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A B S T R A C T   

Smart grids are getting important in today’s power management, so with that, smart grid technologies are 
increasingly important too. There have been a lot of concerns about smart grid technologies being hacked, and as 
a result, some deep black box adversarial attacks have been conducted and presented. We propose a new 
experimental methodology for benchmarking smart grid security with black box attacks. Additionally, con-
cerning the type of smart grids, Smart Power Grids, deep black box adversarial attacks which can be crafted using 
virtually no knowledge about the target due to the inherent complexity of content available in cryptographic 
libraries like SecLib or Bouncy Castle how it affects security of cyber-physical power systems. We identify po-
tential impacts of deep black box attacks on Smart Power Grids as implemented by the Department of Energy in 
1996, we evaluate existing protection methods, and we find out the pitfalls thereof. With the aim of overcoming 
the aforementioned drawbacks, we initiate a study on deep black box adversarial attacks against Smart Power 
Grids showing that statistically significant effects against a national Smart Power Grid are achievable with ab-
solute security. We also probe detection of cyber security attacks on Smart Power Grids. We illustrate landscape 
of smart grids with numerous cyber threats and demonstrate the limitations of traditional security practices. We 
show the importance of machine learning to detect attacks and the unlikelihood of identification of dependable 
and efficient detection schemes. We describe quantum voting ensemble models as one of the most powerful 
techniques in the detection of cyber security attacks. Finally, we propose an experimental setup and evaluation 
criteria to detect cyber security attacks in smart grids using quantum voting ensemble models. Then, we talk 
about private data storage in blockchain based smart grid infrastructure. We give an introduction of block chain 
and its essentiality in smart grids. We discuss privacy issues in block chain based smart grids. We acknowledge 
the strength of privacy safeguards, but on the same wavelength, we realize their weaknesses. Next, we propose a 
quantum resistant encryption technique that enhances the privacy of smart grids. We propose quantum voting 
ensemble models as one of the most promising techniques to address the issue of private data storage in block 
chains. As a result, we provide a comparison between the proposed models and traditional approaches to privacy 
protection in smart grids based on an experimental performance review. Then, we propose a unified strategy to 
improve smart grid cyber security by incorporating deep black box attacks with quantum voting ensemble 
models. Finally, we disclose several benefits of such integration and perform an experimental evaluation to 
investigate the effectiveness of the unified approach. The results of our study identify security gaps in smart grids 
and propose state-of-the-art mechanisms to address them. The challenges of smart grids system require the 
amalgamation of blockchain, quantum voting ensemble models and deep black box adversarial attacks. We 
achieve this objective proposing a unified strategy. The results of this study will equally be helpful for future 
research and smart grid cyber security implementations.  
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1. Introduction 

Smart grids have revolutionized the power management industry by 
providing the capability to monitor energy usage, consumption, and 
optimization very precisely (Beg et al., 2021). Nevertheless, the growing 
reliance of smart grids on information and communication technologies 
(ICT) makes smart grids more vulnerable to cyber threats (Reddy Shabad 
et al., 2021). The aims of this study include the detection of cyber se-
curity attacks and the deployment of deep black box adversarial assaults 
to enhance the cyber security of cyber-physical power systems in the 
smart grid (G and Kumari K, 2022). 

The authors are also studying quantum voting diagonal ensemble 
methods for secure and private data storage in a distributed ledger 
(Huang et al., 2022). When it comes to electricity, the traditional 
working system of standard power supply is replaced by an automized 
power supply system called Smart Grid through which the consumer can 
access the utilization of electricity as per the requirement and it is 
collected automatically by a smart energy meter to the utility side 
(Haque, 2020). A new driving force for technology advances is the 
modern electrical power grid that uses advanced sensing, communica-
tions, processing, and control capabilities to enable the smart grid to 
easily achieve the efficient managing of power for the customer side 
(Haque, 2020). Smart grids improve the dependability, sustainability 
and efficiency of dynamic operational behavior of using the energy 
through real-time monitor, efficient energy consumption, renewable 
sources etc. These advanced features are not available in existing power 
grids (Takiddin et al., 2022). Smart Grids are often called as ‘smart’ 
power grids as they fulfill all the requirements in handling huge prob-
lems. With complex software architecture, integration of hardware and 
network equipments the vulnerabilities of Smart grids to cyber attacks 
have led several security issues (Hrovatin et al., 2022). The intruders 
attack the Smart Grid who modify energy consumption patterns, control 
the entire power supply, and manipulate the data. In order to determine 
energy usage, any faults in this system should require real-time moni-
toring in a controlled environment for avoiding security issues (Cao 
et al., 2022). 

As computing progresses to greater stages, the smart grid has become 
one modern topic of interest (Dehghani et al., 2021; Drayer and Rout-
tenberg, 2020; Manandhar et al., 2014). Because of how fast the grid 
updates everyday, there are several cyber security threats (Shahid et al., 
2022; Qu, 2021; Krivohlava et al., 2022; Jin et al., 2020) that could 
bring it down. Every day, attackers revise their strategies to get around 
the grid’s walls, so it is important to bring up the right barriers to secure 
the grid against these cyber security threats (Abbaspour et al., 2016). 
One case of a types of threat could come from a deep black box adver-
sarial attack correlated to the smart grid’s extensive linkages and 
complicated system architecture. In order to deal with these security 
threats, real-time detection of the attacks are required to detect the 
smallest issue and also to minimize the issues when they come up. In 
most cases, the grid, at a high level, might be able to prevent some issues 
from coming up but would fail to notice a smaller issue with the grid; 

obviously, this is unacceptable (Ozay et al., 2016; Karimipour et al., 
2019; Rawat and Bajracharya, 2015; Liu, 2015). On another note, the 
smart grid brings up a different topic, the blockchain with the grid. This 
involved third party business in managing the grid using blockchain 
though poses some problems. One of the problems include privacy 
invading; therefore, serious thought must be put in how to keep the grid 
working hard and provide privacy (Kurt et al., 2018). 

The Preamble of this study research is aiming to innovate and pro-
vide insights into the problem solutions along with the models involved 
in it. Currently, the day to day embanking over power cyber physical 
systems suffer from the deep adversarial black box attacks. Hence the, 
this study also extacts the impact of the deep adversarial black box at-
tacks on the cyber physical power systems by validating the existing 
defence mechanisms over it (Beg et al., 2021). This Research Study also 
aims the detection and categorization of the cyber security attacks in the 
smart grids and it also leads to the categories of intrusion detection 
methods with the details of the state of art,stimulant and quantum based 
voting ensemble models (Takiddin et al., 2022) and (Hrovatin et al., 
2022). The Research also aims to provide an innovative model for pri-
vate storage to enhance privacy for blockchain-based systems by the 
inclusion of Quantum Voting Models as well. 

The proposed solutions and discovered will enable the practitioners 
and researches to developed effective security mechanisms in the SCs, 
resulting in practical implementations to improve their detection ca-
pabilities from attacks and also for preserving data’s privacy of smart 
grid systems too. In order to bring under SC framework a number of 
anomaly detection technique are prepared based on un-supervised and 
supervised machine learning; also with the knowledge of these various 
domains in an SG architecture, it helps to understand and fulfill the 
security and privacy requirements of each entity present in the domains 
as well. Under the SG there exist different domains and the NIST has 
defined seven broad classes of SG’s domains, and then entities present 
under them too. It is quite possible to have the existence of anomalous 
hubs with the organizations that store smart grid data in a writable, 
public format and without directive implementations of such security 
measures, there is always the scope of smart meter user profiles, billing 
information, and network configurations being misused by the attacker 
too. An SG infrastructure is always under the security threats and their 
exist a number of potential attackers and some of the many potential 
attackers to an SG infrastructure include: Hackers, Cyber terrorists, In-
dustrial competitors, Organized criminal groups, and Dissatisfied or 
improperly trained personnel. In SC security, the anomaly detection is at 
the top of the list because the SC desires continuous service and Fig. 1 
shows a typical SG architecture that is based on the multi-layer design 
too. 

Fig. 1 illustrates the multi-layer architecture of a smart grid system. 
the smart grid is an advanced power delivery infrastructure that in-
tegrates modern communication, control, and information technologies 
with the traditional power grid. The multi-layer architecture provides a 
hierarchical structure to manage and control the different components 
of the smart grid system. Since the smart grid’s problems stem from its 
centralised design, it makes sense to use decentralised solutions for 
managing data. Since embedded technology in sensors is becoming 
increasingly sophisticated, there is compelling motivation for the 
development of distributed systems. These days, smart sensors are either 
able to connect wirelessly to a web server or have sufficient computing 
power to run an OS and the full web protocol stack (Shahid et al., 2022). 
Because of this, they are valuable online resources for constructing a 
global sensor network (Qu, 2021). A key selling point in this setting is 
the ability to divide data gathering from administrative duties (Kri-
vohlava et al., 2022). Bitcoin, the first real implementation of the 
blockchain that permits decentralised trust, sparked a proliferation of 
similar systems (Jin et al., 2020). Security assaults in centralised SGs aim 
for pinpoint accuracy, but in decentralised sgs, the focus is on tracking 
the flow of messages to establish accountability (Abbaspour et al., 
2016). Adjustments are required (Ozay et al., 2016) when data mining 

Acronym Definition 
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CPU Central Processing Unit. 
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IoT Internet of Things. 
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SVM Support Vector Machine.  
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processes, generally performed on centralised databases, are imple-
mented in a decentralised SGs (Karimipour et al., 2019). To find 
anomalies in a decentralised system, data mining tasks need to be (1) 
rethought to better match the system, and (2) secured privately at the 
expense of only slightly more computer resources. Several developments 
have been made in this space, however they either have prohibitive 
communication costs or need an excessive amount of processing 
resources. 

Neither a centralised blockchain-based Smart Grid data storage 
system nor a machine learning technique for identifying anomalies or 
cyberattacks in a blockchain environment have been discovered, ac-
cording to the research. Key contributions from this study are: 

• Smart grid system provides incremental models through decentral-
ized privacy and data are kept inside the particular sensor domain. 
Our research provides a privacy and security to the data’s in smart 
grid systems and it’s a completely new methodology model. It pro-
vides an enhanced secureness to the data. The smart grid setups yield 
decrement models. This paper proposes a new way of getting a new 
model increment by constructing the decentralized privacy in which 
the data’s are only maintained at the sensor domain. This novel that 
was never before investigated approach provides an enhanced se-
curity to the data and privacy of smart grid system to a great extent. 

• Smart grid security provides accuracy and efficiency through tradi-
tional way of doing crypto system and also on this paper we use for a 
new approach of quantum voting classification model. We propose a 
quantum voting classification model and analyzed various aspects of 
the smart grid security in this technique. Using a quantum voting 
classification model improves the analysis regarding the traditional 
cryptographic system and that leads to the greater accuracy of 
cybersecurity injunction with the smart grids. Also the smart grid 
security is major concern typical problem which affects the careers 
gatekeepers, industry and many others. We used a quantum voting 
classification model for the accuracy in smart grid security with 
those smart grids. A crucial feature of the benefits of quantum voting 
classification model are identified various abnormalities and cyber-
attack in keeping the integrity of the smart grid system.  

• We discuss the architecture of cyberattacks against the smart grid 
system. We propose core network elements that integrate quantum 
voting ensemble model and blockchain privacy-preserving storage. 
We proposed that protects against cyberattacks and data privacy are 
preserved. And we explain various aspects of smart grid such as 
smart home, smart vehicle and also the social scientists face chal-
lenges in the simulating security limitations data. Smart grids are a 
vital infrastructure for a sustainable and efficient 20th century future 
of billions lies in the hands of secure and reliable smart grids. One 
can promote sustainability, reduce carbon emissions and establish an 
ultra resilient technology – the best of 21st century which is the best 
of three worlds. Protecting smart grid cyber infrastructure is an 
important task today. In this paper, we will concentrate on smart 
grid, with smart grid systems as a very important infrastructure to 
protect cyber secure with some of the advanced method is to vote 
with quantum ensemble block to check whether we voted for the 
model and protected to the last human after cyber attacks like the 
model.  

• In our approach, we use quantum voting ensemble models based on 
block chain privacy preserving storage to produce attack tolerance, 
security, accuracy and privacy of smart grid system it’s a new privacy 
methodology. In this paper, our thinking is that of providing a 
method of choosing and responding to the new model that begins to 
affect the smart grid system. Smart grid systems are trying to provide 
several models. Some smart systems appear to be very dependent but 
others do not. The next year the traditional voting model produces. 
Also, our smart work removes the errors caused by the traditional 
model, especially the spam mail and it will be a voting model with a 
new quantum model in terms of the accuracy of the cyberspace. 

2. Related work 

The contemporary electric grid is monitored, controlled, and pro-
tected by a large network of interconnected equipment. The current 
smart grid (SG) relies heavily on cyber-physical (CP) networks. The 
"physical," "data acquisition," "communication," and "application" levels 
make up the architecture. The generating, transmission, and distribution 

Fig. 1. Smart Grid Multi-Layer Architecture.  
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systems are all part of the physical layer. The use of converters to link 
distributed energy resources (DERs) to the grid enables SG to maximise 
energy extraction (Rawat and Bajracharya, 2015). Smart sensors and 
measuring devices make up the data collecting layer and communicate 
their findings on to the communication layer. The EMS uses the data 
from the communication layer for optimising, monitoring, and con-
trolling the actuators. The communication layer receives data from a 
wide range of wired and wireless technologies and network nodes (Kurt 
et al., 2018). Although the addition of cyber layers boosts the SG’s 
performance, it also opens up new attack vectors. The ability to keep 
tabs on and manage physical assets may be jeopardised if an attacker 
gains access to the weak points (Mokhtari et al., 2021). A number of 
factors (Aziz et al., 2022) contribute to the success of the SG network, 
including demand response, energy efficiency, a volatile power market, 
distributed automation, and so on (Almalaq et al., 2022). Looking at 
these characteristics as a whole, the SG becomes the most likely candi-
date. Machine learning (ML) has become increasingly popular due to its 
capacity to automatically recognise and extract patterns from data. An 
increasing number of research [26] have examined the role of ML in SG’s 
cyber defences (Alrowais et al., 2022; Reddy Shabad et al., 2021). 

Abnormalities in ICSs, such as attacks on Smart Microgrids, can be 
uncovered by network traffic monitoring. Attackers who can success-
fully mimic system behaviours can evade intrusion detection systems 
based on network traffic [27]. This research takes a novel approach by 
making use of Supervisory Control and Data Acquisition (SCADA) 
measurement data for this function. A measurement intrusion detection 
system (MIDS) can detect aberrant system activity even if the attacker 
masks it in the control layer. A supervised machine learning model 
classifies ICS events as "normal" or "abnormal" to evaluate MIDS per-
formance. devices-in-the-loop (HIL) testbeds mimic real-world power 
generation devices by exploiting attack datasets. As part of their advice, 
Mokhtari et al (Mokhtari et al., 2021). suggested running numerous 
machine learning models on the dataset; these models performed 
particularly well when it came to identifying outliers, such as covert 
attacks. Finding outliers in the quantifiable data produced by the testbed 
is a breeze using the random forest. 

Smart energy networks, which regulate production, distribution, and 
use, can help address a number of safety issues associated with the 
management of this vital resource. Both natural and human-caused di-
sasters pose threats to systems. It is critical for operators of energy 
systems to be aware of potential disruptions. In order to identify in-
trusions into power grids, the authors of this study (Almalaq et al., 2022) 
describe a deep learning-based PMU-taught model. Features generated 
by property or specification creation are given to a wide variety of 
machine learning methods, including the AdaBoost fundamental clas-
sifier and the random forest. Data from open-source simulations are used 
to back up 37 incident case studies that involve the energy system. 
Multiple metrics were used to compare the proposed design to existing 
alternatives. Simulations showed that this model outperformed prior 
techniques in terms of both detection rate (93.60 %) and accuracy 
(93.91 %). 

Due to their reliance on bidirectional communication, power elec-
tronics components in contemporary cyber-physical microgrids, such as 
converters or inverters with local integrated controllers, are vulnerable 
to cyber manipulations. Hardware is always a bad investment. Due to 
the microgrid’s distribution network’s capacity to move information and 
limited inertia, cyber and physical problems can swiftly spread across 
the system. Cyber-physical anomalies can be spotted with the use of 
parametric time-frequency logic (PTFL). The PTFL formalism is used to 
examine the time-frequency composition of observable values from 
power electronics devices, such as current, voltage, and frequency. 
Omar et al (Beg et al., 2021). describe the PTFL formalism for fault/a-
nomaly detection in a set of four DC microgrids and an IEEE 34-bus 
feeder system with inverters using a controller/hardware-in-the-loop 
arrangement. 

Criminal activities, such as electricity theft and hacking, can be 

found by studying data from the smart grid. Machine learning can detect 
unusual occurrences. Feature extraction is necessary for grid data. In the 
smart grid, anomalies are out of the ordinary occurrences. Power, 
voltage, current, and consumption can all affect the outcomes of con-
ventional grid construction. In this research (Reddy Shabad et al., 2021), 
this paper create a working model of an anomaly-detection system for 
the smart grid. Anomaly detection improves system efficiency and co-
ordination. Modifications to settings in reaction to cyberattacks will be 
uncovered. Anomaly detection models like Isolation Forest (IF) use a 
forest of decision trees to find and isolate outliers. Simulating the 
detection method on a hardware testbed confirmed its efficacy. 
Following the identification of the most important properties by prin-
cipal component analysis, the model was put through its paces using the 
dickey-fuller test.Cyber Smart grids are a tangible option for resolving 
the energy crisis. Cross-domain data flow complicates anomaly detec-
tion in the smart grid. Machine learning models can be used for both 
supervised and unsupervised data analysis and prediction. This study 
(Drayer and Routtenberg, 2020) explores the use of machine learning in 
anomaly detection algorithms for Smart Grid Infrastructure. 

Avoiding instability and EMS mistakes necessitates the detection and 
removal of unreliable microgrid data. This article (Huang et al., 2022) 
describes a sequential detection method that makes use of the Online 
Sequential Extreme Learning Machine (OSELM), statistical analysis in a 
sliding time frame, and density-based spatial grouping of noisy appli-
cations. OSELM first trains on the data sequence itself to extract the 
electrical characteristic from the microgrid data. Statistics like the 
variance rise and the correlation coefficients that accompany it over a 
sliding time window are examples of complementary feature di-
mensions. Next, DBSCAN checks for mistakes in the dimensions of a 
feature. Data from a four-terminal DC microgrid prototype verifies the 
detection method’s efficacy. When compared to electrical and statistical 
methods, this technique is more effective in identifying false data. It will 
eventually be able to spot faulty readings in real-time microgrids as well. 

In order to function properly, a smart grid must integrate state-of- 
the-art digital and mechanical components, making it a complex 
cyber-physical system. Cyberattacks pose the greatest threat to the 
development of cutting-edge technology. Over time, SG has benefited 
from the introduction of a wide variety of tools, gadgets, and equipment 
that have increased its robustness, efficiency, and cost-effectiveness. 
These goals were accomplished, but at the cost of a more vulnerable 
network due to the explosion of Internet-enabled devices. Hackers and 
system operators in Singapore are both taking advantage of ML’s 
powerful computational and reasoning capabilities to attack and defend 
the country’s cyber infrastructure. Haque et al (Haque, 2020). provide a 
comprehensive review of the present state of the art in the SG sector, 
covering a wide range of methods for launching, detecting, and pro-
tecting against cyberattacks. 

Cyber-physical systems, like microgrids, have multiple parts that 
work together. Communication cables and sensors can modify data 
before it reaches the cyber layer. Attacks on the cyber layer of a DC 
microgrid could cause voltage instability and load dispatch fluctuations. 
Locating irregular data is crucial for reestablishing normalcy (Takiddin 
et al., 2022). 

The increasing penetration of cyber-physical systems (CPSs) expose 
the power grid at risk of malicious attacks. Therefore, it is very impor-
tant to detect cyberattacks because of the study of DC-MGs which is now 
used in various sector of EE such as in their (i) distributed resource 
power generation, (ii) power distribution, (iii)underground electric 
network, and (iv) full energy planning. A new approach for Detection of 
DC-MG Bogus Data Injection Attack to Improve Power Government 
Security (Dehghani et al., 2021) was implemented in this research to 
improve the cybersecurity of the power grid. In this paper the proposed 
method, a deep machine learning based on singular value decomposi-
tion and wavelet transform is proposed to detect DC-MG cyberattacks as 
well as to select ensemble deep learning based on Grey wolf optimiza-
tion (GWO) is proposed to detect DC-MG bogus data injection attacks. 
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To train the DL network, cyberattack and load fluctuation techniques 
have been incorporated into the DC-MG running and controlling without 
FIAs and producing the data in normal performance for collecting the 
enough data. The simulation results indicate that the performance of the 
proposed method to Detect of DC-MG Bogus Data Injection Attack 
(IDMG-FDIAs) outperforms other existing techniques Shallow model, 
Hilbert Huang Transform (HHT) techniques to detect some numbers of 
DC-MG FDIAs. 

Multi-dimensional, heterogeneous, complex systems with high de-
grees of cyber-physical integration (CPI) characterise the rapidly infor-
matizing power grid as cyber-physical power systems (CPPS). Over the 
past few years, network attacks have become a significant threat to the 
stability of the power system. In order to keep CPPS operations steady in 
the face of DDoS attacks, this study provides a method for identifying 
network intrusions using ensemble learning. A strategy for equitably 
processing data was proposed as a first step towards fixing the issue of 
insufficient network assault samples, which results to false positives in 
detection (Cao et al., 2022). The LightGBM ensemble was developed to 
detect security holes in a network and trace the origin of outages. 
Adding the focal loss to the gradient boost process helped the classifier 
hone in on mislabeled data, which improved its ability to spot network 
dangers. Taking cyber-physical elements into account, a method is 
presented for assessing the network attack detection model. This paper 
also use a network attack detection model to perform a quantitative 
examination of the cyber-physical power system’s resilience. The results 
show that the F1 score increased by 16.73 percentage points and the 
accuracy increased by 15.67 percentage points while detecting threats in 
a network.  

The smart grid is a cyber-physical system that combines digital 
networks with conventional power distribution infrastructure. Injecting 
malicious data into such a system can have far-reaching consequences. 
Methods that rely on residuals can be fooled by sophisticated false data 
injection (FDI) attacks. The linearized DC power system model often 
used in studies to identify FDI attacks leaves them open to attacks from 
the AC model. In order to solve these problems, the authors of this study 
(Drayer and Routtenberg, 2020) employ the AC power flow model and 
the grid graph structure. This paper find FDI attacks that were not seen 
before. This approach is based on the principles of graph signal pro-
cessing (GSP). The proposed detection method is based on the Fourier 
transform of a graph to remove high-frequency components which are 
based on the expected state of the network. By comparing the maximum 
norm of the result to a predetermined threshold, the detection of FDI 
attacks is possible. When evaluating in the IEEE 14-bus system, the 
method successfully detected attacks that were undetectable at angles 
and voltages. Various types of attack on the smart grid threaten to 
compromise its security. These include: data injection, denial-of-service, 
and random attacks on the communication infrastructure that links the 
sensors, actuators, and control systems. Manandhar et al (Manandhar 
et al., 2014). use a mathematical model to assess the vulnerability of the 
smart grid to such attacks and suggest a security policy. In our work, we 

use the Kalman filter to estimate the parameters of the state process of 
many models. 

3. Methodology 

To enhance the privacy and security of the data storage of 
blockchain-based smart grids, this approach is implemented. As well as 
addressing cybersecurity problems in a new era of threats this approach 
is developed. (1) Deep Black Box Adversarial Attacks and (2) Quantum 
Voting Ensemble Models; which are on the cutting edge of technology 
were combined in order to perform this approach. Smart grid technology 
has widespread functions such as improved efficiency, improved reli-
ability, and reduced environmental impact. However, along with these 
advantages, new problems are created, especially cyber security. Smart 
grids collect, store, and transmit vast quantities of private information 
and can therefore be hacked. Ensuring the reliability of smart grid 
infrastructure means addressing cybersecurity challenges. In this 
approach, the challenge is addressed directly by using Deep Black Box 
Adversarial Attacks, identifying and attacking vulnerabilities in smart 
grid systems which will enhance the overall security of the system. By 
combining this with Quantum Voting Ensemble Models, where through 
the use of quantum computing, the security of the data storage against 
the privacy is protected to a high degree. In this way, the privacy and 
security challenges of blockchain-based smart grids have been effec-
tively addressed using Deep Black Box Adversarial Attacks and Quantum 
Voting Ensemble Models. This method also ensures that the personal 
information stored in smart grids protected and that it has a better 
fitness and has a more security system than the existing systems. 

Our methodology involves a novel integration of deep black box 
adversarial attack methodologies with quantum hybrid voting ensemble 
models within the framework of blockchain-based storage in smart grid 
systems. The merging process can be delineated into the following key 
steps: 

Adversarial Attack Integration: We leverage the principles of deep 
black box adversarial attacks, incorporating them into the training phase 
of the quantum hybrid voting ensemble models. This integration aims to 
enhance the models’ robustness by exposing them to a spectrum of po-
tential cyber threats, thereby fortifying their ability to detect and miti-
gate adversarial manipulations. 

Quantum Hybrid Voting Ensemble Models: Our study introduces a 
unique ensemble approach that combines classical machine learning 
algorithms, such as Support Vector Machines (SVM), K-Nearest Neigh-
bors (KNN), and Naive Bayes, with quantum machine learning tech-
niques. The ensemble is designed to harness the strengths of both 
classical and quantum paradigms, fostering a more resilient and adap-
tive defense mechanism against cyber threats. 

Blockchain-Based Storage Enhancement: The merged models are 
then applied to enhance the security and privacy of blockchain-based 
storage in smart grid systems. The ensemble’s collective decision- 
making process contributes to a more robust identification of 

Table 1 
Comparative analysis of previous studies.  

References Dataset Technique Model Privacy Preserving Outcome 

Mokhtari et al (Mokhtari et al., 2021). Smart Grid Machine Learning Random 
Forests 

No Method 88 % 

Almalaq et al (Almalaq et al., 2022). Smart Grid Deep Machine Learning Adaboost Model No Method 93.91 % 
Beg et al (Beg et al., 2021). IEEE Bus 34 Not applicable parametric time-frequency logic No Method Not specified 
Reddy et al (Reddy Shabad et al., 2021). Smart Grid Machine Learning Isolation Forests No Method 89 % 
Huang et al (Huang et al., 2022). Smart Grid Clustering DBSCAN No Method 85 % 
Dehghani et al (Dehghani et al., 2021). Smart Grid Machine Learning Machine learning-based wavelet 

transform 
No Method 95 % 

Cao et al (Cao et al., 2022). Smart Grid Machine Learning LightGBM No Method 85 % 
Drayer et al (Drayer and Routtenberg, 2020). Smart Grid Machine Learning Ensemble Models No Method 81 % 
Manandhar et al (Manandhar et al., 2014). Smart Grid Not applicable Kalman Filter No Method Not specified 
Proposed Smart Grid Machine Learning Quantum Voting Classifier Blockchain, 

Cryptography 
99.8 %  
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abnormal activities and cyberattacks, reinforcing the integrity of data 
stored in the blockchain. 

3.1. Deep black box adversarial 

To examine smart grid architecture security we can use advanced 
machine learning technologies for alert evaluation and rank machine 
learning techniques for measuring those sensing and assicaoed actor 
ship points. Deep black box adversary attacks stem from this and if deep 
black box adversary attacks occurs on architecture it gets ranked. Deep 
black box adversary attacks are performed on smart grid to know ar-
chitecture security prior to attack in real time. Based on the attack on 
evaluation on machine learning techniques it can alter defense mecha-
nism under attacks – The method adopted here changes or alters the 
defense mechanism of the WSN, based on the attack on evaluation on 
machine learning techniques. Generally, any system can have weakness 
only at its base level, so in order identify the weakness of any system we 
need to perform some level of deep analysis, for the security of Smart 
Grid using deep black box adversary attacks on architecture of the base 
level Once we know the flaws or weak points of smart grid by attacking 
on architecture in black box adversary attacks we can create a defense 
mechanism which is robust by using the proposed deep black box ad-
versary attacks. Further the next point is mentioned regarding the how 
this Defense Mechanism is more effectively created based upon our 
proposed method. Quantum voting ensemble models play a major role 
in Smart Grids for security enhancement. The main idea of Quantum 
Voting in blockchain is to store privacy information securely in a 
blockchain. Quantum computing can be used in securing and fully 
decentralizing identity systems. The primary features of quantum 
computing such as speed and accuracy can be used in securing identity 
information and other sensitive data in the Smart Grids. Cryptography 
and data security are the main aspects of Quantum computing. Data’s in 
blockchain should be stored securely and needs to be retrieved accu-
rately when needed. Private and secure storing of Data’s are possible 
with the help of Quantum computing. Quantum voting ensemble models 
adds some advantages and high level securities to the blockchain. If at 
all all the data are stored in the blockchain it leads to overflow. So we 
need to retrieve the accurate and wanted data from the blockchain for 
that Quantum computing is required. Quantum computing is used for 
storing all the data securely and accurately at the same time in the 
blockchain. By Quantum voting ensemble models we are creating robust 
decision making by using Quantum Algorithms and by combining 
various classifiers. 

3.2. Data collection and pre-processing 

The dataset utilised in this research is the basis for testing out the 
proposed approach to better smart grid cybersecurity. There are many 
parts to it that together shed light on the smart grid’s safety features. 
Let’s take a closer look at each component: 

Meter ID: 
For each smart metre on the grid, this attribute serves as its own 

identification number. It’s useful for keeping tabs on and identifying 
individual metres. 

EMS (Energy Management System): 
In the context of the smart grid, the term "energy management sys-

tem" (EMS) refers to the overarching control system that keeps tabs on 
and directs everything from generation to consumption. Information 
pertinent to the EMS is recorded by this function. 

MMS (Manufacturing Messaging Specification): 
The MMS protocol is a popular means of communication in auto-

mated manufacturing environments. This function stores MMS-related 
information within the context of the smart grid. 

Data Flow Packets: 
In a smart grid system, the number of packets indicates the total 

amount of data transferred. It reveals information on the flow of data 

and the manner of communications. 
Packets from the source: 
The number of packets from a given source is referred to as the 

source packet count in a smart grid network. Data transmission origins 
can be determined with the use of this capability. 

Destination Packets: 
The number of packets received by a specific destination node in a 

smart grid network is denoted by the destination packets variable. It’s 
useful for seeing how information is shared and used. 

IEDs (Intelligent Electronic Devices): 
In the smart grid, IEDs are used to monitor and manage electricity 

distribution. This function records data about the IEDs in the system. 
Records in a blockchain: 
Data kept on the blockchain, a distributed and secure ledger used for 

smart grid transactions, is referred to as blockchain storage. This func-
tion sheds light on how blockchain technology can be used for archival 
purposes. 

Consensus mechanism: 
The consensus mechanism determines how agreement is reached 

among participants in the blockchain network regarding the validity and 
ordering of transactions. This feature represents the specific consensus 
mechanism employed in the smart grid. 

Transaction throughput: 
Transaction throughput refers to the rate at which transactions are 

processed and validated within the smart grid network. It measures the 
system’s capacity to handle a high volume of transactions efficiently. 

Attack: 
The attack feature denotes the presence or absence of a cybersecurity 

attack in the smart grid system. It serves as the target variable in this 
study, indicating the security status of the system. 

To provide a clearer overview, Table 2 presents the dataset features 
descriptions. 

The dataset is used to analyze the relationship between these features 
and evaluate the performance of the proposed methodology for 
enhancing cybersecurity in smart grids. Fig. 2 and Fig. 3 shows the total 
percentage anomalies in dataset. 

Fig. 4a shows histograms of each feature in seaborn. Histograms are a 
visualization technique that represents the distribution of a continuous 
variable. Each feature in the dataset is plotted separately, and the x-axis 
represents the range of values for that feature, while the y-axis repre-
sents the frequency or count of occurrences of each value. The form of a 
distribution, the existence of outliers, and other characteristics can all be 
learned from a histogram. Each seaborn feature’s KDE plot may be 
shown in Fig. 4b. The probability density function of a random variable 
can be estimated using the KDE technique, which is a non-parametric 
approach. A more refined approximation of the true data distribution 
is provided. For each characteristic, this paper plot a curve along the x- 
axis to show the estimated density of values at various locations. KDE 
plots can help you figure out if your data follows a normal distribution, 
how many peaks or modes there are, and whether or not they are 
significantly different from one another. 

Table 2 
The dataset features with description the dataset features with description:.  

Feature Description 

Meter ID Unique identifier for smart meters 
EMS Energy Management System data 
MMS Manufacturing Messaging Specification data 
Data Flow Packets Number of packets in the data flow 
Source Packets Number of packets from a specific source 
Destination Packets Number of packets received at a destination 
IEDs Intelligent Electronic Devices data 
Blockchain Storage Amount of data stored in the blockchain 
Consensus Mechanism The employed consensus mechanism 
Transaction Throughput Rate of transaction processing 
Attack Presence or absence of a cybersecurity attack  
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The Consensus Mechanism is shown in Fig. 5a. To ensure that all 
participants in a blockchain network agree on the veracity of trans-
actions and their chronological order of addition, the system relies on a 
consensus process. The Consensus Mechanism feature is not shown in 
this diagram in great depth since it has likely been analysed and 
visualised independently, perhaps using a different sort of plot or visu-
alisation technique.The Transaction Throughput function is shown in 
Fig. 5b. The term "transaction throughput" describes the rate at which a 
blockchain network can process and confirm transactions. It’s a crucial 
indicator of the blockchain’s ability to scale and its overall efficiency. 
Fig. 5b is a visualisation that may elucidate patterns, trends, and dis-
tributions in the data set’s transaction throughput. However, the spe-
cifics of the visualisation cannot be discerned without the real figure or 
additional information. 

Data collection: 
The information in this study originated from a functioning smart 

grid in the real world. The system incorporates a number of monitoring 
and logging systems to collect information about the characteristics 
listed in Section 3.1. Collecting this information required keeping track 
of everything happening on the smart grid network throughout a given 
time frame. With this information, this paper can assess the performance 
of the proposed strategy and analyse the system’s behaviour. 

Data pre-processing: 
The obtained data is put through a series of pre-processing processes 

to confirm its quality and suitability for analysis before any analysis is 
performed. The following procedures are used as preliminary processing 
steps: 

Missing data handling: 
Data loss occurs frequently in real-world circumstances because of 

things like network outages and failed sensors. The precision and 

trustworthiness of the analysis may be diminished by missing data. 
Methods like imputation and deletion are used to deal with missing data, 
depending on the specifics of the situation. Missing values can be 
replaced with approximated values using imputation techniques like 
mean or median imputation. 

Outlier detection and removal: 
Datapoints that are extremely out of the norm in a given dataset are 

said to be outliers. They can result from off-the-wall circumstances or 
faulty measurements. Data outliers have the potential to skew analytical 
outcomes and undermine the effectiveness of the proposed methodol-
ogy. The interquartile range (IQR) and the Z-score are two powerful 
statistical tools used to identify and eliminate data outliers.The resulting 
clean dataset is shown in Fig. 6a. After missing values are handled, 
duplicates are removed, inconsistencies are fixed, and the data is 
transformed into an analyzable format, this paper say that the dataset 
has been cleaned. The picture does not show the exact specifics of the 
cleaned dataset, but it does show that the dataset has been processed and 
is ready for modelling or analysis. 

The resulting boxplot is displayed in Fig. 6b. A boxplot is a kind of 
histogram that shows the minimum, maximum, median, and quartiles of 
a dataset graphically. Half of the data falls within the box depicting the 
interquartile range (IQR) in the scatter plot. The middle line in the box 
indicates the median. Outlying data points are indicated by whiskers 
that extend beyond the range’s minimum and maximum values. Fig. 6b 
provides a boxplot that allows us to more easily understand the range 
and dispersion of the cleansed data and to see the general nature of the 
data. Looking at this gives us the ability to identify the presence of 
extreme values, and see the evenness or skewness of the data. This 
makes the boxplot a useful tool, as it helps to identify trends and outliers 
within the cleansed data, allowing researchers to make further conclu-
sions based on this recognition. 

Feature scaling: 
To avoid biased analysis due to the different scales of features, 

feature scaling is done. It’s the method to limit the range of variable so 
that they can be compared on common grounds. It makes the all vari-
ables limited between the range zero to one or minus one to one. 
Techniques involved in Feature scaling include min-max scaling or 
standardization. Min-max scaling Adjusts the all the variables between 
0 and 1 while standardization linearly from –1 to 1. By normalizing the 
data, via, this technique the particular feature does not have any 
advantage to dominate the result just because of their scale. 

Fig. 7 is a visual representation of the results of feature scoring. In 
machine learning and data analysis, feature scoring is a method used to 
determine how valuable or important a feature is using a same approach 
for all features. This can be very useful to identify what factors have high 
weight on the model accuracy and performance. 

Encoding categorical variables: 
Now in order to analyse categoric variables in the dataset, it needs to 

be encoded into numbers. In order to do that the commonly used are the 
following: one-hot encoding and label encoding. Label encoding gives 
one number label to each categories which are unique whereas one-hot 
encoding uses binary variables. After encoding the data in any of these 
methods, it further could be able to analyse it using the given approach. 
And as the data is pre-processed, the analysis could be trusted and valid. 

Using correlation analysis, a statistical method we can known the 
degree and orientation of association between two variables. Thus, it is 
easy to find relationship between features. In machine learning or in 
data analysis, it is necessary to find the relationship between features 
and variables. The Fig. 8 represents the heat map of feature correlation; 
it is a visual representation of pairwise correlation of all features in the 
dataset. The heat map displays the association between two features as a 
numerical value in each cell. The heat map’s colour gradient shows the 
degree of link, with deeper colours indicating greater associations. The 
feature correlation heat map provides valuable information about the 
interrelationships of features. Values closer to +1 suggest a positive 
association, where a rise in one attribute is typically met with an 

Fig. 2. Total percentage attacked isntances in dataset.  

Fig. 3. Histogram of Frequency Distribution of Target Variable.  
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Fig. 4. Histogram of Feautres in Seaborn.  
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increase in the other. Values closer to –1 imply a negative correlation, 
where one trait tends to decrease as the other grows. A correlation co-
efficient of 0 indicates a poor or nonexistent relationship between the 
variables. In order to reduce dimensionality and boost model perfor-
mance, it is helpful to detect duplicate or strongly correlated features, 
which can be done with the use of feature correlation analysis. It can also 
be helpful for feature engineering and model interpretation because it 
reveals potential feature interconnections and dependencies. 

Our data shows normalization in machine learning is an essential 
component. Designs to normalize, transform data in a similar scale, this 
ensures that if data is skewed it does not exaggerate to a significant 
extent, or if the data’s range is diverse, it does not to an extent obscure 
the minute detail of another column’s data. The accuracy of predictive 
modelling is that the classification, if there was an imbalanced classifi-
cation, this could impact the classification accuracy when both of the 
classes are important. In many cases of machine learning classification, 
techniques are used to maintain equal number of instances in each class. 
The real world scenario of our data can disprove this. For instance ac-
cording to the result our minority classes could be classes such as the 
Democrat party, or People of Colours, then in that case wrongly classi-
fying any of them, it could have more dramatic effect on them but this 
has no effect on the other class; so, with this methodologies they are 
inclined to make mistakes of this nature.This paper used several 
methods for dealing with anomalies in our study. Boxplots and the IQR 
method are one way to find and get rid of data points that are too far 
outside the method’s expected range. The interquartile range (IQR) is a 
measure of dispersion that is calculated by taking the difference between 
the data set’s upper and lower quartiles. Fig. 9 displays the use of 
additional statistical techniques for outlier detection, including Z-scores 
and data smoothing. 

3.3. Blockchain model 

Due to the distributed nature of the blockchain, P2P networks are 
responsible for facilitating continuous communication between nodes. 
Everyone in a P2P system acts as both a buyer and a seller. In order to 
complete the routing process, it is necessary to connect the nodes, ex-
change data, broadcast and authenticate transactions, and synchronise 
data blocks. 

Fig. 10 shows the Proposed Blockchain Network Diagram. Each node 
is just one part of the larger network (the data structures of the block-
chain, called transactions and blocks, will be explored in greater depth 

in the following sections). This exemplifies the horizontal structure and 
lack of a central authority found in P2P networks. Many blockchain apps 
have application programming interfaces (APIs). Users can bypass the 
service’s underlying infrastructure and directly access the application 
programming interfaces instead. Fig. 11 depicts the proposed block-
chain architecture for distributed ledgers amongst peers: 

3.4. The blockchain in the public eye 

This paper took use of the fact that anybody can join a public 
blockchain at any time. This means that the ledger is publicly accessible, 
allowing more people to help reach a decision. As an example of a public 
blockchain platform, Ethereum is an obvious choice. Public blockchains 
allow for decentralised development because they are accessible to 
everyone. The fact that new users can join a blockchain at any time 
makes it publicly accessible. In a public blockchain, anyone can 
contribute new data blocks and everyone can view the entire history of 
blocks. Most cryptocurrency transactions and mining have taken place 
on public blockchains. The Public Blockchain idea will assist in resolving 
data tempering issues in cloud-based data storage by centralising data 
storage in a blockchain. 

3.5. The blockchain in the cloud 

These days, it’s common for businesses to keep their most private 
documents in guarded data centres. However, there is currently more 
media coverage than ever before dedicated to cybercriminals. Database 
script attacks are a common tactic used by cybercriminals to steal sig-
nificant amounts of information. Although still in their infancy, 
distributed ledger systems like blockchain bring a new dimension of 
complexity. Bitcoin, the first cryptocurrency, is frequently used in 
decentralised apps that rely on the blockchain. In light of the recent 
large-scale data breaches, users may benefit from third-party data 
gathering activities that try to protect them from identity theft and other 
bad repercussions. In order to ensure the integrity of a blockchain 
transaction, digital signatures are needed. Smaller data sets are more 
suitable for a blockchain cloud solution. The network is then subjected 
to a second round of safeguarding. This is possible thanks to the usage of 
hash algorithms, public-private key encryption, and transaction logs. 
Blockchain storage has the potential to be more efficient, safe, and 
trustworthy than current cloud-based alternatives. To ensure the secu-
rity of their customers’ data, cloud storage providers create multiple 

Fig. 5. Blockchain Feaures.  
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Fig. 6. (a) Cleaned Dataset (b) Boxplot of Cleaned Data.  
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backups and store them in physically distinct locations. Because of 
concerns raised in prior research about the potential for tampering with 
cloud-stored data, this paper opted for a centralised cloud-based data 
storage solution in this study. To safeguard customer information, cloud 
service providers make multiple backups and store them in geographi-
cally dispersed facilities. Fig. 12 shows Cloud Based Storage for P2P 
Public Blockchain. 

- 

3.6. Privacy preserving strategy 

Our findings suggest that a hybrid algorithm incorporating the best 
features of the three most common cryptographic algorithms (Advanced 

Encryption Standard, Blowfish, and RSA) would provide the highest 
level of security for user data. Data is encrypted prior to being sent via 
SGs via a number of different protocols. But cutting-edge technologies 
are soon rendering these methods obsolete. Cracking a cryptographic 
system now takes a fraction of the time it did a decade ago, thanks to 
technological developments. Multiple attacks have broken through the 
defences.Due to crypto-analysis and other forms of specialised mathe-
matical assault, these systems can be cracked with relative ease by 
professional cryptographers. Modern systems still have problems with 
securing keys. The existing system’s major issue is how poorly sensitive 
data like keys are protected. The security of sensitive data must be a top 
priority, but so must reaching full potential. More robust encryption 
techniques necessitate longer key lengths, however this has a negative 
impact on overall system efficiency. 

While there are situations where a one-layer crypto system’s con-
venience is warranted, the risk of data or key compromise may outweigh 
any advantages. Data security is a worry when everything is kept in one 
place. There are a variety of issues that can slow down operations and 
reduce efficiency when using independent systems. There is a rising 
demand for a system that may mitigate the performance-security costs 
associated with using certain cryptographic methods. 

More than ever, this paper require a comprehensive approach to 
resolving these issues. The proposed framework incorporates three of 
the most popular and successful methods for protecting sensitive infor-
mation. Integration of RSA’s asymmetric cryptographic method with the 
symmetric AES and Blowfish algorithms. RSA is a popular asymmetric 
encryption method for use with Transport Layer Security (TLS) on the 
Internet. In contrast to asymmetric cyphers, which require separate keys 
for encryption and decryption, symmetric cyphers like Blowfish and AES 
share a single key for both tasks. The Advanced Encryption Standard 
(AES) gives the best privacy and performance, whereas Blowfish is the 
quickest when it comes to encrypting data. As a group, they are able to 
take on challenges that would be too difficult to handle alone. 

To ensure maximum safety, the proposed system uses a layered 

Fig. 7. Feature Scoring.  

Fig. 8. Feature correlation heat map.  
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encryption architecture, which encrypts data three times with the three 
separate methods and then conceals the keys in an image using steg-
anography. The AES encryption key is generated using the password 
hash. The password is hashed using the SHA-1 technique. Experimental 
results verify that the suggested Python-based solution provides a safe 
means of protecting sensitive information.As soon as plaintext (or data) 
enters the hybrid system, it is encrypted three times using the afore-
mentioned Blowfish, RSA, and AES algorithms. The generated keys are 
hashed with SHA1, and the resulting list is encrypted using AES. By 
dissecting the complete entity, this paper can better understand its 
elements. 

Three distinct Encryption Layers, a Key Generator, and a Key List 
make up the entirety of the System. Each random Key of length n is 
generated by the Key Generator and encrypted using the Encryption 
Algorithm. These Keys are then appended to the List of Keys. A 32-bit, 
64-bit, or 128-bit key, KBlowfish, is used to encrypt the plaintext with 

the Blowfish algorithm. P. The Key Generator creates the KBlowfish 
utilised in Blowfish Encryption. This change is reflected in L’s Key List. 
The cypher output, C1, is the result of encrypting the plaintext, P. 

c1 = Blowfish
(
Plaintext = P; Key = KBlowfish

)
(1)  

L =
[
KBlowfish

]
(2) 

In order to cypher the cypher output, C1, the Key Generator gener-
ates a public key, KRSA Public, with a size of 1024/2048 bits. A private 
decryption key (KRSA Private) is also generated. The Public Key is required 
for Encryption but is not included in the List of Keys (L). The Keys list is 
updated whenever a new Private Key is generated. Encrypting Cypher 
Input C1 results in Cypher Output C2. 

c2 = RSA(plaintext = c1; Key = KRSA Public) (3)  

Fig. 9. Preprocessing a pair plot entails measures like filtering away irrelevant data.  
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L =
[
KBlowfish

]
KRSA Private (4) 

The 128-bit KAES key is used to encrypt the cypher output, C2, using 
the AES-128 algorithm. The resultant Key, KAES is added to the Keys, L 
collection. The Cypher Output C is the final encrypted result of this 
process. 

Ciphertext; C = AES(Plaintext = c2; Key = KAES) (5)  

L =
[
KBlowfish,KRSA Private

]
KAES (6) 

The output of the system is the Cipher Output, C, and the list of keys L 
with all the keys. 

List of keys = L =
[
KBlowfish,KRSA Private,KAES

]
(7) 

The computational complexity of the suggested approach (shows in  
Fig. 13) that employs encryption with the Blowfish, RSA, and AES al-
gorithms would be affected by a number of variables, including the 
volume of data to be encrypted, the specific encryption techniques 

employed, and the processing capacity of the system employed. The 
proposed solution makes use of three different encryption algorithms, 
each of which has its own distinct computational complexity. In contrast 
to the RSA technique, which requires more time to process data due to 
the mathematical operations involved in key generation and encryption, 
the Blowfish algorithm has a low computational complexity and can 
handle data quickly. The AES algorithm is in the middle, requiring a 
considerable amount of processing power. Both the encryption algo-
rithm and the data size have an effect on the computational complexity 
of the system. The computational complexity of the system may increase 
as data sets grow larger since more time and resources are needed to 
encrypt them. The computational complexity of the proposed approach 
as a whole would need to be determined taking into account the specific 
encryption techniques employed, the size of the data being encrypted, 
and the processing capacity of the system. While it’s true that different 
encryption algorithms will have different computational complexities, 
it’s important to remember that encryption is essential for keeping data 
private and secure within the Smart Grid system, and that its benefits 
typically outweigh any potential drawbacks. 

3.7. Quantum voting classification 

The selection of SVM, KNN, and Naive Bayes is based on their het-
erogeneous nature. Each of these models employs different mathemat-
ical principles and learning strategies. By combining them, the ensemble 
model can capture a wider range of patterns and characteristics in the 
data. When processing large volumes of data, such as is the case with 
machine learning algorithms, it is crucial to increase their computa-
tional speed and data storage capabilities, which is where quantum 
machine learning comes in. Classification in basic machine learning can 
be accomplished by: 

y = m(x)+ c (8) 

Anomaly classes are represented by y, characteristics of the input 
datasets by x, the number of features retrieved from the dataset by m, 
and a constant, c. The standard learning equation, y=mx+c, is trans-
formed into: 

Ψy = m(ψx)+ c (9) 

In quantum learning, y and x will be used to define the input and 
output, respectively. Selected input features are collected when 

ψx = σ(h0w0 + h1w1 + h2w2 + .+ hnwn) (10) 

Fig. 10. Proposed Blockchain Network Diagram.  

Fig. 11. P2P Blockchain.  
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The feature-selection coefficient, the neuron value h, and the 
weighted input w are all defined below. This paper use a variety of 
machine learning models, discussed in detail below, to classify votes, 
and this paper also present a hybrid design of a voting classifier. 

3.8. Support Vector Machine 

When a dataset is linearly separable, this paper use a classifier called 
a Linear Support Vector Machine (SVM) classifier to divide the data into 
two categories along a straight line. The mathematical definition of SVM 
is: 

w.x+ b = 1, − 1 (11) 

The input (x) is denoted by "w," whereas "b" represents the support 
vector. The given equation is the result of transforming SVM into a 
quantum machine learning model: 

w.ψx+ b = 1, − 1 (12)  

w.{σ(h0w0 + h1w1 + h2w2 + .+ hnwn)}+ b = 1, − 1 (13) 

As can be seen in Fig. 14, ensemble learning utilising quantum SVM 
has resulted in a hybrid voting model for anomaly detection in smart 
grids. 

3.9. K-Nearest Neighbors 

Fig. 15 depicts the k-nearest neighbours algorithm, often known as 
KNN or k-NN, which is a supervised learning classifier that uses the 
proximity of data points to determine how those points should be cat-
egorised. The classifier can be expressed mathematically as: 

dist
(

ψx, z
)

=
(d

∑
r = 1|{σ(h0w0 + h1w1 + h2w2 + .+ hnwn}r − zr|p)1

p
(14) 

Here, x is the input, and w is the weight of the selected input. The 
aforementioned equation is what this paper get when this paper apply 
KNN to a quantum machine learning model: 

dist
(

ψx, z
)

=
(d

∑
r = 1|{σ(h0w0 + h1w1 + h2w2 + .+ hnwn}r − zr|p)1

p
(15)  

3.10. Naive Bayes 

One of the simplest and most effective Classification algorithms, 
Naive Bayes Classifier facilitates the development of rapid, predictive 
machine learning models. It makes predictions based on the object’s 
likelihood because it is a probabilistic classifier as shown in Fig. 16. 
Mathematically the classifier can be stated as: 

P(A|B) = P(B|A) ∗ [P(A)/P(B)] (16) 

This paper convert Naïve Bayes to quantum machine learning model 
the equation above becomes: 

ψP(A|B) = ψP(B|A) ∗ [ψP(A)/ψP(B)] (17)  

3.11. Quantum Hybrid Voting classification models 

The Quantum Hybrid Voting classifiers are high-tech machine 
learning estimators that pool the results of several independent base 
estimators. The aggregated opinion of the majority is used to make the 
ultimate forecast. Quantum Hybrid Voting classifiers label records using 
a majority vote determined by the relative importance of each class or 
class probability. 

Here is a mathematical expression for the prediction made by the 
ensemble classifier: 

y = arg max
∑m

{j=1}

wjXA(C{i,j}(x)=i) (18) 

Fig. 12. Cloud Based Storage for P2P Public Blockchain.  
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The j-th classifier is denoted by Cj in Eq. (18), and the weight asso-
ciated with its prediction is denoted by wj, which is fixed. Extending the 
paradigm to a quantum level makes the formulation more complicated: 

ψy = arg max
∑m

{j=1}

wjXA(C{i,j}(ψx)=i) (19) 

Alternatively, it can be expressed as: 

ψy = arg max
∑m

{j=1}

wjXA(C{i,j}(σ(h0w0+h1w1+h2w2+.+hnwn))=i) (20) 

In Eq. (20), the quantum nature of the model is incorporated through 
the quantum state ψx and the quantum activation function σ. Addi-
tionally, h0,h1,h3,.,hnrepresent the trainable parameters, and w0,w1,w2,.,

wnare the corresponding weights. 
Combining SVM, KNN, and Nave Bayes into a single Voting Model 

Fig. 13. Proposed Data Encryption Scheme.  

Fig. 14. Proposed Support Vecotr Machine for Attack Detection.  Fig. 15. KNN for Attack Detection.  
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increases the equation’s degree of difficulty. Changing Ci,j to their 
corresponding expressions makes the formulation: 

In Eq. (21), this paper combine the decision functions and condi-
tional probabilities of the SVM, KNN, and Naive Bayes classifiers.The 
Quantum Hybrid Voting classifier uses these intricate equations to 
improve its prediction abilities and flexibility across different datasets 
by combining the best features of many classifiers. 

The following Fig. 17 the proposed architecture of a quantum hybrid 
voting classifier:Fig. 18 

Ideally, Simulation is an experiment, which involves constructing a 
model of a accurate or appropriate aspects of a study system and using 
this model to obtain the response of that system to different inputs. Most 
of the academic experiments are conducted in the simulation as a 
methodology to evaluate the performance of a theory based system or 
method. When we consider simulation we should know the type of 
simulation, where it is implemented, what are the settings used, what 
are the metrics used to verify its goodness and what are the results and 
how it helped to conclude the theory The simulation is nothing but the 
System Configuration. This is nothing but how the experimental hard-
ware and software are arranged for the experiments and it includes the 
software and hardware versions run, the network settings for running 
the experiment, what is in the hardware for running the experiments etc. 
This will help the readers to know about how the experimental setup for 
your experiments was done and thereby it will help the readers to know 
how actually it will be practically if your approach or system was done in 
a real time scenario and it will help the readers to judge about the 
feasibility of your approach or system in the similar real time setup. So it 
is clearly seen that the detailed information about the simulation and 

system configuration is very essential in a study article to judge its 
validness and dependability. Without showing the simulation and sys-
tem design details for a study, it is worthless to read it think on its 
success and it is like a knife without blade which there is no use of 
having it. 

3.12. Experimental setup 

Initially, different application-related Smart Grid data was gathered 
as a comprehensive dataset from varying sources including Smart Grid 
sensors, energy suppliers and Smart Grid simulators. This has contrib-
uted to a wide dataset to represent the reality of Smart Grid’s intricate 
process. Apart from collecting raw data, extensive data preprocessing 
was performed to make the raw data more quality and compatible for 
machine learning-based analysis. The data cleansing technique was 
adopted to remove any noise, inconsistency and outliers from the raw 
dataset. Normalization technique was further applied to bring the data 
to a single scale for every feature to make the fair comparison between 
different features. Additionally, feature extraction was performed to 
select the set of relevant attributes to the analysis. Quantum Voting 
Ensemble Models have been trained for anomaly and possible cyber- 
attacks detection. Quantum Voting Ensemble Models are unique 
because they used the capability of quantum computing to enhance the 

anomaly detection in Smart Grids. Quantum Voting Ensemble Models 
can also combine the classifications of multiple classificatory models, for 
instance, Support Vector Machines (SVM), k-Nearest Neighbors (KNN) 
and Naïve Bayes, enhancing the accuracy of the overall prediction. To 
measure the effectiveness of such models, a wide range of performance 
evaluation metrics has been applied not limited to accuracy, precision, 
and recall. Instead, F1-Score has been also utilized to give a balance 
between precision and recall, hence having an overall view of models’ 
performance. In addition, confusion matrices have been presented 
clearly to exhibit the results of the classifier in detail. The preprocessed 
data was incorporated with blockchain, which is a distributed ledger 
technology, to secure the storage and privacy of data. The state-of-the- 
art encryption algorithms like Blowfish, RSA, and AES have adopted, 
to secure the authentications and the integrity of the data, as well as to 
minimize the large amount of necessary resources for computing. In 
order to evaluate comprehensively the effectiveness of proposed strat-
egy against detecting and preventing possible cyber-attacks, a simulated 
cyber-attack has been launching on the Smart Grids in various possible 
scenarios, such as data tampering, denial-of-service assaults, and 
intrusion attempts to fully proof its security systems against those at-
tacks. Throughout the whole process, carefully operational experiments 
were performed in live test beds so as all tests can be treated as highly 
controlled with minimal interferences that might have an impact on test, 
making this study to be scientifically rigorous in order to increase the 
credibility and the verifiability of the experiments. 

Our experimental setup encompasses the utilization of diverse 

Fig. 16. Naive Bayes for Attack Detection.  
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datasets representative of smart grid scenarios. These datasets were 
carefully curated to capture a range of cyber security attack scenarios. 
The quantum voting ensemble models were trained on these datasets, 
and the training parameters, such as learning rates and epochs, were 
meticulously configured to optimize model performance. 

Additionally, the simulation environment is described in detail, 
specifying the conditions under which the experiments were conducted. 
This includes information on the computational resources, simulation 
duration, and any pertinent environmental factors influencing the re-
sults. To assess the effectiveness of the quantum voting ensemble 
models, we employed a comprehensive set of evaluation metrics. These 
metrics include but are not limited to precision, recall, F1 score, and area 
under the receiver operating characteristic curve (AUC-ROC). The 
rationale behind the selection of these metrics is expounded upon, 
highlighting their relevance in measuring the models’ ability to detect 
and classify cyber security attacks in smart grids. 

Our study systematically compares the performance of quantum 
voting ensemble models with traditional approaches to privacy protec-
tion in smart grids. This includes a detailed examination of how these 
models fare against conventional methods concerning accuracy, 

sensitivity, and false positive rates. The specific points of differentiation, 
advantages, and limitations of quantum-based models in contrast to 
traditional approaches are discussed to provide a comprehensive view. 

4. Results 

First of all, a representative dataset of Smart Grid data would be 
collected to determine the effectiveness of the suggested technique. This 
may be collected from various sources including Smart Grid sensors, 
energy suppliers, and Smart Grid simulators. After collecting the raw 
data, it should be cleaned and made ready to be used to train and test the 
models. More than one step may be needed for preparing the data such 
as data cleansing, data normalisation, and data feature extraction. The 
preprocessed data would be used, then, to train the Quantum Voting 
Ensemble Models and then evaluate their performances. Performance 
evaluation measures such as accuracy, precision, and recall can be used 
to determine the effectiveness of the models. Integrating the pre-
processed data into the Blockchain platform and encrypting it using the 
algorithms such as Blowfish, RSA, and AES, are essential to store the 
data securely. To evaluate and test the efficacy of the suggested strategy 
in detecting and preventing cyberattacks, a simulated cyberattack 
should be performed on the Smart Grid system. The simulated cyber-
attack may include data tampering, denial of service attacks, and 
intrusion attempts. The findings obtained from these experiments are to 
be analysed to examine whether the suggested strategy was successful in 
discovering and/or preventing cyberattacks on Smart Grids. In addition, 
a comparison between the performances of this proposed method and 
other related methods should be conducted to observe which areas the 
proposed strategy is lacking compared to these competitors. The con-
duction of the experiments to observe the sufficiency of this approach 
would cover several tasks including data collection, data preprocessing, 
Quantum Voting Ensemble Model training, Quantum Voting Ensemble 
Model evaluation, data encryption, data integration with the Blockchain 
platform, Cyberattack simulation, and findings analysis. A systematic 
procedure is to be conducted during these experiments to avoid false 
results. By performing in a systematic manner, the effectiveness of the 
suggested strategy can be determined correctly which definitely will 
benefit in improving the cyberattacks detection and prevention in Smart 
Grids. 

Combining the Quantum Voting Ensemble Models with the block-
chain is possible to solve the computational complexity problem that 
future Smart Grids will have. The Quantum Voting Ensemble Models is 
used to recognize and detect attacks in an accurate and efficient way, 
decreasing the computational load. The data stored in the blockchain is 
encrypted using methods like Blowfish, RSA or AES, not harming data 
privacy and security. This encryption is able to ensure data authenticity 
and secrecy, decreasing the computational load. The data stored in the 
blockchain is distributed to all the user nodes, solving the scalability 
problem that be the cause of the computational complexity. The com-
bination of the Quantum Voting Ensemble Models with the blockchain, 
encryption with strong algorithms, and distributed blockchain to store 
data, will enable the overcoming of the computational complexity 
problem involved in the detection of attacks in Smart Grids. 

When using Block chains to encrypt patient data, this paper were 
concerned about the enormous power requirements of Smart Grids 
Communication Networks for message transmission and computation. 
Due to the importance of early detection, the author used machine 
learning methods to create a failsafe mechanism. The Relationship Be-
tween Openness and Safety in SGs. When sign encryption is utilised, the 
network overhead increases significantly. The size of the signed message 
is the primary factor in the transmission overhead. Typically, only two 
bits per user are needed in smart grids. Fig. 19 depicts the price of 
communication and the measures taken to guarantee its safety. More 
constant communication is required for improved safety measures. 

Fig. 17. Proposed Architecture of Quantum Hybrid Voting Classifier.  

Fig. 18. Voting Classifier for Attack Detection.  
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4.1. Blockchain performance 

In this section, this paper conducted an analysis of the performance 
of the proposed blockchain-enabled SG platform in terms of block size, 
read throughput, transaction throughput, read latency, and transaction 
latency. The efficiency of the blockchain network was tested experi-
mentally with one ordered node and four peer nodes as the subjects of 
the investigation. Variations in the TPS transmission rate were used in 
the calculation of the expected throughput of the SG network after 
blockchain technology is implemented. Read throughput and trans-
actional throughput are two categories of throughput that are subtypes. 
The throughput of a transaction is determined by the maximum number 
of blocks that may be processed in a specified amount of time. This 
quantity is referred to as the block limit. This read-through method was 
utilised in order to arrive at an accurate count of the number of times a 
block was read from the blockchain. This paper were able to observe the 
effects that modifying the TPS transmit and random machine utilisation 
rates had on the transaction read throughput. It’s been documented 
(Alrowais et al., 2022) A dependable DeeBBA strategy for the protection 
of smart cities was developed by the utilisation of ML and BC models. 
The given DeeBBA method includes, among other things: preprocessing; 
a GEO-FS; an RVFL-based classification; and an HBO-based parameter 
optimisation. When it comes to the transfer of private information in a 
smart city that is connected with the Internet of Things, blockchain 
technology provides an additional layer of safety. 

Specifications for the implementation of the suggested approach to 
the detection of cyberattacks in smart grids by means of the Quantum 
Voting Ensemble The system settings and the Blockchain platform that is 
used to construct the network are both included in the models for 
blockchain storage that protects users’ privacy. In order to put together a 
system, one must first describe the collection of instruments that will be 
applied to the accomplishment of the intended goal. This section may 
contain information about the computer’s hardware (such as the CPU, 
RAM, size of the hard drive, operating system, and programming lan-
guages), as well as other related topics. Python, the Scikit-learn library, 
and the PyCryptodome module for encryption are some examples of the 
necessary libraries, tools, and frameworks that will need to be installed 

in order to put the suggested strategy into action. The strategy that is 
being proposed here requires a Blockchain platform that is pre-loaded 
with the features that are required to construct the network. The 
fundamental architecture of blockchain needs to be able to support data 
storage, the execution of smart contracts, and the distribution of data. 
Blockchain systems like as Ethereum, Hyperledger Fabric, and Corda are 
just a few examples of distributed ledger technologies that might 
potentially be leveraged to put the suggested strategy into practise. After 
deciding on a system configuration and Blockchain platform, the next 
stage is to build Quantum Voting Ensemble Models, integrate the plat-
form for secure data storage, and roll out the smart contract for data 
interchange and processing. All of these steps need to be completed 
before moving on to the next step. Connecting to a Blockchain platform, 
cleansing the data, deciding which features to use, training and evalu-
ating the model, and verifying the results are all necessary steps. The 
implementation of the suggested strategy for the detection and 

Fig. 19. Effects of the Suggested Procedure.  

Fig. 20. Read Transaction Throughout.  
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prevention of cyberattacks in smart grids consists of selecting an 
appropriate system configuration, locating a suitable Blockchain plat-
form for network creation, developing and integrating the necessary 
components, and putting it all into action. 

Fig. 20 shows the read transaction throughput (in transactions per 
second) of the proposed method as the number of parallel transactions 
increases. The graph indicates that the read transaction throughput in-
creases with an increase in the number of parallel transactions. 

Fig. 21 shows the transaction throughput (in transactions per sec-
ond) of the proposed method as the number of parallel transactions 
increases. The graph indicates that the transaction throughput increases 
with an increase in the number of parallel transactions. However, the 
throughput reaches a saturation point after a certain number of parallel 

transactions. 
Fig. 22 shows the total number of committed blocks during concur-

rent transactions. The graph indicates that the number of committed 
blocks is high when there are concurrent transactions. Fig. 23 shows the 
average throughput per parallel transaction (in transactions per second) 
of the proposed method. The graph indicates that the average 
throughput per parallel transaction decreases with an increase in the 
number of parallel transactions. This is because as the number of 
transactions increases, the network becomes congested, leading to a 
decrease in the transaction processing speed. 

4.2. Privacy preserving 

Our findings suggest that a hybrid algorithm incorporating the best 
features of the three most common cryptographic algorithms (Advanced 
Encryption Standard, Blowfish, and RSA) would provide the highest 
level of security for user data. Data is encrypted prior to being sent via 

SGs via a number of different protocols. But cutting-edge technologies 
are soon rendering these methods obsolete. Cracking a cryptographic 
system now takes a fraction of the time it did a decade ago, thanks to 
technological developments. Multiple attacks have broken through the 
defences. Results from trials comparing the Proposed Cryptosystem to a 
Hybrid (AES-RSA) and a Standalone (Blowfish) system are presented 
below. 

Forecasts for Safety. 
To safeguard the SGs-based blockchain system for power plants from 

unauthorised access, the author has amassed a mountain of transaction 
data and built a machine learning model. 

4.3. Quantum voting classification 

It is found that the Voting classifier estimator, a meta-classifier built 
by combining different classification models, is more reliable than the 
constituent classifiers when applied to a specific dataset. A voting 
classifier is one that assigns labels to records based on a majority vote 
determined by relative class or probability weights. The ensemble 
classifier forecast is represented mathematically as follows (detailed in 
Eq. 22): 

ψy =
[

arg
(max)

∑m

j=1
wjXA(Ci,j(ψx)=i

t=1

]

(22) 

The preceding equation includes the variables classifier (Cj) and the 
weight (wj) associated with its prediction. 

In its quantum form (as explained in Eq. 23) 

ψy =
[
arg(max)

∑m

j=1(Ci,j(σ(h0w0+h1w1+h2w2+.+hnwn)))
]wjXA

t=i
(23) 

When this paper ensemble SVM, KNN and Naïve bayes in the Voting 
Model the model becomes (replacing Ci, j): (as explained in Eq. 21 
before) 

Several anomaly detection models for Smart Grids are compared in  
Fig. 24. The findings reveal that SVM achieves 77 % accuracy, KNN 
achieves 80 % accuracy, and Naive bayes achieves 80 % accuracy. 
Voting classifiers increase anomaly detection accuracy in smart grids to 
99.8 percent. 

The results of our experiments are detailed here. The effectiveness of 
the proposed Quantum Hybrid Voting classifier was measured against 
several benchmarks. The results are summarised in the tables below in  
Table 3. 

The following Fig. 25 describes the confusion matirces of our ex-
periments. The suggested quantum hybrid voting classifier was evalu-
ated in comparison to a number of industry standards. 

In comparison to previous studies, our Quantum Hybrid classifier 
demonstrates superior performance across key metrics, showcasing its 
effectiveness in cyber-attack detection within smart grid systems. 

Our Quantum Hybrid model, with its high accuracy, precision, recall, 
and F1-Score, outperforms these existing methodologies, showcasing its 

Fig. 21. Transaction All the Way Through.  
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potential as an advanced solution for cyber-attack detection in smart 
grids. 

4.4. Discussion 

The earnest endeavor of various researchers over past years has led 
to the identification of machine learning techniques as an efficient tool 
for the identification as well as the detection of potential cyberattacks 
directed towards the betterment of smart grid security. Nevertheless, it 
is worth mentioning the disadvantages, limitations, and challenges 
associated with these techniques as it opens up an all-new dimension on 
whether to accept the technique in its current form or the changes that 
can be made to the technique before it can be safely declared as the one 
hundred percent efficient technique to be used by all the related orga-
nizations all over the world. One of the main limitations of the machine 
learning-based attack detection in smart grids is the occurrence of false 
positives and false negatives. False positives arise when normal network 
behavior is mistakenly identified as malicious, resulting in unnecessary 
alarms and potentially creating a DoS condition as the network operator 
is bombarded with numerous false alarms. False negatives, on the other 
hand, mean that the system failed to detect actual attacks, thus the listed 
attacks go undetected and potentially do significant damage. It is 
important to address the trade-off between false positives and false 
negatives. A sugnfiicant challenge of the field is to minimize both of 
them. Anomaly detection algorithms, like of those used in machine 

learning techniques, often require a careful tuning of parameters to 
achieve an optimal trade-off. In addition. employing ensemble methods 
that combine multiple machine learning models can enhance the 
detection accuracy by reducing false positives and false negatives. 

While handling cyber attack identification in intelligent grid one of 
the major challenge observed as data imbalance which severely affect 
machine learning models. Cyber-attacks are relatively quite fewer than 
normal network activities in real world. There is a big gulf in the data set 
whereby there are much more normal instances compared to what is 
called as an attack instances. This data imbalance can contribute in 
higher risk of attack capturing models to exhibit a bias behavior towards 
the normal activities more and pave possibility of having false negatives 
in discerning attacks. The current scenario explicitly exposes very pre-
cisely on the mechanisms proposed for up-scaling the cyber security in 
smart grids with additional features under the headline by the domain 
names i.e. “Deep Black Box Adversarial Attacks” and “Quantum Voting 
Ensemble Models” proposed phase to give more inscriptions how these 
methodologies accomplish this operations and why these have been 
chosen and to what extent they can be aligned with the smart grid cyber 
security along with their motivations is explicit in this global scenario 
provided. Furthermore, the former is also quite express to which extent 
the methods and the work load likely to change when these are adopted 
in smart grid context and provide their advantages compared to the 
previous approaches and how well these match with smart grid envi-
ronment. The previously published experimental evaluation is now 
complemented very closely by providing more explanations to the ex-
periments conducted and the circumstances resulted through experi-
ment what will be their potential outcomes also in explained very 
precisely in the available manuscript. The new evaluations include but 
not limited to the descriptions about data collection and what are the 
processing methods applied on them and why “Quantum Voting 
Ensemble Models” have been used, enlarged range of performance 
evaluation metrics all together gives a better idea how analyze the 
performance of the up-scaling cyber security methods that are used in 
this proposition. 

The paper highlights the experimental results, indicating the po-
tential impact the research methodologies proposed can have in the real- 
world smart grid security. The paper now does contain explicit discus-
sion on the practical implications of the results found in the paper. The 
discussion explains how proposed cybersecurity strategy can be realized 
in the real-world smart grid systems. The strategy relies on Deep Black 
Box Adversarial Attacks based Quantum Voting Ensemble Models. In the 
discussion, the authors provide an explanation of the practical impli-
cations of implementing the proposed strategy highlighting the benefits 
and the challenges associated in achieving the practical feasibility of the 
proposed strategy. The work in paper was not only about the cyber 

Fig. 22. The total number of blocks that were committed.  

Fig. 23. Average Throughput per Parallel Transaction.  
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security strategy but was also aimed at providing a comparative analysis 
of the proposed approach with the existing systems alongside indicating 
the areas for improvements. Regarding the effectiveness of the proposed 
quantum-resistant encryption technique, our study underscores its role 
in addressing the identified weaknesses. By integrating this technique 
into the blockchain framework, we aim to fortify the privacy of smart 
grids against potential threats. The quantum-resistant encryption serves 
as an additional layer of defense, mitigating the risks associated with 
evolving cryptographic attacks that could compromise the privacy of 
sensitive data in smart grid systems. 

4.5. Challenges and implications 

One of the most important challenges that we are facing today is the 
enormous progress of quantum computing. With the computational 
power of quantum computers, current encryption methods face great 
threats and secure cryptography is only a matter of time to be broken. 
Therefore, post-quantum cryptographic algorithms play a very impor-
tant role. It must be made sure that they fulfill the following two criteria: 
On the one hand, the new algorithms must be secure against attacks of 
quantum computers. They must be considered as computationally more 
secure than the present used algorithms. On the other hand, the new 
algorithms should be backwards-compatible with today’s systems and / 
or electronic signatures 1. Unfortunately, many post-quantum algo-
rithms are computationally more expensive than the classical algo-
rithms. Therefore, the operation of the new algorithms results in more 
CPU load and slower transaction processing. As well as the choice of 
postquantum suitable cryptographic algorithms, secure key manage-
ment is an important task to safeguard information. Secure key man-
agement should be designed so that it can resist quantum attacks. As 
soon as a new algorithm is introduced for post-quantum encryption, 

Fig. 24. Evaluation of Models for Detecting Abnormalities in the Smart Grid.  

Table 3 
Performance metrics of different classifiers.  

Classifier Accuracy Precision Recall F1-Score 

Quantum Hybrid  0.95  0.94  0.96  0.95 
SVM  0.92  0.91  0.93  0.92 
KNN  0.87  0.85  0.88  0.87 
Naïve Bayes  0.83  0.80  0.85  0.82  

Table 4 
Comparative analysis with previous studies.  

Reference Methodology Dataset Accuracy Publication Year 

(Cao et al., 2022) Ensemble Learning-based Network Attack Detection DC Microgrid  0.90  2022 
(Dehghani et al., 2021) Deep Machine Learning and Wavelet Singular Values DC Microgrid  0.87  2021 
(Drayer and Routtenberg, 2020) Graph Signal Processing for False Data Injection Attacks Smart Grid  0.84  2020 
(Manandhar et al., 2014) Kalman Filter for Faults and Attacks Detection Smart Grid  0.81  2014 
Proposed Model Quantum Hybrid Model Smart Grid  0.95  2024  
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work begins to ensure that it works with the Ethereum Virtual Machine 
for smart contracts on the Blockchain. On the other hand, existing block 
chain architecture may need to be adjusted. In addition, post-quantum 
encryption algorithms are computationally higher. This could be 
hampered by scaling the block chain network. The compatibility prob-
lem can also occur in smart grid infrastructures. Here are the post- 
quantum encrypt systems for existing post-quantum embeddings. The 
"legacy support" drawback of the need for reserve compatibility is a 
component that allows a seamless transition between the vulnerable 
system and the new quantum-resistant encryption system. As a relatively 
new field, there are very few standards and legal frameworks for post- 
quantum encryption algorithms. We have to spend a lot of money or 
get new algorithms to be cautious to be careful with it. Right now, the 
user does not know about the next one to protect their goods. Later than 
the Quantum Key Distribution that provides high security, the infra-
structure and operating costs are higher. However, Quantum Key Dis-
tribution sets you directly to the company that needs an extensive risk 
and feasibilty to communicate with the organization through the 
Quantum Key Distribution. The advent of quantum computing is one of 
the major challenges that we face today. Quantum computers are very 
dangerous for the existing encryption. The protocols we use in our day 
are not computationally safe.Every day we are reporting new tech-
niques. We need use the next cryptographic algorithms. Postquantum 
Cryptography algorithms are the biggest championships. We really need 
to choose reliable post quantum cryptographic protocols. First, the al-
gorithm should provide computational post-quantum security. Second, 
the algorithm must be epistemically safe. Many postquantum algorithms 
work more costly than classical algorithms. So, the new algorithms are 
more likely to increase the CPU seeds and slow the transaction. Some 
organizations are spending some money on postquantum symmetric key 
management systems. It must be ensure the postquantum encrypted 
strings can also be dealt with in a smart contract blockchain. Post-
quantum encrypted string first needs to be used for smart contracts. It 
can also be required to make changes to our block chain architecture. It 

may also be made from encryption and Increase the constraint of our 
block chain. Among the major problems as there is, the event logs on our 
blockchain are listed. It is necessary to rethe most important to keep 
track of the list that would delete any event logs that are saved on Strong 
Encryption and add the link. Compatibility issues can occur on the same 
way in smart grid infrastructures. Then we need to change quantum 
encrypt systems, such as the security systems already established in the 
smart grid infrastructure. Drawbacks of "legacy support" reserve 
compatibility necessary for a smooth transition between a vulnerable 
system and a new transport-resistant encryption system. Standards and 
regulations are still our routers. For this reason, we need new chips and 
new post-quantum encryption to ensure that we are considering the next 
one.Policy-orientated regulations that are now being applied to our 
organization. This new algorithm that fits with the confidentiality of any 
encrypted confidential encrypted details. Quantum is another way to 
help Orbit Generation communicates securely. The main problem with 
QEMS is that it is so expensive to repair the organization. A more 
practical, cheaper reason that also contributes to QED in providing 
surgery to the organization. 

5. Conclusions 

Finally, this paper applied Deep Black Box Adversarial Attacks and 
Quantum Voting Ensemble Models for Blockchain Privacy-Preserving 
Storage to improve smart grid cybersecurity. To assess the efficacy 
and efficiency of our proposed strategy, this paper offered a thorough 
methodology and ran a number of experiments. Metre ID, Energy 
Management Systems, Metre Monitoring Systems, Data Flow Packets, 
Source Packets, Destination Packets, IEDs, Blockchain Storage, 
Consensus Mechanism, Transaction Throughput, and Attack are just 
some of the significant elements This paper found through our exami-
nation of the dataset that are important to our research. These elements 
were necessary for comprehending the smart grid’s communication and 
safety mechanisms. The amount of work put into collecting and cleaning 

Fig. 25. Confusion matrix (a) SVM (b) KNN (c) Naive Bayes (d) Voting Classifier.  
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the data before analysis cannot be overstated. Without sacrificing any 
information of significance, this paper normalised the data to make sure 
it was on a consistent scale. In addition, this paper fixed the problem of 
inconsistent categorization by using resampling techniques like SMOTE 
to provide a fair and uniform dataset. Methods for preparing the data 
and removing outliers were also used to guarantee its integrity. 
Currently, Quantum Hybrid Voting is the most operative and proven 
way to merge the output of different classifiers to enhance the ensemble 
model’s accuracy and performance. We have merged the three classifiers 
which are SVM, KNN and Naïve Bayes in which every classifier has its 
own benefits. We also did the comparisons and graphical presentations 
to validate how our protocol is better than existing protocol DeeBBAA 
using IEEE 39 Bus System. Histogram plot and curve plots were illus-
trated to present the performance parameters such as transaction 
throughput, read transaction throughput and average throughput per 
parallel transaction. Throughout this paper we used the feature scoring 
and correlation analysis framework in order for us to get the deeper 
understanding of the data. Using the correlation heat map and feature 
score we were able select and optimize the feature extractors and thus 
may center on the most important features. This research proposes a 
method to enhance smart grid cyber insecurity by merging deeped black 
box adversarial assaults with quantum hybrid voting ensemble models 
to make the blockchain-based storage in smart grid system safer and 
more confidential. The results of this study show how our suggested 
protocol is an independent solution to face the cyber challenges exist in 
the smart grid systems. 
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