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Abstract Numerical simulations of dust emission processes are essential for dust cycle modeling and dust‐
atmosphere interactions. Models have coarse spatial resolutions which, without tackling sub‐grid scale
heterogeneity, bias finely resolved dust emission. Soil surface wind friction velocity (us*) drives dust emission
non‐linearly with increasing model resolution, due mainly to thresholds of sediment entrainment. Albedo is
area‐integrated, scales linearly with resolution, is related to us* and hence represents its sub‐grid scale
heterogeneity. Calibrated albedo‐based global dust emission estimates decreased by only 2 Tg y− 1 (10.5%)
upscaled from 0.5 to 111 km, largely independent of resolution. Without adjusting wind fields, this scaling
uncertainty is within recent estimates of global dust emission model uncertainty (±14.9 Tg y− 1). This intrinsic
scaling capability of the albedo‐based approach offers considerable potential to reduce resolution dependency of
dust cycle modeling and improve the representation of local dust emission in Earth system models and
operational air quality forecasting.

Plain Language Summary Global computer models for atmospheric dust were developed to
understand the global dust cycle. However, these coarse resolution global dust models cannot accurately
represent small‐scale dust emission processes and partly cause different dust emission estimations between the
models. Using our new approach based on satellite products, we show that global dust emission estimation is
largely independent of model resolution.

1. Introduction
Atmospheric mineral dust impacts Earth’s systems, human health, and global economies (Tegen and Sche-
panski, 2018; Li et al., 2018; Pi et al., 2020). Global dust models were developed more than two decades ago
(Joussaume, 1990; Marticorena and Bergametti, 1995; Shao et al., 1996) to resolve spatial patterns and trends of
aeolian processes in the dust cycle (Shao et al., 2011). These models are essential for palaeo‐environmental
reconstructions (Mahowald et al., 2010), dust‐climate interactions (Albani et al., 2014; Shao et al., 2013) air
quality applications, and dust‐atmosphere interactions (Wilcox et al., 2010). These global dust cycle models have
coarse horizontal resolutions. Applying a single mean wind speed to these large pixels can bias dust emission (F)
model simulations depending on the sub‐grid scale heterogeneity of the wind friction velocity (Raupach and
Lu, 2004; Ridley et al., 2013). The inability of the coarse resolution to resolve the fine resolution processes,
challenges the accurate estimation of F trends and patterns (Meng et al., 2021). Dust emission is dependent on
horizontal sediment flux (Q) and the sandblasting process which is influenced by the entrainment threshold (u*ts).
The magnitude and frequency of processes that cause u*ts to be exceeded depend on the soil surface wind friction
velocity (us*) transferred from above the largest roughness scale, typically controlled by vegetation. The physics
of wind‐blown F (Shao et al., 2011) are typically at the grain‐scale (Raupach and Lu, 2004). These are point
“support”, following the geostatistical literature, where “support” is the volume of measurement (Kyriakidis and
Yoo, 2005). For clarity, the u*ts is point support which should be compared with the point support us* for
compatibility, to calculate Q and F. Regional and global F models are driven by coarse resolution wind fields
modeled over an area or pixel support. Despite being provided on a regular grid, these wind fields are not point
support and are therefore incompatible with grain‐scale physics and parameterizations (Gotway and
Young, 2002) used in Q and F models (Leung et al., 2023; Meng et al., 2021; Raupach and Lu, 2004; Ridley
et al., 2013). For clarity, we use model resolution to refer to different sized areal data or pixel support and in our
work we do not use the terms “grid resolution” and “grid spacing” to avoid giving the impression that these data
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are point support. To address the problem of missing F due to the smoothing of the sub‐grid wind maxima, a
common approach is to employ a gridded Weibull distribution (Cakmur et al., 2004; Cowie et al., 2015; Grini
et al., 2005; Menut, 2018; Tai et al., 2021; Zhang et al., 2016). Meng et al. (2021) developed and applied a method
to harmonize F across simulations of different resolutions by generating offline F from fine resolution meteo-
rological fields. Leung et al. (2023) proposed an alternative approach to derive a simple spatial map and upscale
the spatial variability of F from fine to coarse resolution.

Aerodynamic roughness depends on wind speed and responds to roughness element height, width and config-
uration. As area increases, roughness elements are not linearly additive because of their mutual sheltering caused
by their configuration. Consequently, aerodynamic roughness does not scale linearly with increasing area.
Raupach and Lu (2004) showed incisively that the scaling problem of Fmodels can be resolved by parameterizing
hard‐to‐measure variables for example, wind friction velocity, with more widely available, area‐integrated data
for example, albedo which scales linearly with increasing area. This approach was implemented recently for the
calculation of the areal soil surface wind friction velocity (us*) using a calibration with albedo which scales
linearly over increasing area (Chappell andWebb, 2016; Ziegler et al., 2020; Zhou et al., 2024). The calibration is
applied after the albedo is scaled to the desired resolution to overcome the non‐linearity of upscaling us*. This
albedo‐based approach was developed for use across scales from ground‐based to Earth System Models (ESMs),
wherever albedo data are available. It enables correctly upscaled, area‐weighted estimates of us* for calculatingQ
and F demonstrated using MODIS albedo daily, every 500 m across Earth (Chappell and Webb, 2016; Chappell
et al., 2019; Hennen et al., 2022). This albedo‐based approach improves regional dust model performance with
better representation of roughness (LeGrand et al., 2023). This approach offers the opportunity to investigate the
extent to which existing regional and global Q and F models are resolution dependent, constrained by the
incompatibility of the grain‐scale model and the areal wind fields.

This scaling issue at least partially explains why there are several orders of magnitude difference in updated global
F estimates (29–4,313 Tg y− 1 up to 20 μm particle diameter (Chappell, Web, Hennen, Schepanski, et al., 2023;
Huneeus et al., 2011)). Ridley et al. (2013) suggested that the fidelity of F modeling may benefit from better
representation of these roughness and texture properties and consideration of their sub‐grid distribution. The
arising hypothesis is therefore that compatibility between areal wind fields and areal us* should improve the
performance of F modeling across scales (Chappell, Web, Hennen, Schepanski, et al., 2023).

2. Materials and Methods
2.1. Theoretical Basis for Scaling Using Linearly Additive Surrogate Space‐Time Data

Large uncertainty occurs in coarsely resolved modeling due to sub‐grid scale heterogeneity (de Vrese and
Hagemann, 2016). That heterogeneity is always much larger than any coarsely resolved model (Raupach and
Lu, 2004). Consequently, processes occurring at fine resolution are typically described by relations and variables
applicable at single points. Raupach and Lu (2004) denote these grain‐scale models by f= f(v), where f is a flux for
example, F, and v a vector of driving variables determining the flux for example, us*. However, models require
parameterizations between fluxes and variables averaged spatially over model unit areas (pixels) and temporally
over model time steps that is, f = f (v) , where overbars denote space‐time averaging. The scaling problem of how
to obtain f (v) from f(v), is not solved by simply averaging, resampling or interpolating from one grid spacing to
another (Leung et al., 2023; Ridley et al., 2013). Scaling requires the conversion of point support to area support
(de Vrese and Hagemann, 2016; Kyriakidis and Yoo, 2005; Raupach and Finnigan, 1995; Van Looy et al., 2017).
Raupach and Lu (2004) succinctly describe the scaling problem as finding

f =∫ f (v) p(v) dv, (1)

where p(v) is the probability density function of v in a pixel. Following Raupach and Lu (2004), there are two
cases of the scaling problem. The first case is relatively trivial where the grain‐scale model f(v) is a linearly
additive form of fluxes and driving variables. The second more challenging case is when the grain‐scale model f
(v) is non‐linear, common in aeolian transport modeling. In this latter non‐linear case, either the grain‐scale model
f(v) and averaged models f (v) have different functional forms, or the averaged quantities ( f ,v) are not related to
the grain‐scale by linear averages. The origin of the problem is the combined influence of non‐linearity in f(v) and
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statistical variability in v (Equation 1). This causes the scaling problem to be dependent on the sub‐grid scale
heterogeneity through the p(v) of the driving variables v.

Raupach and Lu (2004) described the most effective way to acquire sufficient spatially distributed information of
sub‐grid scale heterogeneity in p(v). Their recommendation was to constrain spatial patterns in parameters by
using readily available data which is spatially correlated with hard‐to‐measure properties for example, us*.
Consistent with Equation 1, this approach amounts to estimating p(v) by using surrogates, for which space‐time
information is available to determine spatial patterns in v. We follow this approach using the albedo‐based
relation with us* for scaling F modeling.

2.2. Dust Emission Modeling Using Areal Albedo‐Based us*

The flux f(v) of point support dust emission F (kg m− 2 s− 1) is reliant on grain‐scale sediment flux Q (kg m− 1 s− 1

(Namikas and Sherman, 1997)) and calculated using the albedo‐based approach (AEM)

QAEM (d,w,ω,Uh) =

⎧⎪⎪⎨

⎪⎪⎩

c
ρa
g
u3s∗ (ω,Uh) (1 +

u∗ts(d)H(w)
us∗ (ω, Uh)

) (1 − (
u∗ts(d)H(w)
us∗ (ω, Uh)

)

2

)

0,us∗ ≤ u∗tsH(w)

,us∗ > u∗tsH(w). (2)

That flux has driving variables (v; Equation 1) over typically large (e.g., >11 km) areas with sub‐grid scale
heterogeneity in us*, with the momentum remaining at the soil surface after removing the influence of roughness
at all larger scales. The areal coupled parameter us*/Uh is retrieved at any scale by using the linear scaling relation
with albedo (ω; Equation S1 in Supporting Information S1) with an estimation uncertainty of 0.0027 m s− 1

(Chappell & Webb, 2016; Text S1 in Supporting Information S1). The QAEM requires us* enabled by multiplying
us*/Uh with near surface areal mean wind speed (U) for a given height h (where Uh is typically resolution
dependent). The u*ts(d) is a grain‐scale entrainment threshold wind friction velocity (m s− 1). The u*ts (Marti-
corena and Bergametti, 1995) and its adjustment using H(w), a function of soil moisture (w) which inhibits
entrainment (Fécan et al., 1999), are both described in standard workflows (Darmenova et al., 2009) and in Text
S2 in Supporting Information S1. For simplicity, ρa air density (1.23 kg m− 3), g gravitational acceleration
(9.81 m s− 2), and c = 1 is a dimensionless fitting parameter. The classical QTEM uses u* described in standard
workflows (Darmenova et al., 2009) and in Supplement S2. The classical QTEM approach requires the drag
partition R (z0,z0s) = us*/u* which is poorly constrained with aerodynamic roughness lengths (z0,z0s) typically
(Zender et al., 2003) fixed over space and static over time (z0 = 100 μm and z0s = 33.3 μm), which fixes R ≈ 0.91
and the magnitude of QTEM is also over‐estimated by using u* cubed (Chappell, Webb, Hennen, Zender,
et al., 2023; Webb et al., 2020).

2.3. Dust Emission Modeling

The albedo‐based dust emission flux (FAEM for particles <10 μm; kg m− 2 s− 1) is calculated as a function of soil
clay content (Marticorena and Bergametti, 1995)

FAEM(ω) =∑
d
A f AsMQAEM10(0.134 %clay− 6.0) with 0%< clay%< 20%. (3)

We restricted clay% to a maximum value of 20% consistent with previous work (Marticorena and Berga-
metti, 1995). TheQAEM producing dust, is adjusted by the emitted dust fractionM for a given particle size fraction
with diameter dwhich we calculated as 0.1 < d < 10 μm (Zender et al., 2003) by usingM= 0.87. The F of a pixel
is masked out if the soil surface is bare but frozen, which inhibits F(Af) or in the presence of any snow coverage
(As). Unlike existing Fmodels, vegetation indices and fixed vegetation coefficients in the erodibility parameter E
are unnecessary and not used (Text S3 in Supporting Information S1; Chappell, Webb, Hennen, Zender,
et al., 2023). Furthermore, we do not apply preferential dust source masks to pre‐condition the magnitude and
geographical distribution of F. The classical dust emission modeling (FTEM) used here is described in standard
workflows (Darmenova et al., 2009) and included in Text S3 in Supporting Information S1.

In the absence of information to parameterize u*ts heterogeneity at the sub‐grid scale, it has long been assumed
fixed over space within surface texture type, and considered static over time. The ground is assumed to supply
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sediment, which is loose, dry and available infinitely. These assumptions are unrealistic in dust source regions
(Chappell et al., 2007; Chappell et al., 2005, 2006; Gillette et al., 2001; Sekiyama et al., 2023; Vos et al., 2020;
Webb and Strong, 2011). In the absence of improved and areal u*ts, we follow recent F developments (Chappell,
Web, Hennen, Schepanski, et al., 2023; Chappell, Webb, Hennen, Zender, et al., 2023; Hennen et al., 2022;
Hennen et al., 2023) and fit a logarithmic function to FAEM and correct for over‐estimation in Fcal (Chappell, Web,
Hennen, Schepanski, et al., 2023) due to assumptions about model scale, entrainment and sediment supply

Log10 (Fcal) = 1.13Log10 (FAEM) − 3.05. (4)

The Fcal is calibrated against dust emission point source (DPS) data retrieved from satellite observations
(Chappell, Web, Hennen, Schepanski, et al., 2023) providing a reasonable (RMSE =±3.80 kg m− 2 y− 1) basis for
global estimation of Fcal (Chappell, Web, Hennen, Schepanski, et al., 2023).

2.4. Data for Implementing Dust Emission Modeling

The albedo‐based approach provides areal estimated us*/Uh every day, every 0.5 km, across Earth’s land surface.
Albedo (MCD43A1 Collection 6) is available from MODIS aboard polar‐orbiting satellites which cause
incomplete coverage. However, the variation in albedo‐based roughness at the daily‐weekly scale is sufficiently
small that we were able to smooth the available data weekly, to improve the coverage. MODIS albedo is area‐
integrated and scales linearly (Case 1; Raupach & Lu, 2004). For a given day with 0.5 km pixels, albedo is
reprojected to pixels at>0.5 km and then calibrated to provide areal estimates of us*/Uh (Equation S1 in Supporting
Information S1) for Fcal. The reprojection forces each albedo image with a given pixel resolution (e.g., 0.5 km) to
be computed to a different (e.g., 5 km) pixel resolution which is equivalent to resampling using a bilinear inter-
polation.We repeat this process for all albedo images, for all resolutions in our study (0.5 km, 5 km, 11 km, 28 km,
55 km, 111 km, and 278 km) to examine F resolution dependency. For consistency with comparisons across these
resolutions, we use a spatial restriction set to the largest 278 km resolution, applied to all smaller resolutions.

We implemented Fcal and FTEM with areal mean wind fields (at 10 m height), soil moisture (0–7 cm depth) and
soil surface temperature from the latest ERA5‐Land data (Muñoz‐Sabater et al., 2021) (resolution: hourly; 0.1°).
For consistency with the daily MODIS albedo data, we converted ERA5‐Land hourly to daily data and used wind
maxima to better approximate the gusts which cause sediment transport and dust emission. The coverage of snow
ranges between 0 and 1 and we applied the MODIS Normalized Difference Snow Index (Hall et al., 2016)
(MOD10A1 Terra, daily at 500 m). We used soil surface temperature with a threshold of 273.15 K above which
fluxes may occur. Soil clay content (250 m pixels) was represented with a digital soil texture map (Dai et al., 2019;
Hengl et al., 2017). Consistent with the treatment of the albedo data, we reprojected these driving variables in the
same way. Notably, for grid resolutions which were finer than the native grid resolutions (0.5 and 5 km) of the
driving variables, we did not use any downscaling. We recognize that these driving variables are unlikely to scale
linearly and therefore will not provide the most accurate values at different resolutions. Nevertheless, these
reprojected driving variables were applied consistently to both Fcal and FTEM. This approach enabled us to
demonstrate the performance of scaling us* and its relative impact on dust emission across different resolutions.

3. Results and Discussion
3.1. Global Seasonal Differences in Dust Emission With Resolution

The pattern and magnitude in the daily values, aggregated to mean monthly us* normalized by wind speed (us*/Uh)
during 2022, is similar for each resolution up to 111 km (Figure 1a). The similar pattern indicates that on average
aerodynamic roughness is largest (us*/Uh is smallest) during March–May than in any other season. In contrast,
us*/Uh (for equivalence) in the classical approach is “tuned” to a large value by assuming a smooth land surface
devoid of vegetation fixed over space and static over time (z0 = 100 μm and z0s = 33.3 μm) which fixes R
(z0) ≈ 0.91 and therefore fixes us*/Uh (Figure 1b).

The linear upscaling of albedo calibrated to us*/Uh is evidently largely independent of resolution up to 111 km.
Consequently, theQAEM (Equation 2) is also largest during boreal spring (Figure 1c). More importantly, up to and
including 55 km resolution, the QAEM displays little resolution dependence all year. At 111 km and 278 km
resolution, resolution dependency occurs in all months and the magnitude of that dependency is proportional to
the magnitude of QAEM (Figure 1c). These differences are also evident in the us*/Uh indicating that at resolutions
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of 111 km and above, the information content in the roughness has changed. This is very likely caused by dif-
ferences in the sources of landscape variability for example, fundamental differences in ecoregion scales. In
contrast, seasonality in QTEM is caused entirely by wind speed, not attenuated by roughness, and explains the
omission of the July mode and the erroneous dominance of the November mode (Figure 1d). The difference
between QAEM and QTEM demonstrates the influence of aerodynamic roughness included and omitted, respec-
tively (Figures 1c and 1d).

There is little resolution dependence in total Fcal < 111 km resolution (Figure 1e), without any modifications to
the wind fields. The linear scaling of albedo calibrated to us*/Uh has overcome the non‐linear scaling of F in all but
the largest resolutions. In contrast, FTEM has a much larger response to different resolutions caused by the non‐
linearity in upscaling parameters (Figure 1f; cf. Chappell, Webb, Hennen, Zender, et al., 2023). Of greater
concern for modeling precision is that the seasonality of FTEM is bimodal (dominated by wind) in contrast to Fcal
(interacting wind and roughness).

Figure 1. Seasonality of monthly 2022 dust emission for different resolutions (0.5 km, 5 km, 11 km, 28 km, 55 km, 111 km, and 278 km) using albedo‐based Fcal
modeling (left column) and uncalibrated FTEM (right column) using upscaled soil surface wind friction velocity normalized by wind speed (us*/Uh; (a) and (b), sediment
flux Q; (c) and (d) and dust emission (F; e and f).
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The seasonality of albedo‐based Fcal < 111 km resolution shows little resolution dependence during June–August
months and to a lesser extent also during December–February. In contrast, Fcal > 111 km is more resolution
dependent during March–April and to a lesser extent during October–November. Since resolution dependency is
much less evident in us* than in QAEM, the resolution dependency is isolated (Equation 2) to grain‐scale u*tsH. As
resolution increases the influence of u*tsH increases (Equation 2) becoming increasingly resolution dependent.
Furthermore, the sequence ofQAEM by resolution (Figure 1c) is different to that of Fcal (Figure 1e) indicating that
the controlling factor responsible for resolution dependency of Fcal is different fromQAEM. TheQAEM is converted
to FAEM using a grain‐scale empirical sandblasting efficiency (Equation 3) as a proportion of soil clay content.
Although provided over area (250 m pixels), relative to the large resolutions considered here, this is point support.
The sandblasting efficiency increases by nearly 3 orders of magnitude as soil clay content increases from 0% to

Figure 2. For March 2022, using 0.5 km (left column) and 278 km (right column) model resolution and spatially restricting to the latter, the soil surface wind friction
velocity (us* m s− 1; a and b), the number of “drag days” when soil surface wind friction velocity exceeds the sediment entrainment threshold (us*>u*ts(d)H(w) fixing
d = 125 μm; c and d), soil clay content restricted to a 20% maximum (e) and (f) and calibrated albedo‐based dust emission (Fcal kg m− 2 y− 1; g and h). The driving
variables are reprojected by forcing the images at 0.5 km to be computed at 278 km.
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20% (Zender et al., 2003). Therefore, the increase in Fcal at finer resolutions (0.5 and 5 km; inconsistent with
QAEM), is a consequence of the additional incompatibility between the grain‐scale, clay‐driven sandblasting and
its areal implementation. It is also very likely that the sequence differences in Fcal andQAEM between resolution, is
caused by using native 11 km winds with the finer (0.5 and 5 km) albedo‐based roughness. We investigate the
spatial distribution of these resolution dependent processes next. Given the word limit, we include a summary of
results from the classical approach in the supplement and only briefly refer to them below.

3.2. Regional Spatial Differences in Dust Emission With Resolution

We mapped the factors controlling Fcal at two resolutions (Figure 2) displayed spatially restricted to 278 km
resolution. We consider the dominant March dust mode (from Figure 1) to make differences between models clear
without aggregations across other months. The March maximum us* in North Africa is smaller than those in
Central and East Asia. The 0.5 km resolution is very similar to that at 278 km across all the major dust producing
regions (Figures 2a and 2b). The number of “drag days”, when soil surface wind friction velocity exceeds the
sediment entrainment threshold (us*>u*ts(d)H(w) assuming for simplicity values between d = 50–125 μm are
similar, we used d = 125 μm), are also quite similar between these resolutions and across regions (Figures 2c and
2d). However, notable differences in “drag days” between resolutions in Australia and particularly the Middle
East and North Africa have evidently caused the resolution dependency we noted earlier in the global seasonality
of QAEM (Figure 1c). The clay content is much smaller in North Africa than other global dust source regions
(Chappell, Web, Hennen, Schepanski, et al., 2023). The clay content is similar between resolutions, indicating
that the combination of the QAEM differences and the clay differences influence the Fcal differences with reso-
lution (Figures 2e and 2f). The combination of small clay content and intermediate us* causes March Fcal to be
larger in regions other than North Africa (Chappell, Web, Hennen, Schepanski, et al., 2023). Overall, the Fcal
maps show very similar spatial distributions regardless of resolution (Figures 2g and 2h). However, missing Fcal
is evident in Australia and Central and East Asia and the largest magnitude difference occurs in North Africa and
North America. We quantify Fcal by region and resolution next.

The amount of Fcal for the year 2022, by region and by resolution is shown in Table 1 (uncalibrated FTEM are
shown in Text S4 in Supporting Information S1; Table S1 in Supporting Information S1). At 0.5 km resolution,
the total Fcal is 19 Tg y

− 1, broadly consistent with the recent global albedo‐based average (2001–2020) Fcal and its
uncertainty (29.1 ± 14.9 Tg y− 1; Chappell, Web, Hennen, Schepanski, et al., 2023; Chappell, Webb, Hennen,
Zender, et al., 2023). The amount estimated here is smaller than that recent estimate because we consider only the
year 2022 and because the 278 km spatial restriction excludes coastal regions (Figure 2). With resolutions ≤11 km
there is little difference in total Fcal (0.55 Tg y− 1; 2.89%) which is due to the native wind speed scale of 11 km

Table 1
Calibrated Total Emitted Mass (Tg y− 1) During 2022 for Model Resolutions (0.5 km, 5 km, 11 km, 28 km, 55 km, 111 km, and 278 km) of the Main Global Dust Source
Regions Using Upscaled Albedo Calibrated to Wind Friction Velocity

Dust emission (Tg y− 1) 0.5 km (A) 5 km (B) 11 km (C) 28 km (D) 55 km (E) 111 km (F) 278 km (G) Diff. (A–G) %

Australia 4.33 4.33 4.42 4.49 4.42 3.27 2.38 − 1.95 +40.16

Central Asia 1.24 1.24 1.24 1.25 1.25 1.09 1.01 − 0.23 +4.66

East Asia 2.44 2.45 2.50 2.70 2.68 2.38 1.52 − 0.91 +18.77

Europe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

India 0.04 0.04 0.04 0.04 0.04 0.04 0.03 − 0.01 +0.13

Middle East 3.73 3.70 3.86 3.98 4.06 3.78 3.12 − 0.61 +12.46

North Africa 3.23 3.22 3.40 3.56 3.77 3.07 2.85 − 0.38 +7.87

North America 2.69 2.68 2.73 2.83 2.81 2.28 1.77 − 0.91 +18.79

South America 1.20 1.19 1.23 1.37 1.25 0.99 1.28 +0.09 − 1.79

Sthn Africa 0.10 0.10 0.11 0.12 0.10 0.10 0.15 +0.05 − 1.03

Total 18.99 18.95 19.54 20.33 20.38 16.99 14.13 − 4.86 100.00

Difference − 0.04 +0.55 +1.35 +1.39 − 2.00 − 4.86

% − 0.20 +2.89 +7.10 +7.34 − 10.52 − 25.60
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being larger than those fine resolutions. At model resolutions >11 km the total Fcal doubles to the largest dif-
ference of − 4.86 Tg y− 1 (− 25.6%) when comparing 0.5–278 km resolution. However, − 4.86 Tg y− 1 is similar to
the Fcal model uncertainty (±3.8 Tg y− 1) and approximately one third of our recent global Fcal uncertainty
(±14.9 Tg y− 1). Without modifying wind fields, global Fcal decreased by only 2 Tg y− 1 (10.5%) from 0.5 to
111 km resolution. Our results represent fully dynamic Fcal that is, spatio‐temporal variation in driving variables
across all scales of soil and vegetation. Our Fcal results are around one third of the ∼29% decrease for the smaller
range of 28–110 km resolution in FTEM (Table S1 in Supporting Information S1) and those elsewhere (Feng
et al., 2022). Our FTEM calculations showed − 96% difference between 0.5 and 278 km which demonstrates
considerably more resolution dependency than the Fcal (Table S1 in Supporting Information S1). That resolution
dependency of FTEM is primarily because dust emission has a fixed drag partition, controlling the wind friction
velocity, which does not change with scale. Ridley et al. (2013) showed similarly large differences in their F
across a smaller range of resolutions (33% from 28–200 km). However, their experiments assumed uniform soil
texture and uniform surface roughness which reduced their experiments sensitivity to land surface properties
(Ridley et al., 2013). Decoupling wind speed from aerodynamic roughness (changing over space and time) in that
way, will introduce additional uncertainty in the parameterization used to reconcile differences in F between
resolutions.

We explained elsewhere how and why North Africa and the Middle East are not persistently the largest global
sources of F, and that regional F contributions shift seasonally (Chappell, Web, Hennen, Schepanski, et al., 2023).
At 0.5 km resolution, our largest Fcal is from Australia followed closely by the Middle East and North Africa
(Table 1). At 278 km resolution, the largest amount of global F is from the Middle East, North Africa and then
Australia (Table 1). The dominance of Australia at 0.5 km is explained by our use of only a single year and
interannual variability in dust emission, and because the Fcal are restricted spatially using the 278 km resolution
which preferentially focuses on continental interiors due to pixel edge effects (Figure 2). Australian Fcal naturally
occurs away from the highly vegetated coastal regions. Consequently, using this 278 km resolution spatial re-
striction gives preference to Fcal from continental interiors and causes Australia to have the most dust in these
simulations. However, the purpose of the simulations is to compare the relative differences. Australia has the
greatest difference in Fcal between the 0.5 and 278 km resolution of 1.95 Tg y− 1 (40.16% of the total difference
Table 1). The greatest resolution dependence is very likely caused by Australia having the largest differences in
landscape variability at 278 km for example, with fundamental differences in ecoregion scales at 278 km. East
Asia and North America have the next largest differences (∼0.91 Tg y− 1 around 19%; Table 1) in Fcal caused by
these resolutions.

4. Conclusion
Our calibrated albedo‐based dust emission (Fcal) magnitude, spatial distribution, and seasonality does not depend
upon resolution (<111 km). Area‐integrated albedo scales linearly with resolution and its relation with sheltering
represents sub‐grid scale heterogeneity in us*. This straightforward scaling in a global Fcal produced remarkably
consistent results across resolution, with fewer parameters than FTEM, making the approach suitable for large
scale dust cycle modeling and operational weather forecasting. At 111 km and particularly at 278 km resolution,
linear scaling of albedo and calibration to us*/Uh behaves differently because of a fundamental difference in the
landscape heterogeneity for example, ecoregion scale.

This dust emission modeling approach is largely resolution independent without adjusting wind fields, unlike
previous approaches. Dust emission is not dependent solely on wind speed (Uh), but on us* which represents
aerodynamic sheltering. The long‐standing focus on adjusting the wind field excludes the feedback and inter-
action with aerodynamic roughness changes over space‐time. Consequently, attempts to improve Fmodels using
new re‐gridded wind field parameterizations do not adequately account for the sub‐grid scale heterogeneity in the
us*, which drive F. Hence, existing approaches to large scale modeling of dust emission retain considerable
resolution dependence.

Overcoming non‐linearity in scaling us* already demonstrated elsewhere the importance of seasonally shifting
global dust source regions with many other arising implications for this largely resolution independent F
modeling. ESMs cycling dust with this new resolution independent modeling will very likely reduce uncertainty
and correctly represent dust types and seasonality particularly those overlooked in the southern hemisphere.
These ESMs will then be able to tackle previously unresolved issues for example, Southern Ocean productivity
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associated with quartz and iron hypotheses from dust sources. Similarly, properly coupling albedo‐based dust
cycling with energy‐driven ESMs offers new opportunities for feedbacks and interactions. Furthermore, dust
aerosol modeling accounting for sub‐grid scale heterogeneity with this approach is expected to provide more
accurate air quality forecasts than classical approaches.

Future improvements in Fmodeling must overcome the remaining non‐linearity of grain‐scale parameterizations
being re‐gridded over large scales. Remaining resolution dependency in Q seasonality was evident in regional
differences in “drag days” and in Fcal by grain‐scale sandblasting and is also likely to occur in the soil moisture
function H(w) and wind speed Uh. The long‐standing u*ts and sandblasting parameterizations are responsible for
the remaining F resolution dependence important for dust cycle models. Until the u*ts and sandblasting are
parameterized non‐linearly (and ideally dynamically) over area, F modeling will remain poorly constrained and
resolution dependent.

Code Availability
The dust emission code is archived as a text file using Zenodo (where the code will not run without access to the
Google Earth Engine) using the DOI: doi.org/10.5281/zenodo.5626825.

Data Availability Statement
The dust emission modeling was performed in the Google Earth Engine (GEE) with the following data. To mask
the sea from the land we used land cover classification (MODIS/051/MCD12Q1) (Friedl, 2022). Albedo was
from MODIS/006/MCD43A1 (Schaaf and Wang, 2015). Snow cover was from MODIS/006/MOD10A1 (Hall
et al., 2016). Normalized Difference Vegetation Index (NDVI) data was from MODIS/MOD09GA_006_NDVI
(Vermote and Wolfe, 2015). The u and v components of wind speed at 10 m, volumetric soil water and soil
temperature were from ECMWF/ERA5_LAND/HOURLY (C3S, 2022). The clay content from the ISRIC
Soilgrids data (Hengl et al., 2017) was uploaded privately to the Google Earth Engine.
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