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Abstract
We describe a natural coisometry from the Hilbert space of all Hilbert-Schmidt oper-
ators on a separable reproducing kernel Hilbert space (RKHS)H and onto the RKHS
G associated with the squared-modulus of the reproducing kernel of H. Through this
coisometry, trace-class integral operators defined by general measures and the repro-
ducing kernel ofH are isometrically represented as potentials in G, and the quadrature
approximation of these operators is equivalent to the approximation of integral func-
tionals on G. We then discuss the extent to which the approximation of potentials in
RKHSs with squared-modulus kernels can be regarded as a differentiable surrogate
for the characterisation of low-rank approximation of integral operators.
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1 Introduction

Integral operators with positive-semidefinite (PSD) kernels play a central role in the
theory of reproducing kernel Hilbert spaces (RKHSs) and their applications; see for
instance [4, 5, 19, 20, 26].As an important instance, this class of operators encompasses
the PSD matrices.

Under suitable conditions, an integral operator defined by a PSD kernel K and a
measure μ can be regarded as a Hilbert-Schmidt (HS) operator Lμ on the RKHS H
associatedwith K ; see e.g. [20–22]. LetG be theRKHS forwhich the squared-modulus
kernel |K |2 is reproducing. Following [10], when the integral of the diagonal of K with
respect to the variation of μ is finite, the HS operator Lμ on H can be isometrically
represented as the Riesz representation gμ ∈ G of the integral functional on G defined
by the measure μ, the conjugate of μ. The operator Lμ is in this case trace-class,
and gμ is the potential, or kernel embedding, of the measure μ in the RKHS G. In
the Hilbert space HS(H) of all HS operators on H, the quadrature approximation of
trace-class integral operators with kernel K is hence equivalent to the approximation
of integral functionals on G. Considering another measure ν and denoting by BG the
closed unit ball of G, we more specifically have

‖Lμ − Lν‖HS(H) = ‖gμ − gν‖G = sup
g∈BG

∣
∣
∣
∣

∫

g(t)dμ(t) −
∫

g(t)dν(t)

∣
∣
∣
∣
,

so that the map (μ, ν) �→ ‖Lμ − Lν‖HS(H) corresponds to a generalised integral
probability metric, or maximum mean discrepancy (see e.g. [2, 15, 16, 24, 27]).

We give an overall description of the framework surrounding such an isometric
representation, and illustrate that it follows from the definition of a natural coisome-
try � from HS(H) onto G; this coisometry maps self-adjoint operators to real-valued
functions, and PSD operators to nonnegative functions (Sect. 2). Under adequate mea-
surability conditions on K and assuming that the diagonal of K is integrable with
respect to |μ|, we show that Lμ always belongs to the initial space of �, and that
�[Lμ] = gμ. We then describe the equivalence between the quadrature approxima-
tion of integral operators with PSD kernels and the approximation of potentials in
RKHSs with squared-modulus kernels (Sect. 3).

For an approximate measure ν, and denoting by Hν the closure in H of the range
of L |ν| (so that when ν is finitely-supported, Hν is fully characterised by the support
of ν), we next investigate the extent to which the approximation of potentials in G
can be used as a differentiable surrogate for the characterisation of approximations of
Lμ of the form PνLμ, LμPν or PνLμPν , with Pν the orthogonal projection from H
onto Hν (Sect. 4). When the measure μ is nonnegative, the operator Lμ admits the
decomposition Lμ = ι∗μιμ, with ιμ the natural embedding of H in L2(μ). The three
operators

ι∗μ : L2(μ) → H, ιμι∗μ : L2(μ) → L2(μ), and ιμι∗μιμ : H → L2(μ),

can then also be regarded as integral operators defined by the kernel K and themeasure
μ, and through the partial embedding ιμPν , a measure ν characterises approximations
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of each of these operators.We study the properties of these approximations and further
illustrate the connections between the low-rank approximation of integral operators
with PSDkernels and the approximation of potentials inRKHSswith squared-modulus
kernels.We also describe the link between the considered framework and the low-rank
approximation of PSD matrices through column sampling (Sect. 5). The presentation
ends with a concluding discussion (Sect. 6) and some technical results are gathered in
appendix (Appendix A). The approximation schemes considered in this note should
be apprehended from the the point of view of numerical strategies for discretisation
or dimension reduction; in practical applications, approximations will generally be
characterised by finitely-supported measures.

2 Framework, notations and basic properties

Bydefault, all theHilbert spaces considered in this note are complex; they are otherwise
explicitly referred to as real Hilbert spaces; we use a similar convention for vector
spaces. Inner products of complex Hilbert spaces are assumed to be linear with respect
to their right argument. For z ∈ C, we denote by z, |z| and�(z) the conjugate, modulus
and real part of z, respectively, and i ∈ C is the imaginary unit. By analogy, for a
complex-valued function f on a general set S, we denote by f and | f | the functions
defined as f (s) = f (s) and | f |(s) = | f (s)|, s ∈ S; we also use the notation | f |2 to
refer to the function s �→ | f (s)|2.

For two Hilbert spaces H and F , we denote by A∗ the adjoint of a bounded linear
operator A : H → F . The map A is an isometry if A∗A = idH , the identity operator
on H , and A is a coisometry if A∗ is an isometry (and so AA∗ = idF ). A coisometry
A is a surjective partial isometry (that is, AA∗A = A), and A∗A is then the orthog-
onal projection from H onto the initial space I(A) of A, with I(A) the orthogonal
complement in H of the nullspace of A. We denote by null(A) the nullspace of A, and
by range(A) its range. Also, for a subset C of H , we denote by C⊥H the orthogonal

complement of C in H , and by C
H
the closure of C in H .

2.1 RKHSs and Hilbert–Schmidt operators

Below, we introduce the various Hilbert spaces relevant to our study.

Underlying RKHS. Let H be a separable RKHS of complex-valued functions on a
general set X , with reproducing kernel K : X × X → C; see e.g. [1, 17]. For
t ∈ X , let kt ∈ H be defined as kt (x) = K (x, t), x ∈ X . For all h ∈ H, we have
〈kt | h〉H = h(t), where 〈.|.〉H stands for the inner product ofH (this equality is often
referred to as the reproducing property); we denote by ‖·‖H the norm of H, and we
use a similar convention for the inner products and norms of all the Hilbert spaces
encountered in this note.

Hilbert-Schmidt space. Let HS(H) be the Hilbert space of all HS operators onH; see
e.g. [3, 7]. For T ∈ HS(H), we denote by T [h] ∈ H the image of h ∈ H through T ,
and by T [h](x) the value of the function T [h] at x ∈ X ; we use similar notations
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for all function-valued operators. For a and b ∈ H, let Ta,b ∈ HS(H) be the rank-one
operator given by

Ta,b[h] = a〈b | h〉H, h ∈ H;

we also set Sb = Tb,b.

Remark 2.1 An operator T ∈ HS(H) always admits a singular value decomposition
(SVD) of the form T = ∑

i∈I σi Tui ,vi , I ⊆ N, where {σi }i∈I ∈ �2(I) is the set
of all strictly-positive singular values of T , and where {ui }i∈I and {vi }i∈I are two
orthonormal systems inH; the series converges in HS(H). �
Remark 2.2 Let H′ be the continuous dual of H. For h ∈ H, let ξh ∈ H′ be the
bounded linear functional such that ξh( f ) = 〈h | f 〉H, f ∈ H. Endowed with the
inner product 〈ξ f |ξh〉H′ = 〈h | f 〉H, the vector space H′ is a Hilbert space, and the
Riesz map h �→ ξh is a bijective conjugate-linear isometry form H to H′ (we may
notice that ξαh = αξh , α ∈ C). The linear map densely defined as Ta,b �→ a ⊗ ξb (see
Remark 2.1) is then a bijective isometry from the Hilbert space HS(H) to the tensor
Hilbert space H ⊗ H′. �
Conjugate RKHS. LetH be the RKHS of complex-valued functions onX associated
with the conjugate kernel K , with K (x, t) = K (x, t), x and t ∈ X . For all h ∈ H, we
have h ∈ H (that is, the function h : x �→ h(x) is a vector ofH), and themap h �→ h is
a bijective conjugate-linear isometry fromH toH. We have kt (x) = K (x, t) = kt (x),
and

〈kx |kt 〉H = K (x, t) = K (t, x) = 〈kt |kx 〉H.

We denote by 	 the bijective linear isometry from HS(H) to the tensor Hilbert
space H ⊗ H, densely defined as 	(Ta,b) = a ⊗ b, a and b ∈ H.

Remark 2.3 Following Remark 2.2, the linear map ξh �→ h is a bijective isometry
form H′ to H. Further, the linear map densely defined as a ⊗ ξb �→ a ⊗ b is a
bijective isometry formH ⊗H′ toH ⊗H; the composition of this isometry with the
bijective isometry fromHS(H) toH⊗H′ discussed in Remark 2.2 yields the isometry
	 : HS(H) → H ⊗ H; see the diagram (5). �
Squared-kernel RKHS. The kernels K and K being PSD, by the Schur-product theo-
rem, so is the squared-modulus kernel |K |2 = KK , with

|K |2(x, t) = K (x, t)K (x, t) = |K (x, t)|2 = |kt |2(x), x and t ∈ X .

Let G be the RKHS of complex-valued functions onX for which |K |2 is reproducing
(G = H � H is the product of the two RKHSs H and H; see e.g. [1, 17]).

Following [17, Chapter 5], we denote byC
 : H⊗H → G the coisometry densely
defined as C
(a ⊗ b) = ab, a and b ∈ H, where ab ∈ G is the complex-valued
function on X given by

(

ab
)

(x) = a(x)b(x) = 〈|kx |2|ab〉G = 〈kx ⊗ kx |a ⊗ b〉H⊗H, x ∈ X .
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For ϒ ∈ H ⊗ H, we more generally have

C
[ϒ](x) = 〈|kx |2|C
[ϒ]〉G = 〈kx ⊗ kx |ϒ〉H⊗H. (1)

The initial space ofC
 isI(C
) = spanC{kx ⊗ kx |x ∈ X }H⊗H
, the closure inH⊗H

of the linear space spanned by the simple tensors kx ⊗ kx , x ∈ X .

Remark 2.4 From (1), for all x ∈ X , we have C∗

[|kx |2] = kx ⊗ kx . The linear space

spanC{|kx |2|x ∈ X } being dense in G (see for instance [17, Chapter 2]), we have
space spanc{|kx |2 have C
C

∗

 = idG , so that C∗


 is an isometry. �

2.2 Natural coisometry fromHS(H) ontoG

We can now define a natural coisometry from the Hilbert space HS(H) of all HS
operators on a RKHSH, and onto the RKHS G associated with the squared-modulus
of the reproducing kernel ofH. The terminology natural is used to emphasise that the
considered construction does not depend on the choice of any specific basis.

Lemma 2.1 The linear map � = C
	 : HS(H) → G is a coisometry, and its initial
space is

I(�) = spanC{Skx |x ∈ X }HS(H); (2)

in addition, for all T ∈ HS(H), we have

�[T ](x) = 〈Skx |T 〉HS(H) = 〈kx |T [kx ]〉H = T [kx ](x), x ∈ X . (3)

Proof The linear isometry 	 being bijective, we have 		∗ = idH⊗H, and so

��∗ = C
		∗C∗

 = C
C

∗

 = idG .

By definition of C
 and 	, we have �∗[|kx |2] = 	∗[kx ⊗ kx ] = Skx , x ∈ X , so
that (2) follows from the density of spanC{|kx |2|x ∈ X } in G (see Remark 2.4). The
reproducing property in G then gives

�[T ](x) = 〈|kx |2|�[T ]〉G = 〈Skx |T 〉HS(H), T ∈ HS(H).

We next observe that

〈Ta,b|T 〉HS(H) = 〈a|T [b]〉H, a and b ∈ H; (4)

indeed, as Ta,0 = 0, equality (4) trivially holds for b = 0, and for b �= 0, we have
〈Ta,b|T 〉HS(H) = 〈Ta,b[b]|T [b]〉H/‖b‖2H, with Ta,b[b] = a‖b‖2H. Taking a = b = kx
in (4) gives 〈Skx |T 〉HS(H) = 〈kx |T [kx ]〉H = T [kx ](x), concluding the proof. ��
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The following diagram summarises the construction of � (the ∼= symbol refers to
the two bijective linear isometries discussed in Remarks 2.2 and 2.3).

HS(H)
� ��

	

����
���

���
� G

H ⊗ H′
∼=

��
��

∼=

H ⊗ H
C


����������
(5)

Through �, the HS operators on H belonging to I(�) can be isometrically repre-
sented as functions in the RKHS G associated with the squared-modulus kernel |K |2.
In the framework of Remark 2.1, we may notice that if T = ∑

i∈I σi Tui ,vi ∈ HS(H),
then �[T ] = ∑

i∈I σi uivi .

Lemma 2.2 The following assertions hold:

1. if T ∈ HS(H) is self-adjoint, then the function �[T ] is real-valued;
2. if T ∈ HS(H) is PSD, then the function �[T ] is nonnegative;
3. if T ∈ HS(H) is PSD and �[T ] = 0, then T = 0; and
4. if T ∈ I(�), then T ∗ ∈ I(�).

Proof Assertions 1 and 2 follow directly form (3).We assume that T ∈ HS(H) is PSD,
and we consider a spectral expansion T = ∑

j∈I λ j Sϕ j of T , with λ j ≥ 0, ϕ j ∈ H and

I ⊆ N; observing that �[Sϕ j ] = |ϕ j |2, j ∈ I, we obtain 3. To prove assertion 4, we
first observe that if g ∈ G, then g ∈ G (that is, the function g is a vector of G); the map
� is indeed surjective, and if g = �[T ], T ∈ HS(H), then g = �[T ∗]. By linearity,
the real and imaginary parts of g are then also vectors of G, and so ‖g‖G = ‖g‖G (see
for instance [17, Chapter 5]; see also Remark 2.6). Since � is a partial isometry, for
T ∈ HS(H), we have ‖T ‖HS(H) ≥ ‖�[T ]‖G , with equality if and only if T ∈ I(�);
as ‖T ‖HS(H) = ‖T ∗‖HS(H), the result follows. ��
Remark 2.5 The diagram (5) is also well-defined when the involved Hilbert spaces are

real. We in this case have I(�) = spanR{Skx |x ∈ X }HS(H)
and the operators in I(�)

are self-adjoint; also if T ∗ = −T , then �[T ] = 0. By comparison, in the complex
case, if T ∗ = −T , then the function �[T ] is pure-imaginary. �
Remark 2.6 The PSD kernel |K |2 being real-valued, it is the reproducing kernel of a
real RKHS GR of real-valued functions on X . The decomposition G = GR + iGR
holds, and GR is the real-linear subspace of all real-valued functions in G. This
decomposition mirrors the decomposition HS(H) = HSR(H) + iHSR(H), with
HSR(H) ⊂ HS(H) the real-linear subspace of all self-adjoint HS operators on H.
Also, the real convex cone HS+

R
(H) ⊂ HSR(H) of all PSD HS operators onH is gen-

erating in HSR(H), and the real convex cone G+
R

⊂ GR of all nonnegative functions
in GR is generating in GR. �
Remark 2.7 Let F be another separable RKHS of complex-valued functions on X ,
with reproducing kernel J : X × X → C. We denote by HS(F ,H) the Hilbert
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space of all HS operators from F to H, and let H � F be the product of the RKHSs
H and F , that is, the RKHS with kernel K J . Following (5), we can more generally
define a natural coisometry from HS(F ,H) onto H � F . �

3 Trace-class integral operators with PSD kernels

From Lemma 2.1, if T ∈ HS(H) is of the form T = ∑n
j=1 ω j Sks j , with n ∈ N,

s j ∈ X and ω j ∈ C, then T ∈ I(�). We in this case have

T [h](x) =
n

∑

j=1

ω j ks j (x)〈ks j |h〉H =
n

∑

j=1

ω j K (x, s j )h(s j ), h ∈ H, x ∈ X ,

so that T can be regarded as an integral operator on H defined by the kernel K and
the finitely-supported measure

∑n
j=1 ω jδs j , with δx the Dirac measure at x ∈ X . We

also have �[T ] = ∑n
j=1 ω j |ks j |2, so that 〈�[T ]|g〉G = ∑n

j=1 ω j g(s j ), g ∈ G, and
�[T ] is thus the Riesz representation of the integral functional on G defined by the
measure

∑n
j=1 ω jδs j . Under measurability conditions, this observation holds for all

trace-class integral operators on H defined by the reproducing kernel K of H and
general measures on X , as illustrated below.

3.1 Integral operators and kernel embedding of measures

Let A be a σ -algebra of subsets of X . We consider the Borel σ -algebra of C, and
make the following assumptions on K and the measurable space (X ,A):

A.1 for all t ∈ X , the function kt : X → C is measurable;
A.2 the diagonal of K is measurable.

We recall that K (t, t) = ‖kt‖2H = ‖Skt ‖HS(H) = ‖|kt |2‖G, t ∈ X .

Remark 3.1 The RKHSs H and G being separable, A.1 ensures that all the functions
in H and G are measurable; see for instance [25, Lemma 4.24]. Consequently, under
A.1, the maps t �→ kt , t �→ |kt |2 and t �→ Skt , t ∈ X , are weakly-measurable, and
since the Hilbert spaces H, G and HS(H) are separable, by the Pettis measurability
theorem, these maps are also strongly-measurable (see e.g. [8, 28]). �

We denote by M+, M, and MC the set of all nonnegative, signed and complex
measures1 on (X ,A), and we set MF = M ∪ MC (we have M+ ⊂ M). Noticing
that K (t, t) ≥ 0, t ∈ X , from A.2, we define

τμ =
∫

X
K (t, t)d|μ|(t) ∈ R≥0 ∪ {+∞}, μ ∈ MF.

We next introduce the sets T+(K ), T (K ) and TC(K ) of all measures μ in M+, M,
andMC such that τμ is finite, respectively; the inclusion T+(K ) ⊂ T (K ) holds, and
we set TF(K ) = T (K ) ∪ TC(K ).

1 We only consider finite complex measures, while signed measures may not be finite.
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Integral operators onHwith kernel K . By assumption, forμ ∈ TF(K ), the integral
∫

X ‖Skt ‖HS(H)d|μ|(t) = τμ is finite, and the map t �→ Skt is thus Bochner-integrable
with respect toμ (Bochner integrability criterion, see e.g. [8, 28]; see alsoRemark 3.1).
We set

Lμ =
∫

X
Skt dμ(t) ∈ HS(H).

From (4), for h ∈ H and x ∈ X , we have

Lμ[h](x) = 〈Tkx ,h |Lμ〉HS(H) =
∫

X
〈Tkx ,h |Skt 〉HS(H)dμ(t) =

∫

X
K (x, t)h(t)dμ(t),

so that Lμ ∈ HS(H) can be regarded as an integral operator on H defined by the
kernel K and the measure μ.

Remark 3.2 For μ ∈ TF(K ), the operator Lμ ∈ HS(H) is the Riesz representation of
the bounded linear functional Zμ : HS(H) → C given by

Zμ(T ) =
∫

X
〈Skt |T 〉HS(H)dμ(t), T ∈ HS(H),

that is, Zμ(T ) = 〈Lμ|T 〉HS(H); from the CS inequality in HS(H), we in particular
have |Zμ(T )| ≤ ∫

X |〈Skt |T 〉HS(H)|d|μ|(t) ≤ ‖T ‖HS(H)τμ.
By boundedness of the linear evaluation map T �→ T [h] from HS(H) to H, we

obtain (see for instance [28, Chapter 5])

Lμ[h] =
∫

X
Skt [h]dμ(t) =

∫

X
kth(t)dμ(t), h ∈ H,

with, from the CS inequality inH,
∫

X ‖kt‖H|h(t)|d|μ|(t) ≤ ‖h‖Hτμ. We also have

〈Lμ[h]| f 〉H =
∫

X
h(t) f (t)dμ(t), h and f ∈ H, (6)

so that Lμ[h] is the Riesz representation of the bounded linear functional �h,μ onH,
with �h,μ : f �→ ∫

X h(t) f (t)dμ(t), f ∈ H (and |�h,μ( f )| ≤ ‖h‖H‖ f ‖Hτμ). �
Lemma 3.1 For all μ ∈ TF(K ), the operator Lμ is trace-class.

Proof Let {hi }i∈I be an orthonormal basis (ONB) of H, with I ⊆ N. For all t ∈ X ,
we have kt = ∑

i∈I hi hi (t), so that {hi (t)}i∈I ∈ �2(I) and
∑

i∈I |hi (t)|2 = K (t, t);
see e.g. [17, Chapter 2]. Let { fi }i∈I be another ONB ofH; from (6), and by monotone
convergence and the CS inequality in �2(I), we obtain
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∑

i∈I

∣
∣〈 fi |Lμ[hi ]〉H

∣
∣ ≤

∑

i∈I

∫

X
| fi (t)||hi (t)|d|μ|(t)

=
∫

X

∑

i∈I
| fi (t)||hi (t)|d|μ|(t) ≤

∫

X

√

K (t, t)
√

K (t, t)d|μ|(t) = τμ,

so that trace(|Lμ|) ≤ τμ, with |Lμ| = (L∗
μLμ)1/2 the modulus of Lμ. ��

Kernel embedding of measures in G. By assumption again, for μ ∈ TF(K ), the
integral

∫

X ‖|kt |2‖Gd|μ|(t) is finite, and the map t �→ |kt |2 is therefore Bochner-
integrable with respect to μ. We set

gμ =
∫

X
|kt |2dμ(t) ∈ G.

We have 〈gμ|g〉G = ∫

X g(t)dμ(t), g ∈ G, so that gμ is the Riesz representation of
the linear functional Iμ : G → C, with Iμ(g) = ∫

X g(t)dμ(t); we may observe that
|Iμ(g)| ≤ ‖g‖Gτμ, and that gμ(x) = ∫

X |K (x, t)|2dμ(t), x ∈ X . The vector gμ is
referred to as the kernel embedding, or potential, of the measure μ in the RHKS G;
see for instance [6, 15, 24].

Theorem 3.1 For all μ ∈ TF(K ), we have Lμ ∈ I(�) and �[Lμ] = gμ.

Proof From Lemma 2.1 and by definition of Lμ and gμ, for all T ∈ HS(H), we have

〈�∗[gμ]|T 〉HS(H) = 〈gμ|�[T ]〉G =
∫

X
〈Skt |T 〉HS(H)dμ(t) = 〈Lμ|T 〉HS(H),

so that �∗[gμ] = Lμ. ��

Remark 3.3 Following Lemma 2.2, for a signed measure μ ∈ T (K ), the function gμ

is real-valued, and the operator Lμ = �∗[gμ] is self-adjoint. Also, for a nonnegative
measure μ ∈ T+(K ), the function gμ is nonnegative, and the operator Lμ is PSD. We
may notice that Lδx = Skx , x ∈ X . �

From Theorem 3.1, for μ and ν ∈ TF(K ), the following equalities hold:

〈Lν |Lμ〉HS(H) = 〈gν |gμ〉G =
∫∫

X
|K (x, t)|2dμ(t)dν(x)

=
∫

X
gμ(x)dν(x) =

∫

X
gν(t)dμ(t),

(7)

relating the evaluation of inner products in HS(H) between trace-class integral oper-
ators with kernel K to the integration of potentials in G.
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3.2 Quadrature approximation

Let BG = {g ∈ G|‖g‖G ≤ 1} be the closed unit ball of G. We set

MG(μ, ν) = sup
g∈BG

∣
∣
∣
∣

∫

X
g(t)dμ(t) −

∫

X
g(t)dν(t)

∣
∣
∣
∣
, μ and ν ∈ TF(K ).

ThemapMG defines a pseudometric onTF(K ); for probabilitymeasures, such pseudo-
metrics are referred to as integral probabilitymetrics, ormaximummeandiscrepancies;
see for instance [15, 16, 23, 24, 27].

The following Corollary 3.1 describes the equivalence between the quadrature
approximation of trace-class integral operators with PSD kernels and the approxi-
mation of integral functionals on RKHSs with squared-modulus kernels.

Corollary 3.1 For all μ and ν ∈ TF(K ), we have ‖Lμ − Lν‖HS(H) = MG(μ, ν).

Proof Form Theorem 3.1 and by linearity of �∗, we have �∗[gμ − gν] = Lμ − Lν .
Since �∗ is an isometry, it follows that ‖Lμ − Lν‖HS(H) = ‖gμ − gν‖G . The CS
inequality in G and the definition of gμ and gν then give

‖gμ − gν‖G = sup
g∈BG

∣
∣〈gμ − gν |g〉G

∣
∣ = sup

g∈BG

∣
∣
∣
∣

∫

X
g(t)dμ(t) −

∫

X
g(t)dν(t)

∣
∣
∣
∣
.

We conclude by observing that for all g ∈ G, we have g ∈ G and ‖g‖G = ‖g‖G (see
the proof of Lemma 2.2), so that ‖gμ − gν‖G = MG(μ, ν). ��

3.3 Further properties

In this section and in anticipation of the forthcoming developments, we discuss some
further properties verified by the integral operators considered in Theorem 3.1.

For μ ∈ T+(K ), let L2(μ) be the Hilbert space of all square-integrable functions
with respect to μ. From the CS inequality inH, we have

∫

X
|h(t)|2dμ(t) =

∫

X

∣
∣〈kt |h〉H

∣
∣
2dμ(t) ≤ ‖h‖2Hτμ, h ∈ H, (8)

so that the linear embedding ιμ : H → L2(μ), with ιμ[h] the equivalence class of all
measurable functions μ-almost everywhere equal to h, is bounded (see e.g. [26]).

Lemma 3.2 For all μ ∈ T+(K ), the map ιμ is HS and Lμ = ι∗μιμ.

Proof Let {hi }i∈I be an ONB of H, with I ⊆ N. As K (t, t) = ∑

i∈I
∣
∣hi (t)

∣
∣2, t ∈ X

(see e.g. [17]), from (6) and by monotone convergence, we have

∑

i∈I
‖ιμ[hi ]‖2L2(μ)

=
∑

i∈I
〈Lμ[hi ]|hi 〉H =

∫

X

∑

i∈I
|hi (t)|2dμ(t) = τμ,
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so that ιμ is HS. From (6), we also obtain

〈Lμ[h]| f 〉H = 〈ιμ[h]|ιμ[ f ]〉L2(μ) = 〈ι∗μιμ[h]| f 〉H, h and f ∈ H,

and so Lμ = ι∗μιμ. ��
For ν ∈ TF(K ), we by definition have |ν| ∈ T+(K ) and ν ∈ TF(K ); from (6), we

also have L∗
ν = Lν . The following relation (Lemma 3.3) holds between the range of

Lν and the range of L |ν|.

Lemma 3.3 For all ν ∈ TF(K ), we have range(Lν)
H ⊆ range(L |ν|)

H
.

Proof From (6) and the CS inequality in L2(|ν|), we obtain
∣
∣〈Lν[h]| f 〉H

∣
∣ =

∣
∣
∣
∣

∫

X
h(t) f (t)dν(t)

∣
∣
∣
∣
≤

∫

X

∣
∣h(t)|| f (t)|d|ν|(t)

≤ ‖ι|ν|[h]‖L2(|ν|)‖ι|ν|[ f ]‖L2(|ν|), h and f ∈ H,

(9)

where (8) ensures that the embedding ι|ν| is well-defined. From Lemma 3.2, we have
null(Lμ) = {h ∈ H|ιμ[h] = 0}; inequality (9) then entails null(L |ν|) ⊆ null(Lν), and
so null(Lν)

⊥H ⊆ null(L |ν|)⊥H . Recalling that null(T ∗) = range(T )⊥H , T ∈ HS(H),
we conclude by noticing that L∗

ν = Lν and L∗|ν| = L |ν|. ��
Lemma 3.4 illustrates that when the measure ν is finitely-supported, the range of

L |ν| is fully characterised by the support of ν.

Lemma 3.4 For ν = ∑n
i=1 υiδsi , with n ∈ N, υi ∈ C, υi �= 0, and si ∈ X , we have

range(L |ν|) = spanC{ks1, . . . , ksn }.
Proof We have |ν| = ∑n

i=1 |υi |δsi ∈ T+(K ), and L |ν| is PSD. From Lemma 3.2,
we obtain that null(L |ν|) = {h ∈ H|ι|ν|[h] = 0} = ⋂n

i=1{h ∈ H|〈ksi |h〉H = 0}, and
so null(L |ν|)⊥H = spanC{ks1 , . . . , ksn }. Observing that L |ν| is self-adjoint, the result
follows. ��

4 Measures and projection-based approximations

In this section, we illustrate the extent to which the the approximation of potentials in
G can be used as a surrogate for the characterisation of closed linear subspaces of H
for the approximation of Lμ ∈ HS(H) through projections (see Remark 4.1).

4.1 Additional notations and general properties

For a closed linear subspace HS of H, we denote by PS the orthogonal projection
from H onto HS . Endowed with the Hilbert structure of H, the vector space HS is a
RKHS, and its reproducing kernel KS verifies KS(x, t) = PS[kt ](x), x and t ∈ X .
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Remark 4.1 The linear map T �→ PST is the orthogonal projection from HS(H) onto
R(HS) = {T ∈ HS(H)| range(T ) ⊆ HS}, the closed linear subspace of HS(H)

of all operators with range included in HS . Also, the linear map T �→ T PS is the
orthogonal projection from HS(H) onto Z(HS) = {T ∈ HS(H)| range(T ∗) ⊆ HS}.
The two orthogonal projections T �→ PST and T �→ T PS commute, and their com-
position, that is, the linear map T �→ PST PS , is the orthogonal projection from
HS(H) onto R(HS) ∩ Z(HS). As (PST )∗ = T ∗PS , the orthogonal projections onto
R(HS) and Z(HS) are intrinsically related; for this reason, in what follows, we
mainly focus on approximations of the form PST and PST PS . By orthogonality, for all
T ∈ HS(H), we have

‖T − PST ‖2HS(H) = ‖T ‖2HS(H) − ‖PST ‖2HS(H), and (10)

‖T − PST PS‖2HS(H) = ‖T ‖2HS(H) − ‖PST PS‖2HS(H), (11)

with ‖PST PS‖HS(H) ≤ ‖PST ‖HS(H) ≤ ‖T ‖HS(H); in particular, if T is self-adjoint,
then so is PST PS . �
Lemma 4.1 Let HS and HR be two closed linear subspaces of H, with HR ⊆ HS.
For all T ∈ HS(H), we have

‖PRT ‖HS(H) ≤ ‖PST ‖HS(H) and ‖PRT PR‖HS(H) ≤ ‖PST PS‖HS(H).

Proof We denote by He the orthogonal complement of HR in HS . We then have
PS = PR + Pe and 〈PRT |PeT̃ 〉HS(H) = 〈T PR |T̃ Pe〉HS(H) = 0, T and T̃ ∈ HS(H).
We hence obtain ‖PST ‖2HS(H)

= ‖PRT ‖2H + ‖PeT ‖2HS(H)
, and

‖PST PS‖2HS(H) = ‖PRT PR‖2HS(H) + ‖PeT Pe‖2HS(H)

+ ‖PRT Pe‖2HS(H) + ‖PeT PR‖2HS(H),

completing the proof. ��
By boundedness of PS , for μ ∈ TF(K ), we have PSLμ = ∫

X PSSkt dμ(t), and so

PSLμ[h](x) =
∫

X
KS(x, t)h(t)dμ(t), h ∈ H, x ∈ X .

The operator PSLμ ∈ HS(H) can thus be regarded as an integral operator onH defined
by the kernel KS and the measure μ. Since KS(t, t) ≤ K (t, t), t ∈ X , we may notice
that TF(K ) ⊆ TF(KS). We have

‖Lμ − PSLμ‖2HS(H) =
∫∫

X
K (t, x)

(

K (x, t) − KS(x, t)
)

dμ(t)dμ(x), and (12)

‖Lμ − PSLμPS‖2HS(H) =
∫∫

X
|K (x, t)|2 − |KS(x, t)|2dμ(t)dμ(x); (13)
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see (10), (11) and Lemma A.1 in Appendix A for a detailed computation (see also
Remark 4.2 for an alternative computation involving �).

Remark 4.2 LetHU andHV be two closed linear subspaces ofH. Forμ ∈ TF(K ) and
x ∈ X , we have

�[PV LμPU ](x) = 〈kx |PV LμPU [kx ]〉H =
∫

X
KU (t, x)KV (x, t)dμ(t).

From Theorem 3.1 and the properties of �, we then obtain

‖PV LμPU‖2HS(H) = 〈�∗�[Lμ]|PV LμPU 〉HS(H) = 〈gμ|�[PV LμPU ]〉G .

For general subspacesHU andHV , the operator PV LμPU does not necessarily belong
to I(�); see Remark 4.3 for an example where this situation occurs. �

4.2 Projections defined bymeasures

Motivated by Lemmas 3.3 and 4.1, for ν ∈ TF(K ), we set Hν = range(L |ν|)
H
, and

we denote by Pν the orthogonal projection fromH onto Hν .

Lemma 4.2 For all ν ∈ TF(K ), we have Lν = PνLν = Lν Pν = PνLν Pν .

Proof From Lemma 3.3, we have Lν = PνLν and Lν = PνLν . We then obtain
Lν = L∗

ν = (PνLν)
∗ = Lν Pν , and so Lν = PνLν Pν . ��

For an initial operator Lμ, with μ ∈ TF(K ), through the orthogonal projection Pν

and in addition to Lν , an approximate measure ν ∈ TF(K ) also defines the approxi-
mations PνLμ, LμPν or PνLμPν of Lμ.

Lemma 4.3 For all μ and ν ∈ TF(K ), we have

‖Lμ − Lν‖2HS(H) = ‖Lμ − PνLμ‖2HS(H) + ‖PνLμ − Lν‖2HS(H), and (14)

‖Lμ − Lν‖2HS(H) = ‖Lμ − PνLμPν‖2HS(H) + ‖PνLμPν − Lν‖2HS(H). (15)

Proof Using the notations of Remark 4.1, Lemma 4.2 reads Lν ∈ R(Hν) ∩ Z(Hν).
Observing that Lμ − PνLμ is orthogonal to R(Hν) and that PνLμ − Lν ∈ R(Hν),
we obtain (14). In the same way, Lμ − PνLμPν is orthogonal to R(Hν) ∩ Z(Hν),
and we have PνLμPν − Lν ∈ R(Hν) ∩ Z(Hν), leading to (15). ��

4.3 Error maps on sets of measures

In the framework of Sects. 3.2 and 4.2, the characterisation of measures leading to
accurate approximations of an initial operator Lμ, μ ∈ TF(K ), relates to the min-
imisation of error maps measuring the accuracy of the approximations induced by a
measure ν ∈ TF(K ).
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Quadrature approximation. We define the error map Dμ : TF(K ) → R≥0, with

Dμ(ν) = ‖Lμ − Lν‖2HS(H) = ‖gμ − gν‖2G, ν ∈ TF(K ).

Lemma 4.4 For μ ∈ TF(K ), the map Dμ is convex on any convex set C ⊆ TF(K ).
For ν and η ∈ C , the directional derivative of Dμ at ν along η − ν is

lim
ρ→0+

1

ρ

[

Dμ

(

ν + ρ(η − ν)
) − Dμ(ν)

] = 2�(〈gν − gμ|gη − gν〉G
)

.

Proof For ξ = (1−ρ)ν+ρη, ν and η ∈ C , ρ ∈ [0, 1], we have gξ = (1−ρ)gν +ρgη;
the convexity of Dμ onC then follows from the convexity of the map g �→ ‖gμ −g‖2G
on G. Next, the expansion of the squared norm ‖gμ − gν − ρ(gη − gν)‖2G provides
the expected expression for the directional derivatives of Dμ. ��
Projection-based approximation. We denote by CP

μ and CPP
μ : TF(K ) → R≥0 the

error maps defined as

CP
μ(ν) = ‖Lμ − PνLμ‖2HS(H) and C

PP
μ (ν) = ‖Lμ − PνLμPν‖2HS(H), ν ∈ TF(K );

we may notice that CX
μ (ν) = CX

μ (|ν|), X ∈ {P,PP}.

Theorem 4.1 For μ ∈ TF(K ) and X ∈ {P,PP}, the map CX
μ is convex on the real

convex cone T+(K ), and for all ν and η ∈ T+(K ), we have

lim
ρ→0+

1

ρ

[

CX
μ

(

ν + ρ(η − ν)
) − CX

μ (ν)
] ∈ {−∞, 0}.

Proof For ν, η ∈ T+(K ) and ρ ∈ (0, 1), we set ξ = ν + ρ(η − ν) ∈ T+(K ). The
three operators Lν , Lη and Lξ being PSD, independently of ρ ∈ (0, 1), we have

null(Lξ ) = null(Lν) ∩ null(Lη), and soHξ = Hν + Hη
H
. The two maps

ρ �→ CP
μ

(

ν + ρ(η − ν)
)

and ρ �→ CPP
μ

(

ν + ρ(η − ν)
)

are therefore constant on the open interval (0, 1). From Lemma 4.1 and (10), noticing
that Hν ⊆ Hξ and Hη ⊆ Hξ , we obtain CP

μ(ξ) ≤ CP
μ(ν) and CP

μ(ξ) ≤ CP
μ(η); from

(11), we also get CPP
μ (ξ) ≤ CPP

μ (ν) and CPP
μ (ξ) ≤ CPP

μ (η), concluding the proof. ��

In view of Theorem 4.1, the maps CP
μ and CPP

μ are akin to piecewise-constant
functions. By contrast (see Lemma 4.4), the directional derivatives of the map Dμ are
informative, in the sense that the landscape of Dμ can be explored through steepest
descents. From Remark 4.1 and Lemma 4.3, we have

CP
μ(ν) ≤ CPP

μ (ν) ≤ Dμ(ν), ν ∈ TF(K ), (16)
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Fig. 1 Graphical representation of the maps Dμ and CPP
μ as functions of the weight parameters character-

ising an approximate measure ν ∈ T+(K ). The measures μ and ν are supported by the same set of points
{x1, x2} ⊆ X , and described by their weight parameters (ω1, ω2) and (υ1, υ2) ∈ R

2≥0, respectively; the
red star represents the weight parameters of μ = ω1δx1 + ω2δx2 . The presented graphs correspond to the
case ω1 = ω2 = 1, with K such that K (x1, x1) = 1.225, K (x2, x2) = 0.894 and K (x1, x2) = 0.316.
In the graph of CPP

μ , the point on the vertical axis indicates the value of the map at ν = 0, and the bold
lines indicate the constant values taken by the map along the horizontal axes (and following Remark 4.3,
the graph of CPP

μ is tangent to the graph of Dμ along the horizontal axes)

with CP
μ(μ) = Dμ(μ) = 0 and CP

μ(0) = Dμ(0) = ‖gμ‖2G (see also Remark 4.3). The
quadrature-approximation error map Dμ may hence be regarded as a differentiable
relaxation of the projection-based-approximation error maps CP

μ and CPP
μ ; see Fig. 1

for an illustration.

Remark 4.3 For μ ∈ TF(K ) and s ∈ X , introducing cδs = gμ(s)/|K (s, s)|2 if
K (s, s) > 0, and cδs = 0 otherwise, we have Pδs LμPδs = cδs Sks . For K (s, s) = 0,
we indeed have ks = 0, and so Pδs = 0, and for K (s, s) > 0,

Pδs LμPδs [h](x) = K (x, s)h(s)

|K (s, s)|2
∫

X
|K (s, t)|2dμ(t), h ∈ H and x ∈ X .

We obtain Pδs LμPδs ∈ I(�) and CPP
μ (δs) = Dμ(cδs δs), s ∈ X . �

Remark 4.4 From a numerical standpoint, in view of (12) and (13), for ν ∈ TF(K ), the
evaluation of CP

μ(ν) or CPP
μ (ν) requires a suitable characterisation of the reproducing

kernel Kν of Hν (or equivalently, of the orthogonal projection Pν); in practice, Kν

is a priori unknown and needs to be computed from K and ν (see Remark 4.5). In
comparison and in view of (7), the error map Dμ only involves the kernel K ; the
projection-free nature of Dμ is of notable interest for numerical applications. �
Remark 4.5 Following Lemma 3.4, for a measure ν supported by S = {s1, . . . , sn},
n ∈ N, the reproducing kernel Kν of Hν can be expressed as

Kν(x, t) =
n

∑

i, j=1

K (x, si )κi, j K (s j , t), x and t ∈ X ,

where κi, j is the i, j entry of the pseudoinverse (Moore-Penrose inverse) of the n × n
kernel matrix with i, j entry K (si , s j ). The worst-case time complexity of the eval-
uation of Kν at M ∈ N distinct locations in X × X is thus O(n3 + n2M). The
termO(n3) is related to the pseudoinversion of the kernel matrix defined by K and S,
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while the term O(n2M) corresponds to the evaluation, from this pseudoinverse and
the kernel K , of Kν at M different locations. �

5 Nonnegativemeasures and L2-embeddings

Following Sect. 3.3, for μ ∈ T+(K ), the embedding ιμ : H → L2(μ) is HS. For
f ∈ L2(μ) and x ∈ X , we have

〈kx |ι∗μ[ f ]〉H = 〈ιμ[kx ]| f 〉L2(μ) =
∫

X
K (x, t) f (t)dμ(t),

so that in addition to Lμ = ι∗μιμ ∈ HS(H), the three operators

ι∗μ : L2(μ) → H, ιμι∗μ : L2(μ) → L2(μ), and ιμι∗μιμ : H → L2(μ), (17)

can also be regarded as integral operators defined by the kernel K and the nonnegative
measure μ. These four interpretations are inherent to K , which characterises H, and
μ, which characterises L2(μ); see for instance [4, 19, 20, 22, 26] for illustrations. In
each case, the corresponding operator is HS, and we denote by HS(μ,H), HS(μ) and
HS(H, μ) the Hilbert spaces of all HS operators from L2(μ) to H, on L2(μ), and
fromH to L2(μ), respectively.

5.1 Partial L2-embeddings

For a closed linear subspace HS ⊆ H, the embedding ιμ can be approximated by the
partial embedding ιμPS . For f ∈ L2(μ) and x ∈ X , we have

〈kx |PSι∗μ[ f ]〉H = 〈ιμPS[kx ]| f 〉L2(μ) =
∫

X
KS(x, t) f (t)dμ(t),

so that PSι∗μ corresponds to an integral operator with kernel KS . In the decomposi-
tion Lμ = ι∗μιμ ∈ HS(H), substituting each ιμ with ιμPS gives the approximation
PSι∗μιμPS discussed in Sect. 4. For the operators defined in (17), a similar substitution
yields the approximations

PSι
∗
μ ∈ HS(μ,H), ιμPSι

∗
μ ∈ HS(μ), and ιμPSι

∗
μιμPS ∈ HS(H, μ);

see alsoRemark 5.1. Inwhat follows,wemainly focus on the approximations related to
HS(μ,H) and HS(μ); the case of HS(H, μ) is more briefly discussed in Remark 5.2.

Remark 5.1 In addition to PSι∗μιμPS , the approximation of ιμ by ιμPS gives rise to
the approximations PSι∗μιμ and ι∗μιμPS of ι∗μιμ ∈ HS(H) (see Sect. 4). Similarly, for
ιμι∗μιμ ∈ HS(H, μ) and in addition to ιμPSι

∗
μιμPS , the approximations ιμPSι

∗
μιμ and

ιμι∗μιμPS of ιμι∗μιμ ∈ HS(H, μ) may be considered. In these approximations, the
substitution of ιμ with ιμPS is not applied invariably. �
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Lemma 5.1 Let HS be a closed linear subspace of H. For μ ∈ T+(K ), we have

‖ι∗μ − PSι
∗
μ‖2HS(μ,H) =

∫

X
K (t, t) − KS(t, t)dμ(t), and (18)

‖ιμι∗μ − ιμPSι
∗
μ‖2HS(μ) =

∫∫

X

∣
∣K (x, t) − KS(x, t)

∣
∣2dμ(t)dμ(x). (19)

Proof LetH0S be the orthogonal complement of HS inH; endowed with the Hilbert
structure of H, H0S is a RKHS, and K0S = K − KS . For an ONB {h j } j∈I of H,
I ⊆ N, we have

‖ι∗μ − PSι
∗
μ‖2HS(μ,H) = ‖ιμP0S‖2HS(H,μ) =

∑

j∈I

∫

X

∣
∣P0S[h j ](t)

∣
∣
2dμ(t);

since
∑

j∈I
∣
∣P0S[h j ](t)

∣
∣2 = K0S(t, t), t ∈ X (see e.g. [17]), equality (18) follows

by monotone convergence. We also have

‖ιμι∗μ − ιμPSι
∗
μ‖2HS(μ) = ‖ιμP0Sι∗μ‖2HS(μ) = ‖P0SLμP0S‖2HS(H),

so that (19) follows from Lemma A.1 (we recall that Lμ = ι∗μιμ). ��
Remark 5.2 We consider four closed linear subspacesHR,HS,HU andHV ofH, and
let {h j } j∈I be an ONB ofH. For μ ∈ T+(K ), we have

〈ιμPRι∗μιμPS|ιμPU ι∗μιμPV 〉HS(H,μ)

=
∑

j∈I

∫∫∫

X
PV [h j ](t)PS[h j ](s)KR(s, x)KU (x, t)dμ(s)dμ(t)dμ(x), (20)

with, form the CS inequality in �2(I) and inH,

∫∫∫

X

∑

j∈I

∣
∣PV [h j ](t)

∣
∣
∣
∣PS[h j ](s)

∣
∣
∣
∣KR(s, x)

∣
∣
∣
∣KU (x, t)

∣
∣dμ(s)dμ(t)dμ(x) ≤ τ 3μ.

From (20) and Fubini’s theorem, we then for instance obtain

‖ιμι∗μιμ − ιμPSι
∗
μιμPS‖2HS(H,μ) =

∫∫∫

X

[

K (t, s)K (s, x)K (x, t)

+KS(t, s)KS(s, x)
(

KS(x, t) − 2K (x, t)
)]

dμ(s)dμ(t)dμ(x),

where we should observe that 〈ιμι∗μιμ|ιμPSι∗μιμPS〉HS(H,μ) = ‖ιμPSι∗μιμ‖2HS(H,μ)
. �

The following inequality (Lemma 5.2) holds between the approximations in HS(μ)

and HS(H) defined by a subspace HS . We recall that ‖ιμι∗μ‖HS(μ) = ‖ι∗μιμ‖HS(H),
and that ‖ι∗μιμ − PSι∗μιμ‖HS(H)

≤ ‖ι∗μιμ − PSι∗μιμPS‖HS(H)
(see Remark 4.1).
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Lemma 5.2 Let HS be a closed linear subspace of H. For all μ ∈ T+(K ), we have

‖ιμι∗μ − ιμPSι
∗
μ‖HS(μ) ≤ ‖ι∗μιμ − PSι

∗
μιμ‖HS(H).

Proof We have ‖ιμι∗μ − ιμPSι
∗
μ‖HS(μ) = ‖P0SLμP0S‖HS(H), with P0S = idH −PS .

The operators P0SLμP0S and P0SLμPS being orthogonal in HS(H), we obtain

‖P0S Lμ(P0S + PS)‖2HS(H) = ‖P0SLμP0S‖2HS(H) + ‖P0SLμPS‖2HS(H),

and so ‖ιμι∗μ − ιμPSι
∗
μ‖HS(μ) ≤ ‖ι∗μιμ − PSι∗μιμ‖HS(H). ��

5.2 Trace and Frobenius error maps

Following Sect. 4.3 and considering subspaces ofH defined bymeasures, we introduce
the error maps C tr

μ and CF
μ : TF(K ) → R≥0, with

C tr
μ(ν) = ‖ι∗μ − Pνι

∗
μ‖2HS(μ,H) and C

F
μ(ν) = ‖ιμι∗μ − ιμPνι

∗
μ‖2HS(μ), ν ∈ TF(K ).

The notations C tr
μ and CF

μ are motivated by the relation between these maps and the
trace and Frobenius norms; see Sect. 5.3. As observed for CP

μ and CPP
μ , we may notice

that CX
μ (ν) = CX

μ (|ν|), X ∈ {tr,F}
Theorem 5.1 For μ ∈ T+(K ), the statement of Theorem 4.1 also holds for the maps
C tr

μ and CF
μ; that is, these two maps are convex on the real convex cone T+(K ), and

their directional derivatives take values in the set {−∞, 0}.
Proof We follow the same reasoning as in the proof of Theorem 4.1. For twomeasures
ν and η ∈ T+(K ) and for ρ ∈ (0, 1), we set ξ = ν + ρ(η − ν) ∈ T+(K ). We then

have Hξ = Hν + Hη
H

independently of ρ ∈ (0, 1). We conclude by combining the
inclusions Hν ⊆ Hξ and Hη ⊆ Hξ with the inequalities provided in Lemma A.2
(Appendix A). ��

As illustrated by Lemma 5.1 and Theorem 5.1, and as already observed for the
error maps CP

μ and CPP
μ , the error maps C tr

μ and CF
μ are akin to piecewise-constant

functions, and their evaluation requires a suitable characterisation of the kernel of
subspaces of H. For μ ∈ T+(K ), the error maps CX

μ , X ∈ {tr,F,P,PP} can be
regarded as alternative ways to asses the accuracy of the approximation of ιμ by ιμPν ,
ν ∈ TF(K ). From the relation between the error maps Dμ and CX

μ , X ∈ {P,PP}
(see Lemma 4.3) the approximation of potentials in G can hence more generally be
regarded as a differentiable and projection-free surrogate for the characterisation of
accurate partial embeddings. From Lemma 5.2, we may notice that CF

μ(ν) ≤ CP
μ(ν),

ν ∈ TF(K ), extending the sequence of inequalities (16).

Remark 5.3 Let ν ∈ TC(K ) be a complex measure with real and imaginary parts
νr and νi ∈ T (K ). For μ ∈ T (K ), the three operators Lμ, Lνr and Lνi are self-
adjoint; we thus have ‖Lμ − Lν‖2HS(H)

= ‖Lμ − Lνr ‖2HS(H)
+ ‖Lνi ‖2HS(H)

, and
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so Dμ(νr ) ≤ Dμ(ν). Hence, when Lμ is self-adjoint, the search of an approximate
measure ν for the approximation of Lμ by Lν can be restricted to T (K ). �

5.3 Column sampling for PSD-matrix approximation

Let K be a N × N PSD matrix, with N ∈ N; we denote by [N ] the set of all integers
between 1 and N . For a subset I ⊆ [N ] the Nyström approximation2 ofK induced by
I is the N × N PSD matrix

K̂(I ) = K•,I (KI ,I )
†KI ,•, (21)

where K•,I is the matrix defined by the columns of K with index in I , and where
(KI ,I )

† is the pseudoinverse of the principal submatrix of K defined by I (and KI ,•
consists of rows of K); see e.g. [9, 11, 14, 18].

For i and j ∈ [N ], the i, j entry of K may be regarded as the value K (i, j) of
a PSD kernel K defined on the discrete set X = [N ]. The j-th column of K then
corresponds to the function k j ∈ H, j ∈ X , and the subset I defines the closed
linear subspace HI = spanC{k j | j ∈ I } ⊆ H; in particular, the i, j entry of K̂(I ) is
KI (i, j), with KI the reproducing kernel of HI (see e.g. [17], and Remark 4.5).

Introducing μ = ∑N
i=1 δi , the Hilbert space L2(μ) can be identified with the

Euclidean space C
N ; following Sect. 5.2, we then observe that

• the trace norm ‖K − K̂(I )‖tr corresponds to (18), and
• the squared Frobenius norm ‖K − K̂(I )‖2F corresponds to (19).

The column-sampling problem for the Nyström approximation of a PSD matrix K,
that is, the search of a subset I ⊆ [N ] leading to an accurate approximation K̂(I ) ofK,
is thus a special instance of the general framework discussed in Sect. 5.1. In particular,
the support of an approximate measure ν on X = [N ] defines a subset of columns
of K, and the approximation of potentials in the RKHS G may be used as surrogate
for the characterisation of such measures. In the discrete setting, G corresponds to the
RKHS defined by the N × N PSD matrix S with i, j entry |Ki, j |2 (that is, S is the
element-wise product between K and K, the conjugate of K).

6 Concluding discussion

We described the overall framework surrounding the isometric representation of inte-
gral operators with PSD kernels as potentials, and illustrated the equivalence between
the quadrature approximation of such integral operators and the approximation of inte-
gral functionals on RKHSswith squared-modulus kernels. Through subspaces defined
by measures and partial L2-embeddings, we also discussed the extent to which the
approximation of potentials in RKHSs with squared-modulus kernels can be used as

2 In the machine-learning literature, Nyström approximation refers to the low-rank approximation of PSD
matrices through column sampling; although related, this terminology should not to be confused with the
quadrature method for the approximation of integral equations.
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a differentiable surrogate for the characterisation of projection-based approximation
of integral operators with PSD kernels.

The link between integral-operator approximation and potential approximation
may be leveraged to design sampling strategies for low-rank approximation (where
approximations are characterised by sparse finitely-supported measures). The direct
minimisation of Dμ under sparsity-inducing constraints is for instance considered in
[10], while the possibility to locally optimised the support of approximate measures
using particle-flow techniques is studied in [13]. Sequential approaches, where support
points are added one-at-a-time on the basis of information provided by the directional
derivatives of Dμ, are investigated in [12]. The present work aims at supporting this
type of approaches by strengthening their theoretical underpinning.
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A Technical results

Lemma A.1 LetHU andHV be two closed linear subspaces ofH. For allμ ∈ TF(K ),
we have

‖PV LμPU‖2HS(H) =
∫∫

X
KU (t, x)KV (x, t)dμ(t)dμ(x).

Proof We consider an ONB {h j } j∈I of H, I ⊆ N. From (6), we have

‖PV LμPU‖2HS(H) =
∑

j∈I
〈LμPU [hi ]|PV LμPU [h j ]〉H

=
∑

j∈I

∫∫

X
PU [h j ](t)PU [h j ](x)KV (x, t)dμ(t)dμ(x).

(22)

As
∑

j∈I PU [h j ](t)PU [h j ](x) = KU (t, x), x and t ∈ X (see e.g. [17]), and since

KU (t, t) ≤ K (t, t) and KV (t, t) ≤ K (t, t), from the CS inequality in �2(I) and inH,
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we obtain
∫∫

X

∑

j∈I

∣
∣PU [h j ](t)

∣
∣
∣
∣PU [h j ](x)

∣
∣
∣
∣KV (x, t)

∣
∣d|μ|(t)d|μ|(x) ≤ τ 2μ;

the result then follows form (22) and Fubini’s theorem. ��
Lemma A.2 Let HS and HR be two closed linear subspaces of H; we assume that
HR ⊆ HS. For all μ ∈ T+(K ), we have ‖ι∗μ − PSι∗μ‖HS(μ,H) ≤ ‖ι∗μ − PRι∗μ‖HS(μ,H)

and ‖ιμι∗μ − ιμPSι
∗
μ‖HS(μ) ≤ ‖ιμι∗μ − ιμPRι∗μ‖HS(μ).

Proof We denote by He the orthogonal complement of HR in HS . Noticing that
PS = PR + Pe and that 〈ι∗μ − PRι∗μ|Peι∗μ〉HS(μ,H) = ‖Peι∗μ‖2HS(μ,H)

, we obtain

‖ι∗μ − PSι
∗
μ‖2HS(μ,H) = ‖ι∗μ − PRι∗μ‖2HS(μ,H) − ‖Peι∗μ‖2HS(μ,H).

Denoting byH0 S andH0R the orthogonal complements ofHS andHR inH, respec-
tively, we have H0S ⊆ H0R ; Lemma 4.1 then gives

‖ιμP0Sι∗μ‖HS(μ) = ‖P0SLμP0S‖HS(H) ≤ ‖P0RLμP0R‖HS(H) = ‖ιμP0Rι∗μ‖HS(μ),

completing the proof. ��
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