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Abstract
Epitaxial integration of III–V optical functionalities on silicon (Si) is the key to complement
current Si photonics, facilitating the development of scalable, compact photonic integrated
circuits. Here we aim to outline this field, focusing on the III–V semiconductor materials and
the III–V lasers grown on Si. This paper is divided into two main parts: in the first part, we
discuss III–V materials grown on Si, including the low-index {hhl} facets, (001) Si surface and
anti-phase boundary, and dislocation engineering. The second part centres at III–V lasers grown
on Si: we will first discuss III–V lasers that are highly tolerant to dislocations, including
quantum dot/dash diode lasers, interband cascade, and quantum cascade lasers grown on Si
from near infrared to long-wave infrared. We then move to the selective heteroepitaxy of low
dislocation density III–Vs for the bufferless lasers. Finally, we review the III–V nanowire
photonic crystal lasers grown on Si, which offers a different approach to overcome material
mismatch and grow dislocation free III–V structures on silicon. We start with briefly
introducing the recent progress of each technology, followed with a discussion of its key
advantages, research challenge and opportunities.

Keywords: III-V lasers on Si, Si photonics, epitaxy

1. Introduction

The evolution of electronic integrated circuits (ICs) over the
past six decades, and more recently silicon photonics, has
been fundamentally shaped by silicon [1, 2]. This versatile
semiconductor forms the bedrock for the relentless scaling
and performance improvement in metal-oxide-semiconductor
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field-effect transistors, owing to the high manufacturability
of silicon and its exceptional interface quality with gate
dielectrics. In the realm of silicon photonics, the silicon-
on-insulator (SOI) substrates of large diameter have primar-
ily been used to fabricate various silicon-based optical cir-
cuits in the telecom band [3]. High-performance silicon-based
electro-optic modulators have been developed and commer-
cialized by exploiting the plasma dispersion effect [4]. The
large index contrast with SiO2 allows for compact passive
optical devices. The development of low-loss SiN waveguides
on Si substrates further expanded the spectrum of integ-
rated photonics to submicrometer wavelengths [5]. The SOI
and SiN/Si platforms thus collectively provide comprehens-
ive spectral coverage, spanning from the visible, telecom, up
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to the mid-infrared regions [6]. Silicon photonic integrated
circuits (PICs) have been advancing rapidly, leveraging the
high throughput and scalable microelectronic manufacturing
capability [7]. However, the indirect bandgap of Si and other
group IV semiconductors restricts their application in light-
emitting devices [8]. In contrast, III–V semiconductors with
direct bandgaps have beenwidely utilized in the optoelectronic
field. Harnessing quantum confinement effects and flexible
band-structure engineering, many laser technologies, includ-
ing strained quantum well lasers, quantum dot/dash lasers,
interband cascade lasers (ICLs), and quantum cascade lasers
(QCLs), have been developed. These lasers cover a broad
spectrum, ranging from visible to near- and mid-infrared
wavelengths. Integrating III–V materials on Si would syn-
ergize the efficient light emission properties of III–V semi-
conductors and the superior waveguiding properties of the Si
platform, providing a solution for high-performance PICs and
optoelectronic integrated circuits [7–9].

To date, integration of III–V materials on Si has evolved
from hybrid integration with off-chip coupling, progressed to
heterogeneous integration through wafer/die bonding or trans-
fer printing, and now embraces monolithic integration by dir-
ect heteroepitaxy [10]. The use of high quality III–V materials
has enabled the commercialization of products using the first
two approaches. High performance devices have been demon-
strated using bonded III–V wafers/dies on SOI substrate [7].
However, direct III–V epitaxy on Si provides several key
advantages that are not accessible by heterogeneous integra-
tion. Direct III–V growth can bypass the need for bulky and
costly III–V native wafers required for bonding. A monolithic
III–V-on-Si platform can be used to implement various func-
tionalities, such as optical communications, sensing, photode-
tector focal plane arrays, etc. enabling compact and densely
integrated PICswith high scalability and reduced cost. Epitaxy
of III–V lasers onto Si-photonic chips has recently gained
intense momentum from both academia and industry, with sig-
nificant progress made. In this paper, we begin by presenting
an overview of III–V materials grown on Si, and subsequently
focus on III–V lasers grown on Si. Specifically, section 2 out-
lines the defect engineering techniques in III–V/Si heteroep-
itaxy. Sections 3–5 centers at the III–V lasers grown on Si:
section 3 focuses on the III–V lasers with dislocation insensit-
ive gain medium, including quantum dot/dash, interband cas-
cade and QCLs extending the spectrum range from telecom to
mid- and long-wave infrared. Section 4 discusses the select-
ive heteroepitaxy of low dislocation density and dislocation-
free III–V materials, and the bufferless lasers grown on Si.
Section 5 reviews the III–V nanowire photonic crystal lasers
grown on Si. We begin with introducing the basic concepts
and unique advantages of each technology, and then discuss
the research challenges and potential solutions.

2. III–V semiconductor materials grown on Si

The study of III–V materials grown on Si primarily addresses
the challenges associated with crystalline defects arising from
material mismatches. The polarity mismatch results in the

anti-phase boundary (APB), while lattice and thermal mis-
matches lead to the formation of misfit and threading dislo-
cations (TDs). It is important to prevent or annihilate APBs,
while simultaneously reduce the density of TDs. This section
begins with an overview of the low-index {hhl} facets within
the cubic lattice, specifically focusing on the zincblende III–V
crystal. The manifestation of various low-index {hhl} facets is
commonly observed in III–V heteroepitaxy and selective area
epitaxy, and the control of the faceting propagation has implic-
ations in processes such as the APB annihilation. Following
this, we will elaborate on the atomic structure of the (001) Si
surface, and delve into the different strategies aimed at pre-
venting APB formation or facilitating their annihilation. We
will then move to a summary of the TDs in III–V growth on
Si, along with a discussion of methods for dislocation filtering.

2.1. Low-index {hhl} facets in III–V zincblende crystals

The low-index facets, specifically those {hkl} facets with two
or three identicalMiller indices, are most commonly formed in
III–V growth. This section starts with an overview of the {hhl}
facets in zincblende/diamond crystals, where more than one
of the three Miller indices are either identical or have oppos-
ite values. III–V crystals are entirely composed of atoms in
sp3 hybridization. Figure 1(a) provides a visual representa-
tion of the staggered configuration in the zincblende crystal
[11, 12]. In this illustration, considering atom ‘0’, the atoms
‘1’, ‘2’, and ‘3’ represent the first, second, and third nearest
atoms, respectively.When strong covalent bonds form, such as
the Ga-As and In-As bonds, the third nearest atom is repelled
from atom ‘0’ (as depicted in figure 1(a)), thus establishing
the staggered structure characteristic of the zincblende phase.
On the other hand, if the material incorporates elements with
high electronegativity (e.g. GaN crystal with high ionicity),
the third nearest atom will be at the shortest distance to atom
‘0’, creating an eclipsed configuration for the wurtzite phase.
Figure 1(b) displays two unit cells of the zincblende lattice,
with one of the staggered structures highlighted.

Given that both diamond and zincblende crystals are cubic
lattices, we can present the <hhl> orientations as shown in
figure 1(b). These orientations radiate from the origin, resid-
ing in the same plane (refer to the grey plane in figure 1(b)).
Therefore, we can identify the corresponding {hhl} facets,
which can be adjusted to intersect along the same line, as
shown in figure 1(c). Examining the {hh0} facets within a
cubic lattice, specifically the {110} facets, there exist 12 {110}
facets. This is due to the flexibility of placing the number ‘0’
at any of the three different Miller indices and assigning a neg-
ative sign to the two non-zero axes. If we exclude facets that
are opposite to each other (for example, the (110) and (-1-10)
facets), we are left with a total of 6 {110} facets. Similarly, for
{hhl} facets where h and l ̸= 0, there are 24 possible facets.
Here, ‘l’ can be assigned to any of the three different axes,
and the negative sign can be placed on any of the three dif-
ferent h, h, l axes. Disregarding once again the pairs of facets
facing in opposite directions (for example, the (112) and (-
1-1-2) facets depicted in figure 1(c)), we have a total of 12
{hhl} facets. Therefore, as illustrated in figures 1(c), a single
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Figure 1. Low index {hhl} facets. (a) Staggered configuration of zincblende crystal. (b) Two unit cells of zincblende crystal with one
staggered structure highlighted. The <hhl> orientations spread from the origin and locate in the grey plane. (c) The corresponding {hhl}
facets. One (110) facet in relation to two {hhl} facets.

Table 1. The angle between the planar (001) facet and the low-index {hhl} facets.

Facet (113) (112) (111) (221) (331) (110)

Angle to (001) facet 25.2◦ 35.3◦ 54.7◦ 70.5◦ 76.7◦ 90.0◦

{110} facet corresponds to two {hhl} facets that can intersect
along the same line. This is exemplified by the alignment of the
(110) and the (112), (11–2) facets in figure 1(c). Such align-
ments among these different low-index {hhl} facets are often
observed in III–V epitaxy and will appear again in subsequent
sections of this paper. The angle between two {hkl} facets can
be calculated by

cosθ =
(h1k1l1) ·(h2k2l2)√

h21 + k21 + l21 ×
√

h22 + k22 + l22

.

Table 1 lists the angle between the different {hhl} facets
and the planar (001) facet.

2.2. (001) Si surface and APB engineering

Figure 2 illustrates the atomic structure on the surface of (001)
Si substrates. Both diamond (Si) and zincblende (III–V) crys-
tals can be viewed as two sets of face-centered cubic (FCC) lat-
tice with a 1/4 [111] offset. In the diamond phase, the two FCC
lattices consist of the same species, whereas for zincblende
phase, the two FCC lattices are populated by group III and
group V species, respectively. The surface of freshly pol-
ished (001) Si substrates typically exhibits atomic-scale steps.
Figure 2(a) reveals a single atomic step on the (001) Si surface:
across this monoatomic step, the topmost Si atoms are derived
from the two respective FCC lattices. The surface dangling
bonds of both the relaxed and the reconstructed (001) Si sur-
face are illustrated. On a relaxed (001) Si surface, dangling
bonds at differing terrace heights (for instance, those from the
two FCC lattices) are along different orientations. In practice,
these dangling bonds tend to form Si–Si dimer bonds to reduce
surface energy. The orientation of the Si–Si dimer bond is dic-
tated by the direction of the relaxed surface dangling bond.
This results in two distinct types of monoatomic steps: for the
SB step, the upper terrace Si dimers align parallel to the step

edge; for the SA step, the upper terrace Si dimers align perpen-
dicularly to the step edge [13].

Given that the topmost Si atoms across the monoatomic
step originate from the two FCC sub-lattices, when a
zincblende lattice is grown atop, different phases of the
zincblende crystal form across this monoatomic step. This is
assuming that the group V element is the initial layer depos-
ited on the Si surface. The two different zincblende phases
can be identified as the main-phase domain and the anti-phase
domain, and as a result, group III–III or V–V bonds form the
APBs at the boundary of the two phases (this will be fur-
ther discussed in figure 3(d)). This scenario is also applic-
able to Si surfaces characterized by steps of an odd number
of atomic layers in height. In contrast, for a double atomic
step (refer to figure 2(b)), the topmost Si atoms on the upper
and lower terrace originate from the same FCC lattice, regard-
less of whether it is a DA or DB type step. Consequently, the
zincblende crystal deposited across the double atomic step
would be of the same phase, thereby avoiding the formation
of APBs. This scenario can also be applied to Si surface steps
with an even number of atomic layers in height. APBs with
homopolar III–III or V–V bonds represent electrically charged
defects, and it is necessary to eliminate them before growing
the active device region.

To date, several strategies have been developed to either
prevent the formation of APBs (figures 3(a) and (b)) or anni-
hilate them within the III–V buffers (figures 3(c) and (d)). One
effective method to prevent APB formation involves grow-
ing III–V alloys on V-grooved Si enclosed with the {111} Si
facets [14, 15]. It is therefore possible to use on-axis, CMOS-
standard (001) Si substrates without any intentional offcut.
The Si V-grooves can be fabricated by anisotropic wet etch-
ing of <110> direction stripe-patterned (001) Si substrates.
A variety of APB-free III–V nano-ridge and thin films can be
grown on the Si V-grooves [16–18]. The III–V thin films can
be generated either by lateral coalescence of the nano-ridges or
through one-step growth on V-grooved Si substrates [19, 20].
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Figure 2. Atomic structure on (001) Si surface. (a) Schematic illustrating the reconstructed and relaxed (001) Si surface with monoatomic
step. (b) Side-view of relaxed (001) Si surface with double atomic step.

Figure 3. APB prevention (a), (b) and APB annihilation (c), (d). (a) APB-free GaAs grown on V-grooved Si. Reprinted from [15], with the
permission of AIP Publishing. (b) AFM image of 0.15◦ (001) Si after treatment, exhibiting double atomic step. Reproduced from [22].
CC BY 4.0. (c) GaP grown on Si. Reprinted from [28], Copyright (2011), with permission from Elsevier. (d) APBs along different planes, at
the same SB- and SA-type monoatomic Si step.

As discussed in figure 2, another tactic to prevent the
APB formation involves forming double atomic steps on (001)
Si surface. Early studies employed offcut Si substrates 4–6◦

tilted towards one of the two <110> directions. Under high-
temperature conditions, monoatomic steps restructure into
the energetically more favourable double atomic steps [21].
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However, as the Si industry typically uses (001) Si wafers
without a large offcut angle, new growth methods need to be
developed on (001) Si substrates with an offcut angle <0.5◦.
This often entails meticulous surface pre-treatment on the
(001) Si surface to form double atomic steps and reduce
the APB density at the GaAs on Si interface (figure 3(b))
and/or specially designed growth methods to annihilate the
APBs within the III–V buffers (figures 3(c) and (d)). APB-
free GaAs grown on nominal (001) Si substrates with 0.15◦

offcut towards [110] direction was reported using plasma and
high-temperature pre-treatment to form double atomic steps,
a method that has produced 300 mm GaAs-on-Si templates
[22, 23].

If APBs form at the III–V/Si interface, it is crucial to anni-
hilate themwithin the III–V buffers. As depicted by the schem-
atic of figure 3(d), vertical APBs along the {110} plane pen-
etrate to the wafer surface, while inclined APBs along other
{hhl} planes can be annihilated. Figure 3(d) provides a schem-
atic illustrating the APBs along different {hhl} planes. In the
three sketches of figure 3(d), despite the presence of the same
SB- and SA- type monoatomic steps on Si surface, the APBs
can be situated on varying crystal planes. The planes on which
the APBs form could be more closely associated with the rel-
ative lateral growth rate of the main phase and the anti-phase,
whereby inclined APBs can be buried within the III–V buf-
fers. This has been demonstrated in recent studies through pre-
conditioning of the Si surface or bymanipulating the growth of
nucleation layer, resulting in APB-free III–V templates grown
on on-axis (001) Si [24–26]. Pseudo-morphic growth of GaP
on Si has also been developed [27, 28], with 300 mm GaP/Si
templates now commercially available by the NAsPIII–V.

2.3. Dislocation engineering of III–V templates grown on Si

Dislocations are one-dimensional line defects characterized
by their Burgers vector and the line vector along the disloca-
tion line (e.g. the core of the dislocation). Two basic types of
dislocations can be classified based on the angle between the
Burgers vector and the line vector: edge dislocations, where
the Burgers vector is perpendicular to the line vector (refer to
figure 4(a)), represent an extra half plane existing in a perfect
crystal; screw dislocations, where the Burgers vector is paral-
lel to the line vector, signify shear lattice deformation along
the line vector. In material systems with low to moderate mis-
fit, such as (001) GaAs/Si or (001) InP/GaAs with∼4% lattice
mismatch, 60◦ dislocations, which have both edge and screw
components, are the most common type. Figure 4(c) provides
a schematic of a mobile (glissile) 60◦ dislocation, in which
the Burgers vector forms a 60◦ angle with the <110> line
direction [29]. This type of dislocation can glide readily with
a threading segment along the {111} slip plane [30]. In high
misfit material systems, such as (001) GaSb/GaAs with ∼8%
lattice mismatch, an interfacial misfit array with a large por-
tion of pure edge dislocations tend to form to relieve the strain,
as demonstrated in figure 4(b) [31].

Various dislocation filtering methods have been developed
in III–V/Si heteroepitaxy to minimize the threading dis-
location density (TDD). Thermal cycle annealing (TCA),

Figure 4. Edge dislocations and 60◦ dislocations. (a) Schematic
illustrating the edge dislocations. (b) TEM at the GaSb/GaAs
heterointerface. Reproduced from [31]. CC BY 4.0. (c) Schematic
illustrating the geometry of a glissile (a/2)[011], 60◦ dislocation.
The different dislocation components are indicated [29].

Figure 5. Dislocation filtering techniques. The growth approaches
of (a) thermal cycle annealing (TCA), (c) strained-layer superlattice
(SLS) as dislocation filters (DFL), and (e) Composition graded
buffer. (b) Reduction of TD density as a function of TCA.
Reproduced from [33]. CC BY 4.0. (d) TEM of TD reduction by
SLS as DFL. Reproduced from [35]. CC BY 4.0. (f) TEM of
InGaAs graded buffer. Reprinted from [38], with the permission of
AIP Publishing.

for example, utilizes in-situ periodic temperature cycles
(figure 5(a)). The oscillating temperature range encompasses
the III–V growth temperature, thus inducing different strain
signs and magnitudes in the III–V thin films due to the
different thermal expansion coefficients between III–V and
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Figure 6. Schematic showing the (b) lateral overgrowth on III–V thin films [39, 40], (c) conformal growth [41], and (d) corrugated epitaxial
lateral overgrowth (CELOG) [42]. (e) Tilted SEM and (f) cross-sectional TEM of InP grown on Si using CELOG. Reproduced from [42]. ©
IOP Publishing Ltd. All rights reserved.

Si. These periodic temperature fluctuations can instigate
thermally driven dislocation motion, facilitating annihilation
of TDs [32]. The effect of TCA is enhanced in thicker III–
V thin films due to greater strain build-up. After the initial
few cycles of thermal annealing, the TDD in GaAs/Si tem-
plates can be rapidly reduced from the order of 108 cm−2 to
107 cm−2 (figure 5(b)) [33]. Strained-layer superlattice (SLS)
can act as a dislocation filter by intentionally applying strain
fields to interact with dislocations, bending dislocations later-
ally towards the sample edge or enhancing their annihilation
(figure 5(c)). The forces propelling the TDs are proportional
to the strain applied (e.g. the lattice mismatch of SLS) and
the layer thickness [34]. Applying four periods of SLS filters
has been reported to reduce the TDD in GaAs/Si templates
to the order of 106 cm−2 [35]. Both TCA and SLS filters can
also be used for TD reduction in growing InP and GaSb buf-
fers on Si. A compositionally graded buffer is another method
used to bridge the lattice constants, as seen in the composi-
tionally graded GexSi1−x or InxGa1−xAs buffers [36–38]. This
approach promotes the formation of long misfit dislocations
(figure 5(e)), instead of numerous short misfit dislocations
associated with TDs.

In addition to the aforementioned dislocation engineering
approaches in blanket heteroepitaxy, geometrically defined
selective area growth can yield III–V materials with fur-
ther reduced TDD, and even dislocation-free III–V layers.
This includes techniques such as epitaxial lateral overgrowth
(ELOG), depicted in figure 6, and the bufferless III–V growth
on Si whichwill be discussed in section 4. In ELOG, beginning
with a III–V template grown on Si (figure 6(a)), a SiO2 pattern
is defined on the III–V surface for subsequent III–V regrowth
[39, 40]. This setup effectively blocks TDs located right under-
neath the SiO2 growth mask. Besides, the SiO2 trench with
large aspect ratios can confine additional TDs (as indicated by
the dark line in figure 6(b)), allowing for high-quality III–V
layers on top of the SiO2. In the conformal growth scheme,
a patterned SiO2 mask is designed to enable an undercut
process of the III–V thin film and subsequent III–V lateral
regrowth (figure 6(c)) [41]. Another technique, referred to as
the corrugated epitaxial lateral overgrowth (CELOG), involves

patterning the III–V thin film into segments and performing
III–V regrowth from the openings of SiO2-encapsulated III–V
segments (figure 6(d)) [42]. In all these approaches, the crys-
talline defects can be blocked by the geometric confinement as
evidenced by the TEM inspection (figure 6(f)). It is also pos-
sible to extend the III–V materials up to tens of micrometers
(figure 6(e)).

3. Dislocation less-sensitive III–V lasers grown
on Si

The epitaxial integration of lasers on Si can be generally cat-
egorized into two routes: In the first strategy, a gain medium
that is less sensitive to dislocations is combined with a III–
V buffer optimised using various techniques discussed pre-
viously. Examples include quantum dot/dash lasers, inter-
band cascade lasers, and QCLs (refer to figure 7), which
have demonstrated comparable thresholds and good lifetimes
to their counterparts on native III–V substrates. With prom-
ising results first reported from lasers at telecom O-band and
C-band, this has extended to the submicron and mid-wave
and long-wave infrared wavelengths (refer to figure 8). The
second strategy focuses on achieving near dislocation-free III–
V materials grown on Si, by selective nano-heteroepitaxy of
III–V on (001) Si, which will be discussed in section 4, and
III–V nanowire growth on (111) Si, which will be covered in
section 5.

3.1. Quantum dot and quantum dash diode lasers grown
on Si

Conventional GaAs-based multi-quantum well (QW) lasers
are notably sensitive to crystalline dislocations, which often
leads to device early failure [44]. The key challenges of III–V
lasers grown on Si has been to realize laser devices with super-
ior performance and exceptional reliability. QDs are much
less susceptible to TDs compared to conventional QWs due to
reduced carrier lateral diffusion (refer to figures 7(a) and (b)).
Research in the last decade has established QD laser growth
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Figure 7. Dislocation less-sensitive III–V lasers grown on Si, including the quantum dot (QD), interband cascade lasers (ICL), and quantum
cascade lasers (QCL). (a) TEM images showing the interactions between dislocations and QDs. Reproduced from [43], with permission
from Springer Nature. (b) Band diagram of InAs/GaAs QD laser, showing the in-plane capture of carriers inside QDs. © [2020] IEEE.
Reprinted, with permission, from [44]. (c), (d) Dislocation tolerant ICL grown on Si. Reprinted with permission from [45] © The optical
Society. (e) Structure and band diagram for one cascade stage of the QCL lasers grown on Si. © [2023] IEEE. Reprinted, with permission,
from [46]. (f) Simplified schematic of the conduction band structure for a QCL. Reproduced from [47], with permission from Springer
Nature.

Figure 8. Dislocation less-sensitive quantum dot/dash, interband cascade, and quantum cascade lasers grown on Si, covering the spectrum
range from 700 nm to above 11.5 µm. From left to right: Reprodued with permission from [61] © The optical Society. Reproduced from
[43], with permission from Springer Nature. Reproduced with permission from [48] © The optical Society. Reproduced from [62].
CC BY 4.0. Reproduced with permission from [45] © The optical Society. Reprinted from [63], with the permission of AIP Publishing. The
bottom diagram represents the transparency window of the Si, SiN, Ge waveguide, respectively.

on Si as a viable device technology [43]. 1.3 µm InAs/GaAs
based QD lasers grown on Si with a TDD of 7× 106 cm−2 and
misfit dislocation filters have reported an extrapolated lifetime

exceeding ten years [48]. Additionally, zero-dimensional QDs,
with their delta function-like density of states, can benefit the
laser performance in aspects such as temperature stability,
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Figure 9. The formation of QD and Qdash. (a) InAs QD and (b)
InAs Qdash grown on InP-based compounds. Reprinted from [64],
with the permission of AIP Publishing. (c) and (d) Group-V
stabilized surface with relaxation, along the two orthogonal <110>
direction, respectively, showing the formation of elongated Qdash.

reduced threshold, reduced sensitivity to external reflections
and narrow linewidth. To date, a variety of 1.3 µm InAs/GaAs
QD lasers have been integrated on Si by direct epitaxy, includ-
ing Fabry–Perot lasers, micro-disk/ring lasers, photonic crys-
tal lasers, distributed feedback (DFB) lasers, and mode-locked
lasers [49–55]. For detailed discussions, readers can refer to
previous review articles [56–60].

The growth of self-assembled QDs hinges on strain, or
lattice mismatch, with the underlying layer. The ensuing
elastic strain relaxation facilitates the formation of discrete
dots via the Stranski–Krastanov growth mode. In the case of
InAs/GaAs based QDs, a 7% lattice mismatch facilitates the
formation of symmetrically shaped dots. The construction of
1.55 µm C-band lasers requires the growth of InAs QDs on
InP-based materials or metamorphic buffers. However, the 3%
lattice mismatch between InAs and InP yields less strain for
dot formation. QDs with smaller height/diameter aspect ratios
or quantum dashes (Qdash) are usually observed (figures 9(a)
and (b)), influenced by the specific growth conditions [64,
65]. Given the relatively weaker strain, surface reconstruction
can play a more prominent role in the formation of InAs/InP
Qdash elongated along the [1–10] direction. This elongation
could be attributed to the anisotropic surface reconstruction
along the two orthogonal <110> directions. On the group

V stabilized surface, the relaxed surface dangling bonds (as
indicated in figure 9(c)) will form group V-group V dimers
along the [1–10] direction [66, 67], which induces the form-
ation of InAs Qdash along the same direction. In the ortho-
gonal [110] direction (figure 9(d)), bond distortion between
the dimer pairs could encourage easier aggregation orthogonal
to the Qdash direction. Through engineering the size/shape
of the dots and their surrounding cladding matrix, QD/Qdash
lasers can access a wide range of wavelengths [61, 62, 68–70].
Combining the QD/Qdash gain medium with optimized III–
V/Si templates that exhibit low TD density, it becomes feasible
to grow and fabricate diode lasers on Si ranging from 700 nm
to 2 µm in wavelength (see figure 8).

3.2. Mid-infrared interband cascade and QCLs grown on Si

Although conventional type-I QWs with interband carrier
transitions are sensitive to the dislocations, the ICLs and
QCLs, which are commonly utilized as mid-infrared light
sources, can exhibit a higher tolerance to dislocations. For
ICL utilizing type-II carrier transitions, the conduction and
valence band edges can be engineered to modify the relat-
ive positioning between the type-II transition and the defect
state located within the mid-bandgap (refer to figures 7(c) and
(d)). This enhances the probability of radiative recombina-
tion and mitigates the effects of the dislocations on device
performances. This has been demonstrated by GaInSb/InAs
type-II QW ICLs grown on GaSb/Si templates, lasing at the
3.5 µm wavelength [45]. Despite a relatively high TD dens-
ity (∼5 × 108 cm−2) observed in the active region, an extrac-
ted lifetime of 312 000 h under continuous wave (CW) oper-
ation at 40 ◦C was achieved. This type-II QW band-structure
can be further explored in other material systems to produce
lasers grown on Si with dislocation tolerance. Additionally,
the recent advancement in GaSb growth on V-grooved Si have
resulted in a low TD density of 2 × 107 cm−2 and a smooth
surface [20]. The improved GaSb/Si buffers, in conjunction
with the ICL and QCL, could potentially elevate the perform-
ance and lifetime of mid-infrared lasers grown on Si. In rela-
tion to the Sb-based type-II superlattice (T2SL), recent studies
have also suggested that the Ga-free InAs/InAsSb T2SL could
exhibit dislocation tolerant characteristics [71]. This could be
another avenue for mid-infrared detectors grown on Si.

Moving to longer wavelength, QCLs exploit the electron
transition between different minibands within the conduction
band. Their unipolar carrier transport can bypass dislocation
assisted electron-hole recombination (refer to figures 7(e) and
(f)) [47, 72]. Consequently, QCLs grown on Si can exhibit
performance comparable to those grown on native III–V
substrates [73, 74]. In this scenario, rather than acting as non-
radiative recombination centres, dislocations could affect the
barrier/well interface quality, leading to poor electron tunnel-
ling, reduced carrier lifetime, increased carrier leakage, and
increased internal loss [72]. By tailoring the conduction band
offset, QCLs based on different material systems can cover
wavelengths ranging from ∼3 µm up to 18 µm. Recently,
Slivken and Razeghi demonstrated CW operation of 8.5 µm
InP-based QCLs grown on InP/Si templates up to 343 K,
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achieving output power >0.7 W at near room temperature
[46]. In addition to the mid-infrared (MIR) lasers grown on
Si, the epitaxial integration could also incorporateMIR optical
waveguides. Germanium (Ge), which is often utilized as a
buffer layer grown on Si to bridge the lattice constant differ-
ence between Si and GaAs, has a large transparency window
in the MIR region than the Si or SiN waveguide (figure 8),
making it attractive for MIR photonic integration. Growth of
11.5µmQCLs on 8-inch diameter Ge-coated Si substrates (see
figure 8) showcased an output power exceeding 3 W at room
temperature, and good near-term reliability [63].

3.3. State-of-the-art performance of III–V lasers grown on Si

Table 2 presents a range of high-performance III–V lasers
produced using the blanket heteroepitaxy approach, spanning
spectral coverage from∼700 nm to near-infrared, and extend-
ing to mid and long infrared wavelengths. Depending on the
desired applications, these lasers are constructed on various
III–V/Si templates, such as the GaAs/Si, InP/Si, and GaSb/Si
buffers. They employ dislocation less-sensitive gain medi-
ums, including QD/Qdash, ICL, and QCL. To date, long-
lived 1.3 µm QD lasers and mid-infrared ICLs have been
more successfully demonstrated. The performance of 1.5 µm
QD/Qdash lasers grown on Si requires further improvement
and their reliability is not yet fully established.

As the high-performance 1.3 µm QD lasers grown on Si
progresses towards practical applications and developing reli-
able longer-wavelength lasers on Si becomes more prevalent,
the subsequent query pertains to the on-chip coupling of these
lasers to optical waveguides. The blanket heteroepitaxy of III–
V lasers on Si wafers can access technologies already estab-
lished in InP-based generic integration, such as selective-area
QD intermixing, butt-joint regrowth, etc., to combine differ-
ent bandgaps and implement light emission, modulation, and
transmission all within the III–V layer. Alternatively, epitaxial
III–V lasers on Si can be integrated onto the Si photonic plat-
form or the high thermal conductivity silicon carbide (SiC)
platform through heterogeneous bonding or transfer printing
techniques. In both cases, heteroepitaxy on Si reduces sub-
strate cost and provides scalability to 300 mm Si technology.

Perhaps a true monolithic integration path to couple QD
lasers to Si-photonic waveguides could be achieved through
selective growth of the lasers onto the SOI substrates. One
main challenge here is the thick III–V buffers required for
defect reduction. Recent research has focused on growing
lasers inside SOI recesses to vertically align the laser act-
ive region with Si-photonic waveguides (figure 10) [75, 76].
Wei et al designed a fork-shaped edge coupler and meas-
ured output power of a few mW coupled out of the Si wave-
guide, yielding an estimated coupling efficiency of approx-
imately −6.7 dB [75]. Remis et al demonstrated the 2.3 µm
GaSb-based diode lasers grown in the recess of pre-patterned
Si photonic substrates (figure 10(c)) [77]. These GaSb-based
laser, with dry-etched facets, were butt-coupled to SiN wave-
guides with around 10% light coupling efficiency.

4. III–V bufferless lasers selectively grown on Si

4.1. Bufferless III–V growth on Si for optically pumped lasers

Although epitaxial lasers on III–V buffers grown on Si have
produced long-lived 1.3 µm QD lasers, a parallel effort
focusing on bufferless III–V lasers selectively grown on
Si demonstrates unique advantages. The bufferless feature
allows close placement between the III–V gain medium and
the passive waveguides, which can potentially help imple-
ment advanced couplers, including evanescent coupling and
adiabatic coupling, for enhanced coupling efficiency. In
this case, geometrically defined growth methods harness-
ing the epitaxial necking effect, for instance aspect ratio
trapping (ART), are used to filter out/block TDs quickly
and produce III–V materials with a low TD density [78].
The pairing of Si V-groove epitaxy with ART can fur-
ther exclude APBs, resulting in highly uniform III–V nano-
ridges grown on Si [79]. Han et al successfully demon-
strated the growth of InP/InGaAs nano-ridges on SOI sub-
strates, achieving room-temperature optically pumped lasing
in the 1.5 µm band from the fabricated nano-ridge laser arrays
(figures 11(a)–(d)) [80–82]. Direct growth of these nano-ridge
lasers on the Si photonics 220 nm SOI substrates was also
reported [83].

Building on the ART growth on V-grooved Si, III–V nano-
ridge lasers outside the growth trenches have been developed
(figure 11(e)) [84]. The shape of the nano-ridge laser cav-
ity and the positioning of the quantum wells can be engin-
eered by tuning growth parameters. Shi et al demonstrated
1 µm wavelength optically pumped nano-ridge lasers with
index-coupled DFB gratings and loss-coupled DFB metal
gratings (figure 11(g)) [85, 86]. Colucci et al used the
InGaAs nano-ridges with inserted MQWs to reach 1.3 µm
O-band lasing [87]. Simulations have been used to invest-
igate different coupling schemes [88]. The air-cladded III–
V nano-ridges with sub-micrometer dimensions promote
tight optical confinement inside the laser cavity. A care-
fully designed metal layout is necessary to minimize the
overlap of the metal with the optical field. The developed
loss-coupled DFB metal grating could potentially be used
to realize metal contacts needed for an electrically driven
laser.

Instead of performing selective area epitaxy along the
vertical growth direction, lateral epitaxy methods, including
template-assisted selective epitaxy (TASE), lateral ART or
tunnel epitaxy, opens a new growth paradigm to realize in-
plane dislocation-free III–Vmaterials onto Si or insulator plat-
forms. In the TASE approach, the growth of III–V materials
is initiated from a restricted Si surface (generally <100 nm)
to facilitate elastic strain relaxation and prevent the disloca-
tion formation [89]. The III–V seed is subsequently guided
by a hollow SiO2 template which provides a great control
over the shape and dimension of the resultant III–V crystals.
Direct growth of vertical, horizontal and stacked nanowires
and nanowire heterojunctions have been achieved [90]. Co-
integration of diverse III–V materials also becomes possible
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Figure 10. III–V lasers grown in SOI recess for coupling with waveguides. (a) Single QD laser grown in SOI recess. Reproduced from [76].
CC BY 4.0. (b) Multi QD laser array grown in SOI recess and fork-shaped Si edge coupler. Reproduced from [75]. CC BY 4.0. (c) 2.3 µm
GaSb-based lasers grown in SOI recess coupled with SiN waveguide. Reproduced from [77]. CC BY 4.0.

Figure 11. III–V bufferless lasers selectively grown on Si. (a) Schematic of InP/InGaAs nano-ridge laser array grown on SOI substrate. (c)
1.5 µm-band InP/InGaAs nano-laser array grown on SOI and (d) the lasing spectrum. (a), (c), (d) Reprinted with permission from [81] ©
The optical Society. (b) Cross-section TEM image. Reprinted with permission from [80] © The optical Society. (e) Nano-ridge engineering
on Si. (g) SEM image of the nano-ridge laser with loss-coupled DFB metal gratings. (h) Nano-ridge DFB laser emitting at O-band.
Reprinted with permission from [87] © The optical Society. (f) Schematic of nano-ridge with DFB metallic grating. Reprinted with
permission from [86] © The optical Society.

by tailoring template design [91]. By expanding the template
dimensions, the III–V crystal can evolve into micro-disks or
rings, which have enabled room temperature optically pumped
lasing at the 850 nm and 920 nm bands [92]. Room temper-
ature telecom band lasing has also been achieved by apply-
ing III–V TASE in a Si photonic crystal cavity (figure 12(b))
[93]. The flexible placement of alternating III–V gain mater-
ials and Si dielectric (loss) nanorods is also interesting for

implementing the Su–Schrieffer–Heeger topological photonic
lattice to explore the interface mode for single-mode lasing
[94]. Furthermore, the side-by-side placement of the III–V and
Si enables direct butt coupling from the photodetectors (PD) to
the in-plane Si waveguide, as depicted in figure 12(c). The Si
waveguide-coupled PiN nano-PD demonstrated a responsiv-
ity of up to 0.2 A/W at−2 V and a 3 dB bandwidth exceeding
70 GHz [95].
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Figure 12. Templated assisted selective epitaxy (TASE). (a) Basic
concept of template assisted selective epitaxy. Reprinted from [89],
with the permission of AIP Publishing. (b) Photonic crystal laser at
telecom band by TASE. Reprinted with permission from [93].
Copyright (2020) American Chemical Society. (c) Si waveguide
coupled III–V photodetectors on (001) SOI by TASE. Reproduced
from [95]. CC BY 4.0.

To further expand the area of defect-free III–V materials
usable for fabricating electrically driven lasers with sufficient
output power, the lateral ART or tunnel epitaxy approach have
been developed, with one example depicted in figure 13(a)
[96]. Plan-view TEM investigations have evidenced effect-
ive dislocation trapping in lateral epitaxy [97]. Here, the lat-
eral aspect ratio is the ratio of the epitaxial width of the
III–V membrane to its thickness. Hence, the wider the lat-
eral growth, the better the dislocation necking effect [98, 99].
From TASE to lateral ART approach, growth of InP nanowire
arrays and large dimension InP membranes have been repor-
ted (figures 13(b) and (c)). Yan et al demonstrated such a
monolithic InP on SOI platform, where the epitaxial width of
the InP was extended to 7 µm (figure 13(d)) [96]. The large
dimension InP membrane-on-insulator demonstrates an atom-
ically flat top surface (figure 13(e)), enabling subsequent top-
down processing for various optical pumped devices includ-
ing InP microwire arrays, square cavity lasers, and micro-
disk lasers (figure 13(f)). The insertion of InGaAs MQWs
further led to telecom band optically pumped lasers [100].
The monolithic InP/SOI platform permits the implement-
ation of optical functionalities using the III–V wire array
and membranes, as well as the interfacing of light with Si-
based passive waveguides [101]. Xue et al demonstrated
InP/InGaAs PiN photodetectors coupled with a Si waveguide
on the monolithic InP/SOI platform (figure 13(g)). The PDs
exhibited a low dark current of 0.002 A cm−2, responsiv-
ity of 0.4 A/W at 1.3 µm, and a 3 dB bandwidth exceeding
52 GHz [102].

4.2. Towards electrically injected bufferless lasers
fully-integrated with Si photonics

The bufferless epitaxy of III–V materials on patterned Si or
SOI substrates uses geometrically confinedmethods to achieve
low defect density. As a result, the realization of electrically
injected lasers are largely dictated by their specific growth
technique. With limited volume of the micro- and nano-sized
materials available to form laser cavities, introducing metal
contacts for electrical injection lasers requires careful mitiga-
tion of resultant metal-induced optical losses. For nano-ridge
lasers on V-grooved Si, a narrow p-metal contact on the tip
of the nano-ridges (figure 14(a)) [103, 104], or a loss-coupled
DFB metal grating can be designed to minimize the overlap
with optical modes, thereby reducing metal-induced optical
losses [86]. The n-metal contact can be deposited on the n-Si
layer, inclusive of the defective III–V/Si interface within the
electrical pathway. To couple light to Si waveguides, various
coupling schemes, such as the directional coupler and adia-
batic coupler, have been proposed (figure 14(b)) [88]. In terms
of the lateral ART or lateral tunnel epitaxy, it is feasible to
produce in-plane membranes with increased size, as dictated
by the lateral growth width, for laser fabrication. Yan et al
developed a monolithic InP/SOI platform, featuring InP mem-
branes with a 7 µm InP epitaxial width [96]. This allows for
the patterning of metal contacts at both ends of the membrane,
without involving the defective III–V/Si interface, to mitigate
metal loss (figure 14(c)) [105]. The active gain medium can be
either inserted during lateral epitaxy, or selectively regrown
on top of the InP membrane [106]. Although experimental
demonstration is not established yet, such membrane lasers
using InP bonded onto the SOI substrates have demonstrated
remarkable performance [107]. As illustrated in figure 14(d),
the membrane lasers produced by lateral ART or lateral tun-
nel epitaxy can be configured for butt coupling with Si wave-
guides. Evanescent coupling to Si or SiN waveguides is also
feasible by engineering the growth templates.

5. III–V nanowire photonic crystal lasers grown
on Si

5.1. Dislocation-free epitaxy of nanowires on mismatched
substrates

Nanowire heteroepitaxy offers a unique platform for
monolithic III–V/Si integration. By confining the III–V/Si
heterointerface at tens of nanometres scale, the lateral elastic
relaxation towards nanowire sidewalls can increase critical
thicknesses significantly [108] and therefore, dislocation-free
III–V nanowires can be grown on Si. Epitaxial growth of III–
V nanowires can be categorized by two approaches: metal-
catalyzed growth and catalyst-free selective area growth. The
metal-catalyzed method employs a metal nanoparticle to assist
nanowire growth via the vapor-liquid-solid (VLS) growth
mode. Nanowire growth occurs through the precipitation of
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Figure 13. (a) Concept of lateral ART and lateral tunnel epitaxy technique. (b) Schematic showing monolithic InP/SOI platform with InP
nanowire array and large-dimension membranes on (001) SOI wafers. (c) Optical microscope images of as-grown InP nanowire and
membrane array. (d) Cross-sectional SEM image showing the InP-on-insulator with 7 µm width. (e) SEM image of InP membrane on SOI.
(f) Nanowire lasers, square cavity and microdisk lasers demonstrated on the InP/SOI platform. Reproduced from [96]. CC BY 4.0. (g), (h)
High-performance InP/InGaAs PiN PDs coupled with Si waveguide on the InP/SOI platform. (g), (h) Reprinted with permission from [102]
© The optical Society.

Figure 14. (a) Cross-section SEM photo of a GaAs nano-ridge. © [2021] IEEE. Reprinted, with permission, from [103]. (b) Coupler design
from the nano-ridge laser to Si waveguides. Reprinted with permission from [88] © The optical Society. (c) Proposed electrically injected
bufferless lasers by lateral ART approach. (d) Schematic illustrating the direct butt coupling between membrane laser and Si waveguides. ©
[2021] IEEE. Reprinted, with permission, from [105].
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Figure 15. (a) Schematic to show inclined {111}-orientated nanowires on (001) substrates. (b) The {110} and {112} facets on (111)
substrates. (c) Schematic to illustrate III–V nanowires grown from {111} Si facets on (001) SOI substates. (d) Vertical GaAs nanowires
grown on (111) Si substrates. (e) SEM and TEM images showing the side-facets of nanowires. Reprinted with permission from [113].
Copyright (2014) American Chemical Society.

material from an oversaturated droplet catalyst. Depending on
the way of introducing metal particles, metal-catalyzed VLS
growth can be further divided into the foreign metal (usu-
ally gold) catalyzed and self-catalyzed (group-III elements)
growth of III–V nanowires [109, 110]. The catalyst-free select-
ive area growth of nanowires employs the same vapor-solid
(VS) growth mode as conventional selective area growth. A
mask layer is used to define growth openings [111]. Nanowire
formation is driven by facet formation, where facets with
high growth rates vanish during the nucleation process, and
the nanowire is enclosed by facets with low growth rates.
Position-controlled III–V nanowires on Si substrates with
exceptional uniformity can be produced, important for prac-
tical applications in nanometer-scale electronic and photonic
devices. Notably, photonic crystal lasers can be constructed
utilizing these Si-based nanowires. This section will focus on
the catalyst-free III–V nanowires for photonic crystal lasers on
SOI substrates, which include photonic crystal defect-mode
lasers, photonic crystal band edge lasers, as well as for the
topological lasers and electrically injected lasers.

III–V nanowires typically exhibit a preferred growth direc-
tion towards the [111] direction, with III-As, III-Sb nanowires
showing the (111)B preference, while InP nanowires gener-
ally presents the (111)A orientation. It is also possible to grow
nanowires on the CMOS-standard (001)-oriented SOI sub-
strates by creating inclined (111) Si facets for mask patterning
(figure 15(c)) [112]. Figure 15(a) schematically illustrates the
‘ABC’-type stacking in the (001)-oriented zincblende crystal,
where each layer in the ABC stacking includes one group III

layer and one group V layer. The ‘ABC’-stacking direction is
towards the [111] direction, indicating the orientation of the
inclined nanowire on (001) substrates. To facilitate nanowire
growth in the vertical direction, (111)-oriented substrates
are often used, as shown by the SEM photo of vertical
GaAs nanowires on (111) Si substrates (figure 15(d)). These
nanowires typically present a hexagonal cross-section, with
the six side-facets oriented along the low-energy {110} planes.
In instances where the side-facets are under-developed, the
{112} planes, another set of the low-index facets, may also
emerge at the intersections of the {110} planes. This is illus-
trated by the arrangement of the six {110} and {112} facets in
figure 15(e) [113]. Figure 15(b) schematically illustrates the
non-polar {110} and the polar {112} facets in zincblende crys-
tal along the vertical [111] direction.

5.2. Photonic crystal nanowire lasers

The capability to grow III–V nanowires on pre-defined pos-
itions with high uniformity provides a bottom-up approach
for constructing photonic crystal lasers and even topolo-
gical lasers. Compared with the top-down etching approach,
bottom-up epitaxy of nanowires can bypass the constraints
from material mismatch, allowing photonic crystal lasers
integrated onto dissimilar substrates with ultra-small device
footprint. The vertical and smooth side-facets and the cap-
ability of in-situ surface passivation can offer both minim-
ized optical propagation loss and reduced non-radiative sur-
face recombination [114]. The catalyst-free selective growth
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Table 3. Key metrics of III–V photonic crystal nanowire lasers (MQW: multi-quantum well, PDMS: polydimethylsiloxane, RT: room
temperature, CW: continuous wave).

Year λ Gain medium Cavity
Optical/electrical
pump Threshold

Operation
condition Substrate Reference

2011 1000 nm InGaAs Photonic crystal Optical 625 W cm−2 RT, pulse Transferred
by PDMS

[114]

2017 1120 nm–1440 nm InGaAs Nanobeam Optical 80–110 µJ cm−2 RT, pulse SOI [115]
2017 1100 nm InGaAs Nanobeam Optical 100 µJ cm−2 RT, pulse SOI [116]
2017 1100 nm–1300 nm InGaAs Square lattice Optical 45 µJ cm−2 RT, pulse SOI [117]
2018 1300 nm InGaAs Square lattice Optical 200 µJ cm−2 RT, pulse SOI [118]
2019 369 nm GaN/AlGaN

disk
Triangular lattice Electrical 2.1 kA cm−2 RT, CW Sapphire [119]

2020 523 nm InGaN/AlGaN
disk

Triangular lattice Electrical 400 A cm−2 RT, CW Sapphire [120]

2021 488 nm InGaN/GaN
MQW

Triangular lattice Electrical 780 A cm−2 RT, CW Sapphire [121]

2021 850 nm InP Triangular lattice Optical 14 µJ cm−2 RT, pulse
(CW, 77 K)

InP [122]

2022 1280 nm InGaAs Stretched/
Compressed
honeycomb lattice

Optical 1.25 µJ cm−2 RT, pulse SOI [123]

approach has yielded nanowire arrays with high uniformity,
which have been implemented for photonic crystal defect-
mode lasers, band edge lasers and topological photonic
cavities [114–123]. Table 3 chronologically lists the key met-
rics of these photonic crystal nanowire lasers.

Nanowire based photonic crystal defect mode lasers have
been realized using both 2D and 1D engineered nanowire
arrays. Scofield et al demonstrated the photonic bandgap effect
inside an array of GaAs/InGaAs/GaAs nanowires by con-
trolling the diameter and pitch of the nanowires [114]. As
the nanowires were grown on (111)B GaAs substrates, the
nanowire array was embedded in a low refractive index poly-
dimethylsiloxane (PDMS) layer and removed from the GaAs
substrate for out-of-plane optical confinement. Room temper-
ature lasing at 1 µm band wavelength was achieved. To realize
lasing from nanowires directly grown on Si, one dimensional
InGaAs nanowire based nanobeam lasers were grown on SOI
substrates (figures 16(a) and (b)) [115, 116]. Given the sim-
ilar refractive index of Si and III–V materials at the telecom
band, the Si device layer has been thinned down to ∼50 nm
thickness or etched into mesa structure for improved optical
confinement. The nanobeam cavity consists of a reflector at
both ends and a tapered cavity in the middle, where the pitch
of nanowires is modulated to minimize radiation loss at both
ends. With the growth of InGaAs nanowires, indium compos-
itions can be varied to achieve photoluminescence (PL) emis-
sion ranging from 1.2 µm to 1.5 µm (figure 16(c)). The fabric-
ated nanobeam lasers thus span the full telecom wavelength.
By varying the dimensions of the photonic crystal cavities, the
nanobeam lasers fabricated on a single chip can cover a las-
ing wavelength range of ∼70 nm (figure 16(d)). These nan-
obeam lasers can also be grown on the (001) orientated SOI

substrates by creating nanohole on inclined {111} Si facets
[124]. For photonic crystal defect mode laser, a key chal-
lenge lies at the trade-off between the cavity’s Q factor and
the coupling efficiency with adjacent waveguides. To address
this, the same group fabricated a 220 nm silicon waveguide at
one end of the nanobeam (figures 16(b)), where the coupling
efficiency can be improved through adjusting the nanobeam
cavity.

2D nanowire arrays can also be used for band edge
lasers and photonic crystal surface emitting lasers (PCSELs).
PCSELs leverage the photonic band edge mode for enhanced
resonance at a single frequency, where the group velocity van-
ishes at the band edge resulting in gain enhancement. Thanks
to the extensive in-plane coherent oscillation and the first-
order Bragg diffraction, the vertically diffracted light beam
from PCSEL can possess high brightness and good beam qual-
ity. Lee et al reported the application of a square lattice in
the creation of InGaAs nanowire band edge lasers on SOI
substrates (figure 17(a)). Room temperature lasing from both
1 µm wavelength and 1.3 µm O-band has been realized [117].
Simulation results suggest the optical mode is effectively con-
fined in the center of the band-edge laser (figure 17(b)). In
another study, Tu et al demonstrated the triangular lattice InP
nanowire array [122]. Interestingly, even though the nanowires
were grown on InP substrates without the bottom optical con-
finement, optical lasing at the 850 nm band was achieved. This
could be attributed to the enhanced in-plane light oscillation
at the photonic crystal Γ point, as well as the sufficient height
(1 µm) of the nanowires. Simulations show the vertically emit-
ted light possesses an average off-normal angle of ∼6◦ from
a lasing area with a 7 µm diameter, which aligns with the
far-field measurements in the Fourier plane. Moreover, recent
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Figure 16. Nanobeam lasers on SOI. (a) Schematic and (b) SEM of nanobeam lases on (111) SOI substrates and coupled with Si
waveguides. (c) PL spectra of InGaAs nanowires with different indium composition. (d) Nanobeam lasers with lithography controllable
wavelengths on a single chip. Reprinted with permission from [115]. Copyright (2017) American Chemical Society. Reprinted with
permission from [116]. Copyright (2017) American Chemical Society.

study indicates the InP nanowire array can function as a polar-
ization converter, which could be applicable for the PICs or
optical sensors [125].

The ability to arrange nanowires into photonic crys-
tal structures and to engineer the nanowire array paramet-
ers (e.g. nanowire diameter, pitch) on the same chip cre-
ates exciting opportunities for emerging topological lasers.
A deformed honeycomb lattice structure, including both
stretched and compressed honeycomb lattices made of
InGaAs/GaAs nanowires, has been realized on SOI substrates
for highly directional vertical emission at the Γ point [123].
Room-temperature photonic band edge mode lasing at the
1.3 µm wavelength has been achieved. A topological cavity is
fabricated by combining the compressed and stretched honey-
comb lattices into one device, as evidenced by the SEM image
of figure 18(d). The bottom-up nanowire honeycomb lattice
thereby presents a Si-based platform for both band edge lasers
and topological surface emitting lasers.

The main roadblock for achieving electrically injec-
ted nanowire lasers stem from the small dimension of
nanowires and the ensuing significant metal-induced optical
loss. One approach towards electrically injected photonic crys-
tal nanowire lasers involves increasing the nanowire height
to separate the metal contact away from the optical mode.
For catalyst-free GaAs nanowires, the aspect ratio of the
nanowire can be manipulated by controlling the growth con-
ditions to favor axial growth for high nanowires. For surface
emitting lasers, a circular top metal contact is typically util-
ized, and the current spreading over the entire photonic crys-
tal nanowire laser must be considered. In a recent demon-
stration of InGaN/GaN nanocrystal cavity surface emitting
lasers, Ra et al utilized a thin metal contact (a few nano-
meters) on the semiconductor surface and a transparent con-
ductive layer to spread the current [120]. Electrical injec-
tion CW lasing of 523 nm green light was achieved at room
temperature.
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Figure 17. Photonic crystal band edge nanowire lasers. (a)–(d) Square lattice bandedge nanowire lasers on SOI substrates. Reproduced from
[117]. CC BY 4.0.

6. Conclusion

In this paper, we first discussed the heteroepitaxy of III–
V thin films on Si, followed by a review of III–V lasers
grown on Si. Recent progress has yielded APB-free III–V/Si
templates suitable to integrate with dislocation insensitive
gain mediums. Quantum dot/dash lasers, interband cascade
and QCLs, with spectrum ranging from 700 nm to above
11.5 µm, have been effectively demonstrated on Si, exhibit-
ing performance comparable to their counterparts grown on
native III–V substrates. Some of these Si-based lasers have
shown promising long-term or near-term reliability, making
significant strides towards practical applications. The selective

bufferless growth methods present the prospects of grow-
ing dislocation-free III–V materials on silicon or insulator
structures and intimate placement of lasers with Si photonic
device, which is promising to integrate with Si photon-
ics. Furthermore, III–V nanowires present a bottom-up plat-
form for photonic crystal and topological lasers, with poten-
tial for surface-emitting applications. In light of the rapid
progress of growing III–V lasers on Si using these meth-
ods, epitaxial integration holds the promise to realize reli-
able, compact, and cost-effective III–V photonic devices on
silicon photonic chips, thereby accelerating the evolution
of high-performance, scalable, and commercialized optical
systems.
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Figure 18. InGaAs/GaAs nanowire platform on SOI. (a) Schematic of a honeycomb lattice. (b) Calculated photonic band structure of the
stretched honeycomb lattice. (c) Schematic of InGaAs/GaAs nanowires on SOI. (d) SEM image of a topological optical cavity comprised of
the compressed and stretched nanowire honeycomb lattice. Reproduced from [123]. CC BY 4.0.
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