
1. Introduction
The population of East Africa is exposed to numerous climate hazards which are projected to be exacerbated by 
climate change in the future: drought (Haile et al., 2019), heat stress (Rahimi et al., 2021) and extreme rainfall 
associated with flooding (Wainwright et al., 2021) are increasing in magnitude and frequency in the East Africa 
region and negatively impact lives, livelihoods, socio-economic development, and ecosystems. Creating plausi-
ble future climate scenarios assists in addressing these threats by offering a framework to ensure that disaster 
response plans and funding are adequate to meet the hazard challenges.

The future of rainfall over East Africa is a subject of ongoing research and debate. A key uncertainty arises from 
an inconsistency between climate model projections and recent observed trends in rainfall. This is known as the 
“East Africa Climate Paradox” in which climate models generally project a wetter future for the region, while 
recent observations indicate a drying trend (Rowell et al., 2015). This discrepancy has raised concerns about 
the reliability of climate models, which frequently fail to accurately represent key characteristics and trends of 
regional rainfall and the processes which influence it (Ahn et al., 2017; Ayugi et al., 2021; Tierney et al., 2015). A 
cautious and critical approach when using climate model output over East Africa is therefore essential, particularly 
regarding rainfall projections. Naive use of model outputs without consideration of other sources of information 
such as historical observations and the processes which drive climate variability is likely to lead to inappropriate 
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significant flooding in East Africa. While future projections indicate an increase in pIOD events, limited 
historical data hinders a comprehensive understanding of these extremes, particularly for unprecedented events. 
To overcome this we utilize a large ensemble of seasonal reforecast simulations, which show that regional 
rainfall continues to increase with pIOD magnitude, with no apparent limit. In particular we find that extreme 
rain days are highly sensitive to the pIOD index and their seasonal frequency increases super-linearly with 
higher pIOD magnitudes. It is vital that socio-economic systems and infrastructure are able to handle not only 
the increasing frequency of events like 1997 and 2019 but also unprecedented seasons of extreme rainfall driven 
by as-yet-unseen pIOD events. Future studies should prioritize understanding the hydrological implications and 
population exposure to these unprecedented extremes in East Africa.

Plain Language Summary The Indian Ocean Dipole is a pattern of climate variability in the 
Indian Ocean, characterized by opposite-signed sea surface temperature differences from normal in the west 
and east. During positive events (pIOD), the western Indian Ocean is warmer than usual, which disrupts the 
normal circulation of the atmosphere. When pIOD is strong, extreme rainfall and flooding are common in 
East Africa. This happened in 1997 and 2019. According to future predictions, the frequency of extreme pIOD 
events will increase. However, our understanding of these events is limited as there is not a large enough 
sample of past events in the historical data to study. To address this, we evaluate a large collection of climate 
model simulations called seasonal reforecasts. The results show no evidence of an upper limit to the impact 
of pIOD on regional rainfall. The frequency of rain days increases during pIOD, whilst extremely heavy rain 
days increase even more. This means that more frequent extreme pIOD seasons will likely bring more heavy 
rainfall impacts. It also means that if pIOD reaches a high magnitude which has not yet been recorded, the 
rainfall  impacts are likely to be even larger than those seen in 1997 or 2019.
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decisions being made. Observations and physical understanding are key to constrain model output and produce 
reliable projections of future climate.

To better address uncertainties in climate projections, the novel “storyline” approach has gained traction as an 
alternative to the traditional “risk-based” approach (Shepherd et al., 2018). The approach focuses on developing 
plausible narratives that capture the range of possible changes in climate drivers and their associated impacts in 
the regional expression of climate. By exploring physically consistent changes in these climate drivers, scien-
tists and stakeholders can better understand the potential consequences and plan for plausible future impacts of 
climate change.

One key driver of interannual variability in East African rainfall is the Indian Ocean Dipole (IOD), which has a 
strong and extensively studied teleconnection to the region's short rains season, generally occurring from October 
to December (hereafter OND) (Black et al., 2003; Kolstad & MacLeod, 2022; MacLeod et al., 2021; Ogwang 
et al., 2015; Owiti et al., 2008). Positive IOD events (hereafter pIOD) have warmer-than-normal temperatures 
in the west Indian Ocean and cooler ocean temperatures near Indonesia (Saji et al., 1999). These events subvert 
the normal Walker Circulation over the region through a weakening both near-surface westerlies over the Indian 
Ocean and subsidence over East Africa (Saji & Yamagata, 2003). During pIOD events there is increased convec-
tion (MacLeod et al., 2021), more rainfall and a risk of flooding, as seen in the strong pIOD years of 1997 and 
2019 (Latif et al., 1999; Wainwright et al., 2021). El Niño is also noted as a strong driver of wet OND seasons 
in East Africa. However, it has been shown that its influence on rainfall arises through its ability to trigger 
pIOD events, such as in 1997 (Kolstad & MacLeod, 2022; MacLeod et al., 2021). When a strong El Niño has 
occurred without a strong pIOD the impact on the short rains has been moderate, such as in 2015 (MacLeod 
& Caminade, 2019), and significantly smaller than the very wet season during pIOD events that occur inde-
pendently of El Niño, such as in 2019 (Wainwright et al., 2021).

Evaluation of tropical climate dynamics in coupled climate model projections suggests that pIOD frequency 
will increase in the future (Cai et al., 2014), particularly in terms of extreme pIOD events compared to moderate 
pIOD events (Cai et al., 2021). During pIOD events the impacts on Indian Ocean climate are most significant, 
and can even lead to reversals of the normal direction of atmospheric flow over the Indian Ocean such as seen 
in 2019 (Wainwright et al., 2021). Based on historical records of pIOD impacts, more frequent pIODs can lead 
to more frequent seasons of extremely high rainfall totals in East Africa during OND, as well as more instances 
of extreme shorter-duration rainfall events within those seasons. However, due to the small number of extreme 
pIODs in the satellite record of rainfall observations and limited availability of gauge data, it remains challenging 
to robustly infer the plausible range of seasonal extreme rainfall outcomes during pIOD. In particular, it is unclear 
if extreme pIOD will have differing impacts on the frequency of extreme rainfall days compared to more moder-
ate days. This is a question of crucial importance; aside from increasing flood risk, increasing seasonal frequency 
of extreme rain days has negative impacts on agriculture (Shortridge,  2019) and economic production (Kotz 
et al., 2022), yet it may lead to increased rates of groundwater recharge (Adloff et al., 2022; Seddon et al., 2021). 
Understanding what to expect from future extreme IOD events is a priority.

In this study our starting point is the plausible storyline that extreme IOD events will increase in future (Cai 
et al., 2014, 2021). We then leverage the large amount of data available from initialized seasonal reforecasts to 
explore plausible rainfall responses to extreme pIOD. Such reforecasts provide a large number of simulations 
from which infrequent events can be more robustly sampled, as first demonstrated by Van den Brink et al. (2004). 
Pooling these seasonal reforecasts provides many more instances of extreme pIOD than have occurred histori-
cally, supporting a statistically robust diagnosis of the behavior of regional rainfall to extreme pIOD. In this way 
we bring together two new threads of climate science methodology; storylines and pooled reforecasts, opening a 
new line of evidence on future climate risk.

2. Data and Methodology
For rainfall, daily data from the CHIRPS v2 data set is used (C. Funk et al., 2015). CHIRPS is available from 
1981 to present on a spatial grid spacing of 0.05°; here we focus on data from 1981 to 2020. CHIRPS is based on 
infra-red satellite measurement of cloud top temperatures, calibrated with rain gauge data. We chose the CHIRPS 
rainfall data set because whilst public rain gauge data sets have very low sampling density over large parts of East 
Africa (e.g., Menne et al. (2012)), CHIRPS incorporates data from a relatively large number of stations in the 
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region, unavailable in other products (Dinku et al., 2018). For each year we calculate OND seasonal total rain-
fall, along with the number of days in that 3-month window with daily rainfall exceeding a series of thresholds 
(extremes): 1 mm, 10 mm, 20 mm and 50 mm. In order to diagnose the atmospheric pathways of IOD impacts on 
rainfall, we also consider atmospheric circulation in parallel, using divergence and zonal winds at 200 hPa and 
850 hPa from the ERA5 reanalysis (Hersbach et al., 2020).

The IOD index is based on sea surface temperatures (SSTs) over two regions of the Indian Ocean. We use the 
standard index first defined by (Saji et al., 1999), known as the Dipole Mode index, which is the difference in 
the SST anomalies averaged over a western region of the Indian Ocean (10°S to 10°N, 50°–70°E) and an east-
ern region (−10° to 0°S, 90–110°). We calculate the average index over the OND rainfall season based on the 
HadISST data set (Rayner et al., 2003), which is derived from various sources, including in-situ observations 
from ships, buoys and coastal stations, as well as satellite data.

To carry out pooled reforecast analysis we use the SEAS5 seasonal reforecast data (Johnson et al., 2019). SEAS5 
is the operational seasonal forecasting system run by the European Centre for Medium-Range Weather Forecasts 
(ECMWF). Alongside the operational forecast, a reforecast data set is also available for bias-correction and skill 
assessment. These reforecasts are initialized on the 1st of every month from 1981 up to the start of the operational 
archive. Like the operational forecasts, each reforecast produces a 7-month forecast, and for each initial date an 
ensemble of 25 members is run (51 members are run for the operational forecast).

Here we repurpose the SEAS5 reforecast data to evaluate the sensitivity of OND seasonal rainfall to the IOD 
index. The monthly initialization frequency and the 7-month forecast window means that simulations of OND are 
present in multiple reforecast start dates: specifically the July, August, September and October initializations. We 
extract OND output from these four starts, for each of the 25 members and the 40 reforecast years 1981–2020. 
The result is a pool of 4,000 simulations of OND, on which we base the pooled-reforecast analysis. We take daily 
rainfall from each member at the atmospheric model spatial resolution of 36 km and calculate the same seasonal 
rainfall metrics as defined above. We also extract the monthly SST field associated with each reforecast member 
at a one-degree spatial resolution, and use it to calculate the IOD index as above. For a parallel evaluation of 
atmospheric circulation, we use monthly values of divergence and zonal wind at 200 and 850  hPa from the 
reforecast.

Reforecast pooling has a relatively long history. It was initially used to improve estimates of extreme storm surge 
and coastal flooding (Van den Brink et al., 2004, 2005) and has since been used to evaluate extreme wind (Breivik 
et al., 2014), precipitation (Kelder et al., 2020; Thompson et al., 2017) and streamflow (Brunner & Slater, 2022), 
and it has been used to explore surface responses to the stratospheric polar vortex (Kolstad et al., 2022). Recently, 
reforecast pooling has been branded as the UNprecedented Simulated Extreme ENsemble (UNSEEN) approach 
(Thompson et al., 2017), highlighting the potential use of the method in examining never-before-seen events.

In previous studies using reforecast pooling, only the longest lead forecasts are mainly used in the analysis and 
shorter lead runs tend to be discounted (e.g., Thompson et al., 2017). The rationale is to remove the influence 
of the initial state and generate a reforecast pool that is as close to the unforced climate system as possible, from 
which event likelihoods can be estimated. However, our motivation here is not to estimate probabilities, but to 
explore sensitivities to known forcing mechanisms. By including the shortest lead times in our pooled reforecast, 
we will more densely sample the state space close to the particular initial states of those short lead runs. This is 
an acceptable approach because all available reforecast runs are physically (internally) consistent estimates of 
potential IOD-rainfall behavior and are therefore appropriate to include in the pool.

Our reforecast pool consists of 4,000 simulations of OND, each with a set of rainfall metrics and a corresponding 
IOD index. This is about 100 times larger than the CHIRPS sample of about 40 seasons. We begin by evaluating 
the spatial pattern of the IOD influence on regional rainfall, in order to establish the model's ability to represent 
the teleconnection, along with the biases in the rainfall metrics. Following this, we evaluate the sensitivity of 
each rainfall metric to changes in the IOD index, focusing particularly on changes when IOD reaches extremely 
high levels.

3. Results
Figure 1 shows the representation of the spatial pattern of the IOD-rainfall teleconnection. For both the historical 
observations and the SEAS5 reforecast, the data are stratified into five equal subsets according to the IOD index 
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to make a like-for-like comparison whilst keeping reasonable populations in the observational composites. For 
the historical observations (Figure 1a) the association between rainfall and IOD is as expected, with instances of 
strong positive IOD leading to large increases in seasonal total rainfall (fifth subset, average IOD index 0.6). For 
weakly positive IOD seasons (fourth subset, average IOD index 0.2), no notable impact on seasonal rainfall is 
observed. Seasons with the largest negative index value (first subset, average IOD value −0.34) lead to suppres-
sion of seasonal rainfall totals. However the magnitude of the negative anomalies for the most negative IOD 
seasons is significantly smaller than the magnitude of the positive anomalies for the most positive IOD seasons. 
This is partly because the precipitation has a hard lower limit of zero rainfall, while there is no hard upper limit.

Pooled reforecasts from SEAS5 broadly reproduce the pattern seen in the observations: enhancing rainfall only 
for the strongest IOD values, and with weaker negative rainfall anomalies for the most negative IOD events 
(Figure 1b). The corresponding impacts of the IOD on the atmospheric circulation are shown in Figures S1–S8 
of Supporting Information S1 and show that positive IOD states weaken the typical Walker Circulation pattern. 
Increasing IOD magnitudes lead to a significant reduction in convergence at upper levels over East Africa and 
the western Indian Ocean, along with a change in the sign of upper-level winds westerly to easterly. In the lower 
troposphere an increasing IOD index results in a significant weakening of the normal westerlies in the central 
Indian Ocean. SEAS5 broadly reproduces these signals.

When looking more closely at the spatial impact of the IOD on rainfall across East Africa, it is clear that the simu-
lation is imperfect. During strong positive IOD events, SEAS5 generates the largest rainfall increase over humid 
areas in western Kenya and the central highlands, and in a band along the coast of southern Somalia and northern 
Tanzania. However, the observed rainfall response to IOD shows a more widespread impact. In observations 
the same enhanced rainfall is seen as in SEAS5, but large increases are also apparent across semi-arid and arid 
regions: in northeast Kenya, southern Ethiopia, and in southern Somalia away from the coast. In consideration of 
potential observational uncertainty, alternative observational data sets of GPCP (Adler et al., 2018) and TAMSAT 
(Maidment et al., 2014) were used to diagnose the composite rainfall response. These are presented in Figure S1 
of Supporting Information S1 and show a pattern of enhanced rainfall during pIOD in semi-arid and arid regions 
which is consistent with analysis based on CHIRPS, which is not reproduced by SEAS5. This mismatch in the 
spatial details of the rainfall associated with the IOD teleconnection reduces confidence that SEAS5 is able to 
accurately infer relative changes in rainfall during extreme IOD events at small spatial scales.

Figure 1. Mean OND rainfall anomalies in bins divided according to Indian Ocean Dipole (IOD) index for (a) observations 
(b) the SEAS5 reforecast. Plots are arranged from the most negative IOD composite on the far left to the most positive IOD 
composite on the far right, and the average IOD index for each composite is noted on the top right of each plot. The red 
outline in the top right panel defines a region of the core IOD rainfall teleconnection and is used for area averages in Figure 3. 
This region is derived from a smoothed region encompassing the areas of high rainfall in the panel. Note that CHIRPS does 
not have values over the ocean, unlike SEAS5.
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Figure 2 shows the bias in the average frequency of rain days above a range of thresholds (extremes), expressed as 
the frequency of days in SEAS5 minus the frequency in CHIRPS, as a percentage of the CHIRPS frequency. The 
pattern of bias is nonlinear and spatially complex. In particular, SEAS5 produces many more rain days greater 
than 1 mm than CHIRPS (Figure 2a) along the coast and inland, but further west from the coast (in western Kenya 
and beyond) it generates far fewer. This pattern is largely reversed for heavier rain days (above 10 and 20 mm, 
Figures 2b and 2c), which are overestimated relative to CHIRPS in the west, underestimated further east, but then 
overestimated again in a thin coastal band. For the most extreme rain days (50 mm, Figure 2d) the frequency is 
strongly underestimated by SEAS5 in Kenya and Ethiopia, but in parts of Somalia and Tanzania and the DRC the 
frequency is vastly overestimated (over 250% of the CHIRPS frequency).

The analysis presented in Figure 1 demonstrates that SEAS5 is unable to accurately reproduce the precise spatial 
pattern of the IOD teleconnection, whilst Figure 2 demonstrates that it does not reliably reproduce the daily distri-
bution of seasonal rain events in these data sets. It would therefore be misguided to use the SEAS5 reforecast to 
attempt to precisely quantify rainfall responses to IOD, in terms of the impact on specific rainfall thresholds, and/
or in terms of the spatial pattern of its impact.

Informed by this, we used the pooled reforecast to quantify impacts on the area-average response. Seasonal rain-
fall metrics already calculated by grid point are averaged over the spatial domain corresponding to the observed 
rainfall response to positive IOD events (indicated by the red outline in the final panel of Figure 1a, derived from 
a smoothed region encompassing the areas showing high rainfall in that figure). We also treat the precise values 
of seasonal event frequency with caution. By interrogating the relationship between seasonal rainfall and the 
IOD index, we investigate the functional form of the relationship as the IOD index approaches extreme values. 
Furthermore, we explore how the IOD-rainfall relationship depends on the rainfall distribution: is the same influ-
ence seen for the frequency of moderate rain days compared to extreme days, for instance.

Figure 3 shows the relationship between the IOD index and the seasonal frequency of rainfall events, in both 
observations and SEAS5. The sample of seasons is stratified into equally-populated bins based on the IOD index, 
with a different number of bins chosen for SEAS5 and observations to balance the bin size with the ability to 
resolve the functional relationship (10 4-member bins for observations and 100 40-member bins for SEAS5). The 
area-average seasonal frequency in each bin is then scaled by the frequency under neutral conditions (calculated 
as the frequency during all seasons with an absolute IOD index value below 0.5).

We found a clear nonlinear difference between negative and positive IOD events; for all rainfall metrics consid-
ered, the largest magnitude positive events have greater impacts on rainfall than the largest magnitude nega-
tive events. A particular sensitivity of extreme rainfall events to positive IOD can be seen, for example, with a 
SEAS5 IOD index of 1, resulting in a +75% increase in the frequency of days above 50 mm compared to neutral 
IOD conditions, whereas there is only a 30% increase for rainfall days above 10 mm (Figure 3b). Further, this 

Figure 2. SEAS5 frequency bias in seasonal rainfall metrics, showing results for seasonal count of days above 1, 10, 20, 
and 50 mm rainfall (left to right). Bias is calculated as the difference in mean seasonal count between SEAS5 and CHIRPS 
rainfall, expressed as the percentage of the CHIRPS value. White shading on land is used for areas where the mean seasonal 
count in CHIRPS is zero (white on ocean is undefined due to lack of CHIRPS data there).
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heterogeneous influence of the IOD on different parts of the rainfall distribution is seen in the analysis of obser-
vations, for which extreme rainfall days also show the highest sensitivity to IOD magnitude and sign. This can 
also be in the reforecast when evaluated for initialization months separately (not shown).

Beyond this differential impact on parts of the daily rainfall distribution, a nonlinear relationship can be seen 
within the frequency of extreme rain days. For an increase in the IOD index from 0 to 1, an increase in the 
frequency of 10 and 50 mm days of 30% and 75%, respectively, is seen. However with a further unit increase in 
the IOD index from 1 to 2, the 10 mm day frequency increases by a further 30%, but the frequency of 50 mm days 
increases dramatically by a further 100%, to 175% of the IOD-neutral value. This nonlinear functional relation-
ship is quantified in Figure 3c, which shows the sensitivity of the seasonal frequency to a unit IOD increase. 
This has been calculated as the local gradient (i.e., the first derivative) of the data in Figure 3b and is smoothed 
by repeated application of a three-point running-average due to highly noisy signal in the negative part of the 
domain.

The gradients demonstrate a clearly increasing sensitivity to IOD increases for the wettest parts of the daily 
rainfall distribution, as well as a nonlinear relationship between IOD and extreme rainfall. For days above 1, 10, 

Figure 3. Relationship between seasonal rainfall metrics and Indian Ocean Dipole (IOD) index for (a) observations and (b) the SEAS5 reforecast. Data is subset into 
bins (10 4-member bins for CHIRPS and 100 40-member bins for SEAS5), and the area-average mean count in each bin relative to IOD-neutral conditions is plotted as 
a function of the mean IOD index in that bin. Panel (c) is derived from panel (b) and shows the sensitivity of changes in seasonal rainfall metrics to IOD increases as a 
function of IOD index (see text for details of calculation).
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and 20 mm, a unit increase in the IOD index leads to an average increase in seasonal frequency of +17%, +28% 
and +35%, and this does not change considerably across the IOD domain. By contrast, a unit increase in the 
IOD index increases the frequency of days over 50 mm by 34% in the negative part of the domain, rising to 72% 
for increases when the index is already positive. The same relationship can also be seen in the reforecast when 
evaluated for initialization months separately (not shown). Overall this demonstrates that positive IOD events 
disproportionately increase the frequency of heavy and extreme rainfall, and further unprecedented increases in 
IOD magnitude are likely to bring unprecedented frequencies of extreme rainfall days.

A complementary evaluation of the sensitivity of atmospheric circulation metrics to the IOD index is consistent 
with these findings (Figure S10 in Supporting Information  S1). Additionally, this analysis demonstrates that 
the nonlinearity of the rainfall response to the IOD does not arise from the interaction of IOD with regional 
atmospheric dynamics, which are found to be linear. By deduction, this nonlinearity must arise from how linear 
changes in local dynamics translate to the generation of extreme rainfall. In particular, a shift from convergence 
to divergence in the upper atmosphere over East Africa is noted for IOD index values beyond +0.5, suggesting a 
discrete shift from suppression to enhancement of deep convection for positive IOD states.

4. Discussion
Using pooled reforecast data, we have demonstrated that the influence of the IOD on East African rainfall contin-
ues to grow as the magnitude of the pIOD increases. There is no evidence of a saturation effect, where increases in 
rainfall slow down as the IOD index continues to increase. Instead, rainfall continues to increase with increasing 
IOD index. In addition, higher values of the IOD index appear to have a stronger impact on the extreme end of 
the rainfall distribution. Over the whole distribution, some non-linearity is expected, since this is ’built-in’ when 
considering indices that are zero-bounded: negative IOD events can only reduce the rainfall to zero, whilst the 
impact of positive events is effectively unbounded. However, the non-linearity observed is not simply a differ-
ence between the impact of negative and positive phases of IOD impacts but is seen in the positive phase alone, 
whereby the increase in rainfall between moderate to strong IOD events is significantly larger than the increase 
between neutral to moderate events. Evidence of similar non-linearity between the IOD and extreme rainfall 
events over India has also been found (Krishnaswamy et al., 2015).

Overall, our results indicate a robust relationship between extreme precipitation and pIOD. Under high-emission 
climate scenarios, projections have indicated that the frequency of extreme pIOD events could increase by a 
factor of almost three during the 21st century, from one event every 17 years to one event every 6 years by the 
end of the century (Cai et al., 2014). In this climate we can expect more frequent heavy seasonal rainfall and by 
extension, severe flooding in October-December in East Africa, such as seen in 2019 (Wainwright et al., 2021).

Our findings align with the existing understanding of the impact of the IOD on tropical circulation across the 
Indian Ocean (Saji & Yamagata,  2003). Whilst pIOD events weaken the normal Walker circulation, as they 
approach extreme levels it is physically plausible for them to reverse the circulation, as in 2019 (Wainwright 
et al., 2021). As pIOD events continue to intensify, reaching unprecedented magnitudes, we expect an even more 
pronounced reversal of the typical Walker circulation (C. C. Funk, 2021), leading to more frequent and deeper 
convective events which result in higher magnitudes of extreme rainfall.

Evidence presented here from rainfall and dynamical analysis suggests that positive IOD states shift the mean 
local dynamics from convergence in the upper atmosphere to divergence, supporting deep convection and extreme 
rainfall events. Further increases in the IOD to extreme levels continue to enhance upper-level divergence and the 
associated likelihood of deep convection, facilitating the production of even greater daily rainfall totals. It should 
be noted, however, that some tapering off of the IOD's influence is noted on upper-level zonal winds over East 
Africa. This suggests that there may be a physical limit to the IOD's influence on tropical dynamics as it reaches 
unprecedented levels. However, we do not detect any signal of this saturation in upper-level divergence fields or 
rainfall patterns.

Reflecting on the ability of the fidelity of SEAS5 rainfall, our analysis reveals some unreliability of the SEAS5 
model representation of the spatial fingerprint of the IOD teleconnection when compared to the CHIRPS rainfall 
data set. These biases limit our ability to make definitive statements about the spatial distribution of extreme 
pIOD behavior. Understanding potential shifts in the spatial pattern of rainfall during extreme pIOD states is 
crucial, but due to a lack of confidence in the model's ability to represent these fine-scale spatial details we refrain 
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from utilizing this data to answer this question. Instead our confidence lies in the sign of the relationship on aver-
age over the study region: increasing pIOD will impact precipitation extremes disproportionately.

Notably, the potential extreme rainfall impacts shown here do not take future changes driven by thermody-
namics into account. While SEAS5 reforecasts simulate temperature distributions consistent with recent levels 
of greenhouse gases, a future climate is almost guaranteed to be warmer (Ongoma et  al.,  2018). According 
to Clausius-Clapeyron scaling, a warmer atmosphere will hold more water, increasing the capacity for higher 
magnitude rainfall events (Pfahl et  al.,  2017). Indeed some evidence suggests that changes in hourly rainfall 
extremes in the tropics are exceeding what is expected from Clausius-Clapeyron scaling (Guerreiro et al., 2018). 
Combined with future increases in pIOD magnitudes and their corresponding enhancement of deep convection 
over East Africa, this could lead to truly unprecedented rainfall extremes over the region with potentially devas-
tating impacts.

Looking ahead, decision-makers and regional stakeholders must prepare for the recurrence of positive pIOD 
events, which may have impacts comparable to or surpassing those witnessed in 1997 and 2019. The evidence 
presented in this study strongly advocates for a more comprehensive approach to preparedness and contingency 
planning, aimed at anticipating seasons marked by even more pronounced precipitation extremes than those 
observed during these recent high-impact years. Such extremes could potentially expand the geographical scope 
of flooding impacts and expose a larger portion of the population to flood risks.

Communities, government and industry should strive to create resilience to this heightened risk, which can be 
quantified using process-based hydrological models designed for such regions (MacLeod et al., 2023; Quichimbo 
et al., 2021). Yet, caution must be taken in using rainfall from climate models to drive such models, as nonlinear 
and spatially-dependent biases are likely to influence simulations in an opaque way. The pattern of SEAS5 found 
here (overestimated rain-day frequency and underestimated heavy rain-day frequency) in places is consistent with 
the perennial problem of “drizzle” in climate models (e.g., Piani et al., 2010), which has been linked to an overes-
timation of convective and underestimation of non-convective precipitation (Chen et al., 2021). This may suggest 
routes to improving simulations of daily rainfall in SEAS5 (although this typical “drizzle” pattern is not consist-
ently seen everywhere in our results). In addition, we note a particular pattern of biases along coastal regions, 
which may be related to model representation of convection since rainfall in this region has been shown to be 
particularly sensitive to parameterized convection (Finney et  al.,  2019). Moving toward convection-resolving 
scales may lead to improved biases here as well.

Entirely bias-free climate model output would be highly desirable for use in hydrological and other impact 
models. However in its absence an alternative approach to understanding plausible future hydrological impacts 
involves using stochastic rainfall generation scenarios to explore the effect of changes in rainfall characteristics, 
such as intensity, duration and storm frequency, in a controllable and transparent manner (Singer et al., 2018). 
This work will be the subject of future investigation.

5. Conclusions
The storyline approach to climate change projections follows a path that outlines the implications of plausible 
future changes in key climate drivers. One such driver of East African rainfall is the IOD, for which extreme posi-
tive events have been projected to increase in frequency. Here we have taken this scenario as a plausible future for 
the region, and using the technique of pooling seasonal reforecasts we examine the potential impact of this kind 
of event on regional rainfall distribution. We find no saturation of the potential impact of the IOD on rainfall, with 
unprecedented pIOD events likely to lead to unprecedented seasonal rainfall totals. We also find the strongest 
impacts on the frequency of extreme rain days, and we find a non-linear impact such that increases in pIOD at the 
high end of its range have the largest impacts. Decision-makers should prepare for flooding events like 1997 and 
2019 to recur, with potentially unprecedented frequency of extreme rainfall. Exploring the hydrological impacts 
of these unprecedented extreme seasons is a priority for future work.

In closing we note that at the time of writing this article a pIOD event has emerged in the Indian Ocean, associated 
with a strong El Niño event already in progress. Eighty-five percent likelihood of above-normal rainfall has been 
forecast for East Africa, an unprecedented level of certainty (ICPAC, 2023). Considering the record-breaking 
temperatures observed in 2023 so far, driven both by El Niño and global warming (WMO, 2023), it is plausible 
that this season may experience unprecedented levels of rainfall, resulting from the combined effect of a strong 
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pIOD with Clausius-Clapeyron scaling. Notably this hazard is unfolding in a region with eroded resilience from a 
3-year drought (WFP, 2023), amplifying the risks to both lives and livelihoods. Based on the results of this paper 
we therefore anticipate severe rainfall impacts in the upcoming season, noting that these may just foreshadow the 
future of climate risk for East Africa.

Data Availability Statement
The CHIRPS data (C. Funk et al., 2015) are available from the Climate Hazards Center at the University of Santa 
Barbara, USA at https://www.chc.ucsb.edu/data/chirps. HadISST data (Rayner et al., 2003) are available from 
the UK Met Office Hadley Centre https://www.metoffice.gov.uk/hadobs/hadisst/. SEAS5 reforecast and ERA5 
reanalysis data is available from the Copernicus Climate Data Store (Copernicus Climate Change Service, 2018; 
Hersbach et al., 2023).
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