonstrating an example of this transition are shown in Fig. 3 . 

Moving beyond this bifurcation to high values of g h and low

alues of g AHP yields P C ≈ 1 in the stochastic system. This obser-

ation could be explained by a highly stable periodic orbit and

herefore diminished effects of noise. However, in this case a high

alue of clustering arises due to the way P C is calculated, essen-

ially tonic firing with an ISI < 250 ms is classified as a single clus-

er (Fig. S1). As the flip bifurcation is approached from above and

eft, the orbit becomes less stable allowing noisy perturbations to

ause deviations away from individual action potentials. This in-
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Fig. 2. Bifurcations in two parameter space. (A) The heatmaps from Fig. 1 (C) is overlayed with lines indicating locations of bifurcations in the deterministic system as g AHP 

and g h are varied. The dashed red line represents the location of a saddle node bifurcation. Dotted red lines show flip bifurcations that move the system from a period n to 

a period n + 1 orbit, for n > 1. The solid red line shows a flip bifurcation that moves the system from tonic firing to period 2 firing, before transitioning into a period adding 

cascade. (B) The same bifurcations are overlayed on the P C heatmap of Fig. 1 (A) to enable a visualisation of the behaviour of the stochastic system relative to the bifurcations 

in the deterministic system. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Transition from tonic firing to period 5 bursting. Each column represents a different parameter value as g h is decreased. For all simulations, g AHP = 1 . 2 and all other 

parameters are those in Table 1 . Numbers shown at the top of each column are value of g h and maximum Lyapunov exponent on the map ( MLE map ). MLE map > 0 represents 

chaos. For each parameter value, the top row demonstrates the flow in the ( V, n h , n AHP ) subspace about the Poincaré section V = 0 (shaded in grey) and the bottom row is 

the Poincaré return map for n h . For the chaotic regimes, the system was simulated for 30 s to reach the attractor and then a further 30 s of simulations are shown. From a 

tonic regime, as g h is decreased the system undergoes a flip cascade into chaos before transitioning into a period 5 (bursting) orbit. 
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Fig. 4. Paths through parameter space that can result in reduced clustering observed in the rTg4510 model of dementia (A) Heatmap of | P C − P C,W T | , where P C,W T = 0 . 69 is 

the mean value of clustering seen in dorsal mEC-SCs in wild type animals ( Booth et al., 2016 ). Red indicates regions in which P C of the model is close to P C, WT , whereas blue 

indicates regions where the model is farthest from P C, WT . (B) Heatmap of | P C − P C,TG | , where P C,TG = 0 . 37 is the mean value of clustering seen in dorsal mEC-SCs in rTg4510 

transgenic (i.e. dementia) animals ( Booth et al., 2016 ). (C) The heatmap of Fig. 1 (A) is overlayed with arrows indicating potential paths through the (g AHP , g h ) parameter 

space that could lead to the changes in P C observed in the rTg4510 experimental model. (D) The heatmap of Fig. 1 (C) is overlayed with arrows indicating potential paths 

through the (g AHP , g h ) parameter space that could lead to the changes in P C observed in the rTg4510 experimental model. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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duces quiescent intervals that become large enough to fall in the

range [250,300] ms, thus causing the P C value to drop substantially

in magnitude, giving rise to the light blue upper region of low P C 
in Fig. 1 (A). 

Experimental observations have shown dorsal P C to be approxi-

mately 0.69 in healthy animals and approximately 0.37 in rTg4510

transgenic animals ( Booth et al., 2016 ). We used these values to

define possible paths through parameter space that may account

for differences observed in rTg4510 ( Fig. 4 ). Given that experimen-

tal recordings found no differences in I h but found differences in

AHP amplitude ( Booth et al., 2016 ), paths E and F in Fig. 4 (C) and

(D) are the most likely changes in parameter space occurring in

rTg4510. The dynamics of path F recreate firing patterns seen in

data most realistically, since firing frequency in parameter sets in

path E is much higher than in data ( Booth et al., 2016 ). This could

be explained by the fact that in path E, clustering arises due to

noise cancelling action potentials in a tonic firing regime, as op-

posed to underlying dynamics causing clustered firing. Path F sug-

gests that the underlying noise-free system is undergoing a flip bi-

furcation from period 3 bursts to period 2 bursts, resulting in the

reduced clustering seen in rTg4510. 

3.2. Fast-slow analysis of deterministic clustering 

The analysis above suggests that clustered firing patterns may

arise due to noise perturbations to a periodic bursting regime. In

order to further understand these dynamics, a fast-slow analysis
as performed on the deterministic system within this regime. We

hose parameters to be g AHP = 0 . 425 and g h = 2 . 8 , which results

n periodic bursts of three action potentials. We first examined

imulations, which revealed two variables operating with a slow

ime scale, namely m NaP and h Kas ( Fig. 5 (A)). Keeping the two slow

ariables fixed, the remaining (fast) subsystem was subjected to

 numerical bifurcation analysis, which revealed two bifurcations

f importance for describing the bursting dynamics (see Fig. 5 (B)).

or low values of m NaP , there exists a stable steady state which

oses stability via a subcritical Hopf bifurcation (denoted SCH1) as

 NaP is increased (marked by a dashed red line in Fig. 5 (B)). For

igh values of m NaP there exists a stable periodic orbit of period

, which disappears via a homoclinic bifurcation (denoted HC1 and

arked by a dotted red line in Fig. 5 (B)) as m NaP is decreased. Be-

ween these two bifurcations there is a region of bistability be-

ween the steady state and the periodic orbit. These bifurcations

n m NaP are drawn over a range of values of h Kas in Fig. 5 (B). A

ull bifurcation diagram and example bistable region for m NaP for

 Kas = 0 . 19 is shown in Fig. S5. 

Plotting the periodic solution of the full subsystem in the two

ariables ( m NaP and h Kas , Fig. 5 (B)) is sufficient to describe the

ursting dynamics. The trajectory follows a hysteresis loop through

he fast subsystem. Beginning in the quiescent period between

ursts, the two slow variables will be at a position in phase space

uch that the fast subsystem is on the steady state branch. The

eriodic solution’s trajectory then moves along the steady state

ranch until SCH1 is reached, at which point the fast subsystem
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Fig. 5. Fast-slow analysis of deterministic bursting (A) Membrane potential (top) and slow variables ( m NaP , middle and h Kas , bottom) through four cycles of bursting in the 

deterministic system. (B) Bifurcations in the fast subsystem overlayed on the model trajectory in the (m NaP , h Kas ) plane. The red dashed line indicates a subcritical Hopf 

bifurcation (SCH1), whereas the dotted red line indicates a homoclinic bifurcation (HC1). The black dashed line shows the linear model that combines h Kas and m NaP into 

a single slow variable, m slow . (C) Bifurcation analysis of the fast subsystem of the model using m slow as a bifurcation parameter. A stable equilibrium (solid black line) is 

shown to lose stability (dashed black line) via a subcritical Hopf bifurcation (SCH2). The stable periodic orbit (solid green line) disappears in a homoclinic bifurcation (HC2). 

A region of bistability exists (shaded region, zoomed in panel D). See text for a description of the remaining bifurcations. (D) A close up of the bifurcations occurring in the 

region of bistability shown in grey in panel C. The blue line indicates a trajectory of the full system through a single period of bursting, with arrows indicating the direction 

of time. Dashed and dotted red lines correspond to the bifurcations of the fast subsystem introduced in panel B. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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oves to the periodic orbit branch. This initiates the burst, with

ction potentials firing while slow variables move along the pe-

iodic orbit branch towards HC1. Once HC1 is reached, the burst

nds as the fast subsystem returns to the steady state branch. 

Fig. 5 (B) suggests that the slow system can be reduced to a

ingle slow variable m slow 

with the approximation m NaP = m slow 

nd h Kas = −0 . 7657 m slow 

+ 0 . 6477 . This linear approximation of

he two slow variables is shown in Fig. 5 (B). The full bifurca-

ion diagram for the fast subsystem as m slow 

is varied is shown

n Fig. 5 (C). As before, the stable steady state is lost via subcrit-

cal Hopf bifurcation (SCH2), and the stable periodic orbit is lost

ia homoclinic bifurcation (HC2). Fig. 5 (C) shows the remaining bi-

urcations. The unstable periodic orbit generated by SCH2 is lost

ia a homoclinic (HC3). The unstable steady state following SCH2

ecomes stable via another subcritical Hopf (SCH3). The unstable

eriodic orbit generated by SCH3 collides with the stable periodic

rbit generated in HC2 and both periodic orbits disappear via a

addle node of periodics (SNP1). As in the case of the two dimen-

ional slow subsystem, there is bistability between the stable equi-

ibrium and the stable periodic orbit ( Fig. 5 (D)) resulting in tradi-

ional fast-slow hysteresis loop bursting. The trajectory of a single

urst is shown in Fig. 5 (D). 
t  
.3. Subthreshold dynamics 

In order to validate the model, we tested whether it reproduced

xperimental results that were not used in the development of

he model; i.e. when choosing parameter regimes that allow for

EC-SC-like clustering dynamics. Subthreshold oscillations in the

heta (4–12 Hz) range are another key electrophysiological feature

f mEC-SCs, so in this section we explore whether theta band sub-

hreshold activity appears in the model. 

The bottom trace of Fig. 1 (B) demonstrates the noise driven

esponse of the model in its subthreshold regime. mEC-SCs have

een shown to generate subthreshold membrane potential fluctu-

tions with dominant frequencies in the theta band ( Alonso and

link, 1993 ). We therefore quantified the power spectrum of dy-

amics generated by our noise driven system. The stochastic sys-

em, with parameters chosen as in Section 3.2 , I app set below ac-

ion potential threshold (0.25 μ A · cm 

−2 ), and white noise added

o the membrane potential, was simulated for 20 s with low noise

ariance ( σ/C = 0 . 005 mV · ms −1 ). Fig. 5 (D) shows an example

pectrogram, demonstrating high power between 0–20 Hz with a

eak in the theta (4–12 Hz) range. The mean power spectrum over

n ensemble of simulations ( Fig. 6 (B)) shows peak power to be in

he theta band, with peak frequency found to be at 10.40 ± 1.09 Hz



30 L. Tait et al. / Journal of Theoretical Biology 449 (2018) 23–34 

Fig. 6. Analysis of subthreshold oscillations (A) Spectrogram of exemplar 20 s subthreshold simulations. (B) Power spectrum of 20s simulations (averaged over 10 cells). The 

shaded region shows standard error. (C–E) Exemplar simulations with I app = 0 . 05 μ A (C), 0.15 μ A (D), and 0.25 μA · cm 

−2 (E). (F) Theta spectral ratio, defined as the ratio 

of total theta power to total broadband (1–300 Hz) power, plotted as a function of I app . 
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(mean ± standard error). Whilst low noise variance was used in

these simulations in order to elucidate mechanisms, Fig. S6 shows

simulations using the same amount of noise as in previous sections

( σ/C = 0 . 135 mV · ms −1 ) to demonstrate that theta range fluctua-

tions still arise in system with more realistic noise levels. 

To further understand the origin of this subthreshold prefer-

ential theta power, we analysed the deterministic system. Fig. S7

shows a bifurcation diagram in I app . The deterministic system un-

dergoes a saddle node bifurcation at I SN 
app = 0 . 2738 μA · cm 

−2 ; for

I app < I SN 
app a stable steady state exists. A supercritical Hopf bifur-

cation occurs at I 
Hopf 
app = 42 . 10 μA · cm 

−2 , generating a stable pe-

riodic orbit that is lost via a homoclinic bifurcation at I HC 
app =

0 . 2401 μA · cm 

−2 demonstrating bistability between spiking and

steady state in the range I HC 
app < I app < I SN 

app . No other Hopf bifurca-

tions occur in I app , hence the deterministic system does not ex-

hibit stable subthreshold oscillations within this parameter regime.

We note that noise perturbations can drive the membrane poten-

tial above threshold even for I app < I SN 
app (see Fig. S8 for analysis of

spike onset in relation to injected current and differing noise vari-

ance). This justifies our choice of I app = 0 . 25 μA · cm 

−2 as this is

sufficiently below threshold that no action potentials are observed.

In the absence of noise, the system is in a steady state and

therefore no deterministic theta band oscillations arise. A poten-

tial mechanism by which white noise on a steady state can result

in power spectral peaks is if the steady state is a focus. The reso-

i  
ant frequency of a focus can be calculated as the imaginary part

f the complex conjugate eigenvalues of the Jacobian normalised

y a value of 2 π . A pair of complex conjugate eigenvalues demon-

trated that the steady state is a focus with a resonant frequency

f 6.32 Hz. The effect of changing applied current was also tested

 Fig. 6 (C) and (D)). In experimental recordings, theta power is seen

o increase as I app approaches threshold for action potential gener-

tion ( Alonso and Klink, 1993 ). Fig. 6 (C) shows time series traces

or a range of values of I app , demonstrating theta power increas-

ng as I app is increased. Theta band spectral ratio was calculated

s the ratio of total power in the theta band to total power in

he 1–300 Hz broad band, shown in Fig. 6 (D). Total power in the

elta (1–3 Hz), theta (4–12 Hz), beta (15–30 Hz) and gamma (30–

00 Hz), normalised by width of band, is shown in Fig S9. Each of

hese figures demonstrate the clear emergence of peak theta power

s I app is increased and threshold is approached. A Kruskal–Wallis

est confirms a significant effect of applied current on spectral ra-

io ( χ2 = 44 . 97 , p = 1 . 47 × 10 −8 ). 

. Discussion 

In this study we analysed a conductance based model of a layer

I medial entorhinal cortex stellate cell (mEC-SC), demonstrating

hat it is capable of generating clustered action potential firing

ith a range of quantitative P C values that are observed in exper-

ments. We demonstrated that these dynamics arise due to a sub-
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t  
ritical Hopf/homoclinic bursting mechanism, which causes mul-

iple period limit cycles that when perturbed by extrinsic noise

isplay action potential clustering. We further demonstrated that

he same model can generate experimentally observed subthresh-

ld membrane potential fluctuations with power spectral peak in

he theta band. 

.1. Derivation of the model, approximation of noise, and relationship 

o the Markov chain model 

Dudman and Nolan (2009) presented a biophysically realistic

arkov chain (MC) gated model of enthorhinal cortex stellate cells.

C models account for random fluctuations in the opening and

losing of ion channels intrinsic to neurons ( Goldwyn et al., 2011;

hite et al., 20 0 0 ) by assigning them a voltage dependent proba-

ility of opening or closing. However, dynamic analysis of Markov

hain models is challenging. Furthermore, Markov chain models

re computationally expensive. For these reasons, in this paper,

he MC gated model was converted to the deterministic Hodgkin-

uxley formulation for ion channel gates ( Eq (1 ); Hodgkin and

uxley, 1952 ) under the assumption that the number of ion chan-

els is sufficiently high that a density approximation can be justi-

ed, resulting in a system of ordinary differential equations (ODEs).

hannel noise in the neuron was not explicitly modelled, but ap-

roximated by extrinsic, Gaussian noise on the membrane poten-

ial. We demonstrated that this was sufficient to produce clustered

ction potential dynamics and theta range subthreshold fluctua-

ions in line with experiments ( Alonso and Klink, 1993 ). 

.2. Action potential clustering 

Clustered action potential firing, in which two or more action

otentials are fired in succession before a long quiescent period, is

 feature of in vitro recordings of layer II medial entorhinal cortex

tellate cells. Action potential clustering is hypothesised to depend

n the AHP and I h currents based on computational studies and

orrelated gradients in dynamics associated with these currents

 Booth et al., 2016; Fransén et al., 2004; Garden et al., 2008; Gio-

omo and Hasselmo, 20 08; 20 09; Nolan et al., 20 07; Pastoll et al.,

012; Yoshida et al., 2013 ). Motivated by this, the dependence of

hese two parameters on clustering was tested in the model. A

wo parameter bifurcation analysis ( Fig.1 (A)) demonstrated that re-

ions of quiescence, tonic firing, and clustered firing coexist. Fur-

hermore, a range of values of P C were found, allowing for control

ver the amount of clustering in the model. 

Analysis of the deterministic model allowed for understanding

f the mechanisms behind clustering ( Fig. 1 (C)). Regions corre-

ponding to tonic firing in the stochastic model correspond to re-

ions of tonic firing in the deterministic model. As the regions of

lustering are approached from the regions of tonic firing, a pe-

iod doubling cascade occurs until stable multiplets (‘bursts’ of ac-

ion potentials) are reached. Flip bifurcations ( Barrio and Shilnikov,

011; Channell et al., 2007 ) occur, changing the number of spikes

er burst. Eventually, firing is lost althogether via a homoclinic bi-

urcation as g h is decreased. It is worth noting that a region of

istability exists before the homoclinic is reached in which the sta-

le periodic orbit coexists with a stable steady state. In this region

f bistability, it was found that simulations of the stochastic system

tarting on or near the periodic orbit are soon driven by noise to-

ards the stable steady state, and hence sustained action potential

ring in this region of the stochastic system is rare. Similar results

ccur for changes in I app if g h is held constant in certain parameter

egimes (Fig. S7), reflecting results in data that increasing applied

urrent will increase number of spikes per cluster before moving

he system into tonic firing ( Alonso and Klink, 1993 ). This suggests
hat the different dynamics due to alterations in g h may arise be-

ause of a change in resting membrane potential as g h is varied.

o such change in resting membrane potential is observed as g AHP 

s altered. Analysis of a bursting regime demonstrated that burst-

ng arises due to a fast-slow mechanism in which two slow vari-

bles drive the fast subsystem through a hysteresis loop. In terms

f bifurcations in the fast sub-system, the bursting mechanism in

his model can be classified as subcritical Hopf/homoclinic type

 Izhikevich, 20 0 0 ). 

The generation of clustered action potential firing by determin-

stic, periodic bursting perturbed by extrinsic noise differs from

ast interpretations of clustering. In the Markov chain formalism

f the model, Dudman and Nolan (2009) suggested clustering was

he result of a transient increase in probability of firing during re-

overy from the AHP due to the stochastic mechanisms, and they

emonstrated that clustering was not possible in the determinis-

ic version of the model. In our study, we systematically explored

he consequences of changing g h and g AHP , and found different dy-

amic regimes in the deterministic system, including steady state

nd tonic firing regimes that do not correspond to clustered firing

n the stochastic model. It is possible that further exploration of

he dynamics of the model of Dudman and Nolan (2009) would

eveal similar bursting regimes to those reported herein. Although

xperimental verification of these interpretations is difficult, there

re some agreements in mechanisms between these two models,

owever. The effect of changing g AHP in the MC model has not

een studied, but within a clustered parameter regime the affect

f reducing g h in the SDE model largely agrees with the results of

educing g h in the MC model - a reduced value of P C . The interpre-

ation of increased probability of firing during recovery from AHP

lso emphasises the importance of the AHP current in clustering in

he MC model. 

A number of other parameters are likely to play a role in clus-

ering. AHP halfwidth and I h time constants may be important, as

orsoventral gradients in these properties also correspond to gra-

ients in clustering ( Boehlen et al., 2010; Booth et al., 2016; Gio-

omo and Hasselmo, 20 08; 20 09; Giocomo et al., 2007; Pastoll

t al., 2012 ), but these have not been studied here. Figs. S2 and

3 demonstrate that the variance of noise chosen will also dictate

he amount of clustering; increasing noise variance increases the

ikelihood of sporadic spiking or action potential cancellation, thus

ffecting the patterned firing. 

.3. Subthreshold theta resonance 

Stellate cells in Layer II of the medial entorhinal cortex are

nown to exhibit subthreshold oscillations in the theta (4–12 Hz)

ange that increase in power as action potential threshold is ap-

roached ( Alonso and Klink, 1993 ). It is believed these subthresh-

ld oscillations are noise driven ( White et al., 1998 ). In our deter-

inistic (noise free) model, subthreshold oscillations do not exist,

ince we operated in a steady-state regime. However, the steady

tate is a focus with resonant frequency of 6.32 Hz, suggesting that

ith the addition of noise, a spectrum with preferential power in

he theta band may arise. We found that a small amount of white

oise on the membrane potential is sufficient to give rise to sub-

hreshold dynamics with multiple peaks within the theta range

nd peak power at around 10 Hz. The difference in peak frequency

ound in simulations compared to the prediction from the lineari-

ation of the focus may be due to noise in the simulated spec-

rum as well as noise induced frequency shifts ( Bonnin and Cor-

nto, 2013 ). Furthermore it was shown that the relative power in

he theta band is significantly larger close to threshold than far

elow threshold. 

To model the dynamics of subthreshold activity of stellate cells,

wo classes of model have previously been proposed. The first
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class of model utilises noisy perturbations to deterministic limit

cycle dynamics. In this case, the output of the deterministic model

would be regular, periodic oscillations and the related stochas-

tic model would exhibit strongly periodic dynamics contaminated

by noise. Previous models of subthreshold oscillations in stellate

cells that fall into this class include ( Dickson et al., 20 0 0; Fransén

et al., 2004; Rotstein et al., 2006; White et al., 1995 ). In the second

class of model, such as the one presented in this study and the

Izhikevich (2007) , theta band fluctuations arise due to noisy per-

turbations on a focus steady state, which results in a resonant re-

sponse. In contrast to the aforementioned class of limit cycle mod-

els, fluctuations exist only in the presence of noise. Furthermore, in

the noisy focus class of model, the dynamics appear less obviously

periodic than in limit cycle models, resembling a stochastic process

with peak power in the theta range. Experimental and modelling

studies have suggested that removing channel noise results in loss

of subthreshold oscillations ( Dorval and White, 2005; Dudman and

Nolan, 2009; White et al., 1998 ) and that stellate cell subthresh-

old dynamics are more reflective of a stochastic process with theta

peak than a periodic process with additive noise ( Dodson et al.,

2011 ). These results are consistent with the noisy focus class of

model, which the model we present belongs to. However, we note

that the mechanisms of the two classes of model are closely re-

lated, since in theory, one expects to find a focus steady state close

to a Hopf bifurcation into a limit cycle ( White et al., 1995 ) with

resonant frequency close to that of the limit cycle. 

For biological insight into the currents involved in the gener-

ation of subthreshold limit cycles or resonance, reduced models,

which remove currents that are predominantly active during ac-

tion potential initiation or recovery, can be of interest. I h + I NaP + I L 
models have been shown to generate theta band limit cycle oscil-

lations ( Dickson et al., 20 0 0; Fransén et al., 20 04; Rotstein et al.,

2006 ). As discussed above, the alternative mechanisms of noise-

perturbed focus and limit cycle dynamics are related, so it is of

interest to test whether making similar reductions in our model

maintains the theta band resonance. Setting all currents but I h and

I NaP to their steady state value, we found that the corresponding

steady state becomes a node and hence theta band resonance is

lost. A detailed study of the mechanisms underlying the noise re-

sponse of our model is an avenue for future work. 

4.4. Implications for dementia 

The entorhinal cortex is one of the first areas to be affected in

dementias featuring a tau pathology such as Alzheimer’s disease

( Braak and Braak, 1991 ). In the rTg4510 mouse model of tauopa-

thy, dorsoventral gradients in action potential clustering in layer II

entorhinal cortex stellate cells were abolished ( Booth et al., 2016 ).

A motivating application for a mathematical model of mEC-SCs in

which action potential clustering can be controlled is to under-

stand the mechanisms behind the dysfunction in clustered firing in

animal models of dementia. Future work will involve exploring this

relationship in more detail, but some key points can be stated from

the work presented here. In the wild type animals, dorsal mEC-SCs

fired highly clustered action potentials. This clustering was greatly

reduced in the rTg4510 animals. Whilst I h mediated sag ampli-

tude was unaffected (suggesting no changes in g h ), an increase in

amplitude of the AHP was seen in rTg4510 dorsal cells. The AHP

amplitude, which scales with AHP conductance, has been demon-

strated to be mechanistically related to P C in this model and pre-

vious studies ( Fernandez and White, 2008; Fransén et al., 2004 ). A

possible mechanism for the reduced P C in rTg4510 is an increase

in g AHP , resulting in the system undergoing a flip bifurcation re-

sulting in fewer spikes per cluster. An example of this is the path

through parameter space marked F in Fig. 4 , which results in real-

istic mEC-SC like clustering dynamics, with a change in parameters
hat reflects those seen in rTg4510. Future work will involve fitting

arameters to the data to explore this in more detail. 

Network activity was also seen to be disrupted in rTg4510

 Booth et al., 2016 ). Dorsoventral gradients in phase-amplitude

oupling (PAC) between theta and gamma rhythms in the lo-

al field potential was found to be disrupted in rTg4510 animals.

imilar to clustering patterns, dorsoventral gradients in PAC were

isrupted. Networks of modelled stellate cells, spatially extended

long the dorsoventral axis, may be used to explore whether dis-

uption in patterned action potential activity alone is sufficient

o replicate deficiencies in PAC, or whether network properties

uch as dorsoventral gradients in inhibitory projections also come

nto play ( Beed et al., 2013 ). Past computational studies of theta-

amma PAC have involved use of simple models that do not in-

rinsically fire in clusters such as the exponential integrate-and-fire

 Solanka et al., 2015 ) or Hodgkin–Huxley ( Wulff et al., 2009 ) mod-

ls. Dorsoventral gradients in clustering intrinsic to cells cannot

e studied using these models, and hence are not suitable to test

hether intrinsic clustering is related to theta-gamma coupling.

he model presented here is more suited to this type of study, as

lustering can be controlled via biophysically realistic mechanisms.

.5. Conclusions 

In this work, we have presented a stochastic differential equa-

ion (SDE) model of Layer II medial entorhinal cortex stellate cells

ased on the Markov Chain formalism of the model presented by

udman and Nolan (2009) , but driven by extrinsic white noise to

he membrane potential. We demonstrated that this model cap-

ures the key dynamics of mEC-SCs seen in electrophysiological

ecordings including subthreshold oscillations in the theta range

nd clustered action potential firing ( Alonso and Klink, 1993 ). To

nderstand the mechanisms underpinning clustered action poten-

ial firing, a numerical bifurcation analysis was performed on the

nderlying system of ordinary differential equations. Clustering

as shown to arise due to flip bifurcations in the AHP and h-

urrent conductance parameters, and is driven by two slow vari-

bles ( m NaP and h Kas ) driving the remaining fast subsystem through

 subHopf/homoclinic type hysteresis loop. Furthermore, explo-

ation of parameter space demonstrates that control of the AHP

nd h-current conductances allows for control of P C , which quan-

ifies the amount of action potential clustering exhibited by the

odel. The model provides an important tool for further under-

tanding alterations to mEC spatiotemporal dynamics that arise in

ementias featuring a tau pathology ( Booth et al., 2016 ). 
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ppendix A. Model equations 

The model contains a total of eight ionic currents. These are

ransient and persistent sodium currents ( I NaT and I NaP respec-

ively), a potassium delay rectifier ( I Kdr ), fast and slow potassium

-type currents ( I Kaf and I Kas respectively), a hyperpolarisation ac-

ivated I h current, an ohmic leak ( I L ) and finally a phenomenolog-

cal after hyperpolarisation current that is dependent on the time

ince last spike ( I ). 
AHP 
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The current balance equation for our model is given in Eq. (2) ,

ith each current represented as in Eq. (3) . The fraction of open

ates for each channel is given by 

 NaT = m 

3 
NaT h NaT (A.1) 

 NaP = m NaP h NaP (A.2) 

 Kdr = n 

4 
Kdr (A.3) 

 Kaf = m Kaf h Kaf (A.4) 

 Kas = m Kas h Kas (A.5) 

 h = n h (A.6) 

 AHP = n 

3 
AHP (A.7) 

 L = 1 (A.8) 

here gating variables are given by the system of ODEs in Eq. (1) .

robabilities of gates opening and closing are given by the func-

ions 

m NaT 
= 

0 . 38(V + 33) 

1 − e 
V+33 

9 

, βm NaT 
= 

−2 . 3(V + 58) 

1 − e 
V+58 

12 

(A.9) 

h NaT 
= 

−0 . 03(V + 48) 

1 − e 
V+48 

12 

, βh NaT 
= 

0 . 05(V + 21) 

1 − e 
V+21 

9 

(A.10) 

m NaP 
= 

1 . 6 ∗ 10 

−4 (0 . 38(V + 64 . 409) 

1 − e −0 . 38023(V +64 . 409) 
, 

βh NaP 
= 

1 . 2 ∗ 10 

−4 (−0 . 216(V + 17 . 014) 

1 − e 0 . 21598(V +17 . 014) 
(A.11) 

h NaP 
= 

1 . 5 

1 + e 
−42 . 1 −V 

3 

, βm NaP 
= 

1 

1 + e 
42 . 1 −V 

3 

(A.12) 

n Kdr 
= 

0 . 02(V + 38) 

1 − e 
V+38 

10 

, βn Kdr 
= 

−0 . 018(V + 47) 

1 − e 
V+47 

35 

(A.13) 

m Kaf 
= 

0 . 01(V + 18 . 3) 

1 − e −0 . 067(V +18 . 3) 
, βm Kaf 

= 

−0 . 01(V + 18 . 3) 

1 − e 0 . 067(V +18 . 3) 
(A.14) 

h Kaf 
= 

−0 . 01(V + 58) 

1 − e 0 . 122(V +58) 
, βh Kaf 

= 

0 . 01(V + 58) 

1 − e −0 . 122(V +58) 
(A.15) 

m Kas 
= 

0 . 001(V + 18 . 3) 

1 − e −0 . 067(V +18 . 3) 
, βm Kas 

= 

−0 . 001(V + 18 . 3) 

1 − e 0 . 067(V +18 . 3) 
(A.16) 

h Kas 
= 

−6 . 7 ∗ 10 

−5 (V + 58) 

1 − e 0 . 122(V +58) 
, βh Kas 

= 

−6 . 7 ∗ 10 

−5 (V + 58) 

1 − e −0 . 122(V +58) 

(A.17) 

n h = 

18 . 3 ∗ 10 

−3 

1 + e 
V+114 . 2 

20 . 33 

, βn h = 

3 . 3 ∗ 10 

−2 

1 + e 
V+51 . 5 
10 . 94 

(A.18) 

n AHP 
= 1 . 5 e 

−(t−t spike ) 

25 , βn AHP 
= 1 . 6 (A.19) 

All equations are adapted from Dudman and Nolan (2009) . 
upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.jtbi.2018.04.013 . 
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