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Abstract: Topological charges of nodal lines in a multigap

system are represented by non-Abelian numbers, and the

Euler class, a topological invariant, can be used to explain

their topological phase transitions, such as pair-annihilation

of nodal lines. Up until now, no discussion of phase transi-

tions of nodal lines in photonic crystals using the Euler class

has been reported, despite the fact that the Euler class and

topological phase transition have recently been addressed

in metallic or acoustic crystals. Here, we show how the

deformation of a photonic crystal causes topological phase

transitions in the nodal lines, and the Euler class can be

used to theoretically predict the nodal lines’ stability based

on the non-Abelian topological charge theory. Specifically,

by manipulating the separation between the two single dia-

mond structures and the extent of structural distortion, we

numerically demonstrate the topological transition of nodal

lines, e.g., from nodal lines to nodal rings. We then demon-

strate that the range of surface states is strongly influenced

by the topological phase transition of nodal lines. Moreover,

the Zak phase was used to explain the surface states’ exis-

tence.
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1 Introduction

Condensed matter physics has advanced extensively with

the discovery of topological insulators [1], [2], and numerous

concepts about single-gap topologies have been applied to

photonics [3]–[6]. Recently,multigap topologies [7]–[9] have

been investigated in addition to single-gap topologies. It is

evident that multigap topologies need novel descriptions

that are distinct from those used for single-gap topologies.

Non-Abelian charges can be used to characterize the multi-

gap degeneracies’ topological nature [10]–[12]. Moreover,

the braiding of one degeneracy around the other can be

explained by the sign change of the non-Abelian charges

[10], [11], [13]–[16]. Alternatively, the topological phase tran-

sitions canbe explainedby the Euler class, an integer-valued

multigap topological invariant [11], [12], [14]–[18]. One can

determine whether or not two nodal lines passing through

a patch can be pair-annihilated by looking at its Euler

class.

Since the topological charges of line degeneracies in a

three-band system can be described by the simple quater-

nion numbers, this system provides the simplest platform

for studying multigap topologies [10], [16], [19], [20]. Impor-

tantly, the descriptions of the phase transition, stability of

band degeneracies, and non-Abelian topological charges in

three-band systems can be transferred to a system with

more bands without losing generality [10], [21]. Nodal lines,

which are line degeneracies, can take on a wide variety of

curved forms that result in many different topologies [22].

Examples of these topologies include nodal rings [23], [24],

nodal chains [20], [25]–[29], nodal links [19], [20], [27]–[34],

and nodal knots [32], [33], [35]. Electronic [10], [11], pho-

tonic [19], [20], [26], [36] and acoustic crystals [16], [34] have

been used to realizemultigap topological nodal line systems

and associated phase transitions based on the non-Abelian

charge theory.

In a variety of photonic platforms, including metallic

photonic crystals and metamaterials, the topological phase

transitions of nodal lines have been discovered [3]–[5], [20].

They are, however, non-dielectric materials and no dielec-

tric photonic crystal has yet shown the topological phenom-

ena. This is mostly because they require a high refractive
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index more than 3.5 to have nodal lines isolated from the

other bands and creating three-dimensional periodic struc-

tures with suchmaterials is difficult [19], [26], [36], [37]. Nev-

ertheless, there are fundamental benefits of using dielectric

photonic crystals. Above all, a dielectric photonic crystal

is scalable, allowing for the observation of a phenomena

that has been predicted theoretically at a wide range of

wavelengths, from visible to microwave. In fact, a photonic

crystal like the dielectric gyroid has been used to make

significant discoveries in the field of topological photonics

[3].

In this work, we theoretically investigate the nodal

lines’ transitionnaturewith the Euler class anddemonstrate

their surface states using a double diamond dielectric pho-

tonic crystal. To show each nodal line has a non-Abelian

topological charge, we first assign the quaternion numbers

to the nodal lines created in the multigap system with three

bands. Next, we predict the phase transitions of nodal lines,

i.e. the stability of nodal lines, by numerically calculating the

Euler class. Lastly, we observe the structural deformation-

induced transition of surface states in the photonic crystal.

We use the double diamond unit cells to calculate the Zak

phase for selected paths in momentum space and the dou-

ble diamond structures’ supercells to simulate the surface

states. As such, our research and numerical results provide

valuable insight and tools for the exploitation of nodal lines

in photonic nanostructures.

2 Frame rotation charge, Euler

class and topological phase

transition of nodal lines

First, we define the multigap topology. Let us start with a

system that consists of (n+ 1) bands without any degener-

acy between them. Then, the system has n bandgaps. If a

deformation of the band structure makes only one pair of

bands degenerate, or if we focus on only one specific pair of

bands by ignoring degeneracies formed by any other pairs

of bands, the system is called a ‘single-gap system’. Similarly,

a ‘multigap system’ is a system where we deal with multi-

ple degeneracies formed by two or more different pairs of

bands [14], [16]. For example, some degeneracies are by the

first-second bands, while the other degeneracies are by the

second-third bands. Thus, the multigap topology is defined

as the topology of degeneracies in the multigap system. In

this work, we consider photonic band structures with many

(more than five) bands but we select only the third, fourth,

and fifth bands forming a three-band system as shown in

Figure 1(a). Note that the three bands (thick solid lines) are

not required to be separated from the rest of the bands (thin

grey solid lines) for the discussion of the non-Abelian band

topology if we focus on the topological phase transitions of

nodal lines instead of looking at the topology of the bands

for the whole Brillouin zone.

(a)
ω

L3R5

(b) (c)

(d) (e) (f)

L1 L2

R2

R4 R6 R5R4 R6
R7 R8

L4

R1

L1 L2

R5R4 R6 R5R4 R6

Figure 1: Schematics of phase transitions of non-Abelian charged nodal lines. (a) Quaternion charges of a three-band system in a multiband system.

We select the third, fourth, and fifth bands as the member of the three-band system. (b–d) Phase transition of nodal lines L1 and L2 into nodal rings R1
and R2 to form a nodal link by R4, R5 and R6. (e–f) Phase transition of nodal rings R4, R5 and R6 into nodal rings (R7 and R8) and nodal lines (L3 and L4).

In (b)–(f), red and blue lines are degeneracies by the third-fourth bands and fourth-fifth bands, respectively. The dotted box in each panel means a

Brillouin zone.
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Nodal lines in a three-band system are characterized

by the frame rotation charges expressed as non-Abelian

quaternion numbers [10] and their phase transitions are

governed by these topological charges. When degeneracies

are created by the first-second bands or the second-third

bands, their topological charges are denoted as quater-

nion numbers in the non-Abelian quaternion group ℚ =
{±i,±j,±k,±1} [10]. The degeneracies by the lowest two

bands carry the topological charges in the same letter (e.g.,

+k or −k), and the topological charges’ letter of the degen-

eracies by the upper two bands then becomes different (e.g.,

+i or −i). The quaternion numbers i, j, and k are defined

such that i
2 = j

2 = k
2 = −1 [22], leading to the equiva-

lent relations of
(
+i

)(
−i

)
=

(
+j

)(
−j

)
=

(
+k

)(
−k

)
= +1.

In the example shown in Figure 1(a), degeneracies by the

third-fourth (fourth-fifth) bands counting from the lowest

bandhave the frame rotation charges±k (±i) [20]. Although

the charges’ signs are gauge-dependent [10], [13], [38], their

relative relations remain unchanged unless a braiding is

applied [11], [13], [14], [16]. Thus, we can assume that the

topological charges of the nodal lines L1 and L2 in Figure 1(b)

have opposite signswith−k and+k, respectively. The frame

rotation charges allow us to determine whether two nodal

lines can be annihilated or not. If two degeneracies’ topo-

logical charges are respectively +k and −k so that their

compound topological charges are +1, they can be pair-

annihilated. In contrast, if these degeneracies have the same

topological charges that makes the compound topological

charges −1, the degeneracies are considered as stable, i.e.,
they cannot be pair-annihilated [10], [11], [16].

To predict topological phase transitions of nodal lines,

it is more intuitive to use the patch Euler class, which is an

integer topological invariant defined for a patch [11], [12],

[14]–[18]. For eigenstates
|||umk

⟩
and

|||unk
⟩
of two adjacent

bandsm and n, respectively, the Euler class 𝜒
mn

is given by

the difference between a surface and boundary integrals:

𝜒mn() = 1

2𝜋

⎡⎢⎢⎣∫
Eumndkadkb − ∮

𝜕
A
(
k
)
⋅ dk

⎤⎥⎥⎦
. (1)

Here, the surface integral’s integrandEumn is the Euler form:

Eumn
(
k
)
=

⟨
∇ku

m

k
∣ × ∣ ∇ku

n

k

⟩
, (2)

and the boundary integral’s integrand is the Euler connec-

tion:

A
(
k
)
=

⟨
u
m

k
∣ ∇ku

n

k

⟩
. (3)

The Euler class 𝜒
mn

vanishes when there is no nodal lines

going through the patch or two nodal lines with quater-

nion charges with opposite signs go through the patch. This

leads to a simple statement that the degeneracies are stable

for a non-zero Euler class and unstable for a zero Euler

class.

For example, to consider the Euler class, we set a patch

12 where L1 and L2 pass through (Figure 1(c)). The Euler

class calculated over the patch 12 is zero due to L1 and

L2’s opposite charges. This means that the two nodal lines

can be pair-annihilated to become nodal rings, as shown

in Figure 1(d), and the nodal lines now form a nodal link

similar to the one reported in ref. [20]. By focusing on the

nodal rings R4 and R5, we can apply the same explanation to

the nodal lines’ phase transitions. Their charges’ signs (+i

and −i, respectively) are opposite as shown in Figure 1(e).

The Euler class calculated over the patch 23 is then zero

so that R4, R5 and R6 can be pair-annihilated to transform

into nodal rings (R7 and R8) and nodal lines (L3 and L4) (see

Figure 1(f)).

3 Double diamond photonic crystal

for photonic nodal lines

To realize the aforementioned phase transitions, we adopt

the dielectric double diamond structure (see Figure 2) intro-

duced in ref. [20], which exhibits the nodal lines in the 3D

momentum space. The double diamond consists of two sin-

gle diamonds that are mutually inversion symmetric with

respect to the origin. One single diamond is expressed as

the set of x =
[
x1, x2, x3

]
satisfying f (x) > fc > 0. Here, fc is

the cutoff value that determines the volume of the structure.

The triply periodic function f (x) is expressed as

f (x) = A0 sin
(
X1 + X2 + X3

)

+
3∑
i=1

Ai sin
(
X1 + X2 + X3 − 2Xi

)
(4)

where A0, A1, A2, and A3 determine the detailed shape of

the single diamond. The normalized local coordinate X is

written as X =
[
X1,X2,X3

]
=

(
2𝜋∕a

)(
x− 𝛾a∕2

)
where a is

the lattice constant, a = ∑3

i=1ai is the summation of the

lattice vectors, and 𝛾 is the coefficient that tunes the distance

between two single diamonds along the a-direction. The

other single diamond, the counterpart of the above single

diamond, is given by the set of x such that f (−x) > fc >

0. The sets of x satisfying f (x) > fc > 0 and f (−x) > fc >

0 are displayed as pink and cyan structures, respectively,

in the top row of Figure 2. Both the two single diamonds’

dielectric permittivities are 15.0 regardless of their colors.

This representation of the three-dimensional geometry

gives us a convenient way to realize  -symmetry pro-

tected nodal lines [3], [13] without redundant degeneracies.
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(a) (b) (c)

Figure 2: Phase transitions of nodal lines in selected double diamond structures. The top row displays the unit cells in the real space, and the bottom

row exhibits their nodal lines in the momentum space. Structural deformations are highlighted as green arrows and red dotted boxes. The distance

adjustment between the two single diamonds from (a) to (b) are denoted by the green arrows. Changing the thickness of the arms from (b) to (c) are

marked by the red dotted boxes. Except the nodal lines L11 and L12, each configuration of nodal lines in (a), (b), and (c) correspond to Figure 1(b), (d),

and (f), respectively.

Note that the double diamond structure given by Eq. (4) is

inversion and time-reversal symmetric for any parameters

so that nodal lines instead of Weyl points can be generated,

and all the nodal lines in the momentum space is inversion

symmetric for the Γ-point. To remove redundant degenera-
cies such as doubly-, triply-degenerate surfaces, all four Ai
are chosen to be different, and 𝛾 is chosen to be non-zero.

These choices prevent having the other spatial symmetries

such as rotation and mirror symmetries that can lead to

additional degeneracies.

To obtain the nodal lines of the double diamond pho-

tonic crystal, we take on the third, fourth, and fifth bands

in the numerically calculated photonic band structure and

focus on two types of degeneracies, denoted as red and blue

lines at the bottom row of Figure 2, created by these three

bands (the detailed calculation method is in Supplemen-

tary Material, Section S3)

4 Demonstration of phase

transitions of photonic nodal

lines

To demonstrate the phase transitions, we control only the

two parameters 𝛾 and A1, although the other structural or

material parameters are also related to the control of the

detailed geometry of the double diamond. 𝛾 is for tuning

the distance between the single diamonds (see the struc-

tures and green arrows in Figure 2(a and b)). We change 𝛾

from 0.02 (Figure 2(a)) to 0.08 (Figure 2(b and c)). A1 is for

adjusting the thickness of each single diamond’s arm (see

the structures and red dotted boxes in Figure 2(b and c)). A1
decreases from 1.19 (Figure 2(a and b)) to 1.05 (Figure 2(c)).

The other values remain constant and are summarized in

Supplementary Material, Section S3.

Degeneracies by the third-fourth bands and fourth-fifth

bands in the band structures are plotted as nodal lines as

shown in the bottom row of Figure 2. Commonly they have

six nodal lines around their boundaries. By considering the

periodicity of the Brillouin zone, the six nodal lines can be

classified as two groups according to their connectivity [20],

and we denote them as L11 and L12, as marked in Figure 2.

If we ignore L11 and L12, we can regard that Figure 1(b), (d),

and (f) are realized as each panel of Figure 2, respectively.

By adjusting the distance between the two single diamonds

(from Figure 2(a) to (b)), the nodal lines L1 outside the Bril-

louin zone and L2 inside the Brillouin zone exchange their

connectivity to form R1 and R2. By decreasing the thickness

of each diamond’s arm (from Figure 2(b) to (c)), the vertices

of the nodal ring R5 go outward from the Γ point. Each ver-

tex meets the neighbor Brillouin zone’s nodal ring’s vertex
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(refer toR4,R5, andR6 in Figure 1(e)). Finally, they transform

into two nodal rings (R7 and R8) and two nodal lines (L3 and

L4).

To see the stability of the photonic nodal lines, the Euler

class is calculated over a two-dimensional patch where an

even number of nodal lines pass through. Here, the nodal

lines are the ones formed by the same pair of bands. As

mentioned in Section 2, if the Euler class is zero (nonzero),

the nodal lines can be (cannot be) pair-annihilated or pair-

generated so that the phase transition is feasible (unfea-

sible). To analyze the phase transition of L1 and L2 in

Figure 2(a and b), we set a patch 12 pierced by the nodal

lines L1 and L2, as shown in Figure 3(a). The two nodal lines

have oppositely signed frame rotation charges expressed as

−k and +k, respectively. The numerically calculated Euler

form (see Figure 3(b)) is zero in the overall region except

around the nodes where L1 and L2 are going through the

patch. Around the L1 and L2 (the small white-cut regions

in Figure 3(b)), the Euler form goes towards the −∞ and

+∞, respectively. Thus, the surface integral becomes zero.

For the given patch, the boundary integral is zero, too.

Therefore, the Euler class calculated over12 becomes zero,

and we can conclude that the nodal lines L1 and L2 can be

pair-annihilated to be transformed into a ring creating a

nodal link in the whole Brillouin zone.

The same analysis is carried out for the case in

Figure 3(c and d). The numerically calculated Euler class

over 23 is zero because both surface and boundary

(a) (c)

ka

kb

Min Max0

ka

kb

Min Max0
(b) (d)

L2

L1

R5L1

R4

R2

R1

R5

0

0

A B

A B

A B

A B

Euler form Euler form

E
ul
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E
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Figure 3: Analysis of phase transitions of nodal lines using the Euler class. (a) Nodal lines of Figure 2(a) and the patch12 to calculate the Euler class.

Only L1, L2 and R5 are displayed. (b) 2D distribution of Euler form numerically calculated over12 (upper) and its 1D slice plot on the line that connects

the points A and B on the 2D plot (lower). (c) Nodal link of Figure 2(b) and the patch23 to calculate the Euler class. Only R1, R2, R4 and R5 are displayed.

(d) 2D distribution of Euler form numerically calculated over23 (upper) and its 1D slice plot on the line that connects the points A and B on the 2D plot

(lower). In (a) and (c), the green solid line rectangles mean the patches while the green dotted arrow-lines indicate the boundary integral direction of

the Euler connection. The patches in (a) and (c) correspond to12 and23 in Figure 1(c) and (e), respectively. In the 2D plots in (b) and (d), the red dots

mean the points pierced by the nodal lines, and the dotted lines are the Dirac strings [11], [16].
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integrals are zero. Thus, the oppositely charged nodal lines

R4 and R5 have the same property as L1 and L2 in the

previous paragraph, and they can deform into Figure 2(c).

Figure 3(b) and (d) plot only real part of the Euler form. The

distribution of this quantity’s imaginary part and the rele-

vant discussion are in Supplementary Material, Section S1.

The numerical calculation method of the Euler class is also

given in Supplementary Material, Section S1.

(d)

(b)

(e)

(c)

(f)

(g) (h) (i)

(a)

Figure 4: Phase transition of surface states for the three cases in Figure 2. The first, second, and third column correspond to Figure 2(a)–(c),

respectively. In each column, all the figures in the first row indicate nodal lines and paths in the momentum space of a unit cell, where they are viewed

from b2. All the hexagons are normal to b2. All the figures in the second and third row are the Zak phases and band structures, respectively, along the

paths ΓP̄ in the first row. The Zak phases are calculated using the unit cell of each case, while we suppose a supercell that consists of the 15.5 double
diamond unit cells to calculate the band structures. The eigenstates at the points marked by the circles and rectangles in each band structure

(in the last row) are displayed above and below the band structure, respectively. Another view of (a)–(c) is in Supplementary Material, Section S5.
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5 Zak phase and surface states

So far we have shown the topological phase transition of

photonic nodal lines andhave explained their stability using

the Euler class. Now, we will consider how the topological

phase transition affects the existence of surface states. In

general, surface states are closely related to the bulk bands

as they are located inside the full or directional bandgaps.

For the case of topological insulators, the surface states

should be present due to the non-trivial topological phases

of bulks that are described by Chern numbers or Zak phases.

This is the well-known bulk-surface correspondence [39],

[40]. However, there is no equivalent relation between the

surface states and the non-Abelian topological charges of

nodal lines. One can instead relate the surface states with

the Zak phases of the bulk bands which can then be related

to the phase transition of nodal lines. In this section, we

first establish the link between the Zak phase [41] and the

Wilczek-Zee phase [42] of nodal lines and then show the

numerical results of the surface states and Zak phases calcu-

lated using 4 × 4Wilson loop. Here, to create a surface of the

double-diamond structure, we select the plane normal to b2
(the hexagon in Figure 4(a)–(c)) because this plane is almost

parallel to the nodal ring R5 so that we can easily observe

surface states.

The Zak phase is calculated by integrating the Wilczek-

Zee connection along a boundary-to-boundary straight line.

The start and end points of the integration path are equiv-

alent as they are on the Brillouin zone boundaries. Mean-

while, the topological charge of a nodal line can also be cal-

culated by integrating the Wilczek-Zee connection [22], [42]

along a closed loop that encircles a point of the nodal line.

Then, let us assume a nodal line partially or fully parallel

to the boundary and a small elliptic closed loop (Paths CT
in Figure 5(a)). If we stretch the closed loop such that its

ends respectively touch the boundaries, two boundary-to-

boundary curves (Paths Cp and Cq in Figure 5(a), respec-

tively) can be approximated as the straight paths used for

the Zak phase calculation. The integral of the Wilczek-Zee

connection along the closed loop CT is ±π. Then, among
the two integrals of the Wilczek-Zee connection along Cp

and Cq, only one is ±π while the other is zero, because the
eigenstates at the two ends of Cp (or Cq) are equivalent (Note

that the inner product of the eigenstates at the two ends is+1
or−1). In other words, among the two Zak phases along the
two paths, only one becomes nonzero. Thus, the nodal line

viewed from the normal vector of the boundaries acts as the

border curve that switches the Zak phase between zero and

nonzero, as shown in Figure 5(b), if surrounding bands do

not generate another degeneracies with the band involved

(a)

Cp Cq

CT

k1

k2

(b)

k1
k3

Zero-valued Zak phase

Nonzero Zak phase

FBZ boundary

FBZ boundary

FBZ boundary

FBZ boundary

Figure 5: Schematics to explain the Zak phase. (a) A nodal line (the red

curve) and a closed loop (the green curve) being stretched from CT along

the k2-direction so that it touches the boundaries of the first Brillouin

zone. The two boundary-to-boundary curves are denoted as C p and Cq,

i.e., CT = C p + Cq. (b) The nodal line projected onto the plane normal to

k3-direction.

in the aforementioned nodal line around the location of the

nodal line.

We calculate the Zak phase for the three different dou-

ble diamond unit cells in Figure 2. First, the same ΓP̄ lines
are prepared for each Brillouin zone (see Figure 4(a–c)),

where P̄ is placed on the edge of the surface hexagon. At

each point k̄ onΓP̄, we calculate the Zak phaseΦi

(
k̄
)
whose

integral is performed along the line that starts at k̄− b2∕2,
passes k̄, and finishes at k̄+ b2∕2. The eigenstates

|||u
p

k

⟩
(p = 1, 2, 3, 4) are used to build the 4 × 4 Wilson loop  pq.

The Wilson loop’s eigenvalues’ arguments become the Zak

phases Φi (see Supplementary Material, Section S2) [37],

[43], thus we do not know which bands are related to each

Φi. Meanwhile, the reason of constructing the Wilson loop

in 4 × 4 form is that we want to see what happens between

the fourth and fifth bands. In other words, as the directional

bandgap is generated between the fourth and fifth bands,

we gather the band information below the bandgap.

Therefore, instead of obtaining much information

about surface states from the Zak phase, we observe the Zak

phases’ evolution with deformation of the double diamond

unit cell. Among the four Zak phases,Φ1 andΦ4 are always

zero and π, respectively. The remaining eigenvaluesΦ2 and

Φ3 are quantized as zero or π, (as shown in Figure 4(d–f)).
Points P̄i are the intersections of ΓP̄ and the projection

of nodal lines onto the surface hexagon plane. During the

deformation of the double diamond from Figure 4(a) to (b),

Φ2 that were π around P̄1 in Figure 4(d) become zero. These
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go back to π when the phase transition of the nodal lines

occurs from Figure 4(e) to (f). The Φ2 switches the value

around P̄1, P̄3, and P̄5, and Φ3 temporarily goes to zero and

gets back to π around P̄2 and P̄4. Thus, we think that these
points act as the phase boundaries.

We then simulate the band structures of the double dia-

mond using supercells. The supercells used in Figure 4(g–i)

consist of 15.5 cells of the unit cells in Figure 2(a–c), respec-

tively. Each band structure is divided into three regions:

(1) the longest region that starts from the Γ point, (2) the

(a)

(b)

(c) (f) (i)

(d) (g)

(e) (h)

Figure 6: Observation of surface states for the selected area. The situations of each row are equivalent to each column of Figures 2 and 4. The nodal

lines and paths in the momentum space of a unit cell are shown in the first column of each row. The band structures along the curved paths 1 and 2

marked in the first column are displayed in the second and third column of each row. Another view of (a)–(c) is in Supplementary Material, Section S5.
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region that heads to the point P̄, and (3) the intermediate

region. Although there are directional-bandgaps in the first

and last regions in all the three cases, the eigenstates behav-

iors between these three cases are a little bit different. The

eigenstateUg1 in Figure 4(g) does not clearly exhibit the sur-

face localization, while the photonic wave is in a localized

Ug2 state. Another four states marked in Figure 4(h and i)

display the localization of photonic waves. We also observe

the decrease of the length of the intermediate region from

Figure 4(g) to (i). This can be understood as clarifying the

surface band isolation, and it corresponds to the degree of

localization of photonic waves.

However, the trend of such Zak phases do not com-

pletely coincide to the location of surface states of the

supercells. This is due to the other bands’ degeneracies.

For example, if there is a degeneracy between the first and

second bands, the Zak phase may be affected. Further dis-

cussion is provided in Supplementary Material, Section S2.

To elaborate the relation between the nodal line topol-

ogy and surface states, we showmore projected band struc-

tures for several additional paths. We put two paths onto

each hexagon as shown in Figure 6(a–c) where the nodal

lines are by Figure 2(a–c), respectively. One is a half ellipse

(the curve C1), and the other one is a loop (the curve C2),

as shown in Figure 6(a–c). Although the curves’ exact loca-

tions and shapes changes slightly, their relations with the

surrounding nodal lines are maintained from Figure 6(a) to

(c), meaning that the paths do not cross any nodal lines in

the projected band structures. In our band calculations, we

keep the same frequency range as the one for Figure 4(g–i).

The band structure along the curve C1 in Figure 6(d)

does not exhibit a sufficiently isolated band related to

the surface states. With deforming the double diamond

from Figure 2(a) to (b), a band starts to be isolated, as

shown in Figure 6(e). This band becomes more isolated

(see Figure 6(f)) when the structure in Figure 2(b) becomes

Figure 2(c). The band structures along the curve C2 show

the different behaviors. There is a partially isolated band

in Figure 6(g), and its degree of isolation increases in

Figure 6(h). However, the length of path that correspond

to isolated band decreases in Figure 6(i), i.e., some part of

the band that was isolated in Figure 6(h) is now penetrated

in the surrounding bulk bands. The calculation details of

all the surface states in Figures 4 and 6 are in Supplemen-

tary Material, Section S4.

6 Conclusions

In summary, we were able to describe the stability of pho-

tonic nodal lines in the multigap system by using the Euler

class. By tuning the deformation of the double diamond pho-

tonic crystal, we have shown the phase transitions of pho-

tonic nodal lines in a dielectric photonic crystal transform-

ing from nodal lines to nodal rings. The zero or nonzero-

valued Euler class is closely related with the non-Abelian

topological charges of the band degeneracies, but it is gauge

independent. Thus, the Euler class is a topological invariant

that can readily tell us about the stability of the band degen-

eracies clearly without fixing the gauge of the eigenstates,

i.e., the electromagnetic field vectors.

Additionally, the evolution of surface states has been

investigated. We have attempted to predict the existence

of the surface states with the Zak phase obtained by the

Wilson loop calculation. Then, we observed the transition of

surface states by calculating the projected band structures

for the double diamond supercells. Although we were able

to observe some correspondences between the Zak phase

and surface states for some selected paths in the momen-

tum space, the bulk-surface correspondence regarding the

multigap topology is still in veil. However, we believe follow-

up study with optimized parameters for dielectric photonic

crystals will give us better understanding and insight.

Finally, it is worth investigating the critical point where

the phase transition occurs. In our calculation results,

although the results correspond to deformation parameters

for before and after the phase transition, we did not show

the case for the exact parameters forwhich the phase transi-

tion occurs because finding the structural condition numer-

ically is challenging. Nevertheless, we expect that the nodal

line shape for the critical parameter will be a simple nodal

chain formedby twonodal lines, althoughwedonot exclude

the possibility of more complex form of nodal chains.
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