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Glossary

CORINE: a land cover classification data set for the
EU, published as snapshots every 6–10 years since
1990.
Deep learning: applications of neural networks
that have multiple internal layers of neurons.
Extended specimen: concept that expands
beyond traditional understanding of a physical
specimen due to associated data and resources for
the individual organism.
Georeferencing: assignment of coordinate location
(e.g., latitude and longitude, or easting and northing
on a recognised coordinate system) to place names
or text descriptions of location.
Global Biodiversity Information Facility (GBIF):
a global network and infrastructure (www.gbif.org)
that provides an aggregated data set created by
contributions from collection agencies around the
world, published in a standardised format.
Ground truth data: data for which we know the
classification, or correct answer, used to train and
evaluate machine learning models.
Habitat conversion: the process of transforming
natural habitats into other land uses; for example,
agriculture or urbanisation.
Machine learning classification: use of algorithms
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Museum collection records are a
source of historic data for species
occurrence, but little attention is
paid to the associated descriptions
of habitat at the sample locations.
Wepropose that artificial intelligence
methods have potential to use these
descriptions for reconstructing past
habitat, to address ecological and
evolutionary questions.
that learn statistical patterns from existing data to
make predictions for new data in order to classify data
objects (e.g., land cover spatial units) into one of two
or more classes.
Museomics: the study of museum genomics;
ancient DNA and historic DNA specimens in museum
collections.
Natural languageprocessing (NLP): computational
methods for parsing the grammatical structure and
semantics of human language (e.g. text), extracting
meaning and identifying patterns.
Neural network: a machine learning algorithm
consisting of layers of artificial neurons, that output
values which are a function of connected input
neurons in adjacent layers. There are many different
types of neural network.
One Health: an interdisciplinary approach that
recognises the interconnectedness of human
health, animal health, and the environment
(https://www.who.int/health-topics/one-health).
Shifting baseline syndrome: a gradual change in
the accepted norms for the condition of the natural
environment because each generation perceives the
environment based on their own experiences and
expectations, without considering (or knowing) the
historical changes that have occurred.
Species distribution modelling (SDM): also
known as habitat suitability modelling, is a model to
predict the potential distribution of a species in
geographic space using georeferenced species
data alongside environmental data.
Transformer language models: a type of neural
network often used for natural language processing.
Transformers are good at detecting interactions
between words in text. They are pre-trained on very
large corpora. Some are used for classifying text;
Habitat description in natural
history collections
The value of museum and other natu-
ral history archival records for ecologi-
cal research has been highlighted in
several studies [1–3]. Currently the Global
Biodiversity Information Facility (GBIF)
(see Glossary) reports more than two
billion digital records, the earliest of which
date back to the 18th century. Most stud-
ies of such records focus on exploitation
of species occurrence data for biodiver-
sity research and species distribution
models [1]. These written records, how-
ever, also frequently contain accompany-
ing textual descriptions of the environment
in which specimens were collected (Box 1),
that, to date, have rarely been utilised,
(but see [4] using habitat data, and [5]
ecological traits). Artificial intelligence (AI)
methods for natural language pro-
cessing (NLP) now provide the potential
for automated reconstruction of past
habitats from the evidence of these
descriptions in combination with species
occurrence data.
What can habitat descriptions tell
us?
Large extent mining of written habitat de-
scriptions could provide evidence of the
recent past that complements existing
map surveys and studies of physical spec-
imens [6]. It could yield immense quantities
of historical data which, when linked to the
species records, would deepen our un-
derstanding of changes in habitat and the
interactions between species and habitat
that could provide ecological and evolu-
tionary insight. We acknowledge though
that collection bias may limit sample size
and inference [7].

Habitat data could supplement existing AI-
driven biodiversity research (specifically
species distribution data) to reveal mecha-
nisms facilitating the spread of invasive
non-native species (see for example [8]);
climate-induced species shifts; shifts in
community interactions and help under-
stand plant and animal disease dynamics
from a One Health perspective, in which
habitat change is an integral part of patho-
gen spread. Habitat data can provide
important evolutionary insight into drivers
of biogeographical patterns at a global
scale [9]. However, understanding what
shapes the distribution and formation of
species has, to date, been rather limited
by a lack of empirical data. Exploiting his-
torical habitat data and linking this with
the field of museomics (genomic data
from museum samples) over time could
provide new opportunities to test evolu-
tionary drivers of species change in the
Anthropocene [3].

Georeferenced habitat data alone could
provide an indication of the extent of habi-
tat loss over time and also, when used
in comparison with present day records,
of land conversion (change in land use),
where that information may otherwise
be unknown, so providing insight into
whether a shifting baseline syndrome
is occurring; the idea that each generation
perceives the environment based on their
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others generate text in response to input. BERT and
GPT-n are examples.
Word embedding: a multidimensional vector that
captures the meaning or semantics of a particular
word based on analysis of its co-occurrence with
other words among millions of documents.
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Box 1. Examples of descriptions of habitat in specimen collection records

Specimen collection records in natural history collections such as in museums and herbaria can include a
description of the environment or habitat in which the recorded specieswas collected. These descriptions vary
greatly in level of detail and type of information that they include, such as co-occurring species, vegetation, soil
type, aspect, or hydrological features (Table I). We propose that the text of these descriptions, and other fields
with information such as phenology, other specimen characteristics, co-occurring species, and elevation, can
be input to a machine learning classifier to infer a standard class of habitat or land cover that that can then be
used to construct historic maps of habitat (when georeferenced) and assist in studies of species–habitat inter-
actions and associated implications for evolution.

Table I. Examples of habitat dataa

Examples of habitat-related text Location, GBIF ID, species

In association with a small bryophyte mound, deep in thicket. Mosaic
communities of dense heath-forming shrubs to 3 m tall, subalpine
herbs and dwarf heaths to 0.5 m tall, dominated by stunted
Leptospermum scoparium (manuka) and Dracophyllum and a
ground tier including Empodisma.

New Zealand; 2828180673;
Acromastigum mooreanum

Clayey bank amongst scrub and dead fallen Pinus branches New Zealand; 1091305468;
Lindsaea linearis

Wet, mossy subalpine mountain beech forest under loose bark of
fallen beech trees

New Zealand; 2427260858;
Oopterus patulus

Limber pine and Douglas fir forest with patches of sage grassland.
Associated taxa: Douglas fir, limber pine, sagebrush, grass

Wyoming; 4069686930;
Townsendia parryi

Grasses/juniper/rabbitbrush, dry grassy hillside Wyoming; 2467783608;
Apamea burgessi

On marshy creek banks Wyoming; 4404950377;
Juncus bufonius

With cottonwoods. Growing in loamy to gravelly soil on SE facing,
0–2% slope of riparian lowland

Wyoming; 4073770476;
Agrostis stolonifera

Clay soil on basalt ledge; with Riccardia, Fossombronia; beneath
Holcus lanatus, Blechnum vulcanicum. Basalt roadside ledges and
Melycytus ramiflorus Fuchsia excorticata scrub with small stream
over basalt bedrock.

New Zealand; 1091258790;
Pohlia ochii

Margin of moderately forested bog savannah with creeping juniper,
pitcher plant, spruce, white cedar, Cladium, Phragmites, shrubby
cinquefoil, tamarack, orchids, gentians, goldenrod, other forbes & sedges

Wyoming; 2432354910;
Xestia imperita

Plot is dominated by dispersed matagouri with pasture in between.
On a gentle sloping alluvial fan/ river terrace. Shrubs give way to
pasture to the west. Relatively low biodiversity for pasture. On
Terrace. Aspect: 350 degrees. Slope: 8 degrees

New Zealand; 1091243779;
Trifolium pratense

Disturbed boggy area, gravel base, moss on top. New Zealand; 2436615306;
Euchiton lateralis

Low bank of small pasture creek, water only in pools. Sandy, gravel,
clay soil.

Wyoming; 1930852452;
Sporobolus airoides

On warm sinter soil in a thermal barren in full sun Wyoming; 3503303306;
Ceratodon purpureus

aThe listed examples were obtained from one of four data fields in GBIF records (see text) relating to New
Zealand and the USA state of Wyoming. The second column records the region, the unique GBIF identifier
and the species name for the respective record containing the text. For access to these records see
https://doi.org/10.15468/dl.cx4m5h.
own experiences and expectations, with-
out considering historical changes [10].
Where written records exist for a species
prior to extirpation or adaption, for exam-
ple, due to habitat conversion, written
records could offer insight into otherwise
unknown habitat requirements. This infor-
mation is a necessity if a species reintroduc-
tion is planned. The International Union for
Conservation of Nature (IUCN) criteria for
reintroduction or translocation of a regionally
extinct species requires the former range
and habitat of the species to be known.

The addition of habitat data to species dis-
tributions allows inference of habitat suitabil-
ity and preference (species distribution
modelling), and assessment of whether
the habitat preferences of a given species
have changed over time. The historical
spread of species could be tracked (as
assessed by [4]) by use of museum records
to reconstruct how habitat played a role in
the spread of a common pest species.
This finding is contrary to previous research
that found that roadside verge habitat con-
tributed to successful spread of the spe-
cies. Such insight to historical habitat
associations could be especially fruitful to
assess how non-native invasive species es-
tablish.

Evidence of habitat in species
occurrence records
In museum databases, information about
the environment in which specimens were
collected can be recorded with various
labels. A preliminary analysis of 2.3 billion
GBIF records, of observations and museum
specimens, found 345 million records
containing habitat-related data in one or
more of the fields occurrenceRemarks,
eventRemarks, fieldNotes, and habitat.
Datasets differ markedly in which such
. x
fields contain information. The habitat de-
scriptions vary greatly in level of detail and
the nature of the description (Box 1). They
can be also expected to vary in reliability.
x

Most of the habitat-related records we
detected are for animals (61%) and plants
(28%) (see Figure I in Box 2). About 23%
of all plant records had habitat data
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Box 2. AI-based habitat discovery

AI methods have the potential to automate reconstruction of past habitats, including the creation of time-specific historic habitat maps. The ability to predict land cover clas-
ses from textual data has been proven [11]. The pipeline in Figure I applies related methods to generate georeferenced habitat data. Step 1 is digitisation of records, where
the bar chart indicates proportions of all recordswith habitat data for best represented taxa of Animals, Plants, Bacteria and Fungi. Step 2 extracts the textual descriptions of
location and of habitat from digitised records. These are input to Step 3 which applies a machine learning classifier, trained to determine the association between habitat-
related language and specific habitat classes (see main text for elaboration of aspects of that process). If there are no existing coordinates, the step infers coordinates from
the location description using georeferencingmethods. The latter currently exist but will be refined in future to interpret a wider range of spatial language. Step 4 outputs the
determined habitat class and coordinates. Applications, when applied to multiple specimens for the same time period and location, include quantifying loss of particular
habitats, and refining species distribution models. Example specimen from Manaaki Whenua, Landcare Research, New Zealand (https://scd.landcareresearch.co.nz/
Specimen/CHR%20171955). Created with BioRender.com.
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Figure I. Pipeline for generating and using habitat data. Abbreviations: AI, artificial intelligence; GBIF, Global Biodiversity Information Facility.
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(11% of animal records and about 95%
for archaea and bacteria) but these pro-
portions vary regionally, being 71% for
New Zealand plants. In a sample of 700
million GBIF records with habitat data
about 62% of animal records were for
birds, while 21% were for insects.

It is possible to distinguish several as-
pects of descriptions of the sampled
environment that have the potential to
infer habitat. These include vegetation,
agriculture, geomorphology (land forms),
soil and shallow (recent) geology, and
older geology. Notably these descrip-
tions commonly mention species co-
occurring with the specimen (Box 2),
which has potential for biodiversity studies
[11]. References to vegetation include
terms such as alpine grass, sphagnum,
beech and Coprosma. Examples of agri-
cultural descriptions include pasture,
orchards, and was cropped as oats.
Descriptions of geomorphology features
include old meander channels, floodplain,
and glacial outwash terrace. Soil type can
be described by phrases such as marton
loam, Kawatau stony silt loam, while geo-
logical terms include greywacke, schist
and mudstone.

Challenges in inferring habitat from
museum records
While habitat-related data in museum re-
cords provide a rich resource, its auto-
mated exploitation presents challenges
due to the diverse use of terminology al-
luded to above. Broad scale generation of
maps of previous habitat will require trans-
lation of arbitrary terminology of museum
records to a controlled vocabulary. It is
also the case that digitisation campaigns
sometimes omit the transcription of such
data. In subsequent sections we propose
practical solutions and recommendations
for the resolution of these issues.

How can AI help?
There is a clear route to the application
of AI machine learning classification
4 Trends in Ecology & Evolution, Month 2024, Vol. xx, No. x
methods to exploit the existing wide
range of habitat-related description in
georeferenced biological records to
infer standard classes of habitat for
their respective locations (Box 2). An
example of accepted habitat-related termi-
nology is the EU CORINE classification.
This scheme is hierarchical with 44 classes
at the third, most detailed level. Each
category has a number of descriptive
terms such as salt marshes, burnt areas,
sclerophyllous vegetation, broad-leaved
forest, nonirrigated arable land, green
urban areas. In practice there could be
multiple terms in a specimen record to indi-
cate that such categories apply (Box 1).
When provided with appropriate ground
truth data AI methods can learn to asso-
ciate the various habitat terms, and asso-
ciated species, with such a standard set of
categories. This is elaborated upon below,
but it should be noted that machine learn-
ing has already been demonstrated to
infer land cover categories from text, as in
[12] using social media.

Most state-of-the-art AI methods depend
upon the use of so-called word embed-
dings that represent the meaning or se-
mantics of a word, as a vector of numbers,
based on its association with other words.
When implementing a machine learning
classifier, such as a neural network, the
input to a classifier would include the word
embeddings of each word within the habitat
descriptions. Thus, when a descriptive word
is encountered in a specimen description
but has not been seen in data used to train
the classifier, it can still be exploited because
the classifier will recognise its embedding
as having similar meaning to the words
that have been used to train the classifier.
Deep learning methods referred to as
transformer language models (Note
that current web-based question answering
systems such as ChatGPT are based on
transformer deep learning methods that
give rise to large language models such as
the various versions of GPT.) refine the em-
beddings, when training the classifier,
x

according to their context and hence im-
prove their predictive power. In addition to
textual descriptions of habitat and species,
collections records can contain numeric in-
formation, such as altitude, that can also
be input to habitat classification models.

Obtaining examples of ground truth
To train a habitat classifier, it is necessary
to obtain example ground truth habitat
data for the locations to which selected
training specimen descriptions apply.
Such data are readily available for many
regions as a result of systematic, usually
remote sensing-based, land cover map-
ping conducted over more than 30 years.
While EU maps use the CORINE classifi-
cation, in the USA, variations on the
Anderson classification are often used.
Advances in remote sensing continue to
improve the quality of such data [13] but
are limited to recent decades. Going back
some hundreds of years, there are other po-
tential sources of ground truth such as his-
torical topographic maps, and written
accounts. Old maps can portray aspects
of land cover, such as woodland, water
bodies, marshes [14], built-up areas, and
of marine environments such as coral
reefs [15].

Deep learning AI models applied to speci-
men habitat descriptions provide the
opportunity to predict habitat classifica-
tions for historic periods not covered by
existing land classification surveys, or in
low resourced areaswithout suchmapping
programmes. The degree to which known
land surveys can train models to predict
classifications in other times and places
will however need to be considered, partic-
ularly in light of the bias that can occur in
sampling [1,2,7].

The way forward
In seeking to exploit the rich resources of
habitat data in collections records it will be
necessary to conduct experiments to test
the power of AI, using approaches such
as outlined above, to create historic habitat
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maps that can be used for studies such as
of habitat change and loss, past species–
habitat interactions and the nature of
evolutionary processes. Application of
such methods for periods before the publi-
cation of modern, satellite imagery-driven,
land cover maps will be dependent on
identifying historic maps and documents
that can serve as ground truth to train the
classifiers. Despite the opportunity for habi-
tat data to create an extended specimen,
longer term exploitation is hindered by a
lack of standardisation across digitisation
programmes; they can omit habitat infor-
mation (as in the current digitisation project
at Kew Gardens; https://www.kew.org/
science/our-science/projects/digitising-
kews-collection). Resources are needed
to fund such digitisation, but citizen science
campaigns could also help. The current,
sometimes confusing, mix of habitat
descriptions could be addressed by intro-
ducing protocols for application of a con-
trolled habitat vocabulary. More research
is also needed to understand and com-
pensate for the forms of bias in collection
practices. Finally, all habitat mapping re-
quires georeferencing (https://docs.
gbif.org/georeferencing-best-practices/
1.0/en/) but more effective and efficient
automated methods are needed to un-
derstand the often complex language of
historic textual location descriptions.
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