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Abstract. We study an optimal investment problem that arises in the context of
the vehicle-sharing system. Given a set of locations to build stations, we need to
determine i) the order of stations to be built and the volume of vehicles to buy
in order to get the target state where all stations are built and ii) the number of
vehicles to acquire and their allocation in order to maximize the profit returned
by operating the system when some or all stations are open. In this problem,
the profit (per period of time) when operating open stations is modeled as a
linear optimization problem over a set of open stations. Then, with operating
capital, the system owner can open new stations. This characteristic makes the
transition time needed for opening a new station a set-dependent function, and the
optimal investment problem can be seen as a variant of the Traveling Salesman
Problem with set-dependent cost. We propose an A* search algorithm to address
this particular Traveling Salesman Problem variant. The experiment results show
the advantages of the proposed algorithm over the well-known classic Dĳkstra
algorithm and open new directions for both exact and approximate A* in future
work.

Keywords: Autonomous Mobility On-Demand · vehicle-sharing · traveling sales-
man problem · A* algorithm

1 Introduction

Mobility on demand (MoD) is a rapidly growing market4. With the advanced technol-
ogy of autonomous vehicles, Autonomous Mobility on demand (AMoD) is becoming
increasingly popular since it alleviates some operational difficulties of MoD. The global
autonomous mobility market is projected to grow from 5 billion USD (in 2019) to
556 billion USD (in 2026)5, promising safety (94% of accidents are caused by human
factors), increased throughput, improved efficiency, and more affordable services.

4 https://www.alliedmarketresearch.com/mobility-on-demand-market
5 https://www.alliedmarketresearch.com/autonomous-vehicle-market
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While car manufacturers and major technology firms have the resources to quickly
establish an AMoD system, smaller shared mobility operators and public authorities may
encounter challenges in securing sufficient upfront capital to launch the service with
a sufficient fleet6. Consequently, operators first operate in a smaller region, as studied
in the literature on optimal service region design, e.g., [7, 9]. As operators accumulate
profits, they can gradually acquire more vehicles and expand their active sites. We study
this refinancing of the AMoD system, where the operator aims to achieve the desired
service area and fleet size as quickly as possible.

Research on different issues of an AMoD system, such as operations of vehicle
sharing systems, strategic decisions, and regulations and subsidies in vehicle sharing
services, can be found in the literature, e.g., [3, 5, 6, 7], the question of what is the
optimal investment sequence to build an AMoD has not been addressed yet. In this
research, we consider an AMoD with a target service area as well as a current set of
open stations. The operator decides on the order in which they open the stations. The
more profit they gather, the faster they can open new stations.

In the following sections, we address the above questions and then analyze the
performance of our proposed algorithm. To do so, we review papers close to our research
in Section 2. Next, we present the problem statement and related formulations in Section
3. Section 4 presents our solution approach based on the A* search algorithm. Numerical
experiments and some encouraging results are presented and analyzed in Section 5.
Finally, Section 6 concludes and points out further research directions based on the
current research.

2 Literature

The research on operations and planning of AMoD systems consists of studies on
various research questions. Still, it mainly focuses on optimizing an already-established
vehicle-sharing network. Regarding fleet optimization, we can refer to [5, 6, 12] and [10].
George and Xia [6] study a fleet optimization problem over a closed-queue network. This
work suggests basic principles for the design of such a system. Nair and Miller-Hooks
[13] use the equilibrium network model to find the optimal configuration of a vehicle-
sharing network. The solutions to the model explain the correctness of the equilibrium
condition, the trade-offs between operator and user objectives, and the insights regarding
the installation of services. Freund et al. [5] address how to (re-)allocate dock capacity in
vehicle-sharing systems by presenting mathematical formulations and a fast polynomial-
time allocation algorithm to compute an optimal solution. Lu et al. [10] consider the
problem of allocating vehicles to service zones under uncertain one-way and round-trip
rental demand. The authors of recent papers related to the topic [3] present a model
that tackles empty-car routing issues in car-sharing systems. Simulation results with
real-world data demonstrate the benefits of the model and the routing policy compared
with various other approaches. Regarding policies, Martin et al. [11] conclude that using
driverless vehicles and human-driven vehicles can improve profits, and operators can
gain new unprofitable markets for them. The authors propose a model and an algorithm

6 https://www.weforum.org/agenda/2021/11/trends-driving-the-autonomous-vehicles-industry/
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to find maximum profit while considering driverless and human-driven vehicles. Hao
and Martin [7] present a model that studies the impact of regulations on the decisions
of vehicle-sharing operators and measures the efficiency and effectiveness of these
regulations. The results show that the interdependencies between regulations and societal
welfare indicators are non-trivial and possibly counterintuitive. To conclude, we observe
that all the research so far has tried to address different questions with the goal of
optimizing an already-established vehicle-sharing network. However, the question of
how we should establish new stations and acquire new vehicles has not been addressed
yet. In the following, we present an optimization problem where we want to determine
the order of establishing stations and the fleet size to achieve the final state where all
stations are open in the shortest time.

3 Problem Statement and Formulation

We study the best investment strategy for an AMoD (Autonomous Mobility-on-Demand)
operator to increase their fleet size and operating area.

The AMoD operator’s business area comprises stations, (R : {1, ..., 𝑅}). “Station”
can also refer to a virtual location, e.g., the center of a region in a free-floating system.
Operating station 𝑖 incurs initial cost 𝑐𝑏

𝑖
related to construction, permits, or marketing.

Some stations are already open, and profit will be collected from the already-open
stations to prepare funds for new stations. The operator incrementally grows the fleet
to reach the optimal size promptly while ensuring acceptable service levels within a
gradually expanding operating area.

At a given open station 𝑖, customers promptly begin their journeys to a different
station 𝑗 . In cases where a station is closed, customers who would have started or
finished their journeys there can use a nearby station instead. The customer arrivals
follow a Poisson distribution with an arrival rate of 𝜆𝑖 𝑗 , which depends on the stations’
operational status (open or closed). The travel times between stations are exponentially
distributed, with an average of 1/𝜇𝑖 𝑗 , where 𝜇𝑖 𝑗 denotes the return rate. These arrival
and return rates remain constant and are determined solely by whether stations 𝑖 and 𝑗

are open.
The operator faces the task of determining the fleet size 𝑛 at any given time, with the

fleet only allowed to grow during the expansion process. Each new vehicle acquisition
comes with a procurement cost of 𝑐𝑝 . The fleet size must be sufficiently large to serve
at least a fraction 𝛼 of all customers, meeting the minimum service level requirement
for the AMoD system. Throughout the development of the AMoD service, it is crucial
to keep the service level constant to offset potential learning effects that could deter
customers from using the service [4]. To achieve the minimum service level 𝛼 at all
open stations, the operator can rebalance vehicles between stations 𝑖 and 𝑗 , incurring a
cost of 𝑐𝑟

𝑖 𝑗
. The operator receives a contribution margin of 𝛿𝑖 𝑗 for each served customer

traveling from station 𝑖 to station 𝑗 , representing the payoff minus direct operating costs
like fuel and periodic repairs.

As a result, the problem involves two interconnected decision-making aspects: first,
determining the optimal investment schedule, which entails deciding when and where
to open new stations and how many vehicles to procure at each stage, and second,
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managing the fleet’s operation, which involves making decisions on vehicle rebalancing.
In the following, we present our model to determine the optimal fleet and then propose
an algorithm to determine the optimal investment sequence.

3.1 Semi-Markov Decision Process for Determining the Optimal Fleet Size

We see the optimal investment scheduling problem of AMoD operators as a Semi-
Markov Decision Process (SMDP) because of the nature of the investment problem.
In an SMDP, the system’s state evolves according to a semi-Markov process, and the
decision-maker selects actions based on the current state.

States Each state 𝑠 ∈ S describes the current fleet of size 𝑛 and the currently opened
stations, given by 𝑥𝑖 = 1 if station 𝑖 ∈ R is open, 0 otherwise.

𝑠 = ⟨𝑛,𝑥1, . . . , 𝑥𝑅⟩

Each state 𝑠 is associated with an operational profit 𝑝(𝑠) per period, which is
calculated by subtracting the rebalancing costs from the contribution margins and an
acquisition cost 𝑐(𝑠) related to the procurement cost of all vehicles and the cost incurred
due to opening station. Apparently, we only need to consider states with positive op-
erational profit in our investment scheme. Regarding this point, the set of states with
positive operational profit and the starting state is denoted as S. Also, if a state 𝑠′ con-
tains all open stations in a state 𝑠, we can easily see and prove that 𝑝(𝑠′) ≥ 𝑝(𝑠). For
referencing the fleet size and open stations of a specific state 𝑠, the notation 𝑛 (𝑠) and
𝑥𝑖 (𝑠) are utilized, respectively. Then, the value of 𝑐(𝑠) is determined as follows:

𝑐(𝑠) = 𝑛(𝑠) · 𝑐𝑝 +
∑︁
𝑖∈R

𝑥𝑖 (𝑠)𝑐𝑏𝑖

Actions Actions refer to the operator’s procurement decision, resulting in a state tran-
sition into the target state 𝑡 ∈ S. Every state 𝑠 ∈ S permits transitions to all other states
such that no stations are being closed, i.e., 𝑠→ 𝑡 exists if 𝑥𝑖 (𝑠) ≤ 𝑥𝑖 (𝑡) ∀𝑖.

The time 𝜏(𝑠, 𝑡) necessary for a state transition from state 𝑠 to a state 𝑡 depends on
the operational profit 𝑝(𝑠) and the necessary investment volume 𝐶 (𝑠, 𝑡) where

𝐶 (𝑠, 𝑡) = 𝑐(𝑡) − 𝑐(𝑠) = (𝑛 (𝑡) −𝑛 (𝑠)) · 𝑐𝑝 +
∑︁
𝑖∈R
(𝑥𝑖 (𝑡) − 𝑥𝑖 (𝑠)) · 𝑐𝑏𝑖 .

Given that we do not consider partial states (e.g., a state without optimal fleet size)
equivalent to 𝑝(𝑠) as the maximum profit corresponding to state 𝑠, the optimal decision
is to transition to the next state as soon as possible. Thus,

𝜏(𝑠, 𝑡) = 𝐶 (𝑠, 𝑡)
𝑝(𝑠)

We observe that if |𝑡 | ≥ |𝑠 | +2, it is better to transition to an immediate state 𝑠′ where

|𝑠 | < |𝑠′ | < |𝑡 | since
𝐶 (𝑠, 𝑡)
𝑝(𝑠) ≥

𝐶 (𝑠, 𝑠′)
𝑝(𝑠) +

𝐶 (𝑠′, 𝑡)
𝑝(𝑠′) because 𝑝(𝑠) ≤ 𝑝(𝑠′) and 𝐶 (𝑠, 𝑡) =

𝐶 (𝑠, 𝑠′) +𝐶 (𝑠′, 𝑡). Therefore, we only need to consider actions between two consecutive
states in any optimal investment scheme.
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3.2 Mathematical model for calculating optimal profit and minimum acquisition
cost

To compute the operational profit 𝑝(𝑠) per state 𝑠 ∈ S, we formulate the rebalancing
problem as an open-queueing network (in line with, e.g., [3, 7, 9, 11]), and optimize
over it to maximize operational profits. Given a set of available stations, the model
determines the necessary fleet size to reach the service level and rebalance. Since we
want to maximize profit and minimize the corresponding acquisition cost, our objective
function is hierarchical since we optimize the second objective after minimizing the first
objective.

To start, we denote 𝑓𝑖 𝑗 , 𝑒𝑖 𝑗 (𝑖 ≠ 𝑗) as the number of occupied and empty vehicles
traveling from 𝑖 to 𝑗 and 𝑒𝑖𝑖 as the number of idle vehicles currently parked at station
𝑖. To determine the maximal operational profit per period for state 𝑠, we solve (1) -
(7) for all opening stations in 𝑅𝑠 = {𝑖 ∈ R|𝑥𝑖 (𝑠) = 1}. The mathematical formulation is
expressed as follows:

𝑃(𝑜𝑏 𝑗1, 𝑜𝑏 𝑗2) =
(
max 𝛼

(∑︁
𝑖∈𝑅𝑠

∑︁
𝑗∈𝑅𝑠

𝜆𝑖 𝑗𝛿𝑖 𝑗

−
∑︁
𝑖∈𝑅𝑠

∑︁
𝑗∈𝑅𝑠

𝑐𝑟𝑖 𝑗𝜇𝑖 𝑗𝑒𝑖 𝑗

)
,min

(
𝑛 · 𝑐𝑝 +

∑︁
𝑖∈𝑅𝑠

𝑐𝑏𝑖

))
(1)

subject to

𝜆𝑖 𝑗 = 𝜇𝑖 𝑗 𝑓𝑖 𝑗 , ∀𝑖, 𝑗 ∈ 𝑅𝑠 (2)∑︁
𝑗∈𝑅𝑠\{𝑖}

𝜇 𝑗𝑖𝑒 𝑗𝑖 ≤
∑︁

𝑗∈𝑅𝑠\{𝑖}
𝜆𝑖 𝑗 , ∀𝑖 ∈ 𝑅𝑠 (3)∑︁

𝑗∈𝑅𝑠

𝜆𝑖 𝑗 +
∑︁
𝑗∈𝑅𝑠

𝜇𝑖 𝑗𝑒𝑖 𝑗 =
∑︁
𝑗∈𝑅𝑠

𝜇 𝑗𝑖𝑒 𝑗𝑖 +
∑︁
𝑗∈𝑅𝑠

𝜆 𝑗𝑖 , ∀𝑖 ∈ 𝑅𝑠 (4)

𝛼

1−𝛼 ≤ 𝑒𝑖𝑖 , ∀𝑖 ∈ 𝑅𝑠 (5)∑︁
𝑖, 𝑗∈𝑅𝑠

(
𝑒𝑖 𝑗 + 𝑓𝑖 𝑗

)
= 𝑛, (6)

𝑒𝑖 𝑗 , 𝑓𝑖 𝑗 ≥ 0, ∀𝑖, 𝑗 ∈ 𝑅𝑠 (7)

The objective function (1) maximizes the profit, which consists of the contribution
margin of all served customers minus rebalancing costs, multiplied by the availability
𝛼 to account for those customers who cannot be served, and then minimizes the cor-
responding set-up fee. Constraints (2)-(4) are linearizations of the flow constraints in
queueing networks and almost directly follow from [3]. Unlike [3], we require that the
system achieve a service level of at least 𝛼 and thus remove any notion of an upper
bound on demand. Constraints (5) set the required “safety stock”, i.e., the number of
vehicles that must remain at station 𝑖 in the steady state to fulfill at least a fraction 𝛼 of
the demand. These constraints follow the fixed population mean approximation in open
queueing networks due to [14]. Constraint (6) bounds the fleet size, and constraints (7)
define the domain.
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4 Solution Approach

Remember that in our problem, the optimal time for opening a new station depends on
the profit of already open stations, or it is a set-dependent cost. Because the number of
such sets is exponential in terms of the number of stations, a mathematical formulation
may require too many variables and constraints; therefore, it seems impractical to model
and solve the corresponding formulation using state-of-the-art solvers.

We can consider our investment problem as a variant of the well-known Traveling
Salesman Problem (TSP) with set-dependent travel costs. Actually, considering a permu-
tation (𝑢1, 𝑢2, .., 𝑢𝑛) that presents an order, we open stations. Each subpath (𝑢1, 𝑢2, .., 𝑢𝑖)
is mapped to a state 𝑠𝑖 where 𝑥𝑘 (𝑠𝑖) = 1 if 𝑢 𝑗 = 𝑘 for some 𝑗 = 1..𝑖. The cost between
two consecutive states, 𝑠𝑖 and 𝑠𝑖+1, is calculated by the formulations in Section 3.1,
which depends on the set of open stations in 𝑠𝑖 . In other words, it is a set-dependent cost
function. While there is much research for TSP in general and several research studies
on order-dependent travel cost TSP [1, 2] in particular, our work seems the first of this
kind. In the subsequent sections, we will present part of our attempt to address this
challenging question.

4.1 Heuristic strategy for A* algorithm

We can model our investment problem as a shortest-path problem. Let us consider a graph
𝐺 = (𝑉, 𝐴) where each node 𝑛𝑠 ∈ 𝑉 corresponds to the state 𝑠. Each arc (𝑛𝑠 , 𝑛𝑠′ ) ∈ 𝐴
corresponds to a feasible action between two consecutive states 𝑠 and 𝑠′ with cost
𝐶 (𝑠, 𝑠′). Finding the shortest investment time is equivalent to finding the shortest path
from the node 𝑛𝑠0 to the node 𝑛𝑠 𝑓 where 𝑠0 and 𝑠 𝑓 are the initial state and the final state,
respectively. Since we can define a 1-1 mapping between 𝑠 and 𝑛𝑠 , we use 𝑠 instead of
𝑛𝑠 subsequently to simplify the notation.

To solve this shortest path problem, we rely on the A* algorithm [8]. Given a state 𝑠,
unlike the classic Dĳkstra algorithm, which only evaluates the cost of the shortest path
𝑔(𝑠) from the source 𝑠0 to 𝑠, A* also evaluates the cost ℎ(𝑠) from 𝑠 to the final state 𝑠 𝑓 ,
and the cost for each node 𝑠 is then 𝑓 (𝑠) = 𝑔(𝑠) + ℎ(𝑠) instead of 𝑔(𝑠). The algorithm
A* can always find the shortest path from 𝑠0 to 𝑠 𝑓 if ℎ(𝑠) does not exceed the cost of the
shortest path from 𝑠 to 𝑠 𝑓 for any 𝑠 (admissible property [8]). Otherwise, A* becomes a
heuristic algorithm. Due to the space, we present our preliminary results of both exact
and approximate A* algorithms we developed for the problem.

Simple heuristic for A* We start with some of the simplest heuristics for A*. Given
the current, next, and final states be 𝑠, 𝑠′, and 𝑠 𝑓 , the cost of the shortest path from 𝑛0

to 𝑠′, 𝑔(𝑠′), is 𝑔(𝑠′) = 𝑔(𝑠) + 𝑐 (𝑠′ )−𝑐 (𝑠)
𝑝 (𝑠) . Several simple ways to calculate ℎ(𝑠′) are as

follows (where 𝑒ℎ and 𝑎ℎ denote exact and approximate heuristics, respectively):

𝑒ℎ1 (𝑠′) =
𝑐(𝑠 𝑓 ) − 𝑐(𝑠′)

𝑃𝑅−1
(8)

𝑎ℎ1 (𝑠′) =
𝑐(𝑠 𝑓 ) − 𝑐(𝑠′)

𝑝(𝑠′) (9)
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Heuristic functions (8), (9) underestimate and overestimate the shortest time of the
optimal path from 𝑠0 to 𝑠 𝑓 that passes through 𝑠′. Here, 𝑃𝑅−1 denotes the maximum
profit for any state having 𝑅− 1 open stations. Using a linear combination, we obtain
other heuristics where 𝛾 ∈ [0,1] is a parameter that can be a fixed constant or dynamically
adjusted during the execution of the algorithm. We aim to test whether we can obtain
simple heuristics that may not be optimal but can quickly find reasonable solutions.

𝑎ℎ2 (𝑠′) = 𝛾𝑒ℎ1 (𝑠′) + (1−𝛾)𝑎ℎ1 (𝑠′) (10)

Stronger lower bound heuristics for A* Now assume 𝑠 = 𝑠1 is the current state. Let
𝑠1, 𝑠2, .., 𝑠𝑘 be a sequence of states where 𝑠𝑖+1 is obtained from 𝑠𝑖 by adding a new station
and 𝑠𝑘 = 𝑠 𝑓 be the final state where all stations are open. The total transition time from
state 𝑠1 to state 𝑠𝑘 , 𝜏(𝑠1, .., 𝑠𝑘), is:

𝜏(𝑠1, .., 𝑠𝑘) =
𝑐(𝑠2) − 𝑐(𝑠1)

𝑝(𝑠1)
+ 𝑐(𝑠3) − 𝑐(𝑠2)

𝑝(𝑠2)
+ . . .+ 𝑐(𝑠𝑘) − 𝑐(𝑠𝑘−1)

𝑝(𝑠𝑘−1)
(11)

We denoteΔ𝑐 (𝑠𝑖) as a lower bound of the difference of the acquisition cost 𝑐(𝑠𝑖+1)−𝑐(𝑠𝑖)
between two consecutive states 𝑠𝑖 and 𝑠𝑖+1. Let 𝑃𝑚 be a state with the maximum profit
among all states with 𝑚 opening stations. We can find the value of 𝑃𝑚 by solving the
model (22) - (34) (see Appendix), which aims to maximize the profit and minimize the
corresponding acquisition cost given a fixed number of stations that can be opened. Then,
we obtain 𝑝(𝑠𝑖) ≤ 𝑃 |𝑠𝑖 | ,∀𝑖 = 1, . . . , 𝑘 . The values of 𝑃 |𝑠𝑖 | define an increasing sequence
since we open more stations. Therefore, we have 𝑝(𝑠𝑖) ≤ 𝑃 |𝑠𝑖 | ≤ 𝑃 |𝑠𝑘−1 | = 𝑃𝑅−1,∀𝑖 =
1, . . . , 𝑘−1. Given that 𝑐(𝑠𝑖+1) −𝑐(𝑠𝑖) ≥ Δ𝑐 (𝑠𝑖) or 𝑐(𝑠𝑖+1) −𝑐(𝑠𝑖) −Δ𝑐 (𝑠𝑖) ≥ 0, therefore,
∀𝑖 = 1, . . . , 𝑘 −1 we have:

𝑐(𝑠𝑖+1) − 𝑐(𝑠𝑖)
𝑝(𝑠𝑖)

=
Δ𝑐 (𝑠𝑖) + (𝑐(𝑠𝑖+1) − 𝑐(𝑠𝑖) −Δ𝑐 (𝑠𝑖))

𝑝(𝑠𝑖)
(12)

=
Δ𝑐 (𝑠𝑖)
𝑝(𝑠𝑖)

+
𝑐(𝑠𝑖+1) − 𝑐(𝑠𝑖) −Δ𝑐 (𝑠𝑖)

𝑝(𝑠𝑖)
(13)

≥
Δ𝑐 (𝑠𝑖)
𝑃 |𝑠𝑖 |

+
𝑐(𝑠𝑖+1) − 𝑐(𝑠𝑖) −Δ𝑐 (𝑠𝑖)

𝑃𝑅−1
(14)

and consequently

𝜏(𝑠1, . . . , 𝑠𝑘) ≥
(
𝑘−1∑︁
𝑖=1

Δ𝑐 (𝑠𝑖)
𝑃 |𝑠𝑖 |

)
+
𝑐(𝑠𝑘) − 𝑐(𝑠1) −

∑𝑘−1
𝑖=1 Δ𝑐 (𝑠𝑖)

𝑃𝑅−1
(15)

Inequality (15) gives us a more robust lower bound than the simple one presented in (8).

Evaluate the lower bound 𝚫𝒄 (𝒔1) From (6), we see that with each state 𝑆, the optimal
number of vehicles 𝑛 is equal to

∑
𝑖, 𝑗∈𝑆 (𝑒𝑖 𝑗 + 𝑓𝑖 𝑗 ). Following 𝑜𝑏 𝑗2, when we open a

new station, the acquisition cost includes the cost of station setup and the new vehicle
acquisition cost. We assume that the difference in acquisition cost between two consec-
utive states depends on the values 𝑓𝑖 𝑗 , 𝑒𝑖 𝑗 of the new station 𝑖. With this assumption,
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the minimum acquisition cost of opening station 𝑖 from a given state 𝑆 (𝑖 ∉ 𝑆) to obtain
maximum profit is determined by Δ𝑐 (𝑆, 𝑖). In other words, Δ𝑐 (𝑆, 𝑖) presents the lower
difference in acquisition cost between two consecutive states in which the next state is
reached by opening station 𝑖 from the state 𝑆.

Δ𝑐 (𝑆, 𝑖) =
∑︁
𝑗∈𝑆
(𝑒𝑖 𝑗 + 𝑒 𝑗𝑖 + 𝑓𝑖 𝑗 + 𝑓 𝑗𝑖)𝑐𝑝 + 𝑐𝑖𝑏 ∀𝑖 ∉ 𝑆 (16)

Then, 𝑐(𝑠𝑖+1) − 𝑐(𝑠𝑖) ≥ min𝑜∉𝑠𝑖 Δ𝑐 (𝑠𝑖 , 𝑜) ∀𝑖 = 1,2, . . . , 𝑘 −1.
Next, we indicate how to obtain the lower bound Δ𝑐 (𝑠𝑖 , 𝑜) using equations (16).

Assuming 𝑇 ⊂ R be the state with any 𝑡 stations not in 𝑆, 𝑡 < 𝑅 − |𝑆 |, 𝑆 ∩𝑇 = ∅. Let
𝑜 ∉ 𝑆∪𝑇 , and we evaluate Δ𝐶 (𝑆, 𝑡, 𝑖) - the minimum difference acquisition cost when
building a new station 𝑖 starts from state 𝑆∪𝑇 with any state 𝑇 such that |𝑇 | = 𝑡.

Underestimate acquisition cost We rewrite Δ𝐶 (𝑆, 𝑡, 𝑖) using equation (16) as follows:

Δ𝐶 (𝑆, 𝑡, 𝑖) = min
𝑇⊂R, |𝑇 |=𝑡

∑︁
𝑗∈𝑆∪𝑇

(𝑒𝑖 𝑗 + 𝑒 𝑗𝑖 + 𝑓𝑖 𝑗 + 𝑓 𝑗𝑖)𝑐𝑝 + 𝑐𝑏𝑖 (17)

and since 𝑒𝑖 𝑗 , 𝑒 𝑗𝑖 and 𝑐𝑝 are non-negative, we have

Δ𝐶 (𝑆, 𝑡, 𝑖) ≥ min
𝑇⊂R, |𝑇 |=𝑡

∑︁
𝑗∈𝑆∪𝑇

( 𝑓𝑖 𝑗 + 𝑓 𝑗𝑖)𝑐𝑝 + 𝑐𝑏𝑖 (18)

Since 𝑐𝑏
𝑖
+∑ 𝑗∈𝑆 ( 𝑓𝑖 𝑗 + 𝑓 𝑗𝑖)𝑐𝑝 is a constant, we will develop a lower bound for the sum∑

𝑗∈𝑇 ( 𝑓𝑖 𝑗 + 𝑓 𝑗𝑖)𝑐𝑝 . Apparently,
∑

𝑗∈𝑇 ( 𝑓𝑖 𝑗 + 𝑓 𝑗𝑖)𝑐𝑝 cannot be smaller than the sum of |𝑇 |
smallest values of ( 𝑓𝑖 𝑗 + 𝑓 𝑗𝑖)𝑐𝑝 where 𝑗 ∉ 𝑆∪{𝑖}. Therefore, we developed the Algorithm
1 to evaluate a lower bound of Δ𝐶 (𝑆, 𝑡, 𝑖).

Algorithm 1 Lower bound evaluation of acquisition cost
Require: 𝑆, 𝑖, 𝑡

Ensure: A lower bound of Δ𝐶 (𝑆, 𝑡, 𝑖)
1: Let 𝛼← 𝑐𝑏

𝑖
+∑ 𝑗∈𝑆 ( 𝑓𝑖 𝑗 + 𝑓 𝑗𝑖)𝑐𝑝

2: Sort ( 𝑓𝑖 𝑗 + 𝑓 𝑗𝑖) 𝑗∈R\(𝑆∪{𝑖}) increasingly.
3: Let ( 𝑓𝑖 𝑗1 + 𝑓 𝑗1𝑖) ≤ ( 𝑓𝑖 𝑗2 + 𝑓 𝑗2𝑖) ≤ ... ≤ ( 𝑓𝑖 𝑗𝑘 + 𝑓 𝑗𝑘 𝑖) ≤ ... be the array after sorting.
4: Let 𝛽←∑𝑡

𝑘=1 ( 𝑓𝑖 𝑗𝑘 + 𝑓 𝑗𝑘 𝑖)𝑐
𝑝

5: Return 𝛼+ 𝛽

Using Algorithm 1, we have that

Δ𝑐 (𝑠𝑖 , 𝑜) ≥ Δ𝐶 (𝑠1, 𝑖−1, 𝑜) ≥ 𝑐𝑏𝑜 +
∑︁
𝑗∈𝑠1

( 𝑓𝑜 𝑗 + 𝑓 𝑗𝑜)𝑐𝑝 +
𝑖−1∑︁
𝑘=1
( 𝑓𝑜 𝑗𝑘 + 𝑓 𝑗𝑘𝑜)𝑐𝑝 (19)
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and consequently,

𝑐(𝑠𝑖+1) − 𝑐(𝑠𝑖) ≥ min
𝑜∉𝑠𝑖

Δ𝑐 (𝑠𝑖 , 𝑜) (20)

≥ min
𝑜∉𝑠𝑖

(
𝑐𝑏𝑜 +

∑︁
𝑗∈𝑠1

( 𝑓𝑜 𝑗 + 𝑓 𝑗𝑜)𝑐𝑝 +
𝑖−1∑︁
𝑘=1
( 𝑓𝑜 𝑗𝑘 + 𝑓 𝑗𝑘𝑜)𝑐𝑝

)
(21)

UseΔ𝑐 (𝑠𝑖) =min𝑜∉𝑠𝑖
(
𝑐𝑏𝑜 +

∑
𝑗∈𝑠1 ( 𝑓𝑜 𝑗 + 𝑓 𝑗𝑜)𝑐𝑝 +

∑𝑖−1
𝑘=1 ( 𝑓𝑜 𝑗𝑘 + 𝑓 𝑗𝑘𝑜)𝑐𝑝

)
in inequality (15),

we obtain a lower bound heuristic for A*, called 𝑒ℎ2, which is stronger than the simple
one 𝑒ℎ1. However, we need to solve it online.

We obtain a weaker lower bound version of 𝑒ℎ2 by fixing 𝑠1, e.g., to the initial state
𝑠0. Still, this strategy may reduce the total running time since the value of Δ𝑐 (𝑠𝑖) needs
to be calculated only once, while with 𝑒ℎ2, we will calculate Δ𝑐 (𝑠𝑖) for each extracted
state 𝑠 = 𝑠1 from the queue. Let 𝑒ℎ3 be this lower bound heuristic.

5 Numerical Experiments

In this section, we present the numerical design and then report and compare the
experiment results of exact and approximate algorithms in finding an optimal schedule
investment. The algorithm and the formulations were written in C++, and the MILP
models were solved by CPLEX 22.1.1. The experiments were run on an AMD Ryzen
3 3100 machine with a 4-core processor, 3.59 GHz, and 16GB of RAM on a 64-bit
Windows operating system.

5.1 Numerical Design

We conducted experiments on randomly generated datasets, following a similar approach
as Martin et al. [7]. To model the real-world transportation network structure, our datasets
vary in size (𝑅 ∈ {7,9,16,19,25} and geographic distributions of station locations,
including circular (C), hexagonal (H), and quadratic (Q) layouts.

We randomly sample hourly arrival rates from a uniform distribution U[80,120]
(BAL). We generate additional instances for larger datasets to reflect imbalances (IMB)
in arrival rates. Arrival rates are higher near the city center (U[110,140]) and lower in
suburban areas (U[60,90]). There are a total of 11 instances, which include 7 balance
instances and 4 imbalance instances. Across all instances, customers travel to other
stations with equal probability. Vehicles require a time of 𝑡𝑖 𝑗 = 3/60+ 𝑑𝑖 𝑗/25 hours for
the trip from station 𝑖 to station 𝑗 , where 𝑑𝑖 𝑗 represents the Euclidean distance between the
two stations. The minimum service level for customer retention is 𝛼 = 0.5. Rebalancing a
vehicle costs $0.3 per kilometer. Transporting a customer between two locations yields
a contribution of $0.3 per kilometer, representing revenues of approximately $1 per
kilometer minus direct costs. Procurement costs (𝑐𝑝) amount to $1. The operating cost
for each opening station is randomly generated fromU[1000,3000].

The investment starts with a set of initially open stations. We assume that initially,
there is a budget of 𝐵 = 10000, which is optimally utilized to construct the initial
stations to maximize the initial profit. With smaller instances (less than 10 stations), we
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use a dynamic budget of 500× 𝑅 to avoid opening too many stations at the initial state.
We simulate this process through formulations similar to (22) - (34) (see Appendix).
With this budget, the initial state has 5− 7 open stations for larger instances and 2− 3
for instances with less than 10 stations. Then, the A* algorithm will find an optimal
investment plan starting from the initial state with a certain number of already opened
stations obtained from the formulations.

5.2 Experiment Results

In the following, we assess two points:

1. We compare the performance of the exact A* heuristics and Dĳkstra algorithm
based on the execution time, the number of states explored, and the number of states
remaining in the priority queue.

2. We compare the performance of approximate A* heuristics in terms of optimal gap,
and execution time.

Table 1 analyzes the performance of exact A* algorithms and the Dĳkstra algorithm
by reporting their running time in seconds (column Time (s)), the number of nodes
extracted by the A* algorithm (column Exp.), and the number of nodes still in the queue
(column Rem.) with the optimal value (column Opt.) obtained from all exact algorithms.

Table 1. Results of exact A* heuristic and Dĳkstra algorithms

Instance Opt. Dĳkstra A* + 𝑒ℎ1 A* + 𝑒ℎ2 A* + 𝑒ℎ3

Time (s) Exp. Rem. Time (s) Exp. Rem. Time (s) Exp. Rem. Time (s)
C-7-BAL 1563.19 <1 17 144 <1 12 10 <1 12 12 <1
H-7-BAL 1524.71 <1 17 13 <1 11 9 <1 12 12 <1
Q-9-BAL 435.53 <1 33 31 <1 14 25 <1 20 25 <1
Q-16-BAL 420.87 1 392 173 1 227 236 1 243 231 1
Q-16-IMB 723.69 1 340 176 1 150 208 1 170 195 1
C-19-BAL 1054.83 14 2733 2060 12 1453 2234 9 1603 2156 9
C-19-IMB 1681.48 14 2292 1473 11 902 1421 7 1103 1378 7
H-19-BAL 1028.32 13 2303 1710 11 903 1568 7 1149 1656 8
H-19-IMB 1833.02 14 1812 1720 10 592 1299 5 888 1385 6
Q-25-BAL 711.31 1313 140878 119407 1032 35068 84174 452 44551 90771 508
Q-25-IMB 1185.37 1311 124532 105743 978 18440 55015 328 24975 61453 372

The experiments show that the time required to open all stations is significantly
longer for datasets with imbalanced arrival rates than for balanced datasets due to
decreased profit margins. Since 𝑒ℎ2 is the strongest lower bound heuristic, we see that
the corresponding running time, number of expanded nodes, and number of remaining
nodes are the smallest among all the exact methods. Table 1 indicates that utilizing
the A* algorithm with 𝑒ℎ2 has significantly reduced both the computation time and
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the number of vertices explored compared to underestimating the shortest time of the
optimal path 𝑒ℎ1. The exact heuristic 𝑒ℎ3 is also quite effective, providing computational
stability without the need for online updates for each node.

We can also observe that the number of visited vertices and execution time increase
exponentially as the number of stations increases. Therefore, we experimented with
several heuristic approximation approaches in the A* search algorithm to quickly find a
sufficiently good investment schedule. Table 2 reports the performance of approximate
A* search algorithms with respect to different values of 𝛾. Apparently, the larger value
of 𝛾 leads to better objective values and longer running time. While the heuristic
approximation approaches achieve excellent time efficiency and relatively small gaps,
they are highly dependent on the data. When we modify the range of the values of some
parameters within the instances, these approaches become less effective. However, they
remain valuable when dealing with datasets with a large number of stations.

Table 2. Non-bounded approximation algorithms with simple heuristics

Instance Opt. A* + 𝑎ℎ1 A* + 𝑎ℎ2 (𝛾 = 0.3) A* + 𝑎ℎ2 (𝛾 = 0.5) A* + 𝑎ℎ2 (𝛾 = 0.7)
Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

C-7-BAL 1563.19 9.01 <1 4.34 <1 0.00 <1 0.00 <1
H-7-BAL 1524.71 8.85 <1 4.37 <1 4.37 <1 0.00 <1
Q-9-BAL 435.53 4.63 <1 1.29 <1 1.29 <1 0.00 <1
Q-16-BAL 420.87 7.18 <1 3.86 <1 1.78 <1 0.00 1
Q-16-IMB 723.69 6.00 <1 3.82 <1 1.47 <1 0.00 1
C-19-BAL 1054.83 12.76 <1 7.78 <1 0.94 <1 0.00 3
C-19-IMB 1681.48 17.25 <1 9.62 <1 0.33 <1 0.00 3
H-19-BAL 1028.32 6.40 1 2.11 <1 1.20 <1 0.00 2
H-19-IMB 1833.02 11.98 <1 9.19 <1 4.48 <1 0.00 1
Q-25-BAL 711.31 15.10 1 10.08 1 6.84 1 0.53 39
Q-25-IMB 1185.37 11.87 1 7.28 1 3.39 1 1.26 15

Finally, we report in Table 3 the performance of weighted A* variants where we
multiply the values of 𝑒ℎ2 and 𝑒ℎ3 by either 1.05 or 1.1. The best solutions returned by
this variant ensure that the gap between the optimal solutions and those best solutions is
at most 5% or 10%, respectively. While this heuristic is slower than the ones mentioned
in Table 2, it ensures the optimal gap that the approximate heuristics mentioned in Table
2 can not. Also, it is several times faster than the exact heuristic. Results in Table 3
indicate that the optimal gap obtained by those approximation algorithms is very small
(less than 1% for all instances). This again highlights the effectiveness of both heuristics
𝑒ℎ2 and 𝑒ℎ3.

To conclude the section, we observe that for those benchmark instances, exact meth-
ods can provide optimal solutions in a reasonable amount of time for those benchmark
instances. The proposed lower bound heuristic 𝑒ℎ2 beats simple heuristic 𝑒ℎ1 and the
Dĳkstra algorithm. The simple approximate A* heuristic can give quite good results
with a small computation time, while the weighted A* heuristic based on the best lower



12 Le et al.

Table 3. Bounded approximation algorithms based on stronger lower-bound heuristic

Instance Opt. A* + 1.1∗ 𝑒ℎ2 A* + 1.1∗ 𝑒ℎ3 A* + 1.05∗ 𝑒ℎ2 A* + 1.05∗ 𝑒ℎ3

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)
C-7-BAL 1563.19 0.00 <1 0.00 <1 0.00 <1 0.00 <1
H-7-BAL 1524.71 0.00 <1 0.00 <1 0.00 <1 0.00 <1
Q-9-BAL 435.53 0.67 <1 0.67 <1 0.00 <1 0.00 <1
Q-16-BAL 420.87 0.17 1 0.13 1 0.13 1 0.13 1
Q-16-IMB 723.69 0.73 1 0.00 1 0.00 1 0.00 1
C-19-BAL 1054.83 0.40 6 0.09 6 0.09 7 0.09 8
C-19-IMB 1681.48 0.10 4 0.04 5 0.04 5 0.04 6
H-19-BAL 1028.32 0.24 3 0.07 4 0.07 5 0.01 6
H-19-IMB 1833.02 0.27 4 0.07 4 0.14 4 0.00 5
Q-25-BAL 711.31 0.26 194 0.08 241 0.04 306 0.03 370
Q-25-IMB 1185.37 0.43 117 0.09 135 0.10 181 0.00 241

bound heuristic can reduce the computation time by about half and maintain a small
optimal gap.

6 Conclusion

In this research, we study an investment problem that arises in the context of Autonomous
Mobility on-Demand systems. Given some already open stations, the question is to
determine the optimal order of opening the remaining stations to minimize the total
opening time. We model this investment problem as a Semi-Markov Decision Process
and view this problem as a variant of the TSP problem, where the cost between two
vertices 𝑠 and 𝑡 is dependent on the set of already visited vertices belonging to the
path from the source vertex to vertex 𝑠. This special cost function makes the problem
impossible to model and solve with current mixed integer solver technology. We then
develop and solve this new variant using the A* algorithm. The experiment results show
that the A* algorithm can reduce by half the running time of the Dĳkstra algorithm and
a simple, exact A* algorithm. Regarding the approximate A* search, the result shows
that we can obtain reasonable solutions with a small computation effort.

It is still a challenging task to solve larger problems. Therefore, we are developing
and testing more robust lower-bound heuristics for exact A* search. Also, we are testing
new approximate heuristics for A* search that take ideas from the lower bound heuristics.
The initial results show that we can solve larger instances in a shorter time using both
methods. Also, the approximate A* heuristic gives similar results to those returned by
the exact A* heuristic in many instances.
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Appendix

Evaluate profit’s upper bound for any state opening 𝒎 stations

Assuming that we can open 𝑚 stations, the following mixed integer formulation (22) -
(34). will help us determine the set of stations to open and the number of vehicles to
acquire to maximize the profit while minimizing the corresponding acquisition cost.
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𝑃(𝑜𝑏 𝑗3, 𝑜𝑏 𝑗4) =
(
max 𝛼

(∑︁
𝑖∈R

∑︁
𝑗∈R

𝜆𝑖 𝑗𝛿𝑖 𝑗

−
∑︁
𝑖∈R

∑︁
𝑗∈R

𝑐𝑟𝑖 𝑗𝜇𝑖 𝑗𝑒𝑖 𝑗

)
,min 𝑛 · 𝑐𝑝 +

∑︁
𝑖∈R

𝑐𝑏𝑖 𝑦𝑖

)
(22)

subject to

𝜇𝑖 𝑗 𝑓𝑖 𝑗 = 𝜆𝑖 𝑗𝑥𝑖 𝑗 , ∀𝑖, 𝑗 ∈ R (23)∑︁
𝑗∈R\{𝑖}

𝜇 𝑗𝑖𝑒 𝑗𝑖 ≤
∑︁

𝑗∈R\{𝑖}
𝜆𝑖 𝑗𝑥𝑖 𝑗 , ∀𝑖 ∈ R (24)∑︁

𝑗∈R
𝜆𝑖 𝑗𝑥𝑖 𝑗 +

∑︁
𝑗∈R

𝜇𝑖 𝑗𝑒𝑖 𝑗 =
∑︁
𝑗∈R

𝜇 𝑗𝑖𝑒 𝑗𝑖 +
∑︁
𝑗∈R

𝜆 𝑗𝑖𝑥 𝑗𝑖 , ∀𝑖 ∈ R (25)

𝛼

1−𝛼 · 𝑦𝑖 ≤ 𝑒𝑖𝑖 , ∀𝑖 ∈ R (26)∑︁
𝑖, 𝑗∈R

(
𝑒𝑖 𝑗 + 𝑓𝑖 𝑗

)
= 𝑛, (27)

𝑒𝑖 𝑗 + 𝑓𝑖 𝑗 ≤ 𝑀𝑥𝑖 𝑗 , ∀𝑖, 𝑗 ∈ R (28)
𝑥𝑖 𝑗 ≤ 𝑦𝑖 , ∀𝑖, 𝑗 ∈ R (29)
𝑥𝑖 𝑗 ≤ 𝑦 𝑗 , ∀𝑖, 𝑗 ∈ R (30)

𝑦𝑖 + 𝑦 𝑗 − 𝑥𝑖 𝑗 ≤ 1 ∀𝑖, 𝑗 ∈ R (31)∑︁
𝑖∈R

𝑦𝑖 = 𝑚 (32)

𝑒𝑖 𝑗 , 𝑓𝑖 𝑗 ≥ 0, ∀𝑖, 𝑗 ∈ R (33)
𝑥𝑖 𝑗 , 𝑦𝑖 ∈ {0,1}, ∀𝑖, 𝑗 ∈ R (34)

Strategy for generating initial state given budget B

Given the budget 𝐵, the budget is optimally allocated to construct the initial state.
The budget limits the number of stations and initial vehicles that can be procured
initially, ensuring that the system achieves a predetermined initial profit for development
purposes. We can obtain the optimal investment for the initial state using the formulations
(22) - (34) and substitute the constraints (32) by the budget constraints (35) as follow:

𝑛 · 𝑐𝑝 +
∑︁
𝑖∈R

𝑐𝑏𝑖 𝑦𝑖 ≤ 𝐵, (35)


