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Abstract

Victor Romero-Cano Doctor of Philosophy
The University of Sydney March 2015

Simultaneous Multi-Object Tracking
and Classification via Approximate
Variational Inference

In modern applications, robots are expected to work in complex dynamic environ-
ments and extract meaningful information from low-level, noisy data. In particular,
they must build a description of the objects they interact with. This description
should be both qualitative and quantitative. The former can be expressed in terms
of object classes, while the latter is expressed by the object dynamics.

Qualitative descriptors can be thought of as discrete assignments of object trajecto-
ries to category labels that represent different motion patterns in the environment.
Obtaining these descriptors along with the kinematic states of the objects, from data,
is a challenging task due to the noisy nature of sensor measurements, sensor failure,
object occlusions and the presence of objects with infrequent dynamics.

Quantitative descriptors such as locations and velocities are usually obtained using
widely known filtering techniques derived from the Kalman filter. Nevertheless, when
dealing with measurements originated by multiple objects, associating these measure-
ments with individual objects generates a number of hypotheses that grows combina-
torially with the number of measurements, and exponentially with time. Generating
these assignments, while also estimating the kinematic state and classes of the objects
is a computationally intractable problem.

This thesis proposes a probabilistic model that exploits the correlations between ob-
ject trajectories and classes and an inference procedure that renders the problem
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Abstract iii

tractable through a structured variational approximation. The framework presented
is very generic, and can be used for various tracking applications. It can handle ob-
jects with different and/or infrequent dynamics, such as cars and pedestrians, and
it can seamlessly integrate multi-modal features, for example object dynamics and
appearance.
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Chapter 1

Introduction

During the last two decades many attempts have been made towards the development
of autonomous vehicles. The Eureka-Prometheus project in the early 1990s [1] and
the Grand DARPA Challenge in 2005 2] served as venues for showcasing cars that
drove autonomously in highway- and outback scenarios respectively. In the DARPA
Urban Challenge of 2007 the standards were set even higher, with cars expected to not
only drive, but also interact with other cars. However, streets are not only populated
by cars, but also by a variety of other participants including pedestrians and cyclists.
Therefore, the next step for autonomous cars was clear: they must be able to interact
with pedestrians at the very least. Google made significant progress towards this
goal in 2010 when one of their platforms drove autonomously in inner-city areas and

interacted with both cars and pedestrians for the first time [3].

The introduction of robotic platforms to environments where they need to interact
with multiple traffic participants such as cars, pedestrians and cyclists, requires these
platforms to have a high degree of Situational Awareness (SA) [4]. In the context of
complex dynamic environments, SA can only be ensured by perception systems that
provide the robot with geometrically accurate and semantically meaningful represen-
tations of the objects in the environment [5, 6]. An example of this is the Bertha
Benz experimental vehicle [7|, whose motion planning and control module operated

using a set of geometric constraints given by a digital map, context rules and perceived

1



Introduction 2

objects. In between conventional and autonomous cars, Advanced Driving Assistance
Systems (ADAS) have emerged as commercial car features that increase driver aware-
ness. ADAS that consider multiple object categories are already on the horizon of car
companies such as Volvo, for safety purposes (8|, as illustrated in Figure 1.1. Volvo
has modified their ADAS so their cars generate a warning and activate auto-breaking

once imminent collision with either a pedestrian or a cyclist has been predicted.

Figure 1.1 — An application example of multi-category object tracking. A perception
system with multi-category tracking capabilities can differentiate between cyclists
and pedestrians, and track them accordingly. Image extracted from |[8].

In spite of the advances in intelligent vehicles, an attentive human driver still has a
better driving performance. An attentive human driver can observe the traffic partici-
pants, predict their dynamic behaviour, and define a motion policy that accounts for
the multi-class nature of these dynamic behaviours. Autonomous cars on the other
hand, require further development in terms of interpreting a given traffic scenario and
obtaining meaningful behaviour prediction of other traffic participants [7]. On-road
behaviour analysis is perhaps one of the newest and therefore least mature areas of

Intelligent Transportation Systems (ITS) research [9].

In order to achieve a high degree of SA and therefore be able to perform high-level

tasks such as planning, traffic analysis and behaviour prediction, modern robotic
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systems must provide answers to two key long-standing questions in mobile autonomy;
what are the objects in the environment, and how are they moving. These two
questions are highly correlated: the class of an object should define the way it is
expected to move, whereas the way it moves tells us a lot about what it is. The
motion of a car, for example, is fundamentally different from that of a pedestrian.
Additionally, this correlation allows us to disambiguate approaches that rely only
on appearance to classify objects: objects such as cyclists and pedestrians appear

visually similar but they are different in their motion.

This thesis presents a novel mathematical framework that captures these correla-
tions and aims to bridge the gap between geometric and semantic representations
of dynamic objects. Our framework enables a perception system to describe rele-
vant objects in the environment both quantitatively, through their trajectories, and

qualitatively through the assignment of class labels.

The process of estimating multiple trajectories, a.k.a. multi-object tracking, has as-
sociated to it the data association problem, which is the problem of assigning object
observations from the sensors to hypotheses the system has about the state of the ob-
jects. The joint estimation of class assignments, dynamic states and data association
results in a computationally intractable problem. The work presented in this thesis
proposes a probabilistic model and an inference procedure that renders the problem
tractable through a structured variational approximation. The framework presented
is very generic, and can be used for various tracking applications. It can handle
objects with different dynamics, such as cars and pedestrians, and it can seamlessly
integrate multi-modal features, for example object dynamics and appearance, in a

computationally efficient way with minimal user input.

The remainder of this chapter provides the aim and scope of the thesis along with

the contributions and a brief description of the manuscript’s structure.



1.1 Aim and Scope 4

1.1 Aim and Scope

The fundamental contributions of this thesis focus on tracking, data association and
trajectory-based object classification. Figure 1.2 shows the major components of a
robotic perception system. Lower-level tasks such as sensor selection, deployment
and calibration [10, 11], and ego-vehicle localisation [12, 13|, are not within the scope

of this work.

As a preprocessing step, measurements from the sensing module are converted into
disjoint observations by an object-detection module. Once objects of interest are
detected, their position coordinates are transformed into a global reference frame
and fed to our tracking and classification module. This module associates multiple
detections across time, thus creating hypotheses of the state of individual objects
while also calculating their class assignment probabilities. For hypothesis validation
we use a stereo-vision rig as sensor modality, yet the framework is general enough so
that any other sensor modality that provides both depth and appearance information

can be used.

)
Sensing

Object Ego-vehicle

detection localisation
o \I
: Trajectory :
| estimation i
1
H I
: i
: Data Trajectory |1
: association classification :
N — J

' Tracking and classification '

Figure 1.2 — Aim and scope. Bounding boxes with thicker edges highlight the contribu-
tions of this thesis: trajectory estimation (tracking), data association and trajectory
classification.
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1.2 Contributions

This thesis develops a probabilistic framework for joint tracking and classification of
moving objects. The inference procedure is efficient and sequential so it can be directly
implemented in a robotic platform. The thesis also presents learning techniques for

the fitting of the modelling parameters. The specific contributions of this thesis are:

e A holistic probabilistic graphical model that encapsulates the correlation be-

tween object classes and object states while also modelling data association.

e The Expectation-Association (EA) algorithm: a new method for performing
state estimation, data association, and trajectory-based object classification in

a joint probabilistic fashion.

e A novel solution to the data association problem in multi-object tracking that

combines appearance and dynamic features in a unified probabilistic framework.

e A Maximum A-Posteriori Expectation Maximisation (MAP-EM) algorithm for

automatically estimating the parameters of our model.

e An extensive validation using publicly available data collected in urban envi-

ronments, and comparisons with state-of-the-art methods.

1.3 Thesis Structure

This thesis consists of six further chapters. Chapter 2 presents the background
information needed to motivate the rest of the thesis. A review of the literature
that tackles the problem of object trajectory estimation and classification is also
provided. Chapter 3 introduces a novel probabilistic graphical model for describing
the correlations between object trajectories and object classes while also accounting
for data association ambiguity and objects with unexpected dynamics. The chapter

follows a bottom-up approach. A mathematical model for individual trajectories is
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first introduced. Then this model is extended so that multiple object categories can
be represented. At the end of the chapter, a final version of the model that accounts

for unexpected behaviours and data association ambiguities is formulated.

Chapter 4 presents the EA algorithm, which is an approximate variational method
for performing efficient and sequential inference on the model introduced in Chapter 3.
Chapter 5 addresses the automatic learning of the parameters of our model from
trajectory data. Chapter 6 presents the evaluation of the method using publicly
available datasets from urban environments. Finally, Chapter 7 presents the main

conclusions and discusses future research directions.



Chapter 2
Background and Literature Review

This chapter presents the background material necessary to understand and motivate
this thesis. Section 2.1.2 starts by motivating the use of Probabilistic Graphical
Models (PGMs) as a modelling paradigm. Section 2.1.1 presents the formulation of
multi-object tracking and classification as a state-estimation problem. This section
also defines some concepts from probability theory that will be used throughout the
text, along with the probability distributions used as the constituting blocks of our

model.

After introducing PGMs, Section 2.1.4 gives an overview of approximate inference.
Inference procedures efficiently calculate distributions over the variables of interest
by integrating the context knowledge provided by the model and the statistical evi-
dence from the data. They are approximate in the sense that assumptions about the
form of the output distribution are done so that a tractable solution can be derived.
Learning the parameters of the model on which inference is performed, is explained

in Section 2.1.5.

Section 2.2.5 presents a review of the techniques used to generate object detections,
whereas Section 2.1.6 explains the evaluation metrics used to assess the performance

of our multi-object tracking methods.

The chapter ends with a review of the literature. It walks the reader through the major
milestones and publications on tracking and trajectory-based object classification, and

7
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gives a summary of the history of tracking and its relevance to perception in robotics

and intelligent transportation systems.

2.1 Background

2.1.1 Probabilistic Graphical Models for Sequential Data

Probabilistic Graphical Models (PGMs) provide a framework based on graph theory
[14] that allows us to represent the variables of a system as nodes in a graph and
the relationships between these variables as edges that connect them. The state of
the variables of the system is represented by means of random variables, whereas the
state of the entire system is represented by a joint probability distribution that is
a function of factors over the random variables. If no prior information about the

relations between variables is available, the PGM would be a fully connected graph.

PGMs enable the introduction of contextual knowledge about the problem, in the
structure of the graph. This knowledge is typically introduced through adding or
removing edges/relationships between nodes/variables, and encodes conditional in-
dependence relationships that provide simpler factorisations of the joint distribution.
The number of edges between nodes define a trade-off between representational power
and computational tractability. In general, the higher the number of edges, the richer
the representation is, but the more complex the running inference on the PGM be-

comes and vice-versa.

There are two main types of PGMs: undirected PGMs, also known as Markov Ran-
dom Fields (MRF) and directed PGMs, also known as Bayesian Networks [15]. They
are different in that the first one encodes similarity relationships whereas the sec-
ond one encodes one-way causal relationships. Given the sequential nature of object
trajectories, we focus on directed PGMs, i.e. graphs that represent causal relation-
ships by means of directional edges. Applying directed PGMs in the tracking and
dynamics-based classification context enables the design of modular approaches that

are interpretable and easily extendible.
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A Bayesian network is a data structure as shown in Figure 2.1, where variables of
interest are represented with nodes, and the relationships (functional dependence) be-
tween different variables are represented by means of edges connecting related nodes.
Shaded nodes represent observed variables, i.e. observation features. Both nodes and
edges are modelled by means of parametric probability distributions, with node dis-
tributions being chosen so that they represent the marginal behaviour of the variable,
and edge distributions being chosen as conditional distributions that represent the lo-
cal relationship between neighbouring variables. In particular, the PGM introduced

by this thesis models both nodes and edges using Gaussian probability distributions:

rg ~ N(zxo;u,V);
Ty|wey o~ N ($t\t71; Fa g, Q) ) (2.1)
yt|It ~ N(yt,HI’t,R>

Where N (p, ) represents a multivariate Gaussian distribution with mean g and

covariance matrix 2.
@ e e "t @

Figure 2.1 — A linear chain PGM of latent variables with each observed variable con-
ditioned on the state of the corresponding latent variable.

Figure 2.1 illustrates a graph that encodes the conditional independences parametri-
sed by Equations 2.1. The state x; is conditionally dependent on only the previous
state x;_1, while the observation y; is conditionally dependent only on the state x;.
In this figure, shaded nodes represent observed variables, unshaded nodes represent

hidden variables, and edges represent conditional dependencies between variables. A
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graphical model with the graph structure depicted by Figure 2.1 and parametrised
by Equations 2.1 is known in the machine-learning literature as a Linear Dynamical
System (LDS) and is widely used to model continuous sequential data. We use the
LDS as our basic modelling component and extend it in order to deal with multiple

and unexpected dynamic behaviours, and data association ambiguity.

2.1.2 Multi-Object Tracking and Classification: Modelling Con-

siderations

Due to the multi-class nature of the objects in most dynamic environments, a robotic-
perception system must provide, not only quantitative object descriptors in the form
of trajectories, but also qualitative ones in the form of class labels. In other words, the
system must have a reliable multi-object tracking and classification module in place.
This section poses multi-object tracking and classification as a state-estimation prob-
lem while it also explains the modelling considerations and concepts that constitute

the foundations of our approach.

Observation Features

In a similar manner to other estimation problems such as localisation or Simultane-
ous Localisation and Mapping (SLAM), a solution for the simultaneous tracking and
classification problem is expected to process sensor measurements in order to obtain
an filtered version of the original measurements, or represent new knowledge. Typi-
cally, raw sensor measurements are not fed to the tracking algorithm directly, but are
converted into observation features. This is performed by the tracking algorithm, or
in a preprocessing step called “object detection”. Observation features are a modified
version of the sensor measurements that accomplish one or several of the following

functions:

e Reduce the dimensionality of the available data. For instance, statistical mo-

ments of colour histograms.
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e Extract information which has a physical meaning to the user. For instance,
centroid locations obtained from point clouds or orientations calculated from

centroid pairs.

Object States

Object tracking algorithms aim at estimating the state of the objects in the field
of view of the platform’s sensor(s). The typical state space in object tracking is
composed of locations and velocities. Nevertheless, variables that model object ap-
pearance such as height, width or some statistics of the object’s colour and /or texture,
can also be desired. In this thesis, object states correspond to a filtered /smoothed
version of the observation features, and in the case of position observations, their first
derivatives as well. The general form of the state vector we consider throughout this

thesis is as follows:

T = : (2.2)

a
IR I

where ¢ is the discrete time index, (py, vz, as), (py, vy, ay) and (p,, v, a,) are the posi-
tion, velocity and acceleration of the object in the x, y and z coordinates, respectively,
and a; to a, are appearance variables. This type of state vector is also known in the

tracking literature as “extended target state vector” [16].
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Motion Models

In order to develop a framework for estimating the state vector xy, it is necessary to
model how this quantity evolves over time. The temporal correlation in object motion
is usually modelled using a transition matrix that represents the relationship between
the previous kinematic state and the current state of an object. The most common
motion models in the tracking literature are the nearly-constant-velocity and nearly-
constant-acceleration models, which are particular cases of the Singer model [17].
In the Singer model, the object acceleration is modelled as a first-order stationary

Markov process, and its discrete version is given by:

P 1 T T; P T;
v| =101 T v + | T | wy, (2.3)
a 00 p a 1

t t—1
where p, v and a are position, velocity and acceleration in one dimension respectively,
wy is a zero-mean Gaussian random vector with covariance matrix (), T is the sampling

oT "« is the reciprocal of the manoeuvre time constant. This

interval and § = e~
manoeuvre time constant is indicative of how long the manoeuvre encoded by the
model lasts. Note that a nearly-constant-acceleration motion model can be obtained
by setting [ to one; and a nearly-constant-velocity model can be obtained by setting

B to zero.

Observation Model

The observation model represents the functional relationship between object states

and observation features. Its linear discrete state-space notation has the form:

Zt = Hl't + V¢, (24)

where v; is a zero-mean Gaussian random vector with covariance matrix R, and H,

the observation matrix, is a matrix with as many rows as the number of features and
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as many columns as the number of states. In the case that the state variables have a

one-to-one relationship with the observation features, H is the identity matrix.

The rest of this section provides the definition of the concepts from probability theory
that will be used throughout the thesis as well as the probability distributions used

in our model.

2.1.3 Probability Distributions

Definitions from Probability Theory

PRIOR PROBABILITY DISTRIBUTION: A probability distribution that represents the
uncertainty about the quantity of interest before any evidence about its actual value

has been collected.

POSTERIOR PROBABILITY DISTRIBUTION: A probability distribution that repre-
sents the uncertainty about the quantity of interest after some evidence about its

actual value has been collected.
INFERENCE: The processes of estimating a posterior probability distribution.

LIKELIHOOD: The probability of an observation as a function of the model para-

meters.

The Multivariate Gaussian Distribution

The LDS model accounts for the fact that sensors, in general, produce a noisy and
incomplete version of the property being measured. It models the actual state z;
as being drawn from a multivariate Gaussian distribution, a widely used model for
continuous random variables. Let p be an m-dimensional vector and ¥ be an m x
m symmetric positive-definite matrix. The random vector z is Gaussian distributed

with mean g and covariance matrix ¥ if its Probability Density Function (PDF) is
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given by:
N (@3, 5) = (2m) 2872 exp (—% (¢ =)' £ (@ - M)) : (2.5)

The Categorical Distribution

The model presented in this thesis builds on the basic LDS, and extends it in order to
account for multiple dynamic behaviours. This is done by means of a mixture model
where each component is an LDS that models a particular behaviour. The first
module of a mixture model is a categorical random variable with a support equal to
the set of expected classes. We will also use categorical random variables to model the
assignment between observations and object trajectories. The categorical distribution
concerns a random variable that takes values in this finite set. If a random variable
s can take one value out of the finite set {1,2,...7,..., N}, where N; is the number of
categories, and p; is the probability of the event s = j, then s is a categorical random

variable with a Probability Mass Function (PMF) given by:

Ns
C(s;p) =[]0, (2.6)
j=1
where ¢ is the Kronecker’s delta function, defined as:

1 ife=y

o(z,y) =
(@) 0 ifz#uy.

Figure 2.2 shows an example of the PMF of a categorical random variable with four

classes.

The Multivariate ¢t Distribution

Another component of the framework we present in this thesis is unexpected be-

haviour modelling. Unexpected observations can be thought of as data points that
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Figure 2.2 — Probability Mass Function (PMF) of a categorical distribution with four
classes.

fall outside the bulk of the data. The multivariate ¢ distribution has properties that
make it appropriate for robustly modelling such kind of phenomenon. It has a bell-
shaped PDF similar to the Gaussian PDF but with heavier tails, so as illustrated in
Figure 2.3, it assigns a high (higher than in the Gaussian distribution) probability
density to regions in the variable’s domain that are far from the bulk of the data.
The weight of the tails is controlled by the degrees of freedom v. The smaller v is,

the more the probability mass spreads across the sample space.

The random variable x is t-distributed with location u, scale ¥, and v degrees of

freedom if its PDF is as follows:

St@:;u,z,wzrr(%) (mj)g ! (1+1<x—u>7’z—1<x—u>) "

where I' (o) is the Gamma function, defined as:
I'(a)= / u* e du. (2.8)
0

Using the PDF in Equation 2.7 renders marginalisation analytically intractable, how-
ever, the Gaussian-mixture interpretation of the ¢ distribution enables the definition

of likelihood functions that can be optimised using the EM algorithm [18|. The ¢
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Figure 2.3 — PDFs of t distributions with different number of degrees freedom.

distribution can be viewed as a mixture of an infinite number of Gaussian random

variables with identical means and scaled covariances [19]:

N (@51, %, w) = (2m) 2 |82 exp (—% (¢ =)' 7 (@ - u)) o (29)

where w is a Gamma-distributed random variable with shape and rate parameters
a=f=g3:

w~G(w;v/2,0/2).

The Gamma Distribution

The choice of parametrisation we have made for the t distribution requires us to
draw a precision weight for the scale parameter from a Gamma distribution. This
right-skewed distribution is widely used in Bayesian statistics for specifying a prior
probability density for the precision parameter of a Gaussian distribution, as it is

only defined for positive values.

A continuous random variable w is Gamma distributed with shape parameter o > 0



2.1 Background 17

and rate parameter 8 > 0 if its PDF is

G (w0, f) = ﬁﬁ%“‘l exp(— ). (2.10)

It is worthwhile noting that the mean of this random variable is:

(w) = (2.11)

!
5
Figure 2.4 illustrates the PDF of a Gamma distribution for multiple values of the

shape parameter o = [1, 2, 3] and rate parameter § = 1.
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Figure 2.4 — Probability Density Function (PDF) of a Gamma distribution.

The Matrix-Variate Normal Distribution

The matrix-variate normal distribution is the generalisation of the multivariate Gaus-

sian distribution to matrix-valued random variables. A real-valued random matrix

HeR™™, (2.12)
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is distributed according to the matrix-variate normal distribution with a n x m loca-
tion parameter A, a n X n row scale parameter R and a m x m inverse column scale

parameter € if its PDF is

n
2

| 1 T p—1
N(H|A R, Q) = ———etr |——(H —A)" R (H — AN)Q| . 2.13

R and () are proportional to the among-row covariance and among-column preci-
sion matrices respectively. The mean, row covariance matrix and column covariance

matrix of a random matrix following this distribution are given by:

<H> = A7
(H=AN)(H-MN") <X, (2.14)
(H=M)"(H=A)) <!

The Inverse-Wishart Distribution

Estimating covariance matrices is a recurrent problem, not only in statistics, but
in many other areas in the sciences and engineering [20-22|. Standard estimation
methods such as calculating the sample covariance or maximum likelihood (see Sec-
tion 2.1.5) are prone to deliver unstable estimates, i.e. covariance matrices that are
not positive definite. This issue has been approached by using the Inverse-Wishart
distribution as a conjugate prior in order to yield shrinkage of the estimated covari-

ance matrix towards a structure that ensures its positive definitiveness |23, 24].

The inverse Wishart defines a probability distribution over real-valued positive-definite

matrices. We say @) follows an inverse Wishart distribution if its PDF is

,/m’ ’z
V=
Rk

WM(TU H;nzl r (%H)

v+m—+1

Q|5 etr [—gm—l} L (2.15)

W QW v) =

where etr(X) — exp(tr(X)). ¥ and v are the scale and the degrees of freedom of the

inverse Wishart distribution respectively.
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In this thesis, the inverse-Wishart distribution is used to constraint the space of

possible realisations of the covariance matrices that constitute our model.

2.1.4 Approximate Inference

For LDS models inference can easily be performed using Kalman [25] or particle
filtering [26]. However, for richer models, certain interactions between variables can
make inference become computationally and/or analytically intractable. In [27, 28|
and in Chapter 3 of this thesis, extensions to deal with multiple dynamic behaviours
and data association ambiguities on the standard LDS are presented. Accounting
for unknown data association results in models on which performing inference is
intractable. In this kind of situation, approximate-inference techniques based on

either sampling or variational methods are used.

Sampling methods, a.k.a. Monte Carlo approximations [29], allow to perform poste-
rior inference by repeatedly generating samples from the posterior of interest. Sam-
pling methods can be computationally demanding and thus prohibitively slow [15].
They can be slow to converge [30] or fail to converge when not enough data is avail-
able in relation to the complexity of the model [31]. The design of efficient proposal
distributions for the importance sampling stage make their application to trajectory
estimation and data association problems greatly restricted when the size of the state
space is large. The work in [32] introduces an approach that performs sampling-based
inference on Segmental Switching Linear Dynamical System (S-SLDS) models, where
a data-driven approach is used to generate these proposals. This kind of approach
can be troublesome if the training data are noisy. Other approaches resort to deter-
ministic approximations such us the Kalman filter in order to generate this proposals

33).

Variational approximations, on the other hand, allow us to perform posterior infer-
ence by defining a family of distributions that have the potential of approximating the
distribution of interest, and then optimising a measure of fitness to the data as a func-

tion of the parameters of the targeted family of distributions. Variational approaches
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produce inference procedures that are usually involved, and more difficult to imple-
ment if compared to their sampling counterparts, however, due to their deterministic
nature, they are faster and are guaranteed to converge [34]. In |27, 28] we introduced
the Expectation Association (EA) algorithm, a variational approach to inference on a
model for sequential multi-object simultaneous tracking and classification that takes
advantage of the computational and theoretical guaranties of variational methods.
The inference machinery developed in this thesis is based on this previous work and

utilises the variational paradigm as its theoretical foundation.

Variational Inference

Variational inference, which is also referred to as “deterministic-approximate infer-
ence”’, is a family of methods used to derive flexible approximations for complex
probability distributions. Variational inference makes it possible to simplify a PGM

into a form where exact inference is tractable.

The fundamental idea is to optimise a measure of discrepancy between a complex
distribution p(z) and a simpler distribution (variational distribution) ¢(x), used to
approximate it. The Kullback-Leibler(KL) divergence [35] is a popular measure of
this discrepancy and is defined as:

KL(glp) = (ng(x) — Inp()),,) > 0. (2.16)

Let our complex distribution be the posterior p(z,alz), and let ¢(z,a) be the varia-

tional approximation. The KL divergence between ¢ and p is:

KL(qlp) = (Inq(z,a) — Inp(x,alz)) ., . = 0- (2.17)

By rewriting p(z,a|z) as p(x,a, z)/p(z), we have:

KL(glp) = (Ing(z,a)) 0 — (Inp(x,a,2) = Inp(2)), .0 = 0 (2.18)
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Since the marginal probability p(z) is independent of both z and a, the KL divergence

provides a lower bound on Inp(2):
Inp(2) > (np(r, 0, 2)) o — (04w, a)) 0w = Lla(x.a)}.  (219)

The approximate inference problem is therefore translated into a two-step procedure.
Firstly, a family of distributions ¢(z, a) is chosen such that the lower bound £{q(z,a)}
is computationally tractable. Secondly, the free parameters of ¢(z,a) are set so that

L{q(z,a)} is maximised (see Section 2.1.4).

Factorised Approximations

Intuitively, the first attempt at reducing the complexity of a probability distribution
involves relaxing the dependency between its variables. Approximating a complex
distribution with a product of independent factors is an idea borrowed from the mean

field theory in physics [36]. Let us define the variational distributions as:
q(z,a) =q(z)q(a). (2.20)
Thus, the lower bound £{g(z,a)} in Equation 2.19 can be written as:

L{q(z,a)} = (Inp(z, a7Z)>q(a})q(a) —(In Q(x)>q($) —(In Q<a’>>q(a) . (2.21)

The sub-indices in the expected value expressions indicate the distribution under

which the expectation is taken. Let us dissect out the dependence on the factor ¢(x):

L{q(z,a)} = <(lnp(a:, a, Z>>q(a)>q(x) = (Ing(2)) 4z = (I g(a))ya) (2.22)

= —KL (q(m)| exp ((lnp(x, a, z))q(a)>> —(Ing(a)) -

As shown in Equation 2.22, £{q(z,a)} is, up to a normalisation constant, the KL

divergence between ¢(z) and a distribution proportional to exp <<ln p(z,a,z)) q(a)>.
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Therefore, maximising the lower bound is equivalent to minimising this KL diver-

gence, whose minimum occurs when

Ing(z) = (10 p(, 0, ),y + 1(a), (2:23)

where 7(a) is a normalisation constant independent of x. Similarly, for ¢(a), we have

Ing(a) = (Inp(z,a, 2)) ) + n(z)- (2.24)

By initialising ¢(x) and ¢g(a), and iteratively updating these distributions using Equa-
tion 2.23 and Equation 2.24, the lower bound Equation 2.27 is maximised. Exam-
ple 2.1 shows a simple example of variational inference on a three-node PGM where
we relax a conditional dependence in the posterior, similar to the one we relax in the

inference machinery that this thesis develops.

Example 2.1

This is an example of factorised approzimate inference on a three-node PGM with a
v structure [14]. Similar to the ezample in Figure 8.21 of [15], let us consider a PGM
representation of the fuel system on a car. In Figure 2.5, the binary random variable
x represents the state of a battery as being either flat (x = 0) or charged (x =1); a
represents the state of the fuel tank as being either empty (a = 0) or full (a =1); z

represents the state of an electric fuel gauge that indicates 0 for empty and 1 for full.
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The parameters of this PGM are given by the following probability tables:

p(z)=[p(x=0), plz =1)]

=[0.1, 0.2, 0.2, 0.8].

Figure 2.5 — A three-node PGM with a v structure. In this image, shaded and unshaded
nodes represent observed and hidden variables respectively.

(2.25)

According to the notion of d-separation [14], x and a are conditionally dependent given
z. To To illustrate the core idea of variational inference, we relax this dependency

and approzimate the posterior as:

p(x,alz) = q(x)q(a). (2.26)

Initialising q(x) and q(a) as uniform distributions and sequentially updating them as
in Equation 2.23 and Equation 2.24 maximises the lower bound (Equation 2.19) on
the likelihood as shown in Figure 2.6a
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Figure 2.6 — Exact likelihood, lower bound, and an entry of the exact and approximate
posterior distribution in Example 2.1. The lower bound in Figure 2.6a increases at
each iteration and converges at t = 3. Also note that the approximate posterior in
Figure 2.6b converges to a value that is very close to the exact one.

2.1.5 Model Learning

Once the structure of our PGM has been defined (Section 2.1.1), its parameters must
be learned. The underlying idea behind learning a PGM is specifying the set of para-
meters that define the model. For the model in Example 2.1, model learning boils
down to finding the probability tables p(z), p(a) and p(z|z,a) from a set of observa-
tions of the variable z. In models where all variables can be observed, parameters are
learned by maximising the likelihood of the data. These kinds of methods are also

called Maximum Likelihood (ML) approaches.

In the presence of hidden variables, calculating the marginal likelihood requires marginal-
isation over these hidden variables. In general, the summations added by the marginal-
isation procedure cause the parameters to be tightly coupled, and as a consequence
the likelihood cannot be factorised into a product of factors. The Expectation Maximi-
sation Algorithm [37] allows us to overcome this problem and calculate the parameters
of models with hidden variables in an iterative procedure that optimises a lower bound
on the marginal likelihood. PGMs that include hidden variables are also known as

Latent Variable Models (LVM).
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The Expectation Maximisation Algorithm

The task of learning the parameters of a probabilistic model can be formulated as an
optimisation problem. In the case of variational methods, the cost function is a lower
bound on the log-likelihood. Let us define the lower bound on the marginal likelihood

as:

Inp(z|Q) > <lnp(a§,z|Q))q($‘z) — (In q(:c|z)>q(x‘z) = L{q}. (2.27)

The Expectation Maximisation (EM) algorithm is a two-step iterative procedure that,
instead of maximising the likelihood function, maximises the expected complete log-

likelihood (Inp(z, z\Q))p( If instead of the exact posterior p(z|z), only the ap-

z|z)"
proximate posterior ¢(z|z) is available, EM aims at maximising the lower bound in
Equation 2.27. The Expectation step (E-step) and the Maximisation step (M-step)

can be implemented as follows:

E-step: Fix the parameters €2 and find the distribution ¢(z|z) that maximises Equa-
tion 2.27. If we have access to the exact posterior over hidden variables p(z|z, 2°4),

we use that distribution obtained with the parameters from the previous iteration.

M-step: Find the parameters {2 that maximise Equation 2.27, which is equivalent
to maximising the expected complete log-likelihood (Inp(z, z[(2)) ., with respect to
each of the parameters. In [15, 35] it is shown that each cycle of EM increases the

marginal log-likelihood.

The EM algorithm has been widely utilised for learning models for spatio-temporal
data. For instance, [38]| presents an EM algorithm for learning the parameters of an
MLDS, whereas [27, 28] uses it for learning the parameters of a model for multi-object

tracking and classification.

The Need for Regularisation

Models whose parameters are estimated using data are prone to over-fitting. This

problem is approached using regularisation, i.e., by adding a penalty term to the
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objective function that constrains the parameter space. The most popular forms of
regularisation use L1 [39] or L2 [40] norms. Regularisation is performed by adding a

penalty term to the objective function composed by the norm of the model parameters.

L A(@) = 190, = 319
(2.28)
L2: R(Q) = |} = 292

Bayesian regularisation [41] corresponds to a more general perspective where the
model complexity is penalised with a prior distribution over model parameters. Both
L1 and L2 norms can be interpreted as particular cases of the Bayesian case with L1
usually being parametrised as a Laplacean prior and L2 as a Gaussian prior [42]. The

Bayesian regularisation term has therefore the following general form:

Bayesian: R(2) = —Inp(Q) (2.29)

The Regularised Expectation Maximisation Algorithm

The EM algorithm can also be used to obtain Maximum A-Posteriori (MAP) esti-
mates by means of Bayesian regularisation. Here, parameters are regarded as ran-
dom variables, which contrasts with Maximum Likelihood (ML) procedures where
free parameters are obtained. The difference between the MAP-EM and ML-EM
algorithms lies in the M-step:

E-step: Evaluate p(z|z, Q°9) as in the ML-EM algorithm,

M-step: Find the parameters €2 that maximise:

Q () = (Inp(, 2[82)) (4| goiay + 0 P(E). (2.30)

The estimates obtained in this version of the M-step are posterior distributions over

the parameters rather than point estimates. Additionally, the prior p(£2) works as a
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regulariser on the EM cost function. It allows us to constrain the parameter space, so
that the parameter estimates are robust to outlier observations and less prone to over-
fitting. This is important when there are a small number of training observations,

observations are very noisy, or when some of them are statistical outliers.

2.1.6 Evaluation Metrics

Tracking performance is usually evaluated using the Multiple Object Tracking Ac-
curacy (MOTA) [43] and the Mostly-Tracked (MT) / Mostly-Lost (ML) trajectories

metrics [44]. This section explains the intuition behind these metrics.

The MOTA metric is calculated as:

fne+ fpe + mmey)

MOTA=1-— Zt( )
Ztgt

(2.31)

where, fn;, fp;, mme, and g, are the number of false negatives, false positives, mis-
matches and ground truth objects respectively for time ¢. The MOTA metric is
calculated by assigning to each ground-truth state the closest state from estimated
trajectories and then getting the proportion of, firstly, cases when ground-truth states
did not have an estimated state assigned to them (fn;), secondly, instances of esti-
mated states that were not assigned to ground-truth states (fp;) and, finally, instances
of ground-truth trajectories to which states from different estimated trajectories were
assigned (mme;). This metric evaluates the ability of tracking systems to correctly

associate detections across time.

The MT and M L metrics provide the percentage of ground-truth trajectories that
were covered by the estimated trajectories for more than 80% and less than 20% in
length, respectively. These metrics measure the property that, in many cases, objects

are correctly tracked during a period of time shorter than its actual life span.
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2.2 Literature Review

A brief description of the mathematical foundations of the proposed approach was
presented in previous sections. This section reviews the use of PGMs for dynamic
scene understanding tasks. It also covers the related work on motion detection, track-

ing and classification.

2.2.1 PGMs for Dynamic Scene Understanding

As explained in Section 2.1.1, PGMs provide a flexible modelling framework that
makes explicit the structure of the estimation problem, and this can be in turn used
to devise powerful and efficient learning and inference techniques. This subsection
briefly reviews seminal works on the use of PGMs in the area of dynamic scene

understanding.

The work in [45, 46] presents an approach for inferring a scene’s topology, geometry
and traffic activities from short video sequences. They introduce a generative model
that reasons about the 3D layout of a dynamic scene as well as the location and ori-
entation of objects in the scene. This model relates the geometry of an intersection
to visual features, such as vehicle tracklets, vanishing points, semantic scene labels,
scene flow and occupancy grids. For learning the model, as the partition function of
the joint distribution is intractable, they reformulate the problem as a Gibbs random
field and learn the model parameters using a sampling based ML approach derived
from MCMC called contrastive divergence [47]. They achieve an improvement on
state-of-the-art object-detection- and object-orientation estimation by using the con-

text derived from the proposed method.

The authors of [48| developed a method for inferring the interactions between pedestri-
ans and the objects they carry. They introduced a Bayesian network where the hidden
states are object types and piecewise interactions, and the observed variables are rela-
tive positions and velocities, and appearance observations. The dynamic observations

were obtained from a tracking module based on low-level stereo region segmentation
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and multi-hypothesis data association, whereas exact inference was performed using
the junction-tree algorithm [14]. For the data-association module, the similarity mea-
surements between tracks and observations were obtained by registering point clouds

using the Iterative Closest Point (ICP) algorithm [49].

2.2.2 Multi-Object Tracking

Multi-Object Tracking (MOT) is a procedure that provides information about what
objects of interest are in the environment and their behavioural characteristics |50].
MOT is a well-known problem in the robotics community and many publications on
the matter have been produced [51-55]. Most of the current approaches to tracking
follow a tracking-by-detection methodology, where objects of interest are first detected
at each frame [56, 57|, then detections are linked to object hypotheses across frames,

and finally, trajectories associated to object hypotheses are estimated.

Depending on whether detections are assumed to be perfect measurements of the
object state or not, two approaches to tracking exist. The first one defines trajectories
in terms of subsets of detections that follow some smoothness constraints [58, 59].
These kinds of approaches are effective at recovering object identities after short-
term occlusions, and have an outstanding performance when little or no observation
noise is present. However, due to their deterministic nature, their performance usually
drops significantly when applied to noisy sensors. Additionally, they do not model
unobserved states, therefore queries like object velocities cannot be estimated when

only position observations are available.

The second group of approaches to tracking considers object states as latent variables
that need to be estimated from incomplete and noisy observations [60-63, 46, 64].
The incomplete and noisy nature of the data can be modelled by means of Latent
Variable Models (LVMs). LVMs allow us to estimate quantities that are not directly
observed, such as velocities and interactions between scene objects [65, 48]. They
can also obtain estimates that are robust against noise, and as it will be shown, they

provide tools for probabilistic modelling of unexpected observations.
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Approaches based on Random Finite Set (RFS) statistics [66] are also part of this
latter group. In RFS approaches, both the object states and number of objects are
modelled as random sets. In [67], the Probability Hypothesis Density (PHD) filter was
proposed as an approximation of the multi-object Bayes filter using RFS statistics.
The Gaussian Mixture PHD (GM-PHD) filter is an implementation where the PHD

filter is approximated using Gaussian Mixtures [68].

The Data Association Problem

When objects in the environment have GPS receivers or identity markers, there is
always a known one-to-one correspondence between these objects and the observations
obtained from the sensors. However, in most environments where autonomous robots
are deployed, the objects that they interact with do not have identity markers, so no
deterministic assignment between object hypothesis and new observations is available.
This situation introduces one of the most challenging and studied problems in the
tracking literature: how do we associate observations to object hypotheses?, known

as the Data Association (DA) problem.

One of the first attempts to solve the DA problem was the Multi-Hypothesis Tracking
(MHT) method [69]. This algorithm maintains a set of hypotheses defined by all the
possible associations between observations across time. Each hypothesis corresponds
to a sequence of Gaussian Mixtures (GMs), where each mixture represents the state of
an object and its observed value, and it is sequentially updated by means of Kalman
Filtering. The Kalman filter provides an estimate of the GM at time ¢ as a function

of all the associated observations up to time ¢ for a given hypothesis.

Frequently, we would like to estimate each GM based on all the available associated
observations. In other words, if T" is the size of the hypothesis, we would like to
estimate the state at time ¢ based on the observations from time 1 to 7". The process
of obtaining these complete estimates is referred to as smoothing. For linear-Gaussian
models, smoothing is implemented using the Rauch-Tung-Striebel (RTS) recursions

[70].
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The number of hypotheses that need to be filtered /smoothed grows combinatorially
with the number of objects, and exponentially with time, so pruning heuristics have
been used to reduce the computational burden [71] of updating all the object hy-
potheses. These pruning heuristics may potentially prune correct hypotheses, leading
to a degenerate hypothesis tree, where running smoothing leads to wrong estimates of
the object states. This issue is caused by the fact that a degenerate tree is equivalent
to using the wrong data association for state estimation. In [72] a single-object track-
ing approach is introduced where this problem is tackled by using forward-backward

smoothing where hypotheses are merged rather than pruned.

A different take on the problem of data association was presented in the work of
[73]. It introduces the Probabilistic Data Association Filter (PDAF) for single-object
tracking, where observations are not discarded but weighted and used to update the
object’s state. In [74] the Joint Probabilistic Data Association Filter (JPDAF) was
introduced, which is an extension of PDAF that deals with multiple objects. Addi-
tionally, the work in |75] adapted JPDAF so that overlap between objects is described
in the context of visual tracking. Although JPDAF is more efficient than MHT), its
complexity still grows exponentially with the number of objects. The Probabilistic
Multiple Hypothesis Tracker (PMHT) [76, 77| is a linear-complexity approach that is

based on the Expectation Maximisation algorithm.

Developing methods that deal with the computational complexity of the DA problem
is a core topic in both the SLAM and tracking literature. The work in [78] introduced
the concept of reversible DA in the context of SLAM for dynamic environments. The
method proposed a least-squares-based approach to SLAM that accounts for moving
objects and performs robust estimation across multiple time steps. [79] adopted
the concept of reversible DA and applied it to multi-object tracking in surveillance
applications. The work developed a sampling approach for performing inference that
attains online performance thanks to a GPU-based multi-threaded architecture that

parallelises detection, sampling, data association and output generation.

This thesis proposes a graphical model and an inference procedure that performs

sliding window estimation in close resemblance to the ones used in [78] and [79]
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but instead of sampling, it uses a deterministic inference. Probabilistic Graphical
Models (PGMs) allow us to approach the tracking problem from a wider perspective.
Representing the object tracking problem as a PGM makes it easier to develop efficient
inference techniques by introducing expert knowledge into the model. By considering
the structure in object trajectories and the representational power of PGMs, the works
in [80-83| formulate the DA problem as a factor graph and apply message-passing

techniques [84] in order to perform efficient inference on their models.

In many cases, observations about the position of the objects may be accompanied by
appearance measurements such as shape, texture or colour. The work in |27, 28| and
Chapter 4 of this thesis develops a tracking approach that integrates both appear-
ance from image patches, and dynamics from stereo-vision point clouds. It uses the
appearance information to initialise data association probabilities and then updates

both these probabilities and the object states with the position measurements.

Multiple-model Approaches to Object Tracking

Central to the task of object tracking is the definition of both an observation model
and a motion model. The former describes the relationship between observations and
states, whereas the latter describes the temporal evolution of the states. Adopting
a good model has been shown to result in tracking approaches that outperform any

model-free tracking algorithm [85].

There are cases in which only one model is not enough. Multiple-model approaches
have been extensively used in environments where individual objects go through mul-
tiple motion behaviours/modes (cruising, turning) [86]. They are commonly known
as Interacting Multiple Model (IMM) methods [87]. These kinds of methods model
an object trajectory as a realisation of a Switching Linear Dynamical System (SLDS)

135].

Another use of MM approaches, which has only been recently introduced, is that of
tracking multiple objects with different dynamics. In [27, 28| multiple motion models

are used to account for the diverse nature of object behaviours (cars, cyclists, pedes-
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trians) in urban environments. These kinds of methods model an object trajectory
as a realisation of a Mixture of Linear Dynamical Systems (MLDS) [88], where each

mixture component describes the dynamic behaviour of one object category.

2.2.3 Spatio-temporal Object Classification

Object Classification based on spatio-temporal information has been typically ap-
proached using either similarity-based clustering/classification techniques [89-91] or
model-based approaches [92-94|. Note that these model-based approaches usually

have a clustering component to them in the front-end.

The work in [90] uses an adapted version of Affinity Propagation [95] on a new type
of feature they introduced for summarising the shape of laser tracks. They called
their feature Laser Stamps and also defined an associated measure used to compare

the similarity between descriptors.

The work in [92] segments individual trajectories into sub-trajectories by splitting
them at points of change in curvature. The set of sub-trajectories are summarised by
their principal components, whose coefficients are in turn used to learn a Gaussian
Mixture Model (GMM) representing atomic activities. Finally, a Hidden Markov
Model (HMM) is used to perform activity classification by modelling trajectories as
sequences of the atomic activities. In [93| an approach is presented which is similar
to the one introduced by [92], in that it models trajectories as a sequence of atomic
actions. However, it includes a spatial component to the classification task by defining

points of entry and exit before learning the HMM-based classifier.

Outlier Detection

There are cases in which the objects to be classified do not fit any of the considered
classes. These objects, usually referred to as outliers or anomalies, can be understood
as observations or patterns in the data that do not conform to any of the expected

behaviours [96]. In the context of object tracking, anomalies may arise at two different
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levels. At an observation level, sensor failures cause point anomalies. At an object

level, unexpected behaviours generate trajectory anomalies |97].

Due to the increasing use of robotic platforms in urban and natural environments, it is
desirable that a robot can estimate not only the class of an object, but also whether its
behaviour is normal or not according to what has been previously observed. Telling
anomalous objects apart is useful and may point out a dangerous interaction or a
new behaviour. This process is called anomaly/novelty detection [98]. Discovering

anomalies from unlabelled data is known as unsupervised anomaly detection [96].

The importance of LVMs was explained in Section 2.2.2. From a distribution-theoretic
point of view, equipping an LVM with outlier-detection capabilities boils down to
including a random variable that explicitly models the abnormality of an observation.
The work in [99] introduces the Robust Probabilistic Multivariate Calibration Model
(RPMC). It is an extension of Probabilistic Principal Component Analysis PPCA [100]
whose components have a ¢ distribution instead of a Gaussian distribution. In [101],
the capabilities of RPMC for dealing with incomplete observations are investigated.
By applying the same idea, [102] develops a robust inference procedure for LDS models

with heavy-tailed noise.

It should be noted that the above approaches model point anomalies. Most of the
literature on anomalous trajectory detection is based on the distance, direction and
density of trajectories [97]. There are, to the best of the author’s knowledge, no pre-
vious approaches in which a robust probabilistic method has been applied to anomaly

detection (and robust estimation) in the context of object tracking.

2.2.4 Multi-category Object Tracking

The objects that are likely to be encountered by a robot are, in most scenarios, quite
diverse. For example, a robot navigating in a city may find cars, pedestrians or cy-
clists. Assuming that all of them can be tracked using the same model inevitably
leads to degradation in the object-classification- and trajectory-estimation perfor-

mance. Reasoning about object classes enables the robot to use context information
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more selectively for tracking. However, multi-object tracking and classification is a
chicken-and-egg problem. On one hand, knowledge of object classes can improve
tracking. On the other hand, good trajectories serve as features for better classifica-

tion.

In general, multi-object tracking algorithms estimate object states without reasoning
about classes. When this reasoning is required, complete tracks obtained from an inde-
pendent tracking system are fed into a classifier like those explained in Section 2.2.3.

Only few approaches exist that simultaneously perform tracking and classification

[103, 104, 32, 105].

In order to classify object trajectories, many approaches to object categorisation
(motion pattern discovery) overlook low-level problems such as data association and
trajectory estimation. Traditional methods obtain complete object trajectories from
a tracking module and then feed them into a classifier which obtains the semantic
descriptors. The authors of [103] present a joint optimisation method that uses in-
formation from different sensor modalities in order to jointly estimate objects’ states
and classes. It allows the user to define the degree of correlation between tracking and
classification by means of cost weights for errors in both tasks. However, it assumes
known data association, which limits its application to environments where objects
appearances are very dissimilar or they have identity markers. The work in [104]
introduces the theoretical framework on which [103] is based. It argues the frame-
work can be applied to solve the data-association problem when there is no interest
in reasoning about classes. However no results are provided and, in addition, it is
not clear how the method can be extended to jointly deal with state estimation, data
association and classification. The work in [106] presented a Gaussian mixture imple-
mentation of the PHD filter that allows objects to switch between multiple motion
models. Recently, [107] extended the work in [106] so that tracked objects can also

be classified using features of both, the measurements and the tracked objects.

Simultaneous tracking and classification of multiple moving objects with unknown
data association is a computationally intractable problem [108]. This is the reason

why techniques that classify objects according to their dynamics perform each of
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the tasks separately, decoupling state estimation from class assignment [92, 109, 94].
Hence, they neglect the natural correlations between an object’s dynamics, environ-
ment, and class category. Additionally, most state-of-the-art approaches to MOT
either do not assign category labels to tracked objects, or obtain them from an inde-

pendent process usually based on images [110].

In this thesis we present a framework for the joint estimation of object classes, states,
and data association. This has several advantages over previous approaches to both
object classification and MO'T. First of all, it can boost state-of-the-art appearance-
based object classification methods [111, 112] by exploiting motion information and
temporal correlations in the data. Secondly, since our approach formulates the prob-
lem in terms of a fully probabilistic model, it enables parameter learning. This is in
contrast with most MOT approaches, in which the user is expected to empirically set

the parameters of the tracker.

2.2.5 Vision-based Object Detection in Urban Environments

Object detection constitutes the feature-extraction module of any tracking-by-detection
technique and it has been a relevant subject of research in areas like surveillance,
ADAS and autonomous driving since the late seventies [1]. Being able to detect dy-
namic objects such as vehicles, cyclists, or pedestrians, and to estimate their positions
and dynamics allows systems to increase their situational awareness. Object-detection
schemes detect objects according to three main features: appearance, geometry and

motion.

Appearance-based Object Detection

This approach relies on template models learned from training data [111, 110|. Train-
ing instances are image patches of the objects expected to be in the environment
[113]. Some algorithms detect arbitrary objects [114, 115], whereas others specialises

on particular categories given by the training set [116-118].
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Geometry-based Object Detection

Most of the approaches based on laser technology [119, 120] fall into this category.
Here, object detection is formulated as a clustering problem [121], hence individual
objects correspond to a set of points close together in 3D space. For laser data,
clustering is usually done by means of optimal assignments computed, for example,

by the Hungarian algorithm [122].

Motion-based Object Detection

The works presented in [123], [124] and [125] highlighted the importance of motion
perception and provided the first techniques to calculate a measure of visual motion
named optical flow. Since then, a large amount of research has been accomplished in
order to provide efficient and accurate forms to calculate the motion of multiple mov-
ing objects, from visual cues [126-128|. Motion detection on video streams recorded
from a static camera, has been successfully performed by learning a static model of
the background and then comparing it with the streaming images [129]. However,
solving the problem when the camera is moving, presents extra challenging issues.
Since the camera motion induces intensity changes in the entire visual field, even
static objects appear as moving objects. Therefore, a static model of the background

cannot be estimated.

One way to segment independent moving objects from the background, when the
camera is mounted on a moving platform, is to compensate for the platform’s move-
ment. In order to do that, an estimate of the scene depth must be calculated. In [130]
the Flow Vector Bound constraint along with the epipolar constraint are used as cues
for dense motion detection. For this type of approach, the uncertainty in depth of a

point spans through the entire epipolar line or at least a section of it.

In [57], a stereo vision system is used to obtain a dense depth field from which
a prediction of the optical flow is estimated. As in [130-132], [57] considers pixel
motion as the main cue for object detection. Hence, any sort of moving object can

be detected.
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2.3 Summary

This chapter showed the reader the pathway across which the contributions and con-
text of this thesis extends. It presented the theoretical and technical concepts that
the reader should be familiar with in order to understand the following chapters.
This includes the definition of simultaneous multi-object tracking and classification
as a state estimation problem, and the concepts in probability theory and sequential
graphical models from which the individual components of our solution are obtained.
Along with the background information, the chapter also reviewed the state-of-the-
art literature in multi-object tracking and highlighted the importance of including

classification- and outlier detection capabilities into sequential tracking approaches.



Chapter 3

A Novel Model for Probabilistic
Multi-Object Tracking and

Classification

A standard system for dynamic scene analysis has the constituent modules shown
in Figure 3.1. The object-detection module generates detections or Regions Of In-
terest (ROIs) in the field of view of the robot that might correspond to individual
entities in the environment. The data-association module groups the detections ob-
tained across time so that those generated by the same object belong to the same
group. Subsequently, the trajectory-estimation module, which is usually implemented
as a filter, estimates trajectories using the noisy detections. Finally, the trajectory-
classification module takes the estimated trajectories, and detects and models motion
patterns. The flow of information in the standard dynamic-scene-analysis system just

described, is illustrated by the straight black arrows in Figure 3.1.

In most scenarios, due to the physical structure of the environment, context rules
and the nature of the objects, there is a correlation between what the objects in the
environment are, and how they are moving. For example, pedestrians and cyclists
might look alike, however their motion is fundamentally different. The motion of
pedestrians is characterised by random changes in direction, whereas changes in the

39
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Figure 3.1 — The general pipeline of a system for dynamic scene analysis. Boxes
represent modules of the system; straight black lines represent the standard flow of
information, whereas rounded red lines show the new correlations that the model
introduced in this thesis represents.
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direction of cyclists tend to be smoother. This thesis proposes a mathematical model
that represents this correlation succinctly and efficiently (red arrow number one in
Figure 3.1). It feeds back trajectory classification to trajectory estimation, and pro-
vides an graphical model representation that accounts for the multi-class nature of

the object observations.

Another desirable feature of a dynamic-scene-analysis system is the capability of
associating observations to estimated trajectories. This association between an ob-
servation and an estimated trajectory should be amenable to update, not only at the
time the observation was acquired, but also at future times according to the ongoing
history of the estimated trajectories. Feeding back information from the trajectory es-
timation to the data-association module makes it possible to recover object identities

after merging or occlusion interactions.

In this chapter, a novel model for the Simultaneous Tracking and Classification (STC)
problem is proposed. Section 3.1 and Section 3.2 introduce the modelling considera-
tions used to represent object trajectories and their correlations with motion patterns

in the environment, along with data-association ambiguities. Section 3.2.3 presents
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the chapter with the equations that implement the model and therefore allows us to

calculate the likelihood of the data.

3.1 Object State Representation

The main objective of this chapter is to introduce our proposed model for STC. The
motion of an object is given by a time-ordered set of states, or trajectory, that is
only observable through a sequence of noisy measurements provided by a sensor. We
model a trajectory as a hidden Markov process that generates this sequence of sensor
measurements. This model is also called a Linear Dynamical System (LDS) [15], and
more specifically, it represents a sequence of observations as a linear projection of an
underlying Markov process plus noise. An LDS can be represented using the graph
in Figure 3.2. The nodes represent the variables of interest and the arrows between
them represent Conditional Probability Distributions (CPD) that model the local

relationships between variables.

X)) (%) 2

— —

Figure 3.2 — We can represent the trajectory of an object using a Markov chain of
hidden variables with each observation conditioned on the state of the corresponding
hidden variable. White and shaded nodes represent hidden and observed variables
respectively. Horizontal arrows represent the transition probabilities p(x|xi—1),
whereas the vertical ones represent the likelihood p(z¢|z;) of each observation. If
both the hidden and observed variables are continuous, this graph depicts the PGM
of the LDS model

Under the LDS representation, the state sequence of an object in the scene corre-

sponds to a Directed Acyclic Graph (DAG). Inference on this sort of model can be
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done efficiently and exactly using the sum-product algorithm, which for the LDS
model in particular, boils down to a set of forward and backward recursions known
as the Kalman filter and smoother without driving inputs [133]. In the context of our
application, observations correspond to noisy measurements of object positions (and
optionally, shape), whereas hidden states are the actual positions and velocities (and

optionally, shape descriptors).

In most environments, states evolve according to underlying class-dependent dyna-
mics. In the urban scenario for example, cars, cyclists and pedestrians follow motion
patterns that are different in terms of the velocity and smoothness of their trajecto-
ries. To account for different motion models, we have extended the model shown in
Figure 3.2 using a Mixture of Linear Dynamical Systems (MLDS) model [38]. This
model follows the same intuition behind the Gaussian Mixture Model (GMM) which
is designed to account for unobserved groups in point data. The MLDS accommo-
dates unobserved groupings or co-occurring behaviours by augmenting the LDS with
a discrete hidden variable, as shown in Figure 3.3. This categorical random variable

has a number of values N, equal to the number of expected classes.

The MLDS can model each observed trajectory and associate it to one of its mixture
components. However, it is always possible that a trajectory following an unexpected
pattern emerges. An MLDS would associate this trajectory to the closest component
and therefore it cannot deal with outliers by itself. To make the approach robust
to outliers, our model introduces the use of the t-student distribution, instead of
the common Gaussian assumption. Since the t distribution has heavier tails than
the Gaussian, it is able to account for events away from the mean. The authors of
[134, 135] presented extensions of the HMM and LDS models respectively, in which
they modelled the emission/observation conditional PDFs as t-distributions. The
resulting models and their respective inference procedures resulted in state estimation

approaches that were robust to outliers in the observations.

Our STC model represents each trajectory as a sequence of t-distributed random
vectors. Each state in a trajectory is parametrised as a Gaussian random vector

whose covariance matrix is weighted by a Gamma-distributed precision weight. The
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Figure 3.3 - If both 2! and zé are continuous, this graph corresponds to the PGM of an
MLDS. In an MLDS a categorical variable s (placed in a squared node) accounts
for different dynamics by selecting one LDS per object. In other words, s’ is a
categorical random variable that assigns one of Ny LDSs to object ¢. Each LDS
models a different object class.

posterior over this weight allows us to detect outlier trajectories, while allowing the

state to still be conditionally Gaussian, so inference continues to be tractable.

One of the most difficult problems in multi-object tracking is dealing with data-
association ambiguities. For example, when observations from multiple objects get
close to each other, knowing which observations belong to which objects becomes
uncertain. We model assignments between observations and the state trajectory of
tracked objects at each time step using categorical random variables that represent
these assignments by means of soft associations. The following section presents a

detailed description of the equations that constitute our model.

3.2 The Model

Let 2! and z! be the hidden state and observation of object i at time ¢, respectively.

The hidden process . represents the state trajectory of object i, whereas 2%, is the
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sequence of observations or measurements of the object state (See Figure 3.2). The

CPDs of our LDS correspond to multivariate Gaussian distributions:

p (zilz_,) =N (a}; Fxi_y, Q) )
p (zil7;) =N (2; Hay, R)

where F' is the state-transition matrix; () is the process-noise covariance matrix; H
is the observation matrix or linear mapping between hidden states and observations;
and R is the covariance matrix that describes the noise in the sensor. The first and
second lines in Eq. (3.1) are commonly referred to as the transition and observation
models respectively. These models encode the characteristics of motion behaviours
and the noise in the sensor. To convert an LDS into an MLDS we have added the
categorical variable s* which assigns object ¢ to mixture component j. When this is

done, the transition- and observation models for each mixture component become:

p (x; | xi—p st = J) = N(iji—th) (3.2a)

where s' = j is the object category that generates trajectory i; and Fj, Q;, H; and
R; are the parameters of the jth LDS.

3.2.1 Unexpected Trajectory Detection

In order to account for trajectories that have unexpected dynamic behaviours, object
states are modelled using a t distribution rather than a Gaussian. The Gamma-
distributed random variable w®’ is used to weight the covariance matrices related
to the object states in the original MLDS model so that the states are marginally
t-student but conditionally Gaussian. This Gamma variable works as a precision
weight, thus it decreases with the degree at which the trajectory of object ¢ is incon-
sistent with model j. The closer w*/ is to zero, the more likely it is that z},;, is an

outlier with respect to model j. Following the inclusion of the precision weight, the
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transition- and observation models for class j become:
p (ZL’S | xi—lv Si = ja wi’j) = N(F}xi—lu Qj/wid) (33)
p (2| 2}, s' = j,w") = N(H;z], R; /™). (3.4)

An LDS parametrised by F}, Q;/w;, H;, R;/w; has a density function that represents
a time-ordered sequence of t distributions. In order to highlight the advantages of
the t distribution in the context of trajectory estimation and classification, Exam-
ple 3.1 illustrates the evolution of posterior precision weights, obtained when learning
an MLDS extended as explained in this subsection. The example shows weights

corresponding to both inlier- and outlier trajectories.

Example 3.1

Let us consider a modified two-mizture-component MLDS where each component is
a Singer model (Equation 2.3) with different target-manoeuvre time constants. We
draw a trajectory dataset from this model, and add three outlier trajectories from a

noisy oscillator as shown in Figure 3.4.

Figure 3.5 depicts the posterior precision weights w™ of both the inlier and outlier
trajectories after each training iteration. Note that the outliers’ weights have values
close to zero, whereas the inliers’ ones have larger values. This indicates that, in
order to account for the trajectories’ deviation from the dynamic behaviours modelled

by the underlying MLDS, the covariance matrices of the model need to be inflated.

3.2.2 Data Association

The MLDS allows us to represent both the dynamic (z!) and categorical (s°) states of
object 4, given the observation z!. In practice, a sensor provides a set of measurements
z; with no assignments to tracked objects. The problem of assigning observations to

objects is known in the literature as data association.
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==@e== Outlier 1
w=@= Outlier 2
m=@== Outlier 3

Component 1

Figure 3.4 — Set of trajectories drawn from a two-component STC model and three
outlier trajectories generated by a noisy oscillator. The mixture components of the
STC model are Singer models with varying manoeuvre-time constant parameter.

Consider a sequence of observations zy.7 = (21,... 2, ..., 27) with z, = (z}...2L..21).

These observations are assumed to be generated by N, different objects. In order
to represent the mapping between objects and observations, we define a sequence
a=(ay,...,a,...,ar) of assignment variables, with a, = {a},...,al,...,a"}. dl €
{1,...,N,} is a categorical variable that specifies which object is responsible for

generating observation zﬁ

3.2.3 Model Overview

Putting together the modules presented above allows us to build a novel model for the
multi-object Simultaneous Tracking- and Classification (STC) problem. Figure 3.6

shows the Bayesian-network representation of our generative model. The joint pro-
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(b) Posterior precision weights for mixture component 2

bability distribution can be written as follows:

Ny T;

N

i=1 t=1
T Ly

TT1IIP Gzl=i™ af, ™) p (a))

t=1 =1

p(s, 2 a,0lQ) =] |p () p (@18 p (25]s') ] I (wifeir, o' ™)

where the model parameters are given by Q = [Fi.n., Q1.n., H1.n,, R1.n,]-

47

Figure 3.5 — Per-trajectory posterior precision weights for each of the mixture compo-
nents in our modified two-component MLDS model vs training iterations.

(3.5)
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Figure 3.6 — A graphical model of the simultaneous tracking- and classification problem
with unknown data association. Unfilled nodes indicate hidden variables, while
filled nodes are observed. z; represents observations at time ¢; z¢ models the state
of object i at time t; a; defines which observation is assigned to object i; s* chooses
the class of object i; and w' is a precision weight that allows to define whether the
trajectory xizT follows an expected or unexpected behaviour

In a Bayesian network, random variables and their conditional dependencies are rep-
resented by means of a DAG. In our graph, each node s’ is a categorical random
variable used for indexing 1 of N, models. z! is a continuous random variable that
models the state of object i at time t. w®’ is a precision weight that allows us to

define whether the object i is an outlier or not. z! is the Ith observation made at

time ¢. al is a categorical variable modelling the association between observation [
and tracked objects. Finally, N, is the number of objects in the scene, whereas L; is
the number of observations made at time t. Table 3.1 summarises the terminology

used in the model and throughout the rest of the thesis.

The factors that compose the complete likelihood of the data under the STC model
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Table 3.1 — Terminology used in our model

Index Symbol Range
Object i 1,..., N,
Model J 1,..., N,
Time step t 1,...,T
Observation [ 1,..., L
Variable Symbol  Support
Class of object i st {1,...,Ns}
State of object 7 at time step ¢ x R™
Sequence of object i’s states from time ¢ to time T; x; R™
Observation [ at time step ¢ 2 R"
Object i’s surrogate observation at time ¢ Z; R
Sequence of object i’s surrogate observations Z; R™

Association of observation [ at time step ¢

al {1,...,N,;}

have the following parametrisations:

j=1

N .
p(a) =TI, o= [p (af:’l
( §) =G (w ’J;a,ﬁ)

N
:N(xt ant 17@]/‘*’ ’])
./\/'(zt,th’J,Rj/w ’J)
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By substituting the factors in Equation 3.5 for their respective distributions, we can
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rewrite the complete likelihood function as:

z s Tz
s a0 =[] [H 9/ (@) (o3, 1) TN (0l B, Q)
i=1 Lj=1 t=1
T Lt ) Y
TLLT A (e i, )4 ﬂ>]_
t=1 =1

(3.6)

Note that our joint distribution is a mixture model where each component is marginally
t and conditionally Gaussian. The model is therefore robust to account for objects
whose behaviour deviates from the modelled ones. In order to define the cost function
to be optimised by the inference module, we substitute the factor PDFs and apply
the logarithm:

Nz [ Ng T; Ly
Inp (s, z, 2z, a, w|) :Z|:Z6(Sivj) (;ln;}Jr <% 71) Inw; — gwi 71nF<g> +Inp; +ZZ6(ai,i)lnpli>

t=11=1

N T
s ) i Ty CNT - . T, —1 T, —1
+> 6 (s4,9) (Z(Q (w7~ By ) @t (a fijzzl)) - lncm’"(z)m)
F] t=2
N ) Ti Lt Wi - NT -
+> 6(s4) 26( ) <7?Z (z,l5 ijz;’J) R;l (zi ij:ri’]> — ln\R |+ = lnwl)
P t=11=1
Ns A N . i Lt
-3 5 (s5) Titm) ) omy — CIC)) 6(ai,i)nln(27r)}
F] 2 j t=11=1 2

(3.7)

The complete log-likelihood in Equation 3.7 is given by the sum of the log-likelihoods
of N, trajectories under a STC model parametrised by 2. The first line is a com-
bination of terms that are functions of the precision weight w; and the prior class
p; and data association p! probabilities. The terms in the second line represent the
initial states. The third line represents how well object ¢ complies with the dynamic
behaviour represented by the 7 mixture component. The fourth line represents how
well object ¢ complies with the observation function and noise modelled by the mix-

ture component j. Finally, the fifth line is a sum of normalising terms. Note that the
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functional form of our model is very similar to that of an LDS, therefore it inherits
its analytical and computational advantages. However, in addition to the properties
of the LDS, our new model accounts for (i) multiple dynamics, (ii) outlier detection

and (iii) data-association modelling.

3.3 Summary

This chapter introduced a probabilistic graphical model that encodes all of the vari-
ables in the multi-class tracking scenario. Our complete model can be seen as a
Mixture of Linear Dynamical Systems (MLDS) extended in several ways. Firstly, the
state of each object is modelled using a ¢ distribution. We introduced a Gamma-
distributed auxiliary random variable for weighting the covariance matrices of the
MLDS model so that the overall state is conditionally Gaussian. This allows the
model, as it will be shown in Chapter 4, to account for anomalous trajectories, while
still permitting the use of the efficient inference routines that have been already de-
veloped for Gaussian models. Secondly, data-association ambiguities are accounted
for by replacing the direct relation between object states and observations with a cat-
egorical random variable that represents soft assignments between the observations

and all of the existing objects at time t.

At the end of the chapter, we presented the complete log-likelihood of the data under
the model introduced throughout the chapter. This likelihood will work as the cost
function used to estimate both the variables of interest — objects’ states and classes,
data association, and anomaly score — in Chapter 4 and the parameters of the model

in Chapter 5.



Chapter 4

The Expectation Association

Algorithm

The previous chapter introduced our Probabilistic Graphical Model (PGM) for multi-
object tracking and classification. As a result of the parameters in the likelihood
function being tightly coupled, performing exact inference on this model is compu-
tationally intractable. We must therefore resort to approximate inference methods.
The two most common solutions to this problem are Markov Chain Monte Carlo
(MCMC) and variational inference. Motivated by the efficiency and convergence
properties of variational inference methods, we introduce a new deterministic ap-
proximation scheme for estimating object trajectories and classes, while also solving

the intractability issue of data association.

This chapter introduces the Expectation Association (EA) algorithm, a variational
approach for the multi-object Simultaneous Tracking- and Classification (STC) prob-
lem. It starts by motivating the use of variational approximations for the problem at
hand. Then it presents a factorised approximation of the posterior of interest and the
update equations needed to calculate each of the factors that constitute this approx-
imation. Subsequently, some considerations about the sequential implementation of
the inference procedure are highlighted. The chapter concludes with a qualitative

comparison between EA and some state-of-the-art tracking methods.

02
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4.1 The Lower Bound

Performing inference on our model, introduced in Chapter 3, is equivalent to esti-
mating the posterior distribution p(s, w, x, a|z) over classes, precision weights, object
states and associations. In principle, this posterior can be calculated by maximising
the likelihood of the data. The log-likelihood of the data, in turn, is obtained by
marginalising out the set of hidden variables (s,w, x,a) given the STC model para-

metrised by the parameters © and the observations z:

Inp(z an// S,w, T, a,z)dwdz. (4.1)

Unfortunately, this integration is both analytically and computationally intractable
due to the coupling between variables induced by the summations. By applying the
d-separation criterion [15] on our model in Figure 3.6, it can be seen that, although
object states and associations are marginally independent, conditioning on the obser-
vations (explaining away evidence) introduces statistical dependencies between them.
As a result of these dependencies, the posterior is a mixture distribution where the
number of components increases combinatorially with the number of objects and

exponentially with time.

Given that the exact likelihood function is intractable, an approximation is needed,
and for that we use a lower bound instead. Let ¢(s,w,z,a) be a probability density
function that approximates the exact posterior p(s,w,z,a|z). By expressing In p(z)

as:

an/ S,W, T, a) p(s,w, 2,0, Z)dwdx, (4.2)

q(s,w,z,a)

then applying Jensen’s inequality [15] and realising that the logarithm is a convex

function, we arrive at a lower bound:

p (87 w’ x? a’ 2)

Inp(z Z/ s,w,x,a)ln dwdx = L[q]. (4.3)

q (87 w? m? a)

This inequality holds for any choice of ¢. In particular, if ¢(s,w, z,a) equals the true
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posterior p(s,w, x,alz), then Equation 4.3 becomes an equality.

4.1.1 The Factorised Approximation

If tracked objects are well separated or they have identity markers, the associations
are easily obtained and the posterior over object states can be efficiently calculated.
Otherwise, the method will have to account for the ambiguities in the data association
process. For this case, estimating the object state 2! requires calculating the following

marginal:

p(2']z) = Zp (z'|a,z) p(a). (4.4)

Calculating this marginal requires computations that grow combinatorially with the
number of objects and exponentially with time. In order to overcome this computa-

tional intractability, approximations are usually made.

The inequality in Equation 4.3 holds for any choice of ¢. In particular, if ¢(s,z,a)
equals the true posterior p(s, x, a|z), then Equation 4.3 becomes an equality. We pro-
pose approximating our posterior with a probability density function ¢ that separates

classes and states from data associations, so it factorises as follows:

q(s,w,z,a) =q(s,w,z)q(a). (4.5)

Given this factorisation, the posterior of interest is approximated as the product of a
state/class distribution and an association distribution. The approximate state/class
distribution is a mixture distribution whose complexity increases linearly with time
and the number of objects, and not exponentially as is the case for the true posterior.
Similarly, the calculation of the distribution over associations also becomes linear in

time and in the number of tracked objects

Our approximation assumes that, given the data, state sequences and associations
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are statistically independent!. This does not imply that the state estimates and
data associations are decoupled; in fact, they depend on one another via algebraic
equalities — see Equation 4.10 to Equation 4.20. The variational approximation
transforms these statistical dependencies into algebraic constraints. We resolve these
constraints by optimising each of the ¢ factors in turn, i.e. by fixing the state estimates
and updating the associations, and vice-versa. As shown in Figure 4.1, in the context
of our tracking application, object trajectories tend to be temporally coherent, hence,
given the data observed up to the current time step, it is possible to recursively
estimate states, classes and data association. Example 4.1 illustrates the motivation

behind the main assumption in our approximate model.

Figure 4.1 — An intuitive explanation of our variational approximation. We assume
that once object trajectories are observed, temporal coherence in the observations
make the correlation between classes/states and associations negligible, hence we
can assume they are statistically independent. On the left hand side of the image,
it would be difficult to choose which observations from time ¢ = 3 go with which
observations at time ¢ = 4. In contrast, as shown at the right hand side, by looking
at the observations from time ¢ = 1 to ¢ = 6 this ambiguity is minimised.

Example 4.1

Let us consider two trajectories sampled from a two-component STC model. In Fig-
ure 4.2, stars represent observations, whereas filled circles and squares represent the
two different object classes. The true class assignment along with the observations are
shown in the first image. The squares/circles that are linked represent one individual
object. This example illustrates how the motion history of the objects serves to disam-

biguate the data association and classify them according to their dynamic behaviour.

In other words, after having observed the data, any remaining statistical dependencies (e.g.
cross-covariances) between state and association variables are not captured by our approximation.
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In iteration 1, two objects are initialised and observations inside the dashed circle
are associated to these objects with a high probability. The associations for detections
outside the circle are assigned a non-informative uniform distribution. After running
the E-step with q(a) initialised as explained before, the resulting trajectories show con-
fident assignments inside the circle and ambiguous ones elsewhere. In iteration 2, we
run the E-step using the q(a) updated in the previous iteration. Although the class
assignment has not converged to the correct one (note that the colours in iterations
2 and 3 are different), object trajectories fit better the structure of the observations.
Convergence is reached in the 3rd iteration where the class assignment is equivalent

to the one depicted at the beginning of the image sequence.

*
16
Observations
12

Figure 4.2 — A synthetic example of state/class estimation from noisy observations
using the EA algorithm. The first image depicts the ground-truth trajectories and
the observations, including those for which the prior data association is confident
(black stars inside the red dotted circle). The last three images show the state esti-
mation (blue connected segments) and class assignment results (coloured markers)
after three iterations of the EA algorithm.

The initial factorisation in Equation 4.5 results in other factorisations across objects,
time and within observations. These are induced factorisations, i.e., they do not con-
cede additional accuracy and are exact, given the initial assumption in Equation 4.5.

The first set of induced factorisations:

Ny
q(s,w,x) = Hqi(sz,w’,x’) (4.6)
i=1
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allows us to estimate the state sequence of each object independently from each other
and thus we refer to them as the state factors. The second set of induced factorisations
allows us to have one factor for each association possibility. Therefore, the probability
of associating object i to observation [ at time t can be updated independently from
each other. The approximate marginal over the data association can then be written

as:
T N, Ng

a(a) = [TTITTa" (at')- (47)

t=1 [=1 =1

We refer to each factor qi’i as an association factor. Unlike the exact posterior,
our approximation in Equation 4.5 is computationally tractable. We can derive the
expressions for the factors in Equation 4.6 and Equation 4.7 by maximising Equa-
tion 4.3. As explained in [15], the log of the optimal solution for factor ¢; is obtained
by considering the log of the joint distribution over all variables and then taking the
expectation with respect to all of the other factors ¢; for j # i. Our joint distribution

is given by Equation 3.7.

Factors ¢;(s*, w’, ') and ¢/ (a}") are iteratively updated as explained in Section 4.2 and
Section 4.3 respectively. We call this iterative process the Expectation-Association
(EA) algorithm and introduce its batch version with the pseudo-code in Algorithm 1.
The next sections explain the two main procedures of our algorithm; the Expectation

step (E-step) and the Association step (A-step).
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Algorithm 1 The batch EA algorithm

1:
2:

10:
11:
12:
13:
14:

Model < Learn model parameters (Chapter 5)
q(a) < Initialise object-observation association probabilities using appearance (Exam-
ple 4.2)
procedure E-sTEP(Models, q(a))
Zi + Calculate per-object average observation.
Ri’j_l <+ Calculate per-object/per-model observation noise covariance.
ZZLQ li’j < Run per-object/per-model Kalman Filter and obtain innovation log-
likelihoods.
q(z'|s*,w") < Run RTS smoother and obtain per-model posterior over object states.
q(w'|s") + Calculate posterior over precision weights
q(s") + Calculate marginal over class assignments.
end procedure
procedure A-STEP(Models,q(s,x))
q(a) < Update the association probabilities.
end procedure

Repeat until convergence.

4.2 The Expectation Step (FE-step)

Each state factor ¢;(s’,w’, ") is obtained as the function that maximises the lower

bound in Equation 4.3. The optimal state factor ¢; is given by the expectation of the

complete log-likelihood with respect to the factors g;»; and the association factors

q(a):

(4.8)

Ingq (si,xi,wi) = (Inp(s,z,z, a,w>>qk#i(sk7xk7wk)7q(a) .

Given the conditional independence properties of our model, we can further rewrite

qi (s, 2%, w') as q; (s°) q; (W']s") q; (x']s", w?), so its logarithm is given by:

Ing; (s',2",w') =Ing; (s') + Ing (w']s') + Ing (z°]s",w’) . (4.9)
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As shown in Appendix A, ¢ (2°|s’,w’) has the form of an LDS, hence In¢; (s, 2", w")

can be written as:

Ing (si,:vi,wi) =lIng (s’) +Ing (wi|si) +InLDS (xi,zi;Fi, Qi/wi,Hi,Ri/wi) +

(4.10)
where “...” represent additive constants and the parameters of the LDS are:
Fi’Si =F
%|SZ = QJ
weewy (4.11)
I‘Ii|8Z = HJ
Ri| 1
Wt adwid Y
with
Ly
o al,i
t t
=1 (4.12)
' = qla; = i)
The term:
7 = Lha's (4.13)

is a surrogate observation per object i given the current estimate of g(a). More pre-
cisely, it is a weighted average of the observations with weights given by the posterior
association probabilities of all of the observations and target i. Additionally, since
2" is conditionally Gaussian, the factor ¢ (zf|s’,w") can be efficiently calculated us-
ing the Kalman filter (KF) and the Rauch-Tung-Striebel (RTS) smoother [70]. Note
that the observation-noise covariance matrix to be fed to object’s i filter /smoother at
time t is not a constant matrix any more, but is a function of the association factors.
Therefore, we can define the surrogate covariance matrix for object ¢ at time ¢ as

follows:
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1

oI

R = R;. (4.14)
In order to obtain the posterior over g(w’|s’) we marginalise out z from the state
factor. The approximate posterior over w’, conditional on s* = j, is a Gamma distri-

bution with parameters:

T;
n i
CYZ'J‘ = 5 Z y (415)

i Lt

T
Bij = E + 3 g ( E (ai’zi R712£> — z;Tafij_lz; + E?TE?E;]> (4.16)
=1

where ¥ = H;V/J H 4+ R; and e =zl — H;zV

Vi , are the innovation statistics

t)t—
given by the Kalman filter. The conditional posterior mean of the precision weight

W™, is therefore given by
(0271

Bij

O = (4.17)
Equations 4.15, 4.16 and 4.17 constitute the outlier rejection mechanism of our frame-
work, previously illustrated in Example 3.1. If, as a result of mixture component j
]

being unable to explain sequence 7, the innovation errors ¢’ are large, then f;; in-

creases and causes w;; to drop, effectively down-weighting the entire sequence.

Finally, the posterior assignment probabilities are obtained by further marginalising

W out:

Ing(s' =j) = ln/ exp (lnq (si = j,wi)) dw’
0

=a+Inb+InT'(b) — (b+1)Inc

(4.18)

where

a=Inp; + ln——lnF< >__Zln Ez]|+izatpé+mj;

t=1 =1
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One can see that the optimal ¢(s,w, ) is a Gaussian mixture distribution, with one
component for each motion pattern. Note that the marginal over the class assignment
variables in Equation 4.18 is obtained by updating the prior over class assignments
with a set of terms that are a function of the marginal log-likelihood of the data under
the model j. This log-likelihood can be obtained as a by-product of the E-step. It
is equal to the sum of the innovation log-likelihoods li’j , which are computed at each

update step.

Note as well, that accumulating these innovation log-likelihoods, after performing
filtering with each of the models, allows us to infer the assignment of targets to
motion patterns. Furthermore, since Kalman filtering provides these innovation log-
likelihoods each time an observation is processed, evidence about class assignments
can be sequentially updated. This is fundamental for applying our framework to

online tracking.

4.3 The Association Step (A-step)

The second factor of the factorised approximation is ¢(a). Its natural logarithm is

given by:

T N. Ng

Ing(a) = Z Z Z Ingq (af;i> , (4.19)

t=1 =1 i=1

where af;i is a categorical random variable that is 1, if detection | was generated by
object ¢ at time ¢, and 0 otherwise. We obtain each of the sub-factors in Equation 4.19

by maximising Equation 4.3 with respect to q(ai’i). The solution for the association
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sub-factors is given by:

N
Inq (aff) =Ilnp <ai’i> + Z q (si’j) (

J=1
i
2

+ g ((eij) — 1n(5ij))> + ...

((leg - iji’j)T R (Zi — Hji‘i’j) +Tr (HjTRj_lHjCOU (i,?j)))

(4.20)

where iij and @ are the smoothed trajectories and the posterior precision weights
respectively. Note that ¢(a) depends on the square of the error between expected
and actual observations. Moreover the log-likelihood of assigning object ¢ to obser-
vation [ at time ¢ decreases when the uncertainty about the state of object i (state
covariance) increases. This permits our approach to be robust against spurious obser-
vations, even without explicit states to model them, as in classical approaches such as
JPDAF, MHT or MCMCDA. Since spurious detections typically support a very small
portion of the object’s trajectory, they tend to have very weak estimated associations,
even if these associations were initialised with a high probability. Object trajectories
that were initialised due to spurious observations tend to remain short, as they are
promptly removed due to their lack of evidential support. A complete derivation of

the association factors is provided in Appendix B.

4.3.1 Integration of Multi-modal Features

A key feature of our formulation is its flexibility to integrate multi-modal features
when performing data association. In most platforms there are several sources of
information to estimate the association between objects and observations. Sensor
modalities such as stereo cameras or lasers provide both depth and intensity mea-

surements from which complementary features can be derived.

The prior over associations p(al) (see Equation 4.20) could for instance be calculated

based on appearance features; the inference algorithm would then compute the pos-
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terior g(al) by seamlessly fusing this prior with evidence from the object’s dynamics.
Example 4.2 illustrates two ways of initialising these association probabilities as found

in [136, 27| and an improved approach developed in this thesis.

Example 4.2

In the implementation of our work presented in [27], once an object is time updated,
the image of its assigned observation is stored. Then the appearance-based prior over
associations 1s obtained by calculating the normalised cross correlation between the
image patches of new detections and those previously assigned to objects. Our pro-
posed approach provides a framework for a more robust initialisation. Similar to
[136], we can summarise the image information of individual objects, before and af-
ter association ambiguities, using colour histograms as appearance models. We can
then sequentially update the appearance model of object i by averaging the histogram
of the current assigned image patch (detection) and the current histogram/appearance
model. p (ai”) s obtained from the histogram-intersection between appearance models
and the histograms of the image patches of current detections. Figure 4.3 illustrates

the process.

4.4 The Online EA Algorithm

The factorised approximation we have proposed allows our method to be implemented
in a sequential manner. As shown in Equation 4.18, the assignment probabilities
are a function of the innovation statistics of the object states under each of the
model components. Therefore, when applying our method online, we simply filter
each track using each of these model components and accumulate their innovation
statistics so that the class-assignment probabilities can be recalculated at each time
step. Similarly, the association factors can be sequentially updated due to the fact

that they are a function of the current object state.
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Figure 4.3 — An appearance-based prior distribution over data associations can be ob-
tained by comparing the colour histogram of tracked objects (indexed by ) and the
ones for the current detections (indexed by [). As shown in the top two images, the
histogram of each object ¢ summarises its sequence of associated images. The bot-
tom two images represent the incoming detection images with their corresponding
histograms.

In order to perform sequential inference, our implementation accumulates detections
in batches that have a size predefined by the user. Once a detection is obtained, it is
accumulated and the data that falls in the current sliding window is processed. The

entire inference process is summarised in Algorithm 2.

The Kalman forward-backward recursions provide our method with the capability of
solving data-association ambiguities without throwing away evidence in ambiguity
areas. By forward propagating the filtering densities, followed by backward propa-
gating the smoothed densities, we allow the dynamics of the objects to refine the
state estimates and, more importantly, obtain the association between observations

and objects as a by-product of the object-state histories.

The approximate state/class distribution for object i has the form of an LDS, hence,

as mentioned before, this posterior mode can be calculated using the RTS recursions.
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Algorithm 2 The online EA algorithm

1: Model + Learned model

2: w < Sliding window provided by the user
3: EAits + Number of EA iterations

4: fort+ 1, T do

5: dy < Obtain object detections
6: 2/*N= « Obtain raw observations
7: q(a;—w+1:¢) < Initialise association probabilities in the sliding window
8:
9: for k < 1,EAits do
10:
11: procedure E-sTEP(Model, q(a;—y+1:t))
12: for i+ 1, N, do
13: zi_ 1.4 < Calculate surrogate observations.
14: Ri’fw 1t Calculate surrogate noise covariances.
15: gi(z'|s",w") < Perform filtering.
16: > li’:stl < Accumulate innovation log-likelihoods.
17: qi(z']s?, w') < Perform smoothing.
18: ¢i(w'|s?) + Calculate posterior over precision weights.
19: qi(s') + Calculate posterior class assignment probabilities.
20: end for
21: end procedure
22:
23: procedure A-sTEP(Model, ¢(x, s, w))
24: for t, «+t—w, t do
25: forl <+ 1, L;, do
26: q(aiw) + Update the association factors.
27: end for
28: end for
29: end procedure
30:
31 end for
32:
33: end for

The resulting update equations for the forward pass are as follows:

7! = FE? + K, (7 - HFE)
o . R (4.21)
V,'=(—-KH;)P_, (I - K.H;) + KtFKtT,
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where we have defined:

Qj

wt’

Ptfl = EyviﬁlﬂT +

-t
Wi

R\ (4.22)
K, =P H;" | H;P,_,H;" + :

Once the filtering (forward pass) has been done, we calculate the smoothed posterior

using the backward recursions:

20 =3 4, (xiil - F]Ti]) ; 4.23
i T Cring r -
Vi =V, +Jt(t+1_Pt>Jt’

T7bJ

where we have defined J, = V,” F;T (P,)"". Using these equations we update the
object states in the E-step, and calculate in the A-step, association probabilities that
consider this enhanced motion history of the objects. Being able to bootstrap the
estimated state trajectories with the estimated data association and vice-versa is
particularly important in cases of association ambiguity, i.e. when more than one
detection is close to an individual object (see Example 4.3) or when an object gets

occluded for a small period of time (see Example 4.4).
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Example 4.3

Consider the case when two objects get close together causing an association ambigu-
ity. The observations obtained at this moment, although uninformative for calculating
association probabilities, they still provide evidence about the localisation of the ob-
jects.  Our method makes use of the evidence in ambiguous areas for localisation
purposes and recovers the object identities according to their location history before

merging.

(b) Objects T'1 and T3 get close, causing an asso-
ciation ambiguity

(c) Observations are correctly assigned after the
group in (b) splits

Figure 4.4 — An instance of identity disambiguation.

As shown in Figure 4.4, although once the grouping occurs (Figure 4.4b), there is no
detection associated to object T'1 with a high probability, FA continues estimating the
entire object trajectories, and recalculating the data association based on the obser-
vations available up to the current time step. This continuous flow of information

between trajectory estimation and data association makes it possible to associate T'1
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to the right detection once the grouping is over (Figure 4.4c).

Example 4.4

A second example, similar in nature to the previous one, is an occlusion. Here, only
one of the objects interacting is observed and the occluded object is sufficiently sepa-
rated before getting occluded so that, no association ambiguity occurs. However, once
the occluded object is observed again, it may be difficult to match this observation to
its respective track, particularly for vehicles, which suffer drastic appearance changes

when they are observed from different perspectives.

Occasionally, occlusions may cause new objects to be initialised. However, if the new
observations are better explained by already-existing objects, our method naturally re-
calculates the data associations. This allows us to recover the identity of each object

even in the event of temporary occlusions. Figure 4.5 shows an instance of this sce-

nario.

(a) Objects T'1 (van) and T2 (cyclist). De- (b) Object T'1 is occluded by object T2, so
tections and identities on the left and the former is not observed
trajectories on the right

o . \\'5\ .
(c) Once the van leaves the occlusion, the (d) After smoothing, the detection corre-
online association routine assigns the sponding to the van is reassigned to ob-

new detection to a new object (7'10) ject T'1

Figure 4.5 — An instance of identity disambiguation after an occlusion. Images with
tracked objects are depicted on the left-hand side and object trajectories in a global
reference frame on the right (images were cropped to ease visualisation)
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4.5 Related Work

This section presents a review and highlights the differences between the EA algo-
rithm proposed in this thesis and the state-of-the-art methods for both approximate

variational inference and MOT.

4.5.1 VBEM

One of the most popular variational methods is the Variational Bayesian Expectation
Maximisation (VBEM), proposed by [34]. The EA algorithm may be regarded as
a special case of the VBEM algorithm. Both EA and VBEM are mathematically
similar, since they seek to approximate the joint posterior distribution by eliminating
the coupling between the variables that make this calculation intractable. They both
estimate the posterior distribution over variables of interest in an iterative process
which optimises a lower bound of the data likelihood. However they are different in

that:

e VBEM decouples state variables from model parameters, whereas EA decouples

state and class variables from association variables.

e VBEM is completely general, whereas EA is specialised and performs inference
efficiently by exploiting the structure of the tracking and classification problem,
and by taking advantage of the well-known Rauch-Tung-Striebel smoothing

recursions.

4.5.2 GM-PHD

The Extended Target GM-PHD (ET-GM-PHD) filter [137] is a Gaussian Mixture im-
plementation of the PHD filter for extended targets — objects that can emit multiple
observations per time step [138]. The work in [138] requires each possible grouping/-

partition of the observations to be considered in order to update the object’s state,
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which in practice, is computationally prohibitive. The authors of [137] approach this
issue by using only the most probable partitions obtained using a clustering algo-
rithm. In our EA algorithm, the partitions, which correspond to the detections from

the object-detection module, are also obtained using a clustering-based approach.

Similar to EA, in ET-GM-PHD both dynamic evolution of each object state and
the observation process are modelled using linear Gaussian dynamical models. This
allows them to make use of the Kalman filter recursions in order to efficiently update

the object states.

The main drawback of PHD-filter-based approaches is that no explicit reasoning about
object identities is performed. Therefore, further post-processing is needed in order

to obtain the individual state trajectories.

4.5.3 IHTLS

The Iterative Hankel Total Least Squares (IHTLS) method [58] performs small track
association by means of efficient rank estimation of a Hankel matrix. The Hankel
matrix is composed of the raw motion observations, and its rank measures the motion
complexity. IHTLS performs dynamics-based data association. It creates tracks from
small segments (a.k.a tracklets) that are highly likely to belong to individual objects.
Then the objective is to associate together those tracklets that belong to the same

trajectory.

Using the tracklets, a Hankel matrix is constructed. This Hankel matrix is incomplete
due to object crossings and object occlusions. THTLS creates a pairwise similarity
matrix between tracklets by minimising the rank of the Hankel matrix. Once the
similarity measure has been obtained, the final association is formulated and solved

as a generalised linear assignment problem [139].

In EA, tracklets are constructed sequentially using a gating procedure. Dynamics-
based tracklets association is naturally enforced by our model. As illustrated in Ex-
ample 4.1, by iterating over trajectory estimation (E-step) and association estimation

(A-step), EA converges to trajectories that are spatially smooth.
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The main drawback of IHTLS is that it performs tracking directly in the feature/ob-
servation space. As explained before, not considering the incompleteness and noisy
nature of the data precludes the method from estimating quantities that are not ob-
served (e.g. velocities), and makes inference prone to drops in performance due to

unmodeled noise.

4.5.4 DC

The Discrete-Continuous (DC) energy minimisation method presented in [140] in-
troduces a discrete-continuous Conditional Random Field (CRF) for object tracking.
DC is an optimisation-based approach where the cost function models how well the
trajectories follow the detections; it encourages temporally smooth data association,
and enforces exclusion constraints. The first exclusion constraint enforces that each
object observation should support, at most one trajectory and each trajectory should
be assigned, at most, one observation per frame. The second one models the fact that

two trajectories should remain spatially separated at all times.

DC is a batch-type tracking approach, and it is not clear how to apply it to sequential
object tracking. DC does not consider objects’ appearance in its cost function. It
also requires an independent tracker to generate initial trajectories for its optimisation
procedure. On the other hand, EA is sequential by nature; it makes use of appearance
information for calculating associations; and it does not require trajectories to be

initialised by an independent tracker.
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4.6 Summary

This chapter presented a sequential and efficient algorithm for calculating the poste-
rior probability distribution over object states, data association, and precision weights
given a set of observations and the model introduced in Chapter 3. We refer to this
method as the Expectation Association (EA) algorithm. The intuition behind EA is
as follows: Once a trajectory i has been observed, its states, class assignments, and
preciston weight can be estimated recursively from a sequence of surrogate observa-
tions and noise covariances, which arise from expectations of the data association

variables.

We learn the parameters of our model, introduced in Chapter 3, using a training
methodology based on the Expectation-Maximisation (EM) algorithm. As explained
in Section 2.1.5, the EM algorithm is a two-step iterative process where the E-step
calculates the Expected Sufficient Statistics (ESSs) used to calculate the model para-
meters in the M-step. Our training methodology uses the EA algorithm, introduced

in this chapter, as the inference machinery that implements the E-step.



Chapter 5

Model Learning

The previous chapter presented the Expectation-Association (EA) algorithm, a se-
quential and iterative procedure that performs inference on the Simultaneous Tracking
and Classification (STC) model. This model, whose structure encodes the domain
knowledge of the problem, is defined by a set of free parameters. This chapter shows

how these parameters can be learned from data.

The discrimination power of our STC model depends highly on the observation fea-
tures we use. Even though utilising a larger number of features allows for better class
separability, it also means that a larger number of parameters need to be fitted, and
thus the complexity of the model increases. Maximum Likelihood (ML) estimation
approaches tend to over-fit complex models to the data, making their generalisation
power decrease with the dimensionality of the observation space. Therefore, learning
approaches whose generalisation performance scales well with the model complexity
are desirable. Additionally, even when parameter fitting should be automatic, most
approaches to object tracking do not explicitly learn the parameters of their models,
so manual tuning must be performed. Requiring user input to set the parameters
makes it difficult to adapt the system to work in different environments and under

different conditions, and to be used by non-expert users.

The Expectation Maximisation (EM) algorithm is commonly used to estimate the

parameters of models with hidden variables. This chapter presents a method for
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estimating the STC model parameters using an iterative procedure based on EM. The
Expectation step (E-step) is performed using the EA algorithm. The Maximisation

step (M-step) is implemented by the set of equations we derive in this chapter.

5.1 Parameter Learning for the STC Model

The parameters of models with latent variables are usually learned by means of ML
procedures derived from the EM algorithm. Each EM iteration consists, as explained
in Chapter 2, of two nested loops: the E-step and the M-step, which are iterated
until convergence. This section presents an EM algorithm where the innermost loop
is the E-step and it is carried out by the inference machinery provided by the EA
algorithm. Please note that the E-step in the EA algorithm works as a component
of E-step introduced in this section for learning purposes. The outermost loop is the

M-step and it is the loop where the model parameters are updated.

Ideally, we would like to learn the model parameters by optimising the marginal like-
lihood of the data, however, due to the complexity added by the marginalisation
procedure, a better approach would be to optimise the complete-data likelihood in-
stead. The exact likelihood corresponds to the probability of the observations, where
all hidden variables have been marginalised. The complete-data likelihood, on the
other hand, is obtained by assuming all the variables in the model are observed and
calculating the likelihood of the complete data points. In the case of our STC model,

a complete data point would be the set of measurements: (x%,,2},,s",w").

In practice however, object states x},,, class assignment probabilities s* and precision
weights w’ are not given during training, thus we cannot calculate the complete-data
log-likelihood either. The EM paradigm resorts to the expected value of the complete-
data likelihood Qj;; under the posterior distribution of the latent variables. This

expectation is given by:
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The posterior distribution p (s, x,wla; Q) is obtained in the E-step of the EM algo-

rithm given a previous estimate of the model parameters Q = [F}, Q;, H;, R;]. Note

that the expected complete-data log-likelihood Q1 is a function of p;, a?,’;j , Ptij ,
Pt’t . and @Y, which are the Expected Sufficient Statistics (ESSs) provided by the

EA algorithm. What is more, 7, P/ and Ptt 1 are given by the conditional expecta-
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tions (xi|s' = j), <x§x§T st = j> and <x§x§_1T]si =j > respectively, which intuitively,
represent the estimated trajectory associated to object ¢ according to the mixture

component j.

In the classic ML M-Step, model parameters are estimated by maximising Q7 in
Equation 5.1. These parameters can have any form, which makes the ML-EM algo-
rithm prone to failure as a result of singularities or degeneracies. During training,
covariance matrices might get too close to being singular when for example, none or a
very small number of observations support a given assignment to a particular class or
mixture component. In order to constrain the parameter space, we propose to impose
a prior distribution over the parameters to be learned, which is equivalent to regu-
larising the cost function for each individual model parameter. With this addition,
the MAP M-step’s objective function Q (€2) is given by the expected complete-data
log-likelihood Q7 (€2) —as in the ML case— plus the natural logarithm of the prior
over parameters:

Q(Q) = Qur(Q2) +Inp (). (5-3)

Here p (€2) is the prior distribution on the model parameters 2, and for our model,

it factorises as follows:
p(Q2)=p((FIQ)p(Q)p(H|R)p(R). (5.4)

For the prior distributions over process and observation matrices (p (F|Q) and p (H|R)),
we utilise matriz-variate Gaussian [141] distributions conditioned on the process-
noise- and observation-noise covariance matrices (¢ and R) respectively. Using the
matrix variate Gaussian distribution allows us to model the F' and H as rectangular
random matrices. For the prior distributions over covariances matrices (p(Q) and
p(R)), we use inverse Wishart distributions, a family of distributions that allows us
to model () and R as realisations of real-valued positive definite random matrices.
Additionally, by parametrising the process- and observation matrices using their re-
spective covariance matrices we perform parameter tying, thus reducing the number

of effective parameters that need to be learned. The prior distributions over the pairs
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F/Q and H/R are therefore given by:

P(FIQ) P (Q) = Ninxm (FIA;, Q, ) W (QlYgZq, vy) (5.5)

p(H|R)p(R) = Nopxen (H|Ap, R, Q)W (Q1y 2, 1) - (5.6)

Substituting Equation 5.5 and Equation 5.6 into Equation 5.4, the prior over para-

meters is given by:

p (Q) = mem (F|Afa Qa Qf) W_l (Qlyqzm Vq) Nnxm (HlAha R, Qh) W_l (R|Vr2r7 Vr) .
(5.7)

Learning the parameters of our model is, in summary, a process that iterates over
calculating the posterior via the EA algorithm and then updating the model para-
meters so that the regularised version of the expected complete-data log-likelihood is
maximised. Algorithm 3 presents a pseudo algorithm that summarises our MAP-EM

approach.

Algorithm 3 The MAP-EM algorithm for learning the model parameters

1: p(2) < Initialise prior distribution over parameters
2: Q) « Initialise model parameters

3: EMits <~ Number of EM iterations

4: for i + 1,EMits do

5: procedure E-STEP( Q)

6: q(z,s,w) = EA(2 Q)

7: Return ¢(z, s,w)

8: end procedure

9: procedure M-STEP(q(z, s, w),p(f2))

10: Update model parameters as in Section 5.2.
11: ReturnQ:F,Q,ﬁ,R,ﬂ,V

12: end procedure

13: end for
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5.2 Update Equations of the Model Parameters

Now that our new objective function has been completely defined, we need to obtain
the corresponding objective function for each parameter. To do so, we gather the
terms in Q (Q2) that are a function of the parameter to be optimised. These terms are

extracted from Equation 5.1 and Equation 5.7.

By taking the derivative of the objective function for the transition Matrix F' and

setting to zero, the update equation for F; becomes:

A

F; = argmax Q ()
F (5.8)
= (Afo + %‘)/(Qf + ¢j>-

Note that the terms A;Q; and €2y in Equation 5.8, are contributed by the prior
over parameters. It can be seen that they work as regularisation terms. In the ML
case, very small values for the assignment probabilities p;; or a mixture component
collapsing onto an individual data point, i.e. p;—,; ~ 1, would cause singularities in
the complete-data likelihood. Imposing a prior distribution in the MAP case results
in an update equation that, either assigns A to F] if p;; has very small values, or
shifts the ML solution if this one has collapsed onto a particular data point. The
larger the contribution from the training data i, the smaller the effect of the prior is.
Furthermore, the contribution from the training trajectory ¢ is also weighted by the
precision weight w;, which tends to zero when the trajectory follows a non-modelled

dynamic.

By optimising the objective function for the process noise covariance (), we obtain

the update equation for @);:
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Q; = argmax Q (@)

1
X
1/,1—{—2771—{—14—2z * iy (T; — 1)

(%’ — i F] = Fi()" + Fig B + (Fy — Ap) Qp (Fy — Ap)" + Vq2q> :

(5.9)

Following the same line of reasoning of the previous optimisation operations, we
derive the update equations for the observation matrix H; and the observation noise

covariance R;:

H; =argmax Q (H;)
H (5.10)

— (A +15) /(2 + ;)

R; = argmax Q (R;)
R;
1

1/,n+n+m+1—|—zZ 1 Dii T

(Aj —THj — Hy(U)" + H;0 7 (5q7)

+ (Hj - Ah) Qh (Hj - Ah)T + VTET> .

The update equations for the process- and observation-noise covariance matrices
(Equation 5.9 and Equation 5.11) involve additions and subtractions of outer-product
expectations. Since these operations are numerically non-stable, especially for large
matrices, in Equation C.21 and Equation C.26 we provide modified versions of these

equations, that are numerically more stable but analytically equivalent.
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5.2.1 Selecting the Prior Hyper-Parameters

The prior distributions on model parameters are parametrised by a set of hyper-
parameters that can be chosen based on Empirical Bayesian Estimation (EBE) [24],

Hierarchical Bayesian Estimation (HBE) [23], or expert or contextual knowledge.

With EBE, point estimates of the hyper-parameters are calculated from the data
using the EM algorithm. This approach can become overconfident because it uses
the data twice, particularly in the presence of outliers, and it does not model the
uncertainty in the hyper-parameter values. On the other hand, HBE imposes a prior
distribution on the hyper-parameters thus it accounts for the uncertainty in their

values at the price of increasing the complexity of the learning procedure.

Object tracking is an application where prior expert knowledge about model para-
meters is available [17, 85]. This allows us to model the actual motion modes as
samples from a distribution parametrised using this knowledge. If we allow the
hyper-parameters to be mean- and variability beliefs, mean values can be given by
basic models described in the literature (constant velocity, constant acceleration) and
variability values can reflect to what extent the objects in the environment are ex-
pected to fulfil the assumptions established by these basic models. A constant-velocity
model, for example, approximates the motion of a car, better than it approximates

the motion of a manoeuvring pedestrian.

We select the matrix blocks in Ay, that correspond to kinematic states (z-and-y
positions and velocities), as being the transition matrix of a constant-velocity model.
And for those states that describe object appearance, we set a constant-position model

where the change in the state is assumed to be a Gaussian random variable with zero

mean: ‘
1 AT 0

Ap=10 1 0|, (5.12)
0 0 11

where AT is the sampling time. Since we know what variables in the state space are

observed, i.e. only first order variables, the blocks in the location hyper-parameter
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Ay, are set accordingly:

Ap=|---L1-. (5.13)

The scale matrices ¥, and X for the prior over noise covariance matrices have the

following form:

AT®/3 AT?/210

Vg =ve | A2 AT 10 | oy, (5.14)
0 0 1
110
v, Y, = v |--+--| 02, (5.15)
0

where o, 0, are arbitrary standard deviation terms for the process- and observation
noises. The minimum possible value for the degrees of freedom of an inverse-Wishart
distribution is determined by its dimensionality. They define to which extent, the
density of the distribution spreads over the space of covariance matrices. Intuitively,
the smaller the degrees of freedom is, the more uncertain our knowledge about the true
covariance matrix is. The values for the degrees of freedom v, and v,, are therefore

chosen to be small so that the priors over the covariance matrices are highly dispersed:

Vg =m+ 2
(5.16)
Vp=n+2

For the particular case of the prior over assignment probabilities p(s'), these prob-
abilities can be defined by a uniform distribution, which reflects the belief that any
of the motion classes can be observed with the same probability. It could also be
based on similarity metrics obtained by comparing object detections to precomputed

appearance models.



5.3 Summary 82

5.3 Summary

This chapter developed the update equations for all of the parameters in the model
presented in Chapter 3. These parameters are the ones that characterise the motion
modes in the environment and the performance of the sensor when measuring the
state of different kinds of objects. The EA algorithm introduced in Chapter 4 uses
these parameters to perform tracking and classification in a framework that accounts
for the multi-class nature of dynamic environments. The update equations we have
developed here implement the M-step of our MAP Expectation Maximisation (MAP-
EM) approach for automatic parameter estimation. In this approach the complexity
of the model parameters has been constrained by means of Bayesian regularisation,
which also permits the introduction of expert knowledge about model parameters
with uncertainty values attached to it, and prevents singularities in the learning pro-
cess. The E-step for parameter estimation is performed using the inference machinery

provided by the EA algorithm.



Chapter 6

Experimental Results

This chapter presents evaluations of our simultaneous tracking and classification ap-
proach and comparisons with the state of the art. For the evaluation we use data
collected in urban environments, which are extremely challenging due to the large
number of objects and variations in their behaviours. The dataset is composed of
21 sequences of stereo images that are part of the public KITTI dataset [142] and
contain a significant number of pedestrians and cars interacting in the field of view of
a moving platform. The position of the ego-vehicle, along with ground-truth object
detections are provided. Detections also convey ground-truth information about the
object class and data association across time, which was used for evaluation pur-
poses. We separated the dataset into training/validation- and testing sub-datasets.
The training/validation sub-dataset was obtained from 14 sequences out of the 21 that
constitute the complete dataset. For the testing sub-dataset, we used the remaining

7 sequences.

Section 6.1 explains the process by which we obtain object detections from stereo-
vision data. Section 6.2 provides some details about the implementation of the learn-
ing module. A quantitative performance evaluation is presented in Section 6.3 and
Section 6.4. Finally, Section 6.5 provides a qualitative evaluation of the classification-

and unexpected-behaviour-detection capabilities of the method.
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6.1 Object Detection and Feature Extraction

The stereo-vision sensor is regarded as one of the most cost-effective sensor modal-
ities. It is composed of two monocular cameras whose field of view overlaps. After
a calibration (both extrinsic and intrinsic) process, the 3D geometry of the environ-
ment in the overlapping area can be recovered by matching pixels in both images and
triangulating using the calibration of the cameras. As a result, both appearance- and
geometry information can be obtained. The stereo rig used in the KITTT dataset com-
prises two 1.4 Megapixel Point Grey Flea 2 cameras with a baseline of approximately

54cm.

Stereo-based object detection is performed as follows. Firstly, a point cloud of the
entire scene is obtained by stereo processing the left and right images at each time
step. Since the images are rectified (see Figure 6.1), the disparity function from
Matlab is used to obtain a point cloud of the environment (see Figure 6.2). The
ground of this point cloud is segmented out by fitting a horizontal plane using least

squares estimation in disparity image space [143].

Figure 6.1 — Rectified left and right stereo images. If images are rectified, two corre-
sponding features are horizontally aligned

After segmenting the ground plane, the remaining 3D points are projected onto a
polar grid parallel to this plane (see Figure 6.3). Subsequently, areas on the grid with
high point density are segmented out and re-projected onto the image plane in order

to obtain individual object detections, as shown in Figures 6.4 and 6.5.



6.1 Object Detection and Feature Extraction 85

Figure 6.2 — Point cloud reconstruction obtained from processing stereo images

400
200
0
Figure 6.3 — Polar grid count. The point cloud is projected onto a grid on the ground
plane where each cell has the count of the number of points in it

Figure 6.5 — Detections on the image plane.

6.1.1 Feature Extraction

In order to define the sections in the image from where features are to be obtained, we
use the 3D detections extracted from the stereo-images as previously explained, and
2D image-based detections. In this thesis, 2D detections are obtained from the KITTI

dataset in the first part of the tracking evaluation and using the Randomised Prim’s
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(RP) algorithm for object proposals generation [114] in the second part. Observations
are obtained from the portion of the point cloud given by the intersection between
2D and 3D detections. The motivation behind this is that 2D arbitrary object detec-
tion is widely available, however, the 2D bounding boxes generated by the detector
contain both foreground and background. Our feature extraction scheme removes the
background and allows only points on the objects of interest to be summarised by
the observations. As illustrated in Figure 6.6, our feature extraction scheme has the

following steps:

1. Obtain the 2D boxes accompanying the dataset.
2. Obtain binary masks by performing 3D object detection on the point cloud.

3. Extract features from the portion of the point cloud designated by the areas

where the binary masks fall into the 2D detections.

The set of features extracted from the selected areas on the image represent both the
dynamics and the appearance of the objects. In this implementation, dynamics is
represented by the coordinates of the detection’s centroid in a global reference frame,
whereas appearance is represented by the skewness and mean of its width, and the

entropy of its colour histogram.

As shown in Figure 6.7, colour and width of the detections are used as the input to
our appearance-based feature-extraction module. The first feature is the entropy of
the colour histogram. In order to eliminate the background when calculating this
feature, we calculate the histogram of each colour band using the mask from the
3D detection. We then calculate the entropy of each histogram by calculating their
distance to the uniform distribution. Finally, we calculate the mean of the per-band
entropies. This feature captures the property that the colour histograms of cars tend

to have peaked modes, whereas cyclists and pedestrians have a wider spectrum.

The other two features extracted are the mean and skew of the object’s width from
the perspective of the camera. To calculate these features we first extract the patch of

z coordinates associated with the detection. We then calculate the difference between
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Figure 6.6 — An example of the feature-extraction scheme. The black bounding box
on the top image defines a 2D detection, whereas the binary mask represents its
respective 3D detection. Features are extracted from the intersection between 2D-
and 3D detections

the max and min values (z coordinates) per row of the point cloud. The mean of this
set of widths, besides being different for each of the object classes, tends to change
drastically for cyclists according to the perspective of the camera, whereas it changes
moderately for cars and pedestrians. The skew on the other hand, tends to be, for

cyclists positive and higher than for pedestrians and cars.

The appearance features introduced in this section are by no means expected to
provide an optimal performance. The optimal set of features in the context of simul-
taneous tracking and classification should optimise both inter-class discrimination, for
better classification, and inter-object discrimination for better data association, which
tend to be opposing characteristics. Feature engineering is considered, in fact, an art
more than a science, and further investigation into this topic is outside the scope of

the thesis. The process of defining observation features can also be approached by
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(c) Appearance features - Pedestrian

Figure 6.7 — Appearance features obtained from the color and geometry of the de-
tections. The features are the entropy of the colour histogram, and the mean and
skew of the width of the detection in the image plane. Each width value is obtained
from the difference between the max/min z coordinate values at each row of the
structured point cloud associated with this detection

means of feature learning techniques [144-146|, which provide ways of automatically
obtaining convenient representations of the raw detections. Note that the feature (ob-
servation) extraction procedure explained here is used for both learning and inference

(tracking).
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6.2 Model Initialisation and Learning

In this implementation, we use one mixture component per object class. Object
classes were chosen to be Static Car, Moving Car, Cyclist and Pedestrian, which
are the prevalent subsets of all the object categories contained in the KITTI dataset
(eight classes in total). Each training instance consists of a sequence of temporally
ordered features extracted from the detections at every time step. Figure 6.8 shows a
sequence of point cloud segments corresponding to one training sequence. The model
parameter H is shared by all of the classes due to the fact that only one sensor is

used and the model between states and observation features is known.

Figure 6.8 — Sequence of filtered point clouds and image patches that constitute a
training instance

The hyper-parameters of the model were initialised as explained in Section 5.2.1. The
use of the EM algorithm guarantees that the likelihood increases at every iteration.
Figure 6.9 shows a plot of the likelihood of the data for 500 iterations. The learning
process was stopped when the change in the likelihood was negligible (1072).

In order to divide the training sequences into training, validation and test sets, three-

fold cross-validation was used as follows:

e Randomly partitioned the available sequences into three groups.
e Chose the first two groups for training and validation.

e Used the third set for testing.
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Figure 6.9 — Likelihood of the data after 500 iterations of MAP-EM algorithm

e Measured classification performance on the testing sub-dataset.
e Repeated the process three times.

e Chose the best model.

6.3 Performance Evaluation - Tracking

In this section, the EA algorithm is compared with state-of-the-art approaches in
multi-object tracking. Discrete-Continuous energy minimisation [140] (DC), the Hun-
garian method for bipartite matching [46] (the authors call their method Tracking By
Detection (TBD)) and Iterative Hankel Total Least Squares [58] (IHTLS) were used
as baseline methods. For all cases, the comparisons were run using the code provided

by the authors.

Fig. 6.10a reports the performance of our approach and that of the compared methods
for detections obtained as explained in Section 6.1. The results were obtained with 7

sequences of the KITTT dataset, that have a total length of approximately 5 minutes.
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They show that on average, our method performs better than the others, except for
IHTLS. Given how close the MOTA metrics for EA and IHTLS were, we conducted
a two-sample t-test for equal means. The null hypothesis is accepted with p-value
of 0.0165, which means that there is not statistically significant difference between
the MOTA metrics for EA and IHTLS. The advantage of our online EA over IHTLS
is, however, that our system is sequential and uses past information from small win-
dows (12 frames in our experiments). On the other hand, IHTLS was designed to
work offline, so it needs information from entire trajectories across all frames in the

sequence.

100 100 T

(%)
(%)

MOTA MT ML MOTA MT ML

Metric Metric
(a) Quantitative evaluation with detections (b) Quantitative evaluation with noisier de-
obtained as explained in Section 6.1.1 tections. These detections were ob-

tained as explained in Section 6.3.1

Figure 6.10 — Quantitative evaluation of tracking performance. Better scores corre-
spond to bigger values of MOTA and MT, and smaller for ML. Figure 6.10a shows
the results using the detections provided by the dataset. Figure 6.10a shows the
results using noisier detections, thus evaluating the robustness of the compared
methods against noise (see Section 6.3.1).

6.3.1 Robustness against noise

In addition to the key advantage of online performance, our approach models the state
of the objects using hidden variables, whereas IHTLS uses the raw observations. Using
raw observations means there is an underlying assumption that they provide perfect
and complete measurements of the object states. Under our framework, estimation

of the data association is done using a smoothed version of the observations, which
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Figure 6.11 — Sub-partitions on the original detections.

makes our approach more robust to noise. In order to verify this property under
a realistic setting, the detection method was modified so that candidate detections
from the grid segmentation were further partitioned and provided to the tracker
without any preprocessing (see Fig. 6.11). We generated these sub-partitions using
the Randomised Prim’s (RP) algorithm. Sub-partition methodologies are widely used
in order to track objects with different geometries or that are moving close to each

other.

The bar graph in Fig. 6.10b shows how the compared methods have an average drop
in performance of 10%, whereas the effect on the performance of EA was less than 5%
for all of the metrics. Compared against IHTLS, EA performs better, with 99.54%
confidence (i.e. with a p-value of 0.0046).

6.4 Performance Evaluation - Classification

Table 6.1 and Table 6.2 present the confusion matrices for the classification results
using our EA algorithm. In the first table, tracking was performed using position
observations only, whereas in the second one appearance features were also included.
These tables were built by assigning to each object the class label that it took with
the highest frequency while it was in the camera’s field of view. Values in the main
diagonal represent instances of objects to which the correct class category was as-

signed.

The confusion matrix in Table 6.1 shows that the class Cyclist, and both the classes

Car and Pedestrian overlap strongly. In order to verify the class-overlapping issue,
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Table 6.1 — Confusion matrix with the classification results during tracking (%) using
position observations only. The last column shows the number of tracked objects

per class
Act.\Pred. | Static | Car | Cyclist | Pedestrian | Total
Static 71 0 0 29 127
Car 0 71 26 3 86
Cyclist 6 12 76 6 17
Pedestrian 23 2 5 70 96

Table 6.2 — Confusion matrix with the classification results during tracking (%) using
position and appearance observations. The last column shows the number of tracked
objects per class

Act.\Pred. | Static | Car | Cyclist | Pedestrian | Total
Static 96 0 0 4 127
Car 0 89 11 0 86
Cyclist 0 6 94 0 17
Pedestrian 6 0 3 91 96

we evaluated the mean speed, and the speed and heading variances of each instance
in the training set. We then fit Gaussian PDFs to these features. Fig. 6.12 shows
how classes Car and Pedestrian are well separated in this feature space, whereas class
Cyclist overlaps the other two classes. Also, cars and cyclists with low velocities, tend

to be classified as pedestrians.

Car 2 Car
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Pedestrian Pedestrian
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Figure 6.12 — The issue of class overlapping. Each data point used to fit the per-
class Gaussian distributions corresponds to both the speed and heading variance of
each training instance versus its mean velocity. These features are commonly used
to summarise dynamic behaviour and in our particular case show the similarity
between instances of the class Cyclist and instances of the other two classes
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One way to approach the class-overlapping problem is by adding new features. In
our implementations we have evaluated the use of appearance descriptors as a way
to boost the performance of simple dynamic descriptors. By obtaining new features
from appearance rather than by manipulating the dynamic ones (positions), we ensure
that they are conditionally independent given the true states, in other words, that
no information is being reused. Using appearance as part of the state space adds
discrimination power to our method and thus diminishes class overlapping, as shown
in Table 6.2. Figure 6.13 illustrates the improvement in discrimination power obtained

by augmenting the observation space with appearance features.
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Figure 6.13 — A qualitative comparison between the scenario when STC is performed
using position only (scenario 1), and both appearance and position (scenario 2) as
observation features. For scenario 1, Figure 6.13a shows how object 60 is wrongly
classified as Pedestrian, whereas for scenario 2 in Figure 6.13b, the same object
is correctly classified as Static car. Later at frame 552 for scenario 1 the class
assignment for object 61 becomes ambiguous, while object 60 is still misclassified.
In scenario 2 both objects are confidently and correctly classified.



6.5 Performance Examples 96

6.5 Performance Examples

This section aims to illustrate the performance of the EA algorithm from a qualitative
perspective. It presents some examples of the main features of the approach, such
as simultaneously tracking and classifying multiple objects and solving association

ambiguities due to situations such as occlusions and groupings.

Figure 6.14 shows a group of five cars (Ca) and one pedestrian (Pe) interacting in the
field of view of the vehicle. This particular scenario illustrates most of the practical

advantages of the EA algorithm:

e All objects are correctly tracked and classified. Since the EA algorithm
performs inference on a mixture model over trajectories, it can simultaneously
track and classify objects that belong to different classes. In Figure 6.14, object
64 is a pedestrian, whereas the other objects are cars, and our method correctly
estimates their classes. Note that object 64’s precision weight under the class Pe
is relatively small. This is likely due to the ambiguity added to the appearance

features by the lack of illumination in that part of the scene.

e Object 65 gets occluded in Figure 6.14b but its identity is recovered
as shown in Figure 6.14c. Identity recovery after occlusions is one of the
main practical advantages of our probabilistic approach. Even when an object
stops being detected, EA continues predicting its location based on the previous
observations, making it possible to associate the detections after the occlusion
to their corresponding object, if their temporal evolution supports the dynamic

behaviour estimated before the occlusion.
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Figure 6.14 — An exemplar output of the EA algorithm on sequence 01. Object classes
are St: Static, Ca: Car, Cy: Cyclist, Pe: Pedestrian. Black bars behind colour
bars represent the posterior precision weights per object class. Small weights (less
than 0.2 represent outliers). This shows an instance of multi-object classification
and occlusion handling

6.5.1 Average Convergence of the EA algorithm

The EA algorithm takes, in average, 1.2 seconds to converge to a confident classifi-
cation solution. Its dependency on the temporal evolution of the tracked trajectories
makes assignment probabilities based on less than 8 frames considerably unreliable.
In the experiments, as shown in Figure 6.15, with a frame rate of 10 fps, the EA
algorithm takes on average between 8 and 16 frames to obtain stable classification
solutions. As a result, a faster accurate classification would require a frame rate of

more than 10 fps.
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(a) Frame 107: Object 21 is updated using observations

from only two frames, and it is misclassified as Pe.

(b) Frame 112 - Object 36 is updated with only two frames,

and it is misclassified as Cy.

(c) Frame 113 - objects have been updated using obser-
vations from 7 and 3 frames respectively, and their

classification is still erroneous.

(d) Frame 115 - Object 21’s classification converges to the

correct one after processing 10 frames.

(e) Frame 118 - Object 36’s classification converges to the

correct one after processing 8 frames.
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(f) Frame 132 - Object 36 leaves the sensor’s field (g) Frame 172 - Object 21 leaves the
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of view. sensor’s field of view.

Figure 6.15 — An example of uncertain classification with a small number of frames.
The example considers the class assignments estimated for objects 21 and 36 in
sequence 13. It illustrates how our approach requires, on average, more than 8
frames for classification using a video input of 10 fps.
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6.5.2 Unexpected Objects

We defined unexpected objects as those whose behaviours are different from the pre-
viously learned. Due to the scarce nature of unexpected trajectories in the urban
dataset (motions are highly structured), no ground truth is available that allows us
to quantitatively evaluate the outlier detection capabilities of our method. Therefore
this section presents a qualitative evaluation based on simulations and examples from
the KITTI dataset. Figure 6.16a illustrates the trajectory of a cyclist estimated by
the EA algorithm using the original observations along with the posterior class as-
signments and precision weights. They reflect how this observation sequence is well
explained by our Cy category model. In contrast, Figure 6.16b, Figure 6.16¢ and
Figure 6.16d depict the estimated trajectory after adding i.i.d. Gaussian noise € to

the original observations:

e ~N(0,0). (6.1)

The different simulations in Figure 6.16 correspond to cases where the standard devi-
ation o for the added noise was given values in the set (10cm, 20cm, 50cm). For the
case when € ~ N(0,50cm), the precision weights (black bars in Figure 6.16) decrease
to values close to zero, which indicates that the trajectory is very likely to follow
a non-modelled dynamics. As the dynamics of the estimated trajectory drifts away
from the modelled ones, the innovation errors get lager and thus the posterior term
B;.; increases. Since the posterior precision weights @w* are inversely proportional to

Bi.; (see Equation 4.17), the larger f3; ; gets, the smaller @¥ becomes.
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Figure 6.16 — A simulated example of unexpected behaviour detection. Coloured
and black bars represent posterior assignment probabilities and posterior preci-
sion weights respectively. Observations were modified by adding different levels of
Gaussian random noise to the observations. The sub-figures show how the precision
weights get steadily smaller as the observation noise increases
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Figure 6.17 shows examples of objects labelled by our method as having an unexpected
behaviour. In this figure, buses were classified as Ca and Pe but with a very small

precision weight associated to them. This indicates the unexpected nature of their

ol [y

St Ca Cy Pe

dynamics/appearance.

Figure 6.17 — Objects with unexpected behaviours. Coloured bars represent the as-
signment probabilities whereas the black bars behind them represent the posterior
precision weights. Buses in all images were classified as Car in 6.17a and 6.17c, and
as Pedestrian in 6.17c. Their precision weights are close to zero, which indicates
that the objects follow unexpected behaviours. Although their dynamics might be
close to that of a car or a pedestrian in the case of the last object, their appearance
features differ from those learned.
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6.5.3 When does the EA algorithm fail?

A particular kind of situation in which the EA algorithm tends to fail, corresponds to
those cases in which two or more objects are initialised when they are close to each
other and continue moving in the same vicinity. EA relies on the object trajectory
histories to solve future identity ambiguities. Therefore, when the initial association
between tracks and observations is ambiguous during the complete span of the tracks,
the estimated data association can converge to an erroneous one, originating erroneous

identity switches. This is illustrated in Figure 6.18 and Figure 6.19.

Figure 6.18 — A case of association identity switch due to close initialisation. EA
switches the identities of objects 2 and 3 due to their being initialised close to each
other and continuing their trajectories in the same vicinity.
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Figure 6.19 — A case of association identity switch due to close initialisation. EA
switches the identities of objects 57 and 58.

All of the baseline approaches included in the performance evaluation suffer the same
drawback, except for DC [140|. The cost function of this optimisation-based approach
encourages temporally smooth data association, and enforces exclusion constraints,
which makes it more robust to situations in which targets are in close proximity to
each other. The first exclusion constraint enforces that each object observation should
support at most one trajectory, and each trajectory should be assigned at most one
observation per frame. The second one models the fact that two trajectories should
remain spatially separated at all times. Even though enforcing that objects should not
collide, agrees with the physical reality, from the perspective of the object detection
module, this is not always the case. Often an individual detection conveys information

about multiple trajectories (see Example 4.3).
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6.6 Summary

This chapter has presented both a quantitative and qualitative evaluation of the
framework developed by this thesis. It started with a characterisation of the prepro-
cessing steps for object detection and learning the STC model. It continues with an
assessment of the trajectory-estimation- and data-association performance by means
of the MOTA, MT and ML metrics. The experiments show that the EA algorithm
has a state-of-the-art performance even in the presence of noisy measurements and

presents key advantages such as online-robust estimation and classification.

(Classification performance has also been evaluated. The results show a good classifi-
cation performance in general. When using dynamic information only, classification
is degraded when objects move at low velocities. Our approach also allows the seam-
lessly integration of appearance information into the estimation process, improving

the discrimination power.

Finally, this chapter also presents a series of examples that illustrate the advantages
of our approach. They illustrate the robust behaviour of our approach even when
faced with key tracking problems such as occlusion handling and unexpected object

detection.



Chapter 7

Conclusions

This thesis investigated the simultaneous multi-object tracking- and classification
problem. It developed a new framework that formulates the problem as a Probabilistic
Graphical Model on which inference is performed via an approximate variational
method. This method allows us to alleviate the computational intractability issue

brought about by the data association problem.

This chapter presents a summary of the contributions in Section 7.1, future research

directions in Section 7.2 and concludes with a summary in Section 7.3.

7.1 Summary of Contributions

7.1.1 The STC Model

This thesis introduced the Simultaneous Tracking and Classification (STC) model,
a PGM that represents the motion of multiple objects that are not equipped with

identity markers, therefore it address the data-association problem.

As opposed to most traditional tracking approaches, the new STC model encodes
the correlations between object trajectories and object classes and accounts for unex-
pected object trajectories, which makes it appropriate for multi-class dynamic envi-
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ronments. As opposed to most traditional object-classification approaches, the STC

model performs trajectory estimation and accounts for data-association ambiguities.

7.1.2 The EA Algorithm

This thesis introduced the Expectation Association (EA) algorithm, an approximate
inference procedure that allows us to estimate object states and classes simultaneously

and efficiently in a sequential manner.

Our system outputs state estimates for all of the objects in the scene and soft as-
signments of each object to different motion categories or classes. Object classes are
estimated even from noisy, incomplete and ambiguous measurements of position and
appearance. Our method utilises classic and efficient statistical estimation techniques

such as the Kalman filtering and smoothing recursions |70] as subroutines.

7.1.3 Efficient Multi-modal Data Association

The approach introduced in this thesis, seamlessly integrate multi-modal features
such as appearance and dynamics to solve the data-association problem. Our method
allows the user to utilise the technique of their choice in order to initialise the associ-
ation probabilities, and then updates these probabilities based on the dynamic-state
history. This approach to data association allows for identity recovery after occlusion
and merging situations. Furthermore, the approach is general enough so any sensor

modality can potentially be used.

7.1.4 Automatic Parameter Estimation

ML estimation of model parameters is known to be prone to over-fitting. This thesis
has introduced a MAP-EM procedure for learning the parameters of the STC model.
The introduction of regularisation makes learning more robust, and more importantly,

it allows us to safely increase the number of features for describing tracked objects.
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7.1.5 Unexpected Trajectory Handling

Both the EA algorithm for tracking and classification, and the MAP-EM approach
to learning the model parameters, are robust against outlier trajectories. On one
hand, the EA algorithm detects unexpected objects during inference. On the other
hand, the MAP-EM approach to parameter learning down-weights the contribution
of trajectories that have a significant offset to the bulk of the data. Therefore the
STC model represents the most common dynamics in the environment even in the

presence of outliers.

7.1.6 Experiments

The performance of the proposed approach was compared with state-of-the-art ap-
proaches and validated using the publicly available KITTI dataset. This dataset pro-
vides ground-truth information, which facilitates the evaluation. The results showed
that our online approach is more robust to noise than the baseline approaches and
achieves state-of-the-art performance even against batch tracking approaches that try

to estimate a global solution using the entire observation sequence.

7.2 Future Research Directions

Although this thesis has furthered the state-of-the-art in multi-object tracking by
highlighting the importance of simultaneous quantitative and qualitative descriptions,
the problem of robustly describing moving objects is far from solved. This section
points out some limitations of the presented framework, discusses how they can be

improved, and presents further research directions.

7.2.1 Integrated Object Detection

The current framework totally decouples object detection from object tracking. At

each time step the detection module searches the entire field of view of the sensor for
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candidate detections. Further research directions include informing the object detec-
tion module with the current estimated trajectories, thus adding context information

to the detection module.

With very few exceptions ([147, 148] for single-object and [149] for multi-object track-
ing), most approaches to tracking-by-detection treat detection and tracking as in-
dependent modules. Combined object detection, tracking and classification in the
multi-object scenario is a very challenging problem, particularly, due to the fact that,
more robust and discriminative models are needed. In fact, online learning of robust
appearance models for unknown objects is an open problem in the visual-tracking

community [150, 151].

7.2.2 Object Interaction Modelling

One of the fundamental assumptions that our modelling approach makes is that,
given the class assignments of the tracked objects, their motion is independent of
each other’s. A very promising extension of the model introduced in this thesis,

would be one where object interactions such as grouping [65, 48| are accounted for.

Reasoning about object interactions would not only provide robotic platforms with
increased situational awareness, but could also be used to increase the robustness of
tracking systems to occlusions and sensor failure. The basic intuition in the case of
the grouping interaction is that objects moving as a group tend to follow the same
dynamics. This information could be used for example to improve the localisation of

occluded objects.

Object-interaction reasoning can be achieved by adding to the STC model a random
variable whose probability density is parametrised as a function of the object states,
and whose scope is given by the possible interactions. The main challenges that
would be raised by this extension are: engineering the features for representing these

interactions, and ensuring that inference stays tractable.
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7.2.3 Class Switching

The EA algorithm assumes that object classes remain constant. In the current form of
the algorithm, if an object changes its dynamic behaviour (for example, a pedestrian
who starts riding his bicycle), the assignment probabilities tend to become uniform
across the classes involved in the transition and will slowly skew towards the new class,
as the observations supporting the previous assignment leave the estimation window.
In order to quickly account for class switching, change-point detection should be
included into the framework. Although adding class switching to our model would
combinatorially increase the complexity, a variational methodology such as the one
presented by [152] could be used to derive an efficient inference procedure. The same
kind of methodology could be used to include model parameters as random variables
to be inferred, so that objects whose class dynamic model evolves may be accounted

for.

7.3 Concluding Remarks

This thesis has formulated a novel solution to the simultaneous tracking- and classi-
fication problem as performing inference on a PGM, and has presented the structure
of the model, an approximate variational procedure for this inference task, and a

method for automatically learning the parameters of the model.

By providing both a quantitative and qualitative description of the dynamic environ-
ment through the use of simultaneous multi-object tracking and classification, not
only the situational awareness of robotic platforms improves, but also the capabilities
of higher-level tasks such as path planning, whose performance can be improved with

the use of richer contextual information.
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Appendix A

Complete Derivation of the E-Step

This appendix provides a complete derivation of the E-step of our EA algorithm. Let
us write down the log-likelihood of an LDS with its covariance matrices weighted by
w"?. An LDS parametrised by A;j, Qij/w*’, H;j, Rij/w™ has a log-density function
given by:

1 T,
IMLDS (i) = = o (b = y) " V' (wh = pg) = 5 |V
T .
S whd . T _ T —1 m(T; — 1 .
- < 5 (zt —Fijzi_1)” Qi 1 (zy — Fuxi_l)) - = In |Q; ;| + (T ) Inw™J
t;‘2 (Al)
Wi \NT
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=\ 2
_ ( +?’L) i

Given the conditional independence properties of our model, we can further rewrite
q(8i, T, w;) as q(s;) q (wi) q (x;]s;, w;). Moreover, since the posterior of a Linear Dy-
namic System (LDS) can be efficiently estimated using the Kalman filtering and
smoothing equations, we want to demonstrate that:

Ing (s, 200) = I (5) + Ing (o1 }5) + Ing (sl = 56" = (0 (5,200 o misirate) (4

=Ing(s;) + Ing (wi|s;) + In LDS (4,25 Fyj, Qi j/w™, Hyi, Ry 3/w™) + ;.
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A.1 Object i’s State: ¢ (z|s; = j,w")

Lets us write down the expectation in Equation A.2 (Expectations are underlined):

T, L
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(A.3)

It is evident that f;(x;s) and f,(z; s, w) in Equation A.3, are equivalent to the portion
of the log-likelihood of an LDS corresponding to both the initial conditions and the
process model (first and second line of Equation A.1). For this reason, we only
need to modify f,(z;s,w) in order to demonstrate the equality in the last line of
Equation A.2. We distribute the sum over associations for object ¢ and complete the
square as follows:
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Where ol = g(al = i) and oy = Y., al. Terms inside the blue box were added
and subtracted in order to complete the square, whereas terms inside black boxes, in
Equations A.3 and A.4, are constant terms that belong to the original complete-data
log-likelihood but were left out in order to complete the square.

By comparing f,(x;s,w) with Equation A.1, we show that f;(z;s), f,(x;s,w) and
fo(; s,w) together correspond (up to a constant factor) to the PDF of an LDS para-
metrised by the following parameters:

. Oé z.
13
z:: =1
Qi
Fij =1}
Qij _ Q) (A.5)
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wiv] aiwtd J

As a result, we can write the variational factor Ingq (s;, z;,w;) as follows:
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From Equation A.6 we can obtain the PDF of 2° and w’ for target class s' = j:
) o v v v v T; Ly
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A.2 Object i’s Precision Weight: ¢ (w'|s’)

In order to obtain the posterior over w' we need to marginalise out 2. We start by
rewriting A.8. For that, we group all the terms that depend on w* together and define

the constant 7, ;:
gln;—l-(g— >1nwi
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In order to obtain the posterior over w?, we marginalise out z*:
q (si = j,wi) = / exp (lnq (si =7, zi,wi)) dx’ ocf(wi)/‘ q (wl\sl :j,wi) dz?
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where I} = p (zi|z},_;), which is the marginal likelihood of the state at time ¢, is
obtained as a sub-product of the filtering routine (the innovation likelihood). We can
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then write down In ¢ (s = j,w’) as:
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Next we expand the innovation log-likelihood for object i in order to obtain the

remaining terms that are a function of w’ as follows:
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where ZZ’J =H; thl’t] 1HjT + R;. Next we distribute the terms in the innovation so that
Equation A.12 becomes:
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Note that two terms in Equation A.14 are a function of w’ and Inw’. That indicates

that the approximate posterior over w® is conditionally Gamma with parameters given
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by:
von &
Q5 = 5 —+ 5 Z Oy, <A16)
t=1
Buy=5+5 (2:@&%%@@—mtm3f%+é”2féﬂ (A.17)
t=1 \ =1

A.3  Object i’s Posterior Assignment Probability ¢ (s’ = j)

Finally, we marginalise out w®. If we define the auxiliary variables as:

i

Ti T Lt
v, v ) 1 -
_ _ Yy _ - i, , 1,1
a—§In§ lnF<2> ta:; In [ X3¢ |+lnp]—|—§ :E :O‘tpi"'nw’

t=1 =1

v n
b=2—1+2% ay
2 2
t=1
vl [ T T T
c=3+5 E al (zﬁ Rj_lzi> —zy Rz 4+ B e |
=1 \i=1

we obtain:

Ing(s' =j) = 111/ exp (lnq (si = j,wi)) dw’
0

=a+Inb+Inl'(b)—(b+1)lnc

(A.18)



Appendix B

Complete Derivation of the

Association Step (A-Step)

This Appendix presents the derivation of the association factors ¢ (ak?)

Ing (afyi) = <1np(8,.’L',CL),Z,a)>q(s,x7w)7qz;zl,n;éi(ai,i) (B.1)

After taking the terms that are a function of ai’i from the complete log-likelihood in

Equation 3.7, the association factors are given by:

Ns
Inq (af;i) o Z q (si’j) (hlp <afyi>
j=1

- 1( <w,- (zi — Hjxi’j)T R (Zi - Hjl’i’j> - nlnwi> (B.2)

2 qi (si,mi,w;)

+1In|R,| +nln(277))>
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oo () %300 (o o)

J=1

_ %Z] ((Zi — Hjj';i’j)Tijl (Zi _ Hj{i'i’j) +Tr (HjTRjilHjCO'U (i‘zﬂ)>>
n

+ 5 ((ai;) —In(By))
1

5 (In|R;| + nln(27r)))

(B.3)



Appendix C

Complete Derivation of the Model

Parameter Update Equations

C.1 The Complete-Data Log-Likelihood

Na T
p(s,x,z, a,w|Q) :H p(si)p (wilsi)p mo‘s, Hp xt‘xt 1 S, w')
i=1 t=1
i (C.1)
HHp (zef 22, ay, ™) p (a3)
t=1 1=1
The model parameters are given by Q = [Fi.n,,Q1.n., Hi.n,, R1.n,]. In order to

constrain the parameter space, we regularise the learning of the model parameters
by imposing a prior distribution over them. This prior is shared by all the mixture

components of the model.

p(Q)=pF1Q)p(Q)p(HIR)p(R) (C.2)
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C.1.1 Prior Over Hidden Variables

p(sz)zﬁp}s““), pi=1[p1),....,p(Ns),
)= [p (o) (@) 2 () =TT, o= o () (o).

PDFs for the the priors over the hidden variables:

G (i 8) = sl expl—fla). o= =

ij -m - L 4 Tyr—1 (. ij
N (a5 g, Vig) = (2m) "2 V|72 exp (-5 (g = p5)" Vij* (a5 — Mj))
N (a5 Q) = (22 Q2 exp (= = By )T Q5 (a8 = Py ))
N (24 iz, Ry wn) = (2m) ™2 | Ry 12w exp <_% (2 — Hjxij)TR‘_l (2t — Hﬂ?)) '

J

C.1.2 Prior Over Parameters

For the regularisation term of the state transition matrix F and the process noise
covariance Q, we utilise the Matriz Variate Normal [141] and the inverse Wishart

distributions respectively.

P(FIQ)p(Q) = Nunxm (FIA, QW™ (QIVE, v). (C.3)

The PDFs of the factors to the right of the equal sign in Eq. C.3 are given by:
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etr —%(F — NTQNF — NQ (C.4)

where etr(X) — exp(tr(X)). A and Q are the mean and among-column covariance
respectively. We set the among-row covariance to be equal to the process noise co-

variance ().

B =5 Z|% _v+m+l
HQWEv) = MZ m F(V+1—k)|Q’
™ 4 k=1 2

etr [—gEQ’I] : (C.5)

v and X are the degrees of freedom and the scale of the inverse Wishart prior respec-
tively. The prior over the pair H, R is defined similarly. Therefore, the prior over

parameters is given by:

p (Q) - mem (F|Af7 Q7 Qf) W_l (Q‘quqa Vq)NnXm (H‘Aha R7 Qh) W_l (R|VT'ZT‘7 VT)

(C.6)
C.1.3 The Complete-Data Likelihood Function
© s T;
p(s,x,z,a,w|Q) = H[H[p] w'; aﬁ (IEO,M], )HN(xt,F:)st 1,Qg/w)
=1 Lj=1 t=1

T Ly

T [PV (2 Ha Ry /)] (’i)r(siﬂ')]

t=1 I=1
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We proceed to write down the complete-data log-likelihood of our model:

T; Ly

t=11=1

135

Ng [ Ns
lnp(s,x,z,a,w|ﬂ)2|:z (517])( ln§+(g—1)lnwi—§wl lnF( )+1HPJ+ZZ5(CL¢, lnpl>
i=1L j

. 1 1] T —1 1] 1
3 (si,7) 3 (550 _Hj) VJ (330 _Mj) _§1n|Vij|

T;—1
'H‘m( 12 )lnw,)

T.
% . NT .
8 (s4,9) (} 'S 6(ak, i) (—% (z,{ _Hjxy> R (Zg _Hjxgﬂ) SR+ 2 lnw1)>
t=11=1

Ny
+>5(
J
Ng T; . B . L . P
+Z§(8i7j) (—Z (% (ac? _ Fjac?ﬂ)TQj_l (a:zj _ ij§£1)> T12 1
F; t=
Ny
+>5(
J
N
_Zg(
J

~ Ti(m) s N
5i,7) 1n(27r)—Z5(si,])Z 5(at,z)§ln(27r) .

Using the trace trick

uWI'S™ o = trace (uTE_lv) = trace (E_lvuT‘) ,

we rewrite the complete-data log-likelihood as follows:

i=1 t=11=1

N s T; L
Inp(s,z, z, a, w|2) Zl:z& sl,])( lnf (5—1)111%—%% lnF( )+lnpj+zzt6
+Zé (si,4) ( *tr( (IBJ%]T w1l — pjay +uj#f)> - %IHIVJ‘\)

w'L -1 (%) ZJT i, 17 T iJ ijT
(Qj (mt Ty Ty Fg — Fjay_qx

J

I t=11=1
T; Ly
+Z5 (sirJ) §(al,4) —fln|R |+ = lnwl)
t=11=1
) N, T; Ly
—25 5i,§) ——In(2m) = > 6 (s1,5) Y _ > d(al,i) 1ﬂ(27f)]
7 t=11[=1

s
+ Fyzy

N, T; L
+Z5(Si,j)( t 8(al, ) (—%tr (R__l (ziziT—ztxtﬂ HT szlzi + Hjz ? ;J HT))))
T; (

(c.7)

(C.8)

lnpl>

)

(C9)

We obtain the expected complete-data log-likelihood of our model by calculating the
expectation of Equation C.9 under the posterior and keeping only those terms that
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are a function of the model parameters:
QumrL(R) = <1nP(S 2, 0], Q) (4 2 wla.:2)
Ny
=> pr (Inp;)
=1
N. [
x 1 . 1
-3 zpw (5t (v (PP = 40T = s )" +ed)) = g1l
i=1
Ny [ N, Ti _ 1
=301 [ oS (@ (P = Bl FT = Fy(PE_ )T + BPELFT) )+~ Q]
i=1 [j=1 t=2
N [N Ti o . - B T
SIS ngmﬂ (R;l <Z§zz @ THT — Hya +H]'Ptl]Hf>>+Ezln|Rj‘ ,
i=1 |j=1 t=1
(C.10)
In a more compact form:
N
QML(Q) :ZNJ lnpj
1 Ns R 1 s
-Gt [Vj_l (m =&l — gl + Njujufﬂ -5 2 Ny
=1 - (C.11)
1 s 1 T T T
=5 >t (@ (v i FT = Bl + FiosFT )] - Q1
=1
1 Ns T S
_ L s
—5>w (77 (A = 0yHT = H;OT + o0 )| - 5 >Nyl |R;|
i=1 j
Ng
i~ E :pij N, T
i=1 _ L Aij
N, =D bty Y Pl
o - i=1 t=2
77] - ng-Pl N, T;
=1 o PO i 4T
N, Nj = Pty ) 2%
. N i i=1 t=2
G =D _ Dy T (C.12)
=1 o /\7,,‘] T
N, T I = E :pwww E 2 (277)

_ 5 i t=2
Yj = E pz‘jwz‘jg B N, T

_ M- Aij
;= E pz’jwiji P,
=1 t=2
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where

BY = V0 4 ) ©13)
Py = Vi +ad (@l)" (C.14)

Note that for learning purposes, we assume known data association, which is provided
by the KITTTI tracking dataset. We obtain the objective function for each parameter
by extracting the terms in the M-step objective function that are a function of the
parameter to be optimised. Note that terms are extracted from Equation C.10 and
Equation C.15. The regularisation terms, which are contributed by the prior over

parameters, were highlighted.

C.2 Regularised Model Parameters Learning

We learn the parameters of our model from training data. We derive a MAP-
estimation procedure. Substituting the PDFs in Equation C.6 and applying the
natural logarithm, the log-prior can be expressed as:

2 1
Inp () = %mmﬂ - %m(zﬂ) - %m@\ - 5tr [(F— Af)Tcrl(F—Af)Qf]

myg Vg | Vg _m(m—l) G vg+1—k _uq+m+1 Vg 1
+ 5 m n | - 1n7r+k;1nr ; . 1n|Q\+tr[ 5,Q ]

+ 2 inl@n] = 2 o (2m) — 2 n Rl - %tr [ — )" R (H = A2

nvy . Up Up n(n —1) n vr+1—k vr+n+1 U 1
+= 1n3+51n\Er|7Tlnﬂ+;lnF : - ln\R|+tr[f?ErR ].

(C.15)

The M-step objective function Q for estimating the posterior mode is given by ex-

pected complete-data log-likelihood, which for our MAP case is given by:

Q) = Qur () + Inp (). (C.16)
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C.3 Transition Matrix F
The objective function? for the transition Matrix F is given by:

Q(F)_—lﬁ"< ( szpwz tt 1F szﬂ’wzpz”t 1 “’FZ“’ZPUZ 1FT
+ (B = Ap) Qp (5 — Af)T)>

1 Ny LA (C.17)
- 2tr< ( <Zw‘p“ Z Hi-1 +Afo> Fi —F; (Zwiﬁzj > (BT +QfA?>
i=1 t=2
(szpzjz 1+Qf> )>
Maximising Equation C.17:
Fj =argmax Q (F})
F}
Na T
_ (M +Y by Y P ) / (Q s Z Wi i Z P, ) (C.18)
i=1 t=2
= (89 +5) /(2 +05):

C.4 Process Noise Covariance Q

The objective function for the process noise Covariance () is obtained in a similar

way:
Q(Qy) =-3 < < (Z WisPi Z (Pt” - Ptlgt—leT - FJ'(Ptg—l)T T FJPZZlF]T))
+(F; — Ap)Qp (Fy — Ap)" + Vq2q>>

Ny
1 x
-3 <yq+2m+1+2ﬁij(:n—1)) In|Q,].

i=1

(C.19)

2the regularisation terms, which are contributed by the prior over parameters, are underlined
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By optimising Equation C.19, we obtain the update equation for @);:

Q; =argmax Q(Q))

1
Vq+2m+1+2z " Dij (T _1><
S i S P/ — P _FF — Fy(PY_)" + F;PY,Ff
WijPij t tt—11"; FASE ] i1l
i=1 =2

(C.20)
+(Fy = Ap)Qp (Fy — Ap)" + Vﬁq)

1
Vq+2m+1+2z * Dij (Ti —

) (%‘ — P F] = Fi(0;)" + Fjo,F)

+(F;— Ap) Qp (B — Ap)T + Vq2q> :

The choice of auxiliary variables in Equation C.12 made the derivation of the update
equations simpler, however, the final form in Equation C.20 involves subtractions of
positive definite matrices, which are numerically non-stable operations. More stable
update equations can be obtained by rewriting the equation as follows:

1
Vq+2m+1+z = pij (T 1)(

(szgngz<( Fmt 1)( ”_Fxt 1) +‘/t ti]t' 1F _F(Vt”t 1) +Fj‘7tij1F]T)> (C-Zl)

Q; =

+(F—Ap) Qp (F—Ap)T + Vq2q>

C.5 Observation Matrix H

Q(Hj):_ltr< ( Zwmpz] Zzt -'22] H sz]pz] Z"Ez]le-"—H Zw”p” ZP”HT

+ (Hj — Ap) Qn (Hj — Ah)T>>
1 Na T
=— Etr (Rj_l ( - (Ath + Zﬁ)ijﬁi]‘ Z PACH ])T> (QhAh + wap” Z &b It )
Ng
o)

i=1 t=1
(C.22)
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Maximising Equation C.22:

H; = argmax Q (H;)
T;

:<M + i bighiy Y 7 () )/(% - i Wi ET: 15;7) (C.23)
=1 t=1

i=1 t=1

=(2a41,) / (2 2,)

C.6 Observation Noise Covariance R

1 Li,j T g
Q(R; )—tr< <<Zw”p”2( -zl (&) HJT—Hjxt’Jzz +H]-PtJHjT)>

+ (Hj — Ap) S (Hj — Ap)T + ,,7,27)) (C.24)

i=1

N,
1 SN
_5 (Vr+n+m+l+ E pisz‘) ln|Rj\

Maximising Equation C.24:

~

R; =argmax Q (R;)

R;

1
VanJrTthlJrZZ L Dii T (

(Z Wi;Pi Z <tht - Z;(f”)THT H;z Aijzz + H; PZJHT)

(C.25)

=+ (H] — Ah) Qh (H] — Ah)T + Vr2r>

1
A, —T;H' — H,T)' + H® HT
Tt ntmt 1+ pTh (j o~ Hy () T

+ (H; — Ap) @ (Hy — M)+ W&)

Similar to Equation C.21, a numerically more stable version of Equation C.25 is given

by:
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Ry = :
! z/r+n+m+1+zl 1 Dii 1
(Z wijpijz ((z;' — H;i}7) (2 — H; ”J) + HM"?’H})) (C.26)
i=1 t=1

+ (H] — Ah) Qh (H] — Ah)T + VTET>

C.7 Initial State

Following the same line of reasoning of the previous optimisation operations, the ML
posterior (regularisation can be done as with the other model parameters) for the

mean and covariance of the initial state of each model j is given by:

Nz ~ Aij
A Do Py

Ng
i1 Py (c.27)

Nz A 7 %
Zz 1 Pij (P] - :L‘ljll"bf - Mj(xl ) - Njﬂ?)
Nz ~
2i=1Pij (C.28)
n — Gy — i)+ Nypgpd
N.

J

‘/)"j:




Appendix D

Implementation Detalils

This appendix provides details about the implementation of the EA algorithm. The

following script presents the actual high level functions used in the code:

EA_obj=EA(Models);
for t=1:numel(frames)

d = Get_Detections();

FA_obj
FA_obj

EA_obj.update_t(d,t);
EA_obj.run_EAQ);

[EA_obj,detect_obj_assig] = EA_obj.ManageObjects(d);
EA_obj = EA_obj.UpdateAppearance(d,detect_obj_assig);

end

Initially, an EA object is created using the class constructor EA(). At each time step
the function Get_Detections () calculates object detections. The method update_t ()
adds the incoming detections to the current list of observations and calculates the ini-
tialisation of the association factors by comparing the appearance models of the exis-
ting objects with those of the current detections. Subsequently, run_EA() runs the
EA algorithm on a time window predefined by the user. Finally, ManageObjects()

decides which objects will not be updated any more, whereas UpdateAppearance ()

142
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updates the appearance model of the objects to which at least one detection was
confidently assigned. A detailed pseudo-code of the tracking process is summarised

in Algorithm 2.
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