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Abstract 

Designing for daylighting-thermal balance for a hot and 

humid climate should be properly considered due to the 

contradictory relationship between thermal energy and 

daylighting. Often the occupant of residential houses in 

such climate chooses to install large overhangs to reduce 

solar heat gain into the house. However, this practice can 

cause overshading phenomenon which leads to 

insufficient natural daylight in the interior. This study 

employed global sensitivity analysis and multi-objective 

optimisation (MOO) to find an optimal solution that 

reaches a trade-off between daylighting and thermal 

energy performance in hot and humid climates. The 

methods were applied to a double-storey terrace housing 

archetype and changes in optimal solutions were also 

studied for the future climate. The sensitivity analysis 

identified glazing transmittance (GT) as the most 

significant parameter for daylighting while the room 

depth (RD) parameter is significant for thermal energy 

performance. The selected solutions for this study 

observed an increase in daylight performance by 10.2% to 

13.4%, depending on the climate scenarios. On the other 

hand, the thermal energy performance of the selected 

solutions showed a trade-off between daylight and 

thermal energy performance.  

Highlights 

• The optimisation process is critical for finding a long-

term and robust solution against climate change. 

• The internal light shelf is more sensitive to daylight 

performance while the external light shelf is more 

sensitive to thermal-related performance.  

• The multi-objective optimisation succeeds to find a 

trade-off solution for contradictory objective 

functions like daylight and thermal performance. 

Introduction 

Dwelling in a tropical climate must be designed to 

effectively mitigate the high intensity of solar heat gain 

throughout the year.  One viable option for this problem 

is by using external shading devices which are effective 

in limiting excessive solar heat gain into the interior. 

Shading devices such as large external overhang is a 

popular design option for homeowners in the tropical 

climate of Malaysia. Specifically for terraced housing, the 

overhang is installed at the front façade of the house 

which also covers the external porch area. The large 

overhang design is also desirable by Malaysian 

homeowners because Malaysia is subject to heavy rainfall 

throughout the year. Hence, having an overhang that 

covers most of the porch area becomes an important 

design factor in such dwellings, and it is always included 

in new development (Nik Ramzi Shah & Mohd. Rasdi, 

2017).  

However, the overhang does not simply limit solar gains 

and protects the porch area from heavy rainfall, they also 

reduce the amount of daylighting in the building if it is not 

properly designed (Yu et al., 2020). The problem is 

heightened especially for the intermediate unit which 

typically has only two façades for fenestration, located at 

the front and the back of the house. The typical layout of 

terrace housing in Malaysia has a deep and narrow floor 

plan where the width of the house is usually around 6m to 

8m with a depth of 10m to 13m (Nik Ramzi Shah & 

Mohd. Rasdi, 2017). These design attributes limit the 

daylight from entering deep into the space, resulting in 

additional usage of artificial lighting during the day. Our 

preliminary study on the daylight level of such houses in 

Malaysia suggests that the current daylight performance 

of the house is below the recommended level of the 

Energy Efficiency and Use of Renewable Energy for 

Residential Buildings - Malaysian Standard Code of 

Practice: MS 2680:2017 (Department of Standards 

Malaysia, 2017). Thus, this study aims to explore design 

options that could reach an acceptable trade-off between 

daylighting and solar heat gain in a hot and humid climate.  

When dealing with various design parameters with 

conflicting objectives, the use of the simulation-based 

multi-objective optimization (MOO) method was found 

to be useful. Compared to single-objective optimisation, 

MOO produces a range of possible solutions that are 

subject to equivalent importance (Pareto front) rather than 

producing a single optimal solution. A recent review by 

Yu et al. (2020) reviewed five methods for studying 

thermal-daylighting balance and MOO was recommended 

as the effective method to find a trade-off solution to these 

objectives. A study by Bahdad et.al (2021) used MOO to 

investigate the impact of light shelf parameters on visual 

comfort and thermal energy performance in an office 

building. The objectives of the study are to increase useful 

daylight illuminance (UDI), reduce the daylight glare 

probability (DGP) for better daylight performance, and 

minimise thermal energy use intensity (EUI). Zani et. Al. 

(2017) employed the MOO approach for finding the 

optimal design of innovative concrete shading. The 

metrics studied in the study were daylight autonomy 

(DA), UDI and total cooling, heating, and lighting energy 

demand. Also, Shahbazi et. al. (2019) used the Octopus 



plugin for Grasshopper, a genetic algorithm MOO tool to 

investigate an optimised window system. The optimal 

objectives were UDI and EUI. 

The MOO method however is computationally expensive, 

especially when involving daylight simulation which is 

known as a time-consuming and laborious process. 

Moreover, a building system includes a wide range of 

parameters ranging from building design to the building 

operation system and often the relationship is highly non-

linear. According to a recent review of sensitivity 

analysis, the method is widely employed by building 

simulation researchers to combat these challenges (Pang 

et al., 2020). Sensitivity analysis can establish the input-

output relationships of a complex model and determine 

the significant and neglectable parameters (Andrea et al., 

2008). Finding the most influential input parameters 

enable the size of the search space in the optimisation 

process to be reduced to design parameters that are critical 

to the model only. Sensitivity analysis methods are 

categorized into two approaches, local and global 

sensitivity analysis. According to Pang et. al. (2020), the 

local approach is computationally efficient, but it is not 

suitable for non-linear and/or non-monotonic input 

parameters. For the non-linear and non-monotonic model, 

the global sensitivity analysis is necessary to achieve a 

robust result (Pang et al., 2020).  

Method 

In this section, an overview of the method used to conduct 

sensitivity analysis and multi-objective optimisation is 

provided. There were 4 major steps employed in this 

study. Firstly, parametric modelling, decision parameters 

formulation and simulation setup. Decision parameters 

were created among design strategies that are critical 

during the early design stage such as the room geometry, 

orientation, and façade design.   Secondly, the parametric 

model was calibrated against measured data from the 

literature. In the third step, global sensitivity analysis was 

performed to determine the most influential input 

parameters. To find the optimal solution for balancing 

daylight-thermal performance, the simulation-based 

multi-objective method was conducted as the last step in 

this study. A case study is used to prove the pertinence of 

the proposed methodology. The next section will discuss 

these methods in detail.  

The case study and parametric modelling 

The building typology selected for the study is an urban 

residential building, which is a double-storey terraced 

housing. This study will be focusing the most problematic 

area of the house which is the open-plan living and dining 

area located at the front of the ground floor area. The 

simulations were performed for the capital city of 

Malaysia, Kuala Lumpur (3°7'N 101°33'E) which has a 

tropical wet climate with no dry or cold season. The 

location is constantly moist and has year-round rainfall 

according to the Köppen-Geiger climate classification. In 

the pre-processing stage, a parametric simulation model 

was created using Rhinoceros 7 and Grasshopper plugin. 

11 different design parameters such as room orientation 

(RO), room width (RW), room depth (RD), room height 

(RH), shade depth (SD), glazing ratio (GR), glazing 

transmittance (GT), depth of external and internal light 

shelf (ELSD & ILSD) and tilt angle of the external and 

internal light shelf (ELSA & ILSA) were modelled 

parametrically. All parameters were a continuous type of 

data.  

The research approach in this paper was based on a cross-

comparison of simulation results to the base case. The 

base case was assumed to be two extremes (shaded and 

unshaded). The base cases had a dimension of 6.0m x 

7.0m x 3.0m for the width, depth, and height respectively. 

There was no light shelf installed for the base case but one 

of the base cases had a shade of 6.0m width, 4.5m depth 

and 3.0m height. The thickness of the glazing is 6 mm 

with a transmittance of 0.6 and a glazing ratio of 30%. 

The base case was facing south which in this case is 0°. A 

1.1m width by 1.9m height door was also modelled to the 

front façade. The function of the door was to mimic the 

actual wall-to-window ratio available to the room in 

actual cases and it constitutes around 10 per cent of the 

façade area. According to our preliminary calibration 

study, the shading of the adjacent unit, the partition wall 

separating these units and the exterior porch floor had a 

significant impact towards the daylight performance of 

the room. Hence, to replicate the actual behaviour of the 

case study, these design elements were also included in 

the simulated model (Figure 1).  

 

Figure 1: The 3d model of the studied room for the 

optimisation process. 

Simulation setup 

The effect of changing the design parameters on 

daylighting performance was measured using the 

Ladybug Tool version 1.5.0, a Grasshopper plugin that 

uses Radiance for annual simulation and illuminance 

computation. Daylight performance was evaluated using 

Useful Daylight Illuminance (UDI) which corresponds to 

MS 2680:2017. UDI is a dynamic daylight performance 

that defines the annual occurrences of illuminance across 

the work plane (Nabil & Mardaljevic, 2005). This metric 

values daylight in a space based on three illumination 

ranges which are UDIa (acceptable), UDIs 

(supplementary) and UDIe (excessive). According to 

MS2680:2017, the recommended illuminance level for a 

living room and dining room is 200 lux and 250 lux 

respectively. Thus, the UDIs, UDIa and UDIe bins 

assigned for the study were <100 lux, 100-2000 lux and 

>2000 lux respectively. Another daylight metric 

evaluated in this paper is uniformity ratio (UR). The 

uniformity ratio is the ratio of the minimum daylight level 



to the average daylight level in a space. UR evaluates the 

quality of the illuminance distribution in space. A space 

with a higher ratio will give the occupant a more 

comfortable environment where different lighting levels 

are unnoticeable, hence less artificial lighting will be used 

during the day. In this study, UR is used to evaluate the 

performance of the light shelf to redirect daylighting deep 

into the floor plane.  

The set grid of sensor points has a spacing of 0.5m by 

0.5m, a height of 0.75m and a boundary of 0.5m from the 

room walls. The optimal Radiance ambient parameters for 

the study have been investigated and assigned as reported 

in Table 1. The values written in brackets are the default 

parameters that rcontrib adopted. To explore the impact 

of artificial lighting during the day, the lighting schedule 

was set from sunrise to sunset which was 07:00 to 19:00. 

For the occupancy schedule, during weekdays, the room 

was assumed to be occupied for about 2 hours in the 

morning and another 6 hours in the late afternoon and 

evening during the weekdays. While on the weekend, the 

room was assumed to be occupied from 07:00 to 22:00.  

There were 22 days of public holiday recorded in the year 

2022 for Malaysia and during these days, the room was 

assumed to be unoccupied because the occupant often 

went out during the holidays. The reflectance value of the 

light shelf, wall, roof ceiling and floor are 0.9, 0.75, 0.8 

and 0.2 respectively. 

Table 1: Radiance ambient parameters for daylight 

simulation 

-ab -ad -as -c -dr -dp -lr -lw 

6 70000 (4096) (1) (3) (512) (8) (4e-

07) 

For energy simulation, OpenStudio 4.5 was used as the 

energy simulation engine. The annual energy use per floor 

area (EUI – kWh/m2) was used to compare the efficiency 

of each design parameter. There were 3 energy metrics 

investigated in the study which were the annual lighting 

EUI (LTE), the annual cooling EUI (CLE) and the annual 

solar Gain EUI (SGE). All surfaces of the room are 

assumed to be adiabatic except the front façade. The 

detailed thermal properties and construction of the room 

are described in Table 2. The lighting load and the 

occupancy load schedules were identical to those used in 

the daylight simulation. During occupied hours, it was 

assumed that 5 people are present. The space was fully 

air-conditioned, and the HVAC set points for cooling 

were set at 240C. For a hot climate, the heating system is 

rarely installed in a residential building. Thus, to avoid 

any heating being calculated in the simulation, the heating 

set point was set much lower than the standard which was 

80C. Lastly, the equipment load was assumed to be 

41W/m2.  

Model Calibration 

In the present study, the energy results from OpenStudio 

and the performance of the studied house were verified 

against the experimental data of Mohamed et. al. (2017). 

The equipment loads and occupancy hours were selected 

according to the experimental study. According to 

Mohamed et. al. (2017), the average monthly energy 

consumption of a double-storey terrace house is 920 kWh. 

14 model variations were tested in the model calibration 

process and the percentage difference of the last variation 

achieved an agreement of less than 10% with the 

experimental data. Hence, the last variation model was 

used as the model to analyse the daylight and energy 

performance of the studied room. 

Present and Future Climate 

To better comprehend the impact of solar heat gain caused 

by global climate change in the tropical climate, future 

hourly weather data of the studied location was also 

analysed in the study. The International Weather for 

Energy Calculation (IWEC) year for the Kuala Lumpur 

weather station (486470) was used as the base or present 

climate in the study. The hourly future climate of Kuala 

Lumpur was generated using a ‘Climate Change World 

Weather Generator’ tool (CCWorldWeatherGen) 

developed at the University of Southampton (Jentsch et 

al., 2013). The tool uses a morphing technique to morph 

a typical meteorological year (TMY) into new future 

weather files for the year the 2020s, 2050s and 2080s.  

CCWorldWeatherGen morphed the baseline data using 

the HadCM3 global circulation model used in assessment 

reports by the IPCC. The IPCC’s Special Report on 

Emissions Scenarios (SRES) outline six climate change 

scenario families namely A1F1, A1B, A1T, A2, B1, and 

B2. The morphed tool used the A2 climate change 

scenario by default which was the assumption used for 

this study.  Figure 2 illustrates the probability density 

function of changes in temperature and relative humidity 

Table 2:  The thermal properties and construction of the studied room 

Building 

elements 

Construction Thickness 

(m) 

Conductivity 

W/(m.K) 

Density 

kg/m3 

Spec. heat 

J/(kg.K) 

External wall 227mm brick wall Cement sand plaster (each side) 0.006 0.533 1800 1000 

  Red clay brick  0.215 0.3 1900 840 

Internal wall 150mm brick wall Cement sand plaster (each side) 0.006 0.533 1800 1000 

  Red clay brick  0.140 0.3 1900 840 

Internal Floor Concrete floor with 

tiles 

Reinforced concrete floor 0.1 2.3 2300 1000 

 Concrete screed 0.05 1.35 2000 1000 

 Ceramic tiles 0.01 1.3 2300 840 

External floor Exposed concrete 

floor 

Reinforced concrete floor 0.1 2.3 2300 1000 

 Concrete screed 0.05 1.35 2000 1000 

Ceiling The inverse of 

internal floor 

Ceramic tiles 0.01 1.3 2300 840 

 Concrete screed 0.05 1.35 2000 1000 

 Reinforced concrete floor 0.1 2.3 2300 1000 



from the present (IWEC) to the 2080s. The incremental 

percentage change for temperature from present to 2020s, 

2050s, and 2080s is 3.6%, 3.9% and 5.4% respectively 

while the cumulative change by the year 2080s is 13.4%. 

The sensitivity analysis and optimisation process were run 

for the present climate (IWEC) and the future climate of 

the year 2080s. The objective of this study is to address 

how drastically these climate changes will alter the 

optimized solution and what determinant decisions the 

designer can make to ensure long-term efficient 

performance. 

 

Figure 2: The probability density function of 

temperature from the present to the year 2080. 

Sensitivity analysis 

In the context of building performance simulation (BPA), 

sensitivity analysis is widely used to identify the most 

influential design parameters (the input) on the building 

performances (the output). The sampling and the analysis 

have been performed using the global sensitivity analysis 

method, namely the enhanced Morris Method or 

Elementary Effect (EE) method (Ruano et al., 2012). 

Morris's method can effectively measure the ranking of 

the effect even when the model is non-monotonic, which 

is the case for the energy and daylight model. In this 

study, 20 trajectories (k) and 4 levels were used and a total 

number of 240 samples were generated for each climate 

scenario. The number of samples (n) was obtained from 

equation 1, where D is the number of input parameters 

(i.e. 11) and k is the number of trajectories. 

 n = k(D + 1)                            (1) 

All procedures to perform the Morris sampling and the 

Morris sensitivity analysis were run in Python 3.0 using 

the SALib module version 3.0. 

The multi-objective optimisation  

The multi-objective optimisation was performed using the 

Grasshopper plug-in Wallacei version 2.5. Wallacei 

employs the NSGA-II algorithm as the primary 

evolutionary algorithm. The algorithm sought to 

maximise UDIa and UR while minimising the rest of the 

objective functions. To find the optimal solution for the 

base case, the RO, RW, RD and RH were kept constant 

and were set the same as the base case. The height of the 

light shelf is 2.5m which is the lowest possible height 

clearance for a residential building according to 

Malaysian Uniform Building by Law (UBBL). Table 3 

shows the minimum and maximum range of the 7 input 

parameters for the optimisation. The total number of 

design alternatives for the optimisation process was 

2,606,175. For the setting of the optimisation process, the 

total population size was 5000 population with a 

generation size of 50 and a generation count of 100. The 

Crossover probability was set as 0.9, the mutation 

probability as 0.7 and the crossover and mutation 

distribution index as 20. With these settings, the 

simulation runtime took around 428 hours (17.8 days) for 

the present climate and 433 hours (18 days) for the future 

climate using AMD Ryzen 9 3900X 12-Core Processor 

with 64.0GB RAM.  

Table 3: The input parameters for optimization 

Parameters Min Max Steps Counts 

SD 0.0m 5.0m 0.5m 11 

GR 10% 90% 10% 9 

GT 0.1 0.9 0.1 9 

ELSD 0.0m 1.0m 0.25m 5 

ILSD 0.0m 1.0m 0.25m 5 

ELSA -15° 45° 5° 13 

ILSA -15° 25° 5° 9 

The total number of design alternatives:  2,606,175 

Results 

This section outlines the results of the sensitivity analysis 

and optimisation of the study. The first part of this section 

summarises the ranking and the influence of design 

parameters on daylight and energy performance through 

the Morris analysis. The second part of this section 

provides the main findings of the optimisation of the 

parameters by comparing the results with the base cases.  

Sensitivity analysis results 

The sensitivity analysis aimed to determine the highly 

influential parameters and their relationship to the output 

metrics. The sampling process conducted with the Morris 

method identified four values within each of the 11 

parameters. Morris method uses the one-at-a-time method 

(OAT) to arrange the simulation run where each 

parameter was assigned one out of the four values and the 

subsequent run differed from the previous run for one of 

these values only.  One of the key findings of the 

sensitivity analysis was illustrated in Figure 3. The figure 

gives an indication of the parameter’s relationship with 

the outputs, based on the ratio σ/μ∗. σ is the standard 

deviation of differences in outputs due to input variation, 

which is also called the elementary effect. On the other 

hand, the μ∗ is the mean absolute value of the distribution. 

The relationship between the parameters and the outputs 

is represented by its position with three lines in the graph. 

If the parameters are positioned below the line σ/μ∗ = 0.1, 

it can be considered to have an almost linear relationship 

with the outputs. If they appear below the line σ/μ∗ = 0.5 

and σ/μ∗ = 1, then they are considered to have a 

monotonic and an almost-monotonic relationship 

respectively. On the other hand, if the parameters sit 

above the line σ/μ∗ = 1, the parameters show a highly non-

linear relationship with the output  (Ruano et al., 2012). 

The figure also shows the ranking of the input parameters 

where the rankings are in order of most influential to least 

influential from right to left of the graph. The input 

parameters were depicted with different symbols. Blue-

coloured symbols represent the results of the present 

climate, and red-coloured symbols represent the future 

climate.  

Commented [A1]: Is this BPS? 



For all output metrics, the rankings of the input 

parameters for present and future climate exhibit a similar 

pattern while it has a different variation for each metric.  

For UDIa, UDIs and UDIe, the most influential parameter 

is GT followed by RD and GR for both present and future 

climate. However, the least influential parameters for 

UDIa and UDIs are ELSA and ELSD while UDIe is least 

affected by ELSA and ILSA. For UR, the most influential 

input parameters are SD, RW and RD while RO shows 

the least influential parameters for this metric. The LTE’s 

rankings behave similarly to the annual daylight metrics 

which it mostly affected by the variation in GT. But LTE 

is least affected by the variation in RO and ELSA. The 

results for CLE and SGE show that the RD is the most 

influential factor while the least influential factors are 

ILSA and ILSD. Additionally, room orientation (RO) 

shows a peculiar result where it is ranked mostly as not 

significant compared to the other factors. This is because 

the sun angle in tropical climates does not vary greatly 

throughout the year. 

Figure 3 also gives an insight into the relationship 

between the input parameters and the output metrics. 

None of the parameters can be linearly correlated to any 

of the metrics. Most parameters for UDIa, UDIs and UDIe 

had a non-monotonic behaviour due to illuminance 

instances that do not fall within the specified range. For 

example, if the input parameter results in an illuminance 

value outside the range of 100 lux to 2000 lux for UDIa, 

the effect on the metric was a reduction in percentage 

rather than a corresponding increase. The behaviour of 

input parameters for LTE behaves similarly to those of 

annual daylight metrics where the lower-ranking 

parameters had a non-monotonic relation while the 

higher-ranking parameters had a monotonic relationship. 

On the other hand, the effect of the input parameters on 

UR was varied as depicted in the fourth graph of Figure 

3. As for CLE and SGE, all parameters show a monotonic 

or almost-monotonic effect on the metrics, meaning that 

there was a corresponding increment and reduction in the 

resulting metrics, although not in a comparative manner.  

Optimisation results 

Two extreme cases of the base cases were simulated to 

analyse the impact of shaded and non-shaded rooms in 

present and future climates. As noted previously, the 

shading provision in the tropical climate would have a 

reciprocal effect towards daylighting and energy 

performance. The result from the optimisation is expected 

to find the trade-off between these two extreme cases. The 

two base cases were shaded and unshaded where it is 

addressed as BCs and BCus respectively from here 

onwards.   

The optimisation results are presented in Figure 4 and 

Table 4. Figure 4 depicts the Pareto Front solutions for the 

present and future climate of the studied case. To better 

understand the relationship between daylight and energy 

output, each objective was mapped in a 3 x 4 metric where 

the x-axis represents the daylight-related metrics (i.e 

UDIa, UDIs, UDIe and UR) and the y-axis represents the 

energy-related metrics (i.e LTE, CLE and SGE). There 

were 50 Pareto Front potential solutions produced for 

each climate which were indicated by the blue circle and 

red triangle markers for the present and future climate 

respectively. The grey markers in Figure 4 (a), (e) and (i) 

indicate the solutions that do not meet the daylight 

threshold of the UDIa level of 50%. There are 28 out of 

50 solutions that do not meet this requirement in the 

present climate. While in the future climate, 21 solutions 

failed to meet this requirement. There are 5 separate data 

points for each climate representing the BCs (aqua), BCus 

(magenta), the maximum daylight improvement (dark 

green), the maximum energy saving (yellow) and the 

proposed solution within this study (lime) (Figure 4). At 

these points, the maximum UDIa level for the present 

climate is 57.9% with 34.6% in UDIs and 0% in UDIe. 

The maximum level of uniformity ratio is 0.7. On the 

other hand, the minimum lighting EUI level is 11.6 

Figure 3: The result of Morris sensitivity analysis.  



kWh/m2 with 0 kWh/m2 in cooling EUI and 18.1 kWh/m2 

in solar gain EUI. The maximum improvement in future 

climate is very similar to the present climate except for 

cooling and solar gain EUI (2.2 kWh/m2 and 19.1 kWh/m2 

respectively). Table 4 also outlines the average 

percentage change of these maximum improvements 

compared to both base cases (BCs and BCus). Moreover, 

Figure 4 reveals the impact of future climate scenarios on 

daylight and thermal energy. The results of daylight-

related metrics on LTE and SGE in the future climate 

(Figure 4 (a) to (d) and (i) to (l)) overlapped with the 

present climate which shows that its impact is minimal in 

the future climate. However, a stark difference can be 

seen in the Cooling EUI where in the future climate, the 

cooling EUI is relatively higher than the present climate. 

This trend further emphasizes the need to find an optimal 

trade-off between cooling energy and daylight in the 

future climate.  

A further search was conducted to find the most feasible 

solution that ensures improvement in each fitness 

objective simultaneously. The data point in Figure 4 

marked with lime-coloured markers named P7 for present 

Table 4:  The comparison of selected solution and maximum improvement to the base cases 

Objectives 

Present Future 

BCs BCus 
Max. 

Value1 

Change 

%2 

User 

Selection 

(P7) 

Change 

%2 
BCs BCus 

Max. 

Value1 

Change 

%2 

User 

selection 

(F49) 

Change 

%2 

UDIa  46.9 51.1 57.9  18.4 55.7 13.4 49.3 53.2 57.9  13.1 56.4 10.2 

UDIs 53.1 45.4 34.6  -29.3 44.5 -9.0 50.7 43.3 34.5  -26.1 43.6 -6.7 

UDIe  0.0 3.4 0.0  -50.0 0.0 -50.0 0.0 3.5 0.0  -50.0 0.0 -49.6 

UR  0.3 0.3 0.7  133.3 0.7 124.7 0.3 0.3 0.7  133.3 0.7 126.6 

LTE  15.0 13.2 11.6  -17.4 13.1 -6.5 14.7 13.0 11.6  -15.9 13.0 -5.6 

CLE  0.0 0.3 0.0  -50.0 0.0 -50.0 1.3 24.1 2.2  -10.8 2.5 -0.5 

SGE  11.7 37.2 18.1  1.7 18.1 1.8 11.8 38.8 19.1  5.5 19.9 10.0 
1 Result of maximum improvement from all Pareto Front solutions. 
2 The change is calculated as an average percentage change of the new solution to both base cases (BCs and BCus) 

Figure 4: The result of Pareto Front solutions for present and future climate 



climate and F49 for future climate were selected as the 

most feasible solution. The selection was based on a 

positive increment in daylight level and decrement energy 

usage compared to both base cases. As outlined in Table 

4, UDIa of user-selected solutions observed an average 

increment of 13.4% in the present climate and 10.2% in 

the future climate when compared to both base cases. 

Correspondingly, the UDIs and UDIe showed a reduction 

of 9% and 50% respectively in the present climate while 

in the future climate, it was reduced by 6.7% and 49.6% 

respectively. There is a large improvement in terms of the 

uniformity ratio where it has increased by 124.7% in the 

present climate and 126.6% in the future climate. 

Accordingly, due to the improvement of daylight level, 

the lighting EUI showed an average reduction of 6.5% 

and 5.8% in the present and future climate respectively. 

The cooling EUI usage also observed an average decrease 

of 50% and 0.5% in each climate. The introduction of the 

light shelf in the room caused the solar gain EUI to 

increase by 1.8% and 10% in the present and future 

climate respectively. If we observed the absolute value of 

this increase, the selected solution performed better than 

the unshaded base case (BCus) which means that the 

selected solution found a trade-off between shaded and 

unshaded rooms. 

Figure 5 and Table 5 shows the overall genomic analysis 

of acceptable solutions for the present climate and future 

climate. Figure 5 outlines the percentage of occurrence of 

a specific genome (input parameters) in the optimal 

solutions. The darker the colour, the higher the percentage 

of the genome that appeared in the optimal solution. Thus, 

it indicates the importance of the genome as the effective 

solution for the studied climate. This section will compare 

to the genomic analysis of the present climate to the future 

climate to examine how the optimal solutions change 

against varying climate scenarios. For the GR parameter, 

the results of the present climate revealed a change in 

behaviour to the future climate. The effective window-to-

wall ratio for the present climate appeared frequently with 

the lowest ratio (0.1) while in the future climate, the 

highest ratio of glazing was preferred (0.9). In the case of 

the GT parameter, the most desirable genome for the 

present and future climate was the same (0.9), however, 

lower GT options such as 0.7 and 0.8 become equally 

desirable in the future climate. This is likely due to the 

increased trend of temperature in the future climate. As 

for the depth of the overhang, the longest shade is 

considered the most effective solution for both climates. 

The preferred genome for ELSD also observed a decrease 

from 1.00m in the present climate to 0.75m in the future 

climate. However, the ILSD of the future climate 

remained the same as in the present climate. The highest 

genomic occurrence for external light shelf inclination 

also remained the same as the present climate, which is 

450. The inclination angle of -100 for the internal light 

shelf showed the highest occurrence in the optimal 

solutions for the future climate whereas, 00 was selected 

as the most effective solution in the present climate.  

In Table 5, the introduction of a light shelf caused the 

glazing ratio of the selected solution to reduce from 0.3 

(BCs and BCus) to 0.1 in both climates. On the other 

hand, the selected GT for both climates was increased 

from 0.6 to 0.9. In the case of the SD parameter, the depth 

of the selected solution was reduced by 1.0m for both 

climates. In terms of light shelf parameters, the preferred 

genomes for the selected solutions were within the range 

as discussed previously. 

 

(a) 

 

(b) 

Figure 4: Genomic analysis of acceptable solutions for 

the present climate (a) and future climate (b). 

Table 5: The genomic result of the selected solutions in 

the present climate and future climate. 

Cases 

GR 

(%) GT 

SD 

(m) 

ELSD 

(m) 

ILSD 

(m) 

ELSA 

(deg) 

ILSA 

(deg) 

P7 0.1 0.9 5.0 1.00 0.50 45 -15 

F49 0.1 0.9 5.0 0.75 0.50 45 -10 

Discussion and Conclusion 

This paper investigated the use of global sensitivity 

analysis with a multi-objective optimisation framework to 

achieve a high-performance façade design for a 

residential building. The approach was applied to an 

intermediate unit of terrace housing in Kuala Lumpur, 

which represents a hot and humid climate in Malaysia. 

Two varying climate scenarios that represent present and 

future climates were also investigated in the study. The 

Morris sensitivity analysis method was applied to 

determine the influential input parameters on 7 selected 

output metrics. After the influential parameters have been 

determined, the optimal set of daylight and energy-saving 

solution were identified through the optimisation process.  

The deduction from sensitivity analysis results 

demonstrates that in a hot and humid climate, GT was 

consistently ranked as the most influential parameter for 

annual daylight metrics and lighting EUI.  For daylight 

uniformity, RW, RD and SD showed the highest and 

equivalent importance to the output. While for thermal 

energy metrics such as cooling and solar gain EUI, RD is 

ranked as the most important parameter. In terms of light 

shelf parameters, it was observed that the internal light 

GR 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9      100 Highest 

% 29 19 0 0 0 0 14 24 14      90   

GT 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9      80   

% 0 0 0 0 0 0 0 33 67      70   

SD 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5    60   

% 0 0 33 0 0 0 0 0 0 10 57    50   

ELSD 0 0.25 0.5 0.75 1          40   

% 5 5 14 0 76          30   

ILSD 0 0.25 0.5 0.75 1          20   

% 5 10 71 14 0          10   

ELSA -15 -10 -5 0 5 10 15 20 25 30 35 40 45  0 Lowest 

% 19 10 5 0 0 0 0 0 5 0 0 14 48     

ILSA -15 -10 -5 0 5 10 15 20 25         

% 24 5 0 43 24 5 0 0 0         
 

GR 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9        

% 21 17 14 7 0 0 0 3 38      100 Highest 

GT 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9      90  

% 0 0 0 0 0 0 28 34 38      80  

SD 0 1 1.5 2 2.5 3 3.5 4 4.5 5     70  

% 10 21 14 0 0 0 0 0 7 48     60  

ELSD 0.00 0.25 0.50 0.75 1.00          50  

% 3 21 17 34 24          40  

ILSD 0.00 0.25 0.50 0.75 1.00          30  

% 28 7 52 14 0          20  

ELSA -15 -10 -5 0 5 10 15 20 25 30 35 40 45  10  

% 17 0 0 3 0 0 0 14 3 0 3 17 41  0 Lowest 

ILSA -15 -10 -5 0 5 10 15 20 25        

% 28 48 3 0 17 3 0 0 0        

 



shelf parameters were more sensitive to daylight-related 

metrics while the external light shelf parameters were 

more sensitive to the thermal energy metrics.  

The assumption from the solutions of the optimisation 

process reveals a trade-off relationship between daylight 

and thermal energy performance. In general, the daylight 

performance of the selected solution observed an 

improvement while thermal energy performance showed 

a balanced between two extreme base cases.  

Furthermore, the presence of a light shelf has greatly 

improved the performance of daylight uniformity. The 

optimisation process also explains the changing optimal 

solution from present to future climate, especially to the 

parameters that were highly sensitive according to the 

sensitivity analysis results.  

In conclusion, it became evident that the use of sensitivity 

analysis along with multi-objective optimisation can 

support solving multi objectives design problems. The 

relationship between conflicting objectives can be 

thoroughly analysed and the best trade-off solution can be 

determined. For future work, many other sampling 

schemes and sensitivity techniques could be explored to 

assess the most suitable techniques for the study. This 

research is part of a larger research to explore the use of 

meta-model techniques to improve the efficiency of the 

computation time of the optimisation process. The 

optimisation process for both climate scenarios consumed 

nearly 861 hours on a desktop computer with AMD Ryzen 

9 3900X 12-Core Processor with 64.0GB RAM. This can 

be seriously unrealistic to be implemented in an actual 

project, especially when considering more complex 

design problems. Besides, the work should be extended to 

another performance metric such as thermal comfort and 

the results should be validated by comparing the outputs 

to monitored data. 
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Nomenclature 

GR - Window-to-wall ratio or glazing ratio (%)  

GT - Glazing transmittance  

SD - Shade depth (m)  

ELSD - Depth of external light shelf (m)  

ILSD - Depth of internal light shelf (m)  

ELSA - Angle of the external light shelf (0)  

ILSA - Angle of the internal light shelf (0)  

UDIa - Acceptable useful daylight illuminance 

UDIs - Supplementary useful daylight illuminance  

UDIe - Excessive useful daylight illuminance  

UR - Daylight uniformity ratio   

LTE - Annual lighting energy use intensity (kWh/m2) 

CLE - Annual cooling energy use intensity (kWh/m2) 

SGE - Annual solar gain energy use intensity (kWh/m2) 
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