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ABSTRACT 

Sepsis is characterised by a dysfunctional host response to infection culminating in life-threatening 

organ failure that requires complex patient management and rapid intervention.  Timely diagnosis 

of the underlying cause of sepsis is crucial, and identifying those at risk of complications and death 

is imperative for triaging treatment and resource allocation.  Here, we explored the potential of 

explainable machine learning models to predict mortality and causative pathogen in sepsis 

patients.  By using a modelling pipeline employing multiple feature selection algorithms, we 

demonstrate the feasibility to identify integrative patterns from clinical parameters, plasma 

biomarkers and extensive phenotyping of blood immune cells.  Whilst no single variable had 

sufficient predictive power, models that combined five and more features showed a macro area 

under the curve (AUC) of 0.85 to predict 90 day mortality after sepsis diagnosis, and a macro 

AUC of 0.86 to discriminate between Gram-positive and Gram-negative bacterial infections.  

Parameters associated with the cellular immune response contributed the most to models 

predictive of 90 day mortality, most notably, the proportion of T cells among PBMCs, together 

with expression of CXCR3 by CD4+ T cells and CD25 by mucosal-associated invariant T (MAIT) 

cells.  Frequencies of Vδ2+ γδ T cells had the most profound impact on the prediction of Gram-

negative infections, alongside other T cell-related variables and total neutrophil count.  Overall, 

our findings highlight the added value of measuring the proportion and activation patterns of 

conventional and unconventional T cells in the blood of sepsis patients in combination with other 

immunological, biochemical and clinical parameters. 

Keywords: Endotoxin Shock, Sepsis, Unconventional T Cells, Cytokines, Inflammation 
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Abbreviations: 

 area under the curve (AUC) 
 mucosal-associated invariant T (MAIT)  
 Acute Physiology and Chronic Health Evaluation (APACHE) 
 Sequential Organ Failure Assessment (SOFA) 
 C-reactive protein (CRP) 
 procalcitonin (PCT) 
 out-of-bag (OOB)  
 normalised mean root squared error (NMRSE) 
 Minimum Redundancy-Maximum Relevance (MRMR) 
 Support Vector Machines (SVMs) 
 Leave-one-out cross-validation (LOOCV) 
 5-fold cross-validation (5-fold CV) 
 SHapely Additive exPlanations (SHAP) 

  

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
e
i/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

e
i/u

x
a
e
0
1
9
/7

6
1
8
0
6
3
 b

y
 g

u
e
s
t o

n
 0

4
 M

a
rc

h
 2

0
2
4



 

 

INTRODUCTION 

Sepsis is a life-threatening syndrome characterised by organ failure arising from a dysfunctional host 

response to infection [1].  Timely diagnosis of sepsis is crucial, and identifying those at risk of 

complications and death is imperative for triaging treatment and resource allocation.  While 

severity scores such as Acute Physiology and Chronic Health Evaluation (APACHE) and the 

Sequential Organ Failure Assessment (SOFA) can be used for audits and to direct care, these tools 

rely on routinely collected clinical data and observations, and their performance for predicting in-

hospital mortality is relatively poor [2, 3].  Most importantly, they do not capture the complex 

maladaptive immune and metabolic mechanisms that are now known to contribute significantly to 

sepsis pathology [1]. 

The need to identify the cause and target treatment has driven an interest in identifying 

diagnostic and prognostic biomarkers [4, 5], and in developing algorithms that leverage electronic 

health records [6, 7, 8].  Whereas single biomarker studies have shown mixed results, the value of 

multiple biomarkers in combination is increasingly being recognised [5, 9, 10].  In particular, 

prognostic biomarkers derived from the pathophysiology of sepsis may help guide treatment and 

monitoring of the disease, the most widely studied ones being C-reactive protein (CRP) and 

procalcitonin (PCT).  However, elevated plasma levels of CRP on admission are not a reliable 

predictor of mortality [11], and although early levels of plasma PCT differ between survivors and 

non-survivors, high heterogeneity between study populations puts the general applicability of these 

findings into question [12, 13].  Other promising biomarkers include pro-adrenomedullin [14], IL-

6 [15], lymphopenia [16], neutrophil to lymphocyte ratio [17], amphiregulin [18], and CD64 

expression on neutrophils [19], among others. 
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Most biomarker research in sepsis focuses on diagnosis rather than prognosis, given the 

importance of early interventions, such as anti-microbial treatments, on survival [20].  In this 

respect, Gram-negative organisms are often associated with poorer outcomes in first-hit infections 

[21].  However, the reality of sepsis is that the causative pathogens and the best way to target them 

are unknown at the time of presentation, and broad-spectrum antibiotics are often administered 

empirically, with arguments for [22] and against [23] their rapid use.  In a significant proportion of 

patients with sepsis, the causative pathogen is never identified, and there are contradictory findings 

as to how severity of illness, length of stay and in-hospital mortality compare between culture-

negative and culture-positive sepsis [24].  In fact, it is still uncertain whether culture-negative 

sepsis represents a separate clinical entity, with the possibility of the absence of infection entirely.  

Earlier identification of the causative pathogen would undoubtedly lead to better targeted therapy 

and improve antibiotic stewardship [25].   

In this respect, multiple molecular methods for pathogen identification have come to market, 

potentially reducing the time needed to identify the causative pathogen by up to 30 hours [26].  

However, many technologies still require a positive blood culture, and sensitivities for direct 

detection of bacteria in blood by PCR are only modest [27].  Encouragingly, plasma levels of PCT 

appear to be higher amongst patients with Gram-negative infections compared to Gram-positive 

infections [28].  Other biomarkers that have shown promise are soluble CD14 (‘presepsin’), which 

appears to be increased in Gram-negative bacteraemia [29], and the cytokines IL-1β, IL-6, and IL-

18, with elevated concentrations in patients with Gram-positive infection [30]. 

Of particular interest for identifying the aetiology in sepsis are unconventional T cells such 

as mucosal associated invariant T (MAIT) cells and γδ T cells, which are capable of microbial 

pattern recognition.  MAIT cells are characterised by a semi-invariant T cell antigen receptor with 
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specificity for microbial riboflavin (vitamin B2) derivatives found in fungi and most bacteria 

except Streptococcus spp., Enterococcus spp. and Listeria monocytogenes [31].  Human Vγ9/Vδ2+ 

γδ T cells respond to the microbial isoprenoid precursor (E)-4-hydroxy-3-methyl-but-2-enyl 

pyrophosphate (HMB-PP), a molecule produced by most Gram-negative and some Gram-positive 

pathogens, but notably absent from Streptococcus spp., Enterococcus spp., Staphylococcus spp. 

and fungi [31].  The innate functionality and specificity of these unconventional T cells are likely 

to contribute to pathogen-specific ‘immune fingerprints’, with proof of concept already shown in 

patients with acute peritonitis [32]. 

Studies have only begun to incorporate a combination of clinically available data with novel 

biomarkers to create predictive models for sepsis [33, 34, 35].  With the advent of multi-omics 

technology, there is a growing abundance of data, with the promise that a multi-layered approach 

to phenotyping the immunological response to sepsis may help identify diagnostic and prognostic 

signatures with direct application to the clinic [36, 37].  This diverse feature space presents the 

challenge of analysing extensive high-dimensional data from which informative biomarker 

combinations are to be found, in a task that is analogous to feature selection in machine learning 

[38]. The minimal yet optimal variables are identified to help reduce model complexity, avert 

overfitting and improve performance.  Numerous feature selection methodologies already exist, 

each with benefits and disadvantages [39].  Since no single machine learning algorithm will be 

optimal for every task [40, 41], it is advised to search across multiple solutions and make 

conclusions based on the performance of observed data.  Experimenting with multiple 

methodologies will reduce the risk of overlooking an informative signature or focusing on a single 

suboptimal solution.   
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Data-driven pattern recognition with feature selection has successfully identified predictive 

signatures in the pathogenic cause of peritonitis [32], prognosis and treatment response in 

traumatic injury [42], prognosis in COVID-19 [43], and vaccine response [44].  The application 

of model agnostic methods for the measure of feature importance was recently demonstrated for 

predicting multiple organ dysfunction in paediatric sepsis [45] and the identification of risk factors 

in COVID-19 [46].  We here set out to combine routine clinical data with immunological profiling 

and develop machine learning models describing composite biomarker patterns predictive of 

mortality or underlying cause in sepsis patients, aiming to create valuable tools to prioritise and 

direct care in a resource-limited environment.  Our findings underscore the power of 

comprehensive models integrating clinical parameters with an analysis of acute phase proteins, 

cytokines and lipids, and an extensive immune phenotyping of the cellular compartment.  While 

perhaps unsurprisingly no variable on its own was informative enough to help guide clinical 

decisions, models combining five or more features predicted 90 day mortality after sepsis 

diagnosis, and discriminated between Gram-positive and Gram-negative infections.  A particularly 

compelling observation from this study was the importance attributed to MAIT cells and Vδ2+ γδ 

T cells, providing in vivo evidence for an involvement of unconventional T cell subsets in the early 

immune response in many microbial infections.   

MATERIALS & METHODS 

Subjects.  A total of 77 patients were enrolled between 2018 and 2021 who were over 18 years 

old with a diagnosis of sepsis according to the Third International Consensus Definitions for Sepsis 

and Septic Shock (‘Sepsis-3’) [47].  They were cared for in the intensive care unit at the University 

Hospital of Wales in Cardiff, and were recruited within 36 hours of the presumed onset of 
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infective illness when they already had or would require arterial cannulation as part of standard 

treatment [48].  Patients were excluded if they were pregnant or breastfeeding, or were females 

of childbearing age in whom a pregnancy test had not been performed; had severe immune 

deficiency (e.g. diagnosis of AIDS, or treatment with anti-rejection transplant drugs or high dose 

corticosteroids); had haematologic malignancy or ongoing chemotherapy; had pre-existing 

severe liver failure; were adjudged by the admitting clinician to be unlikely to survive for the 

duration of the study period; were admitted post-cardiac arrest; or had an underlying impairment 

of higher function that would make it impossible for informed consent to be given upon recovery 

(e.g. severe learning disability). 

Blood samples and clinical records.  Whole blood was obtained within the first 36 hours of sepsis 

from patients with a SOFA score >2 and a suspected infection; cell-free plasma was obtained and 

frozen within the first hour of sample collection.  Mortality rates of 22.1% and 27.3% at 30 and 

90 days after sepsis diagnosis, respectively (Supplementary Tables S1 and S2), were in line with 

a recent multi-centre prevalence study of sepsis in Wales [49].  52 patients (67.5% of the cohort) 

had a microbiologically confirmed infection.  Three patients had a mixed culture result with 

undefined causative pathogen, two had influenza A with no bacterial isolates, and one had 

candidiasis; these patients were excluded from pathogen-specific analyses.  No significant 

differences in patient demographics, severity scores, therapeutic interventions or mortality were 

observed between patients with Gram-negative, Gram-positive and culture-negative sepsis 

(Supplementary Table S3).  A further differential analysis according to bacterial species and 

location of the infection was not attempted given the very small group sizes (Supplementary 

Table S4). Routine clinical data such as full blood count, liver profile and blood gas data were 
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recorded; variables captured for fewer than five patients were removed from the subsequent 

analysis, leaving 63 routinely collected variables (Supplementary Table S5). 

Flow cytometry.  Neutrophils and monocytes were stained in freshly collected whole blood after 

red blood cell lysis; T cells were stained after Ficoll-Paque PLUS (Fisher Scientific) separation of 

peripheral blood mononuclear cells.  Cells were acquired on a 16-colour BD LSR Fortessa flow 

cytometer (BD Biosciences), using the fluorescently labelled monoclonal antibodies listed in 

Supplementary Table S6.  Live single cells were gated based on side and forward scatter 

area/height and exclusion of live/dead staining (fixable Aqua; Invitrogen).  Exclusion of 

monocytes and B cells in T cell panels was ensured by using anti-CD14 and anti-CD19 in the 

live/dead staining channel.  When identifying monocytes and neutrophils in whole blood, T cells 

were excluded by their appearance in side and forward scatter area/height, and B cells were 

excluded by using anti-CD19 in the live/dead staining channel.  The flow cytometer was calibrated 

using BD FACSDiva CS&T research beads (BD Biosciences) prior to acquisition.  Compensation for 

spectral overlap was accounted for using BD CompBeads (BD Biosciences) and a spillover matrix 

generated in FACSDiva.  Compensation was checked for errors using FlowJo (TreeStar) prior to 

analysis. 

The Harmony algorithm was applied to all cytometry data using CytoPy version 2.0 to align 

samples whilst reducing the risk of losing biological information [50], and geometric median 

clustering with weighted voting (GeoWaVe) was performed on batch-corrected data for T cells, 

monocytes and neutrophils as described before [51].  Ensembles were informed using multiple 

clustering algorithms popular for analysing cytometry data, providing diverse input for ensembles 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
e
i/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

e
i/u

x
a
e
0
1
9
/7

6
1
8
0
6
3
 b

y
 g

u
e
s
t o

n
 0

4
 M

a
rc

h
 2

0
2
4



 

 

and preventing biased analysis driven by a single method, including FlowSOM, Phenograph, and 

SPADE algorithms as well as K-Means and FlowSOM clustering of PHATE embeddings. 

Soluble proteins in patient plasma.  Cytokines and chemokines were quantified in two batches 

using Luminex standard sensitivity magplex assays based on the xMAP (multi-analyte profiling) 

technology, according to the manufacturer’s instructions.  Data were acquired on a Luminex 200 

compact analyser.  TNF-α (eBioscience), IFN-γ (eBioscience) and IL-6 (R&D Systems) were 

measured in a single batch by ELISA.  Concentrations were obtained by fitting a standard curve 

using a five-parameter logistic fit using the generalised Hill equation, and data quality was 

assessed by observing the coefficient-of-variation and standard recovery.  Where fewer than three 

observations fell within the standard range, the majority of observations had a CV greater than 

50%, or the standard recovery was outside a range of 75-125%, analytes were deemed of poor 

quality and excluded from subsequent analysis.  Batch effect was addressed with post-hoc 

correction and data alignment; data were log2 transformed and values replaced with a z score.  95% 

confidence intervals for odds ratios were approximated as previously described by Tenny and 

Hoffman [52]. 

Free fatty acid and acyl carnitine analysis.  Concentrations of free fatty acids and acyl carnitines 

specified in Supplementary Table S7 were determined by liquid chromatography-tandem mass 

spectrometry (LC-MS/MS).  Lipids were extracted from thawed cell-free plasma in randomised 

batches by mixing 10 μl plasma with 240 μl methanol and 10 µl of a mixture of deuterated internal 

lipid standards (Supplementary Table S8) for a description of internal lipid standards and 

concentrations).  Samples were sonicated in iced water for 1 min, vortexed at 1,400 rpm for 10 

min at 4 °C, and then centrifuged at 18,000  g for 10 min.  100 μl supernatant was derivatised 
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using 3-nitrophenylhydrazine [53], by adding 50 µl 200 mM 3-nitrophenyl-hydrazinein (50/50 

methanol/H2O) and 50 µl 120 mM N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide 

hydrochloride and 6% pyridine (50/50 methanol/H2O).  Samples were then vortexed and incubated 

for 30 min at 40°C.  Excess derivatisation reagents were quenched by the addition of 0.5 % formic 

acid (100 µl; 75/25 methanol/H2O) and incubation at 40°C for 30 min.  Samples were aliquoted 

into HPLC vials for LC-MS/MS.  For every sample batch, five blanks of HPLC water were 

extracted and derivatised to account for background levels of lipids.   

LC-MS/MS analyses were performed using scheduled Multiple Reaction Monitoring 

(MRM) mode on a Nexera liquid chromatography system (Shimadzu) coupled to a QTRAP 4000 

mass spectrometer with an ESI source (AB Sciex).  Lipid separation was achieved using a Kinetex 

Polar C18 reverse phase column (100 Å, 100  2.1 mm, 2.6 µm particle size; Phenomenex) and 

gradient elution of two mobile phases (A: 100 % water + 0.1 % formic acid, B: 100 % methanol 

+ 0.1 % formic acid).  The flow rate was 0.2 ml/min and injection volume was 2 µl; column 

temperature was 50°C.  MS settings (declustering potential and collision energy) were optimised 

for individual lipids using standards.  Fatty acids and acyl carnitines were detected in negative ion 

and positive ion mode, respectively.  All MRMs used are provided in Supplementary Table S8.  

Calibration curves and a QC sample of pooled sample aliquots were quantified alongside sample 

analyses.  QC samples were run after every ten measurements to monitor MS performance.  Peak 

areas were integrated using MultiQuantsoftware (AB Sciex) and concentrations calculated based 

on internal standard response.  For lipids with an exact corresponding internal standard, 

concentrations were calculated directly based on the lipid to internal standard ratio and internal 

standard concentration, while ensuring that all peaks were within the linear dynamic range of the 

instrument.  For other lipids, concentrations were derived from comparisons with an external 
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calibration curve of the ratio of the specific lipid standard to a deuterated internal standard.  Limit 

of quantitation used signal:noise of >5:1 and at least 5 data points per peak.  All further analysis 

was conducted using R and GraphPad Prism version 8.4.3, and MetaboAnalyst version 4.0 and 

higher (metaboanalyst.ca). 

Data processing.  A MongoDB database was populated with clinical parameters, soluble 

biomarker measurements and summary statistics of flow cytometry data.  Data were combined 

into a table of 267 features (Supplementary Table S7), which could be broadly categorised into 

physiology, interventions, point of care testing, clinical laboratory results, protein biomarkers, 

lipids, proportions of immune cell populations and mean fluorescence intensities of surface 

markers on immune cells.  Many clinical variables demonstrated class imbalance, with the 

majority class representing more than 70% of patients for each target.  Features that were 

obviously redundant were removed, e.g. where information was duplicated or values were equal 

for all patients.  A combination of experimental errors, issues of sample integrity and the sporadic 

nature of clinical data collection all contributed to missing values (Supplementary Fig. S1).  

Features that could not be assumed to be missing at random, such as clinical laboratory 

measurements that were obtained for only a few individuals, were excluded from further analysis.  

The remaining missing values were imputed using the MissRanger algorithm [54].  Imputation 

resulted in acceptable out-of-bag (OOB) for both continuous and categorical features, with a 

median normalised mean root squared error (NMRSE) of 0.68 and <20% categorical features 

misclassified.  Features with an NMRSE >1.0 or >40% missing data were removed from further 

analysis.  Multicollinear features were identified and either replaced with an estimated latent 

variable, or the variables with the greatest mutual information with the target variables were 

retained (Supplementary Fig. S2). 
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Feature selection.  After removal of redundant and highly correlated features, 150 features 

remained.  Of these, a set had to be chosen small enough to reduce the risk of overfitting, improve 

classification accuracy, and ensure models could easily be interpreted.  Feature selection algorithms 

comprised filter and wrapper techniques popular in the biostatistics literature: univariate selection 

with permutation testing [55], ReliefF [56], Minimum Redundancy-Maximum Relevance 

(MRMR) [57], Boruta [58], and recursive feature elimination with Support Vector Machines 

(SVMs) [59].  After running each algorithm for all target variables, the top ten features from each 

algorithm were chosen to provide five independent feature sets for each target.  Downstream 

analysis included validation of models on equivalent complete case data, and constraining the 

number of features increases the amount of data available during complete case analysis.  Limiting 

the feature space to a maximum of ten parameters ensured at least five observations were available 

per feature and made interpretation of model decisions easier.  Classifiers were generated for the 

top three to ten features and compared by classification performance.  Overlap between feature 

selection methods was measured using the pairwise Jaccard index and visualised as heatmap for 

each target (Supplementary Fig. S3).   

Modelling pipeline for selecting, comparing and inspecting classification algorithms.  A 20% 

subset of the total cohort was randomly selected prior to model and feature selection and kept for 

independent evaluation of model performance to avoid inflated accuracy due to overfitting 

(Supplementary Fig. S4A).  Eight groups of classifiers (referred to as ‘classifier families’ from 

here onward) were drawn upon for the task of binary classification: Logistic regression, SVMs 

with linear or non-linear kernel, Naive Bayes, K-Nearest Neighbours (KNN), Random Forest, 

Extra Random Forest, and Extreme Gradient Boosting (XGBoost) (Supplementary Fig. S4B).  All 

classifiers were implemented using the Scikit-Learn library [60].  A grid search strategy was 
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employed to tune optimal hyperparameters.  Hyperparameters included L1 and L2 regularisation 

of varying strengths, polynomial and radial basis function kernels for non-linear SVMs (with 

multiple degrees for the former and a range of γ for the latter), different distance metrics and 

number of nearest neighbours for KNN, and multiple hyperparameters for ensembles of tree-based 

learners controlling parameters such as the depth of trees, number of splits, number of features, 

and sampling methods.  This approach resulted in 216 classification models from a diverse range 

of classifier families, an approach supported by the aptly named “no free lunch theorem” [40], 

which suggests that no single algorithm can be optimal for all problems. 

Each model was trained on five independent feature sets (Supplementary Fig. S4C), chosen 

to increase diversity when exploring the feature space without significantly impacting 

computational requirements.  As the optimal number of features might be less than the top ten 

ranked features presented by each feature selection algorithm, each classifier was trained on the 

top three through to the top ten features, iteratively.  For each classifier, eight models were 

generated for each feature selection algorithm, totalling 40 models across all possible feature sets 

and 8,880 models trained across all possible classifiers, repeated for each target.  Leave-one-out 

cross-validation (LOOCV) and 5-fold cross-validation (5-fold CV) were used to select the optimal 

model before validation on independent hold-out data (Supplementary Fig. S4D).  Within each 

classifier family, the model and feature set combined with the highest LOOCV F1 score was chosen 

for evaluation and model inspection (Supplementary Fig. S4E).  Cross-validation and holdout 

performance for the optimal model from each classifier family were compared using ROC curves, 

balanced accuracy, macro F1 score and macro AUC score.  Models were first compared by 5-fold 

CV balanced accuracy using the non-parametric Friedman test and Nemenyi post-hoc testing [61].  

After selecting a model from each classifier family using cross-validation, their performance was 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
e
i/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

e
i/u

x
a
e
0
1
9
/7

6
1
8
0
6
3
 b

y
 g

u
e
s
t o

n
 0

4
 M

a
rc

h
 2

0
2
4



 

 

validated on independent holdout data, and the top performing models were inspected using 

SHapely Additive exPlanations (SHAP) [62].   

 

RESULTS 

Insights from routine clinical data in sepsis patients.  To identify possible predictors of 

outcomes and the underlying cause of the infection in patients presenting with sepsis, we first 

examined all routinely collected clinical data available within the first 36 hours.  While all patients 

had elevated blood levels of CRP, there were no significant differences between survivors and 

non-survivors, or between culture-positive and culture-negative patients (Supplementary Fig. S5).  

However, CRP was higher in Gram-positive infections compared to Gram-negative infections.  

Arterial lactate [63] was increased in those who died within 90 days but was only different when 

considering the sample closest to enrolment time and not the average within the 48-hour window 

(Supplementary Fig. S6).  As such, CRP and lactate were only of limited utility as biomarkers to 

make clinically relevant predictions.  The same held true for virtually all other clinical variables 

(data not shown).  In fact, the only routinely collected parameter that showed a significant 

difference between survivors and non-survivors was the fraction of inspired oxygen (FiO2) value 

taken closest to the diagnosis of sepsis, with increased levels amongst non-survivors compared to 

survivors, corroborating findings by others [64].  No other biomarker demonstrated a significant 

difference relative to mortality, nor to the nature of the causative pathogen (Supplementary Fig. 

S7). 
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Soluble immune mediators in patient plasma.  To gain further insight into inflammatory 

responses in sepsis patients, a large panel of soluble mediators in plasma were quantified 

(Supplementary Fig. S8).  Levels of the chemokine CXCL10 were decreased in non-survivors at 

30 days, while IL-15 was increased in non-survivors.  However, over 80% of patients had IL-15 

levels below the detection limit, and the trends seen for CXCL10 and IL-15 were diminished when 

observing 90 day mortality.  FLT3L levels were moderately increased in culture-positive sepsis 

patients compared to those without a confirmed infection, and ferritin was decreased in patients with 

Gram-negative compared to Gram-positive infections.  No other plasma analytes were 

significantly different between any of the groups.  An additional analysis was performed using the 

detection limits as thresholds to create binary variables (Supplementary Fig. S9).  Although 

elevated concentrations of IL-6, IL-15 and OSM were associated with higher 30 day mortality, 

once accounting for multiple comparisons none of the analytes had a statistically significant odds 

ratio. 

Immune phenotypes in sepsis patients correlate with clinical outcomes.  Given the poor 

predictive performance of routine clinical data and soluble biomarkers we next analysed the 

cellular compartment by flow cytometry.  The first observation was a significant reduction in T 

cells as percentage of PBMCs in non-survivors compared to survivors at 30 days (Fig. 1A) and 90 

days (Fig. 1B), whereas percentages of monocytes and neutrophils amongst white blood cells were 

not different between the groups.  However, and in line with the importance of HLA-DR 

expression on circulating monocytes as predictor of immunosuppression and poor outcomes in 

sepsis [65], monocyte HLA-DR expression was lower in non-survivors compared to survivors 

at both 30 and 90 days (Fig. 2).  A trend was also visible for the cell adhesion molecule CD62L, 

with increased expression on monocytes in non-survivors. 
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Within the T cell compartment (Supplementary Fig. S10), CD8+ T cells tended to be reduced 

in non-survivors, to a greater extent when predicting mortality within 30 days than 90 days.  

Notably, T cells, monocytes and neutrophils were comparable between those with and without a 

microbiologically confirmed infection (Fig. 1C).  In contrast, there was a significant increase in 

the proportion of neutrophils amongst white blood cells and a significant decrease in MAIT and 

Vδ2+ γδ T cells as percentage of T cells in patients with Gram-negative infections, compared to 

Gram-positive sepsis (Fig. 1D).  Of note, expression of the activation marker CD69 (and to a lesser 

extent, of CD25) on MAIT cells and Vδ2+ T cells appeared to differentiate Gram-positive from 

Gram-negative infections, pointing toward a role of these cells in the immune response to some 

pathogens but not others (Fig. 3). 

A T cell dominated immune signature predicts mortality at 90 days after diagnosis of sepsis.  

We next combined all available information to generate predictive models.  There was no 

significant difference between the optimal models chosen for each classifier family when 

comparing 5-fold CV accuracy and F1 score for the prediction of 30 day mortality (Supplementary Fig. 

S11).  Logistic regression and SVMs showed promise at first, with excellent LOOCV ROC and 

comparable performance between training and testing data within the model and feature selection 

process.  However, none of the models generalised well when exposed to holdout data (Table 1).  

Prediction of 90 day mortality was more reliable, with good LOOCV and 5-fold CV performances 

across all classifiers (Supplementary Fig. S12).  While more complex models such as KNN and 

ensembles of tree-based learners exhibited more over-fitting compared to the simpler logistic 

regression and linear SVM, the Extra Random Forest model showed superior accuracy, F1 score 

and AUC scores compared to all other models when tested on holdout data (Table 1), and was 

therefore chosen for complete case analysis and inspection (Fig. 4).  The ROC curve for the 
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imputed data was comparable to that of the complete case data, and the training LOOCV AUC was 

almost identical to the complete case AUC.  Balanced accuracy and macro F1 score were decreased 

in complete case analysis compared to the training LOOCV scores but both scores were still greater 

than 0.7. 

The proportion of T cells (as percentage of total PBMCs) was the most noteworthy feature 

of the Extra Random Forest model.  Lower values for T cells influenced a prediction of 90 day 

mortality, as shown by the gradient for T cells on the beeswarm plot (Fig. 5).  Excluding the 

percentage of T cells, the next most impactful features were elevated blood glucose, higher 

CXCR3 expression on CD4+ T cells, and lower levels of arachidonic acid (a 20-carbon chain 

polyunsaturated omega-6 fatty acid; C20:4).  The percentage of T cells was the dominant factor in 

the Extra Random Forest model, but where SHAP values were only moderately high, the influence 

of blood glucose, CD4+ T cell CXCR3 expression and arachidonic acid encouraged the prediction 

of survival.  The remaining features in the Extra Random Forest model – magnesium plasma 

concentration, APACHE II score, and CD25 expression on MAIT cells – appeared important for 

individual patients, rather than for the wider training cohort. 

Neutrophils, CD8+ T cells and unconventional T cells form a predictive signature that 

differentiates Gram-negative and Gram-positive infections.  With regard to the top-performing 

models for predicting Gram-negative cause in sepsis, logistic regression, SVMs and the Extra 

Random Forest model demonstrated the best LOOCV performance (Supplementary Fig. S13).  The 

logistic regression and linear SVM models performed well on holdout data but the Random Forest 

model presented the best ROC AUC score overall (Table 1).  The Random Forest model selected 

features of T cells and the neutrophil count, with the proportion of Vδ2+ T cells representing the 

feature with the highest absolute mean SHAP value (Fig. 6).  The relationship between the 
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proportion of Vδ2+ T cells and their SHAP values was unclear on the beeswarm plot, and was 

better visualised as a scatterplot (Fig. 7).  As the proportion of Vδ2+ T cells increased, the SHAP 

value decreased, and thus the impact on the prediction of Gram-positive cause was stronger.  

Strikingly, there were two Gram-negative cases with high Vδ2+ γδ T cell proportions.  The model 

successfully identified the relatively abnormal relationship these outliers had with the proportion 

of Vδ2+ T cells, and this was reflected in their low absolute SHAP values.  Overall, the model 

displayed a strong ability to generalise despite such outliers, which highlights the added value of 

measuring the proportion of Vδ2+ T cells in the blood of sepsis patients in combination with other 

immunological features. 

The additional features in the Random Forest model included the total neutrophil count, 

CD4+ T cell memory cluster 2 (a CD4+ T cell cluster characterised by low expression of CD27 

and CCR7, moderate expression of CD45RA and high expression of CD57), CD25 expression on 

CD8+ T cells, a distinct CD4+ CD8− MAIT cell cluster, and the proportion of T cells (as a 

percentage of PBMCs).  Increased values for all features were associated with higher SHAP values, 

influencing the model to predict a Gram-negative causative pathogen, with the combination of the 

chosen features ultimately yielding the correct prediction.  In striking contrast to these T cell 

related features, none of the clinical, soluble protein and lipid parameters determined for each 

patient were selected in the final Random Forest model, underscoring the overall importance of 

conventional and unconventional T cell responses for predictive models. 
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DISCUSSION 

We here created supervised machine learning models to predict mortality and underlying cause of 

infection in patients presenting with acute sepsis.  A modelling pipeline was developed that 

considered the small cohort size, class imbalance and missing data, with a particular focus on 

interpretability, and employing multiple feature selection algorithms with a diverse choice of 

hyperparameters.  Out of a total of 63 variables derived from routine clinical data, only inspired 

oxygen (FiO2) at the time of diagnosis differed between survivors and non-survivors after 

correcting for multiple comparisons; no other clinically available data were particularly 

informative, including previously studied biomarkers such as CRP and arterial lactate.  This lack 

of suitable biomarkers amongst routine clinical data highlighted the need for detailed immune 

phenotyping to yield informative biomarkers of the patient’s response to infection.   

Investigation of immune cell populations in whole blood confirmed previously well-

described observations, such as decreased HLA-DR expression on monocytes [65] and a reduced 

proportion of circulating T cells [66, 67] amongst non-survivors.  Other interesting trends were 

observed for soluble biomarkers such as cytokines, chemokines and acute phase protein levels in 

plasma.  CXCL10 was decreased in those patients who died within 30 days, increased levels of 

IL-6 and IL-15 showed a trend towards higher odds of mortality at 30 days, and ferritin levels were 

higher in Gram-positive infections compared to Gram-negative infections.  Ultimately, however, 

limited data, class imbalance and the detection limits of the assays used made it difficult to reconcile 

these findings. 
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A model for predicting 30 day mortality could not be obtained but an Extra Random Forest 

model for predicting 90 day mortality was identified with a holdout AUC score of 0.85, representing 

a considerable improvement on the majority of previously reported prognosis biomarkers [5, 14].  

The 90 day mortality model showed a diverse selection of input features, including parameters that 

quantified immune populations, activation profiles of T cells, lipid plasma concentrations and the 

APACHE II severity score.  The diversity of the chosen features highlights the benefits of capturing 

variables that describe multiple systems and how their combination can contribute to the model 

performance. 

The proportion of T cells (as a percentage of PBMCs) was the main contributing feature to 

decision-making in the Extra Random Forest model.  A comparison of T cells showed a significant 

difference between survivors and non-survivors at 90 days, in agreement with lymphopenia being 

a well-documented sign of increased severity and associated with higher mortality [16].  Additional 

features in the Extra Random Forest model included CXCR3 expression on CD4+ T cells, plasma 

concentrations of arachidonic acid and blood glucose.  While the CXCR3 ligand CXCL10 was 

shown before to correlate with severity in sepsis [69], in the present study concentrations of 

CXCL10 were lower in non-survivors within 30 days.  The relevance of blood glucose levels is 

supported by the surviving sepsis campaign international guidelines, which recommend tight 

control of blood glucose levels, with hyperglycaemia associated with increased mortality [20].  In 

addition, a reduction in arachidonic acid metabolism has been described in sepsis patients 

compared to healthy controls [70], and eicosanoid lipid mediators that are derived from 

arachidonic acid have been implicated in the pathogenesis of sepsis [71]. 

A compelling finding from this study was the importance attributed to unconventional T 

cells, even amongst the diversity of available features to select from, which included clinical 
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variables, protein and lipid mediators as well as the proportions and phenotypes of T cells, 

monocytes and neutrophils in blood.  In predicting 90 day mortality, increased expression of the 

activation marker CD25 on MAIT cells influenced survival prediction, in line with a recent 

description of highly activated MAIT cells in clinical and experimental sepsis [72].  The reduction 

in circulating Vδ2+ T cells and MAIT cells in patients with Gram-negative sepsis seen in the present 

study might reflect recruitment of these cells to sites of infection [73, 74, 75] and agrees with 

previous observations in septic patients [76, 77, 78] and volunteers challenged with E. coli [79].  

In contrast, our own previous analysis in a different sepsis cohort showed increased proportions 

of circulating Vγ9+ γδ T cells in patients infected with HMB-PP+ pathogens [80], and others 

described higher levels of peripheral MAIT cells but not of γδ T cells in critically ill patients 

infected with Streptococcus spp. (i.e. bacteria incapable of producing the corresponding ligands), 

compared to non-streptococcal causes [81].  Such conflicting findings may be due to key 

differences in patient characteristics, time points, severity and microbiological definition as well 

as the methodology used for the flow cytometric analysis.  Regardless of these discrepancies, 

unconventional T cells recently helped differentiate the causative pathogen in patients with acute 

peritonitis [32] and have been identified as critical players in multi-parameter immune signatures 

with implications in COVID-19 prognosis [82, 83].  The work presented here provides additional 

evidence that profiling of Vδ2+ T cells and MAIT cells makes valuable contributions to predictive 

models of acute infection.  In support, a recent study described MAIT cell activation (as defined 

by expression of HLA-DR) combined with the APACHE II score as best indicator of 28 day 

mortality in sepsis patients [78].  Future studies should include counting beads to be able to 

accurately report absolute numbers of T cell subsets in blood, which was not possible in the present 

analysis.   
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Rigorous validation is a concern in biomarker discovery [84, 85], as it is essential to 

distinguish between the data used for evaluating a model and the data used for model development, 

especially the selection of biomarkers to be included.  The generation of independent holdout data 

was the only mechanism to ensure that the ascertained model and feature set combination were not 

overfitting to the chosen training data, other than the generation of an entirely new patient cohort 

for validation.  The primary limitation in the analysis of cytokines, chemokines and acute phase 

proteins in plasma were the detection limits, resulting in all but six analytes being below or above 

the detectable range for 20% or more of the tested samples – highlighting the intrinsic problem of 

multiplex analyses of biologically distinct mediators.  It is also important to note that the selection 

of features in machine learning models and their associated SHAP values do not imply causation 

but rather that their combined interaction simply identifies a correlation with the predicted target.  

To identify the underlying cause, additional experimentation and analysis would be required.  

Nevertheless, machine learning models can assist in narrowing the list of target variables for 

investigation in subsequent experiments, thus representing a useful hypothesis-generating exercise 

[38].  Additionally, the interpretability of machine learning models offers the potential to identify a 

more general sepsis model by identifying dysregulation patterns across multiple interconnected 

systems, with the potential to gather insights that move beyond static dogmas of ‘cytokine storm’ 

and ‘immune paralysis’ [86]. 

A critical constraint in this study was the patient heterogeneity, reflecting the complex and 

poorly defined nature of sepsis pathology [87].  Fewer than 70% of the patients enrolled in this 

study had a microbiologically confirmed infection, a rate comparable to previous observations in 

sepsis [24].  It was impossible to identify whether this was due to a failure of microbiological 

culture or the genuine absence of any bacterial infection.  Additionally, around 25% of patients 
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were admitted to the ICU with trauma or following emergency surgery.  Although this was included 

as a categorical variable in the machine learning pipeline to account for a potentially confounding 

effect, the clinical condition and type of care for such patients would differ from those that had not 

experienced trauma.  There were also insufficient data regarding patient co-morbidity and history 

of infectious disease before admission to the ICU.  Such data form important confounding variables 

for both prediction of survival and the underlying cause of infection. 

There is a growing realisation in the field that the current definition of sepsis is inadequate, 

which draws focus to the dysregulated host response as the characterising feature of sepsis [1].  In 

fact, most clinical trials that sought to restore the immune balance have either failed to show benefit 

or have proven harmful [88].  The complicated patterns of clinical presentation represent a barrier 

to the advancement of diagnosis and therapy, while the Sepsis-3 definition cannot distinguish the 

complex heterogeneity observed in the pathophysiology of sepsis [89].  Research into COVID-19, 

a condition that has many parallels to sepsis, has reported success in uncovering immunological 

signatures associated with poor outcomes with links back to the underlying biological mechanisms 

[82].  Thus, focusing on a well-defined pathology within sepsis is likely to yield findings more 

readily associated with the underlying mechanism driving the immune response.  Any future study 

expanding on the work discussed here should carefully consider the exact recruitment strategy.  

Reflecting on the success of immunophenotyping of COVID-19, simple strategies could be 

employed to limit recruitment to those of comparable aetiology, such as culture-positive urosepsis 

or acute lower respiratory infection.  However, this poses the general dilemma of whether to 

conduct studies in a well-defined but relatively artificial cohort with strict inclusion or exclusion 

criteria, which will be best suited to define pathophysiological pathways specific for certain 

subtypes of sepsis, or rather to focus on common mechanisms and biomarkers in an inclusive real-
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world scenario as it presents in the clinic.  Alternatively, a robust recruitment approach might 

leverage unsupervised clustering and the identification of endotypes that could be treated as 

distinct yet overlapping groups [90].  In the future, sepsis is likely to be recognised not as an all-

embracing syndrome but rather as a group of related conditions, each characterised by specific 

cellular alterations and associated biomarkers.  
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Table 1.  Holdout performance for the top-performing model selected within each classifier 
family.  Each model is presented as the name of the classifier family, the feature selection 
method that generated the optimal feature set, and the number of features selected for the top-
performing model.  The highest ranking metrics are highlighted in bold font.  Bootstrapped 
95% confidence intervals are shown in square brackets, generated using 100 rounds of 
resampling. 
 

 Balanced accuracy Macro F1 score Macro AUC score 

Prediction of 30 day mortality    

Logistic regression-RFE-SVM, top 10 0.58 [0.50–0.67] 0.56 [0.49–0.60] 0.49 [0.44–0.58] 

Linear SVM-RFE-SVM, top 10 0.59 [0.5–0.67] 0.57 [0.49–0.60] 0.52 [0.42–0.61] 

SVM (cubic polynomial)-RFE-SVM, top 10 0.63 [0.54–0.71] 0.62 [0.53–0.66] 0.59 [0.53–0.64] 

KNN-Boruta, top 7 0.63 [0.63–0.67] 0.65 [0.64–0.71] 0.68 [0.64–0.72] 

Naive Bayes-RFE-SVM, top 9 0.50 [0.38–0.54] 0.50 [0.38–0.53] 0.52 [0.44–0.57] 

Random Forest-Boruta, top 6 0.46 [0.46–0.50] 0.41 [0.40–0.42] 0.59 [0.55–0.64] 

Extra Random Forest-Boruta, top 7 0.54 [0.42–0.58] 0.54 [0.40–0.58] 0.73 [0.64–0.83] 

XGBoost-Boruta, top 7 0.50 [0.38–0.54] 0.50 [0.38–0.53] 0.48 [0.31–0.56] 

Prediction of 90 day mortality    

Logistic regression-RFE-SVM, top 10 0.71 [0.63–0.79] 0.73 [0.64–0.79] 0.69 [0.58–0.78] 

Linear SVM-RFE-SVM-top 10 0.71 [0.63–0.79] 0.73 [0.64–0.79] 0.67 [0.58–0.78] 

SVM (quartic polynomial)-RFE-SVM, top 8 0.70 [0.63–0.79] 0.72 [0.64–0.79] 0.72 [0.67–0.77] 

KNN-RFE-SVM, top 6 0.54 [0.42–0.58] 0.54 [0.40–0.58] 0.54 [0.44–0.64] 

Naive Bayes-RFE-SVM, top 10 0.71 [0.63–0.79] 0.73 [0.64–0.79] 0.71 [0.61–0.94] 

Random Forest-Boruta, top 3 0.67 [0.58–0.75] 0.67 [0.58–0.72] 0.80 [0.77–0.89] 

Extra Random Forest-RFE-SVM, top 7 0.75 [0.67–0.83] 0.79 [0.71–0.88] 0.85 [0.81–0.86] 

XGBoost-Boruta, top 6 0.54 [0.42–0.58] 0.54 [0.40–0.58] 0.58 [0.44–0.72] 

Prediction of Gram-negative infection    

Logistic regression-RFE-SVM, top 6 0.83 [0.75–1.0] 0.86 [0.80–1.0] 0.76 [0.64–1.0] 

Linear SVM-RFE-SVM, top 5 0.83 [0.75–1.0] 0.86 [0.80–1.0] 0.71 [0.57–1.0] 

SVM (cubic polynomial)-RFE-SVM, top 5 0.76 [0.68–0.93] 0.76 [0.68–0.86] 0.71 [0.57–0.92] 

KNN-RFE-SVM, top 5 0.60 [0.43–0.68] 0.59 [0.4–0.68] 0.81 [0.71–0.93] 

Naive Bayes-RFE-SVM, top 6 0.66 [0.50–0.75] 0.67 [0.44–0.80] 0.81 [0.71–1.0] 

Random Forest-Boruta, top 6 0.67 [0.50–0.75] 0.68 [0.44–0.80] 0.86 [0.79–0.94] 

Extra Random Forest-Boruta, top 6 0.69 [0.61–0.86] 0.67 [0.59–0.75] 0.62 [0.50–0.79] 

XGBoost-Boruta, top 5 0.60 [0.43–0.68] 0.60 [0.4–0.68] 0.76 [0.71–0.89] 
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Figure Legends 

 
 
Figure 1.  Proportion of T cells, monocytes and neutrophils, and conventional and 

unconventional T cell subsets in patients after sepsis diagnosis.  Comparisons shown are 
between (A) survivors (blue) and non-survivors (red) 30 days after sepsis diagnosis; (B) 
survivors (blue) and non-survivors (red) 90 days after sepsis diagnosis; (C) those without (blue) 
and with (red) a microbiologically confirmed infection; and (D) those with a Gram-positive 
(purple) and Gram-negative (pink) infection, amongst those with a positive bacterial culture.  p 

values were generated using two-tailed Mann-Whitney U tests with Bonferroni-Holm 
corrections for multiple comparisons. 
 
 
Figure 2.  Mean fluorescence intensity (MFI) of HLA-DR, CD86, CD46, CD40 and CD62L 

on circulating monocytes in sepsis patients.  Comparisons between survivors and non-
survivors 30 (top) and 90 (bottom) days following a diagnosis of sepsis are shown.  p values 
were generated using two-tailed Mann-Whitney U tests with Bonferroni-Holm corrections for 
multiple comparisons. 
 

Figure 3.  Mean fluorescence intensity (MFI) of HLA-DR, CD86, CD46, CD40 and CD62L on MAIT 

cells, with comparisons between sepsis patients with a Gram-positive versus a Gram-negative 

infection.  p values were generated using two-tailed Mann-Whitney U tests with Bonferroni-Holm 

corrections for multiple comparisons. 

 
 
Figure 4.  Complete case analysis for an Extra Random Forest model tasked with 

predicting 90 day mortality in sepsis.  Performance is documented by a receiver-operating 
characteristic (ROC) curve (left) and a bar plot (right) showing balanced accuracy, macro F1 
score, and ROC area-under-curve (AUC) score. The dotted diagonal line accompanying the 
ROC curves represents a model with a random performance level. 
 
 
Figure 5.  SHAP (SHapely Additive exPlanations) values for an Extra Random Forest 

model to predict 90 day mortality.  The beeswarm plot (top) shows each observation as a 
single data point coloured by the value of the feature for that instance, and ranked from the most 
impactful on the model outcome to the least impactful.  The x-axis shows the SHAP value, with 
a lower value corresponding to an instance having a more significant impact on the negative 
case for the model (i.e.  prediction of survival), and a positive value corresponding to having a 
more significant impact on the positive case for the model (i.e. prediction of death).  The bar 
plot on the right-hand side of the beeswarm plot shows the imputation error (with a maximum 
value of 1) and the percentage of missing values observed in the original data.  The heatmap 
(bottom) shows the SHAP values for each patient.  The bar plot on the right-hand y axis shows 
each feature’s mean absolute SHAP value as a measure of a feature’s impact on model 
prediction.  The line plot above the heatmap displays each patient’s predicted outcome (black 
line) and the actual outcome (orange line).  The dotted line between the possible outcomes is 
the expected value, equivalent to the observed mortality.  Note that predictions reflect 
performance on the complete training data and do not reflect how the model would perform 
when exposed to new data. 
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Figure 6.  SHAP (SHapely Additive exPlanations) values for a Random Forest model to 

predict Gram-negative infection.  A lower SHAP value corresponds to an instance having a 
more significant impact on the negative case for the model (i.e. prediction of Gram-positive 
sepsis), and a positive value corresponds to having a more significant impact on the positive 
case for the model (i.e. prediction of Gram-negative sepsis).  The dotted line between the 
possible outcomes in the heatmap is the expected value, equivalent to the observed incidence 
of Gram-negative sepsis. 
 

Figure 7.  Proportion of Vδ2+ T cells plotted against corresponding SHAP (SHapely Additive 

exPlanations) values that explain the impact on a Random Forest model to predict Gram-negative 

infection.  Each data point represents a unique patient, coloured by the causative pathogen of their 

acute infection. 
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