
Citation: Paranayapa, T.; Ranasinghe,

P.; Ranmal, D.; Meedeniya, D.; Perera,

C. A Comparative Study of

Preprocessing and Model

Compression Techniques in Deep

Learning for Forest Sound

Classification. Sensors 2024, 24, 1149.

https://doi.org/10.3390/s24041149

Academic Editor: Giuseppe Piro

Received: 10 December 2023

Revised: 31 January 2024

Accepted: 7 February 2024

Published: 9 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Comparative Study of Preprocessing and Model Compression
Techniques in Deep Learning for Forest Sound Classification
Thivindu Paranayapa 1 , Piumini Ranasinghe 1 , Dakshina Ranmal 1 , Dulani Meedeniya 1

and Charith Perera 2,*

1 Department of Computer Science & Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka;
thivindu.19@cse.mrt.ac.lk (T.P.); piumini.19@cse.mrt.ac.lk (P.R.); dakshina.19@cse.mrt.ac.lk (D.R.);
dulanim@cse.mrt.ac.lk (D.M.)

2 School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA, UK
* Correspondence: pereraC@cardiff.ac.uk

Abstract: Deep-learning models play a significant role in modern software solutions, with the
capabilities of handling complex tasks, improving accuracy, automating processes, and adapting to
diverse domains, eventually contributing to advancements in various industries. This study provides
a comparative study on deep-learning techniques that can also be deployed on resource-constrained
edge devices. As a novel contribution, we analyze the performance of seven Convolutional Neural
Network models in the context of data augmentation, feature extraction, and model compression
using acoustic data. The results show that the best performers can achieve an optimal trade-off
between model accuracy and size when compressed with weight and filter pruning followed by
8-bit quantization. In adherence to the study workflow utilizing the forest sound dataset, MobileNet-
v3-small and ACDNet achieved accuracies of 87.95% and 85.64%, respectively, while maintaining
compact sizes of 243 KB and 484 KB, respectively. Henceforth, this study concludes that CNNs can be
optimized and compressed to be deployed in resource-constrained edge devices for classifying forest
environment sounds.

Keywords: augmentation; feature extraction; classification; pruning; quantization

1. Introduction

Deep-Learning (DL)-based solutions exhibit considerable potential in effectively han-
dling intricate patterns, demonstrating adaptability, and learning from new data, therefore
facilitating enhanced performance and automated decision-making capabilities. Endowed
with these, DL exhibits better performances in modern applications [1]. Similarly, modern
software solutions play a crucial role in addressing the challenges posed by resource-
constrained edge environments. The significance of deploying DL-based applications on
resource-constrained edge devices offers several key advantages. In the context of real-
time applications demanding faster response times and decision-making capabilities, the
deployment of applications on the edge manifests as advantageous, leading to reduced
latency and improved responsiveness. Additionally, the importance of software in these
contexts lies in optimizing resource usage, enhancing efficiency, and ensuring that edge
devices can perform their tasks effectively despite limitations. DL model compression is a
crucial task in deploying applications on resource-constrained devices such as edge devices,
IoT devices, and mobile devices. The goal is to reduce the size of the model and make it
computationally efficient while maintaining acceptable performance.

Although DL models are complex and resource-intensive, these models can be lever-
aged to fit into resource-constrained environments by techniques such as model pruning,
quantization, and knowledge distillation [2,3]. These techniques, aimed at reducing both
the size and computational complexity of DL models, come with a challenge in achieving an
optimal trade-off between complexity reduction and sustained performance. For instance,

Sensors 2024, 24, 1149. https://doi.org/10.3390/s24041149 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24041149
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0004-6503-118X
https://orcid.org/0009-0000-3520-2321
https://orcid.org/0009-0002-5855-8173
https://orcid.org/0000-0002-4520-3819
https://orcid.org/0000-0002-0190-3346
https://doi.org/10.3390/s24041149
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24041149?type=check_update&version=1


Sensors 2024, 24, 1149 2 of 28

weight quantization helps reduce the precision of model weights, therefore requiring less
computation. Activation quantization allows quantizing the activation values during infer-
ence. On the other hand, pruning detects and removes irrelevant connections or parameters
from the model. Knowledge distillation is another model compression technique that
trains a lightweight model to simulate the behavior of a complex model by transferring
knowledge from the large model to the small model. Moreover, hardware-aware optimized
models can be designed considering the hardware constraints of the edge device. In model
compression, it is important to balance model size reduction with the impact on accuracy
and performance. The optimal compression strategy may depend on the problem domain
and the specification of the edge deployment.

This study explores data preprocessing and DL model compression for the domain of
forest sound classification and targets ecosystem monitoring and deforestation detection.
This domain in sound processing is selected as forest plays a major role in global habitat
preservation; however, these green environments face a critical challenge in the form
of deforestation. Therefore, effective monitoring and identification of activities within
forests is required. To address effective forest monitoring using sensors, the deployment of
automated data processing and analysis systems using edge devices is required in the real
environment [4,5]. In pursuit of this objective, this study performs a comparative study on
different DL techniques in forest sound classification, aiming to trade-off between accuracy
and model size, enabling them to be deployed in resource-constrained edge devices. This
holds the potential as a viable response to deforestation.

Forest sound classification has been utilized by Machine learning (ML) approaches to
categorize sound signals in forest environments [6,7]. Audio classification with traditional
signal processing techniques involves a stepwise process to extract features from audio
signals. These approaches rely on hand-crafted features, which require major domain
expertise and careful feature engineering; hence, they are associated with high cost [8,9].
Although traditional methods have been successful in many applications [10,11], there
are limitations associated, such as difficulty in identifying complex audio patterns or
generalizing for unseen data [12]. Accordingly, DL has emerged as a promising solution for
sound classification [13]. In the span of DL methodologies, Convolutional Neural Networks
(CNNs) have extrapolated to the domain of sound classification, yielding state-of-the-art
performance on benchmark datasets [14,15].

Several studies have addressed forest sound classification using ML algorithms; how-
ever, most of the studies are hindered by generality, adaptability, and scalability [5,16].
Although there are DL-based solutions that have addressed this [4,13,17], the deployment of
DL-based environmental sound classifiers on resource-constrained edge devices is limited.
This study addresses the current challenges with the following research questions.

• RQ1: What are the optimal data augmentation and feature extraction techniques in
the domain of forest sound classification?

• RQ2: What are the potential model compression techniques that are viable for com-
pressing CNNs while maintaining an optimal trade-off between model accuracy and
model size?

• RQ3: What are the feasible CNN model types that can be used for acoustic classification
and subsequently subjected to model compression to deploy on edge devices?

Henceforth, we conduct a comparative analysis of seven CNNs, namely ACDNet,
AlexNet, ResNet-50, DenseNet-121, Inception-v3, MobileNet-v3-small, and EfficientNet-v2-
B0 to exhibit the state-of-the-art [18]. The workflow involves the utilization of the FSC22
dataset [19], which is a dataset specifically created for forest sound data, subjected to
preprocessing, followed by successive stages of data augmentation and feature extraction.
Subsequently, the CNN models undergo training with k-fold cross-validation. The perfor-
mance of CNNs is systematically compared by utilizing different data augmentation and
feature extraction techniques. Then, the attention of this study is directed towards model
compression using pruning [20] and quantization [21], an approach for reducing the size of
deep neural networks while maintaining accuracy.



Sensors 2024, 24, 1149 3 of 28

The significance of this study lies in its novel approach, as no previous study has
conducted a comprehensive comparison of augmentation, feature extraction, CNN archi-
tectures, and compression together on sound data, which can be deployed in resource-
constraint edge devices.

The paper is structured as follows. Section 2.2 explores the related studies in environ-
mental sound classification, data preprocessing, and model compression. Section 3 explains
how this study was carried out. Section 4 compares and analyses the results obtained.
Section 5 discusses the lessons learned and potential future research. Lastly, Section 6
concludes the paper.

2. Background
2.1. Theoretical Background

Several neural network models are available in the literature to classify data [18].
Among many of them, CNNs are particularly effective for classifying image data based on
the problem domain. Following are the related DL models with architectural variations
considered for this study.

AlexNet [22] is a deep CNN consisting of five 2D convolutional layers that are followed
by three fully connected layers. It incorporates novel features such as rectified linear units
(ReLUs), local response normalization, and dropout regularization. This highlights the
importance of network depth and the impact of removing individual layers on performance.
This model showcases the effectiveness of deep CNNs for image classification tasks, setting
a new standard for supervised learning without unsupervised pre-training. Several studies
have used AlexNet in the audio classification domain using spectrograms with state-of-the-
art performance [23–25].

ResNet-50 is a CNN model resulting from the novel framework introduced by He
et al. [26] for training deep neural models that are substantially deeper than the existing
studies. The architecture consists of residual blocks that contain shortcut connections. This
addresses the vanishing-gradient problem as these connections skip one or more layers.
The residual functions can be learned without directly fitting the input-output mapping.
The network has a total of 50 modules, where 48 amount to blocks of 2D convolution layers,
which are followed by a batch normalization layer, a ReLU activation function, an initial
2D convolution layer, and a max pooling layer. This model achieves state-of-the-art results
with substantially fewer parameters and lower computational complexity than existing
methods in real-world visual recognition tasks. Furthermore, ResNet-50-based models
have been used to construct robust and powerful audio classification models [27–29].

DenseNet-121 [30] is another deep neural network where each layer is connected to
every other layer in a feed-forward manner. This connectivity pattern allows for maximum
information flow between layers, remedying the vanishing-gradient problem and improv-
ing the training of deeper networks. Since the model is trained with many paths, it has
improved accuracy, parameter efficiency, and regularization. The DenseNet-121 model
contains a total of 58 blocks. This includes a 2D convolution layer followed by a batch
normalization layer and a ReLU activation. DenseNet-based models have displayed high
performance in audio classification tasks [31–33].

Inception-v3 [34] is a CNN model that is an evolution of the Inception architecture,
which explores very deep convolutional networks and gains in various benchmarks. This
architecture emphasizes the importance of computational efficiency and low parameter
count. The model contains optimizations for scaling up convolutional networks efficiently,
focusing on factors such as spatial aggregation, network width, and depth. The model
uses Inception-style building blocks, which are characterized by their flexible structure,
generous use of dimensional reduction, parallel layers, and sparse connectivity. The
Auxiliary classifiers used in the model act as regularizers. Inception-based models have
been successfully used in bird sound classification [35] and audio classification using
transfer learning [25].



Sensors 2024, 24, 1149 4 of 28

MobileNet-v3-small [36] is a cutting-edge mobile computer vision architecture opti-
mized for the accuracy-latency trade-off on resource-constrained edge devices. The model
utilizes efficient nonlinearities, network design, and a segmentation decoder to improve
the classification accuracy of the model. The application of squeeze and excite blocks
in the residual layers leads to improved performance. The MobileNet-v3-small model
consists of an initial 2D convolution layer, followed by 11 bottleneck layers with ReLU
and h-swish activation, and finally, a max pooling layer and two 2D convolution layers.
This represents a significant advancement in edge-device-friendly network design and
performance. MobileNet-v3 models have achieved high performance in audio classification
and audio event detection scenarios [37].

EfficientNet-v2-B0 [38] is an improved CNN model with a fast training speed and
parameter efficiency compared to previous EfficientNet architectures. A Neural Architec-
ture Search method with an enriched search space has been used to build this model. The
EfficientNet-v2-B0 model consists of 3 Fused-MBConv blocks and 3 MBConv blocks. The
model Fused-MBConv block contains a 2D convolution layer followed by a Squeeze-and-
Excitation block and another 2D convolution layer. In related studies, Wang et al. [39]
have utilized a model based on EfficientNet-v2 for audio-visual scene classification with
transfer learning.

ACDNet [40] is a small, flexible, and compression-friendly deep network. The name
is derived from Deep Acoustic Networks on Extremely Resource-Constrained Devices. It
has shown state-of-the-art performance in sound classification. This model solely relies
on the convolution layers for feature extraction from the raw audio without the use of
spectrograms. The model is divided into spectral and temporal feature extraction blocks
separated by a max pooling layer and a swap axis operation. These blocks consist of 1D
convolution layers, batch normalization layers, and ReLU activations amounting to a total
of 12 convolution layers. Furthermore, the authors propose a compression pipeline that
allows for significant size and FLOP reduction without sacrificing performance, showing
the applicability of using ACDNet for resource-constrained IoT applications.

2.2. Related Work

Several studies have addressed environmental sound classification utilizing DL tech-
niques [4,13,41,42]. However, many of them have not considered real-time deployments.
To process acoustic data in a resource-constrained environment, several aspects, such
as model size and inference time, should be considered. Although there is a limitation
of literature that has addressed model compression for forest sound data, this section
discusses major related studies that have utilized a range of preprocessing and model
compression techniques.

Different augmentation techniques have been applied to sound data to address the
scarcity of data. For example, Mushtaq et al. [43] have presented an approach for environ-
mental sound classification using CNN with meaningful data augmentation. They have
used pitch shift, time stretch, and trim silence techniques to increase the number of data
records. Utilizing ResNet, DenseNet, AlexNet, SqueezeNet, and VGG, they have shown
an accuracy of 97.3%, 98.9%, 96.5%, 94.8%, and 98.4%, respectively. Another study by
Wei et al. [44], which have utilized ten augmentation methods, including noise addition,
time stretch, and pitch shift on raw audio, along with cutout, mix-up, samplepairing,
specaugment, specmix, VH-mixup, and the proposed mixed frequency masking on spectro-
grams to increase the Freesound Dataset Kaggle2018 data. They trained a ResNet using
log-mel spectrograms for feature extraction and showed a mean average precision of 93.74%
for mixed frequency masking as the highest reported and 92.47% for time masking as the
lowest reported. Additionally, Nanni et al. [45] have investigated ensembles of CNNs
using six different augmentation techniques, namely standard signal augmentation, short
signal augmentation, super signal augmentation, time-scale modification, short spectrum
augmentation, and super spectro augmentation. They have obtained accuracies of 96.82%



Sensors 2024, 24, 1149 5 of 28

on the BIRDZ dataset, 90.51% on the CAT dataset, and 88.65% on ESC-50 using different
augmentation techniques.

From another point of view, feature extraction is imperative for distilling a refined set
of discriminative characteristics from raw data, therefore providing essential information
to enhance overall model performance. Das et al. [46] have examined five different feature
extraction techniques, namely MFCC, Mel Spectrograms, Chroma Constant-Q Transform
(Chroma CQT), Chroma Constant-Q Energy Normalization (Chroma CENS), and Chroma
STFT for urban sound classification using CNNs. This study has compared these techniques
by combining two more approaches in addition to employing them independently. When
a single feature extraction technique is applied, the highest accuracies of 96.78%, 94.42%,
and 79.36% have been obtained for MFCC, Mel Spectrograms, and Chroma STFT, respec-
tively, while the combination of MFCC, Mel-spectrogram, Chroma STFT, Chroma-CQTS
has recorded an accuracy of 95.36% on UrbanSound8K dataset. Similarly, several other
studies [4,47,48] have incorporated MFCC and Mel Spectrograms for feature extraction to
analyze the optimal approaches.

Deep-learning models are generally larger, and it is difficult to deploy them in resource-
constrained edge devices. As a result, model compression is required. Han et al. [17]
have introduced a three-stage pipeline named deep compression, which applies prun-
ing, quantization, and Huffman coding, respectively, to achieve a reduced model. They
have compressed the AlexNet and VGG-16 up to 6.9 MB and 11.3 MB, respectively. The
results are shown without a loss of accuracy on MNIST, which implies that the size of
AlexNet is 35 times smaller, while VGG-16 is 49 times smaller than their baseline mod-
els. Moreover, a novel pruning criterion is proposed by Molchanov et al. [49], which
is associated with Taylor expansion that approximates the change in the cost function
induced by pruning network parameters. They have employed these pruning criteria to
prune the VGG-16 on ImageNet using 0.8 as the pruning ratio and have observed a Giga
Floating-Point Operations (GFLOPs) improvement from 77.8% to 84.5% with an accuracy of
89.3%. Additionally, Mohaimenuzzaman et al. [50] have compared two model compression
techniques, namely pruning-and-quantizing and XNOR. The findings of this study indicate
that the pruned-and-quantized approach achieves superior compression for ACDNet and
AclNet in comparison to XNOR model minimization while still maintaining accuracy. With
pruning and quantization, they have achieved a 78% size reduction with a 1.5% drop in
accuracy for ACDNet and a 99.7% reduction of size with a 3% accuracy reduction for
AclNet on ESC-50. In contrast, the study by Yuzhong et al. [51] diverges, opting to reduce
the model size through low-dimensional feature representation of audio segments rather
than conventional model compression techniques.

Although applications of model compression on audio-classifying CNNs are rela-
tively scarce, pruning and quantization techniques are prevalent in the context of image-
classifying CNNs. For instance, Li et al. [52] have utilized a pruning approach that involves
the removal of entire filters in the CNN along with their connected feature maps, resulting
in a reduction of computational cost. In another study, Lee et al. [53] have introduced a
pruning criterion that identifies network connections considered crucial for a specific task
in a data-dependent manner before training, subsequently pruning redundant connections
prior to the training phase. This concept, generally known as Pruning-at-initialization
(PAI), involves pruning unwanted weights of the CNN before training. Furthermore, to
improve PAI, Cai et al. [54] have suggested pruning and reconfiguring CNNs in the channel
dimension, empirically validating that the layer-wise density is the only key determinant
for the accuracy of CNN models pruned using PAI methods.

Addressing the challenges of deploying DL models in resource-constrained edge
devices, this study addresses the research question of what data augmentation, feature
extraction, and model compression techniques are most applicable for acoustic classification.
This study aims to present a comparative study on DL techniques that can be utilized for
forest sound classification, with the conclusive goal of identifying the optimal model for
deployment on resource-constrained edge devices in forests.



Sensors 2024, 24, 1149 6 of 28

3. Methodology
3.1. Dataset

The Forest Sound Classification dataset (FSC22) [19] comprises 2025 labeled sound
clips in a forest environment. Each audio clip is standardized to a length of 5 s, sampled at a
rate of 44.1 kHz, and stored in the WAV file format. The dataset is organized into 27 classes,
with each class encompassing 75 audio clips. These 27 classes are further categorized
into 6 parent classes, namely mechanical sounds, animal sounds, environmental sounds,
vehicle sounds, forest threat sounds, and human sounds, as depicted in the dendrogram
in Figure 1. The primary objectives of FSC22 include providing ample audio samples for
extensively studied forest-related acoustic classes and offering high-quality, normalized
audio samples categorized under event-specific class labels.

Figure 1. FSC22 taxonomy for forest sound classification.

During the experimentation with the original dataset encompassing 27 classes, confu-
sion matrices obtained by different models indicated a high misclassification rate between
audio clips from the ‘Wood Chopping’ class and the ‘Axe’ class. A manual auditory
examination conducted to reason out the observation revealed a remarkable similarity
between the sounds in both classes concerning the process by which they are generated.
Consequently, we decided to eliminate the ‘Wood Chopping’ class from the dataset, re-
sulting in the continuation of the analysis with 26 classes. This refinement aims to en-
hance the model’s accuracy and mitigate potential misclassifications arising from the
aforementioned similarity.

3.2. Process Flow

The primary objective of this study is to determine the optimal combination of DL
techniques and identify the best-performing forest sound classification model suitable for
deployment on an edge device. The experiments are conducted on the FSC22 dataset, em-
ploying diverse combinations of data augmentation techniques, feature extraction methods,
models, and model compression approaches. This experimental workflow encompasses
two principal pipelines, one dedicated to the six selected CNN architectures and the other



Sensors 2024, 24, 1149 7 of 28

for the ACDNet model. A flowchart depicting the overall workflow of the experiment is
shown in Figure 2.

Figure 2. Workflow block diagram.

Prior to delineating distinct approaches for the models, an initial data preprocessing
step involved resampling the dataset. Specifically, the audio samples from the FSC22 dataset
are resampled to a fixed sample rate of 20 kHz. This resampling is undertaken to reduce
input size, model size, and overall power consumption, aligning with the methodology
outlined in [40]. Moreover, we observed that the resource consumption at the 20 kHz
sample rate is significantly lower than at the original 44.1 kHz sample rate, and importantly,
no observable difference in model performance is observed between the two sampling
rates. Consequently, data sampled at 20 kHz is utilized throughout the study to capitalize
on the aforementioned benefits.

The novelty of this study lies in the direction of identifying the optimal combination of
sound data preprocessing and DL model compression techniques to classify forest sounds
with high performance. Utilizing different sound data augmentation techniques, feature
extraction methods, several CNNs, and model compression techniques, we have performed
an extensive set of experiments to obtain an optimal solution that can be deployed in
resource-constraint edge devices. Significantly, no previous study has conducted an ex-
tensive comparison of the aforementioned aspects on environment sound data targeting
TinyML applications. Additionally, we have shown the compressibility of CNN archi-
tectures using weight pruning, filter pruning, and quantization to achieve competitive
accuracy and resource consumption for sound classification using the proposed pipeline.
It can be observed that model compression techniques that heavily disrupt the original
CNN architecture do not achieve an optimal trade-off between accuracy and resource
consumption. Therefore, the proposed pipeline introduces a hybrid pruning approach
followed by 8-bit integer quantization to minimize the resource requirements of the models
while maintaining the high accuracy of all the considered CNN architectures. Finally, the
proposed pipeline showed that MobileNet-v3-small and ACDNet-based models achieve
state-of-the-art performance while maximizing computational efficiency for forest sound
classification on resource-constrained edge devices.

3.3. The Proposed CNN-Based Pipeline
3.3.1. Process Overview

The proposed pipeline, encompassing data augmentation, feature extraction, model
training, model evaluation, and model compression, as shown using the gray color pro-
cesses in Figure 2, can be abstractly represented by Algorithm 1.



Sensors 2024, 24, 1149 8 of 28

Algorithm 1: Proposed CNN-based pipeline

Function main():
dataset←− load FSC22 ;
augmented_dataset← augment(dataset, 5) ;
forall audio in augmented_dataset do

X, y = f eature_extractor(audio, MIX) ;
end
stratify 5-fold split X, y ;
foreach model do

hyperparameter_tuner(model) ;
5-fold cross-validation of model ;
mq ← quantize(model) ;
mw ← weight_prune(model, ws) ; // ws ∈ [0.8, 0.9, 0.95]
m f ← f ilter_prune(model, fs) ; // fs ∈ [0.7, 0.8]
mw f ← f ilter_prune(mw, fs) ;
mwtq ← quantize(mw f ) ;

end
End Function

Three augmentation techniques, namely time stretch, pitch shift, and addition of
Gaussian White Noise (GWN), are used here. Time stretch is a technique that modifies
the duration of an audio signal without changing its pitch through the effective expansion
or compression of audio in the temporal domain. This is achieved using the time_stretch()
function provided by the librosa [55] library. Short-Time Fourier Transform (STFT) and
Inverse STFT (ISTFT) can be utilized for time-stretching audio signals. Given the audio
signal y(t), STFT representation at time t and frequency t, X(t, f ) can be obtained by
Equation (1), where w(t) is the window function and τ is the integration variable. The
instantaneous phase can be extracted from the STFT as in Equation (2). Then, the stretched
phase is calculated as in Equation (3), where a is the time stretch factor. Finally, using inverse
STFT, the stretched phase, and STFT magnitudes, the stretched audio can be obtained as
in Equation (4).

X(t, f ) = STFT(y(t)) =
∫

y(τ)w(τ − t)e−2π j f t dτ (1)

I(t, f ) = arg(X(t, f )) (2)

O(t, f ) = a ∗ I(t/a, f ) (3)

ystretched(t) =
1

2π

∫∫
O(t, f )e−2π j f t dt (4)

Pitch shift is a technique to change the pitch of an audio signal through the modulation
of the frequency of the audio signal without affecting its temporal duration. The pitch-
shifted audio signal can be obtained by time-stretching with the factor given by Equation (5),
where n_steps denotes the number of steps to shift the pitch while steps_per_octvate denotes
the number of steps per octave. If the steps is set to 12, then the step is a semitone. This is
carried out using the pitch_shift() function provided by the librosa [55] library.

a = 2(n_steps/steps_per_octave) (5)

Moreover, GWN is a stochastic process characterized by a probability density function
identical to that of the normal distribution, specifically the Gaussian distribution. In essence,



Sensors 2024, 24, 1149 9 of 28

the amplitude values of the noise are randomly distributed around a mean of zero. The
AddGaussianNoise() function in the audiomentations [56] library is used.

We explored two distinct combinations of these augmentation techniques as outlined
by Algorithm 2. The first combination involved the application of only time stretch and
pitch shift, where the duration is increased and decreased by a factor of 1.5 and 0.667,
respectively, while the pitch is increased and decreased by 2 semitones, resulting in a
dataset five times larger. The second combination involved further augmentation by
incorporating the addition of GWN. We have experimentally determined that any lesser
augmentation configurations do not yield sufficient data to train the CNNs well.

Algorithm 2: Data augmentation
Function augment(dataset, augmentation_ f actor):
// augmentation_ f actor ∈ [5, 6]

augmented_dataset = [] ;
forall audio in dataset do

speed_up_audio ← time_stretch(audio, rate = 1.5) ;
pad the speed_up_audio to 5 s ;
slowed_down_audio ← time_stretch(audio, rate = 0.667) ;
crop the slowed_down_audio to 5 s ;
high_pitched_audio ← pitch_shi f t(audio,+4 semitones) ;
low_pitched_audio ← pitch_shi f t(audio,−4 semitones) ;
if f = 6 then

noisy_audio =
add_GaussianWhiteNoise(mina = 0.001, maxa = 0.015, p = 0.5) ;

end
add augmented_audio and original_audio to augmented_dataset ;

end
return augmented_dataset ;

End Function

Following these augmentation combinations, feature extraction is performed on the
augmented data as outlined in Algorithm 3. Feature extraction in this study encompassed
three distinct approaches: Mel Spectrograms, MFCC, and mixed spectrograms. These
three feature extraction techniques are subsequently applied to each of the augmentation
combination datasets. Although Chroma STFT is not used in isolation, it is combined with
MFCC and Mel Spectrograms to generate a comprehensive 3-channel image representation
of the audio signal. These feature extraction techniques are provided by the librosa [55]
library through the melspectrogram(), mfcc() and chroma_stft() functions. This amalgamation
aims to provide the model with a more subtle understanding of features by incorporating
information derived from multiple feature extraction techniques, as opposed to training
solely on features extracted from a single technique.

Additionally, Mix-up is not used as an augmentation technique in this pipeline. Given
that mix-up involves the selection of two random audio samples from different classes
for the creation of a mixed audio sample, the resultant label of the mixed audio sample is
represented as an array of length n where n corresponds to the number of classes within the
dataset. Handling such intricate labels necessitates substantial modifications to the model
architectures. Henceforth, mix-up augmentation is not applied to these selected CNNs.
Accordingly, the resulting data are split into 5 folds in a stratified manner to facilitate 5-fold
cross-validation while maintaining the class balance between the splits.



Sensors 2024, 24, 1149 10 of 28

Algorithm 3: Feature extraction

Function feature_extractor(audio, f eature):
if f eature = MFCC then

f1, f2, f3 =
m f cc(audio, m f cc_bins = 128, f f t = [2048, 1024, 512], hop_l = 512) ;

F ← stack( f1, f2, f3) ;
end
if f eature = MEL then

f1, f2, f3 =
mel_spectrogram(audio, s = 20000, mel_bins = 128,
f f t = [2048, 1024, 512], hop_l = 512) ;

F ← stack( f1, f2, f3) ;
end
if f eature = MIX then

f1 =
mel_spectrogram(audio, s = 20000, mel_bins = 128, f f t = 1024,
hop_l = 512) ;

f2 = m f cc(audio, m f cc_bins = 128, f f t = 1024, hop_l = 512) ;
f3 =
chroma_st f t(audio, s = 20000, chroma_bins = 128, f f t = 1024,
hop_l = 512) ;

F ← stack( f1, f2, f3) ;
end
return F ;

End Function

Subsequently, the selected CNNs, namely AlexNet [22], ResNet-50 [26], DenseNet-
121 [30], Inception-v3 [34], MobileNet-v3-small [36], and EfficientNet-v2-B0 [38] are sub-
jected to hyperparameter tuning followed by training for the specified combinations of
data preprocessing. The chosen models and their respective ranges of hyperparameters are
presented in Table 1. Variations of models are selected, reflecting the reduced complexity
and size. Out of the selected models, ACDNet architecture is successfully used in audio
classification, while all the other architectures are designed for Image classification.

Table 1. Hyperparameters for selected CNN classifiers.

Model Parameters (M) Learning Rate No. of Training Epochs

ACDNet 4.72 0.1–0.0001 2000
AlexNet 4.24 0.037–0.065 40–70

ResNet-50 23.62 0.072–0.095 24–60
DenseNet-121 7.06 0.026–0.100 30–75
Inception-v3 21.86 0.015–0.082 36–70

MobileNet-v3-small 0.95 0.028–0.08 50–100
EfficientNet-v2-B0 5.95 0.040–0.098 30–71

The training and evaluation procedures of the pipeline incorporate a 5-fold cross-
validation methodology to mitigate model bias associated with training on specific subsets
of data and enhance generalization for improved performance with new data. Here,
sparse categorical cross-entropy is employed as the loss function. Subsequently, the top-
performing models from each CNN architecture undergo model compression procedures.

Model compression is performed with the Neural Network Compression Framework
(NNCF), which provides a suite of post-training algorithms for optimizing neural network
inference. Based on observations from pruning the base ACDNet model trained with the
FSC22 dataset, it was noted that magnitude pruning yielded higher accuracy. Consequently,
the same pruning criteria, involving magnitude-based filter pruning as a structured pruning



Sensors 2024, 24, 1149 11 of 28

approach and weight pruning as an unstructured pruning approach, is applied to the
selected models. In the model compression of the proposed pipeline, initially, the selected
best models are subjected to weight pruning, filter pruning, and quantization independently
as outlined in Algorithms 4, 5 and 6, respectively. The best-performing weight-pruned
models are then selected to apply filter pruning followed by quantization.

Algorithm 4: Weight Pruning

Function prune_weights(model, S f ):
pruning_con f ig = { Polynomial_decay(S0 = 0, S f = S f , i0 = 0, i f = i f )} ;
for layer in model do

if layer is Convolutional or Dense or BatchNorm then
apply_pruning_wrapper(layer, pruning_con f ig) ;

end
end
for num_o f _epochs do

train_wrapped_model(L1_Norm, pruning_con f ig) ;
end
pruned_model ← model.strip_mask() ;
return pruned_model ;

End Function

Algorithm 5: Filter Pruning

Function prune_weights(model, fs):
pruning_con f ig = { f ilter_pruning, pi = 0, Pt = fs, Ps = 15} ;
apply_pruning_wrapper(layer, pruning_con f ig) ;
foreach pruning_step = Ps do

calculate L2_Norm ;
fr ← rank_ f ilters ;
sort fr ;
prunable_ f ilters← fr where fr < threshold based on pruning rate Ps ;
prunable_ f ilters = 0 ;
finetune model

end
f ilter_pruned_model ← model.strip_wrapper() ;
remove f ilters from f ilter_pruned_model where f ilters is 0 ;
return f ilter_pruned_model ;

End Function

Algorithm 6: Model quantization

Function quantize(model):
generate representative_dataset ;
for data in representative_dataset do

model(data) ; // calibrates the model
end
convert model_weights, biases to 8− bit integers ;
return quantized_model ;

End Function

3.3.2. Weight Pruning

Weight pruning specifies the weight matrices of all the models using L1 normalization
and is applied exclusively to the convolution, dense, and batch normalization layers, as
these layers encapsulate the entirety of the trainable parameters of the selected models [57].



Sensors 2024, 24, 1149 12 of 28

Such layers in the models are wrapped to enable magnitude-based pruning of the weight
tensors. Magnitude-based pruning accomplishes a goal sparsity for a given weight tensor
by tracking the distribution of the absolute values of the weight tensors and finding the
weight value (threshold) to have the sparsity percentage lower than the desired. For each
weight tensor being pruned, the wrapper keeps a similarly shaped tensor (mask) that stores
0 if the weight value is less than the threshold. The mask and thresholds are computed
during training based on the evolution of the weight values. The initial sparsity of the
model is set to 0, and the sparsity is increased in each pruning step until the target sparsity
is reached. The number of pruning steps is calculated as in Equation (6).

i f =
⌈ len(training_X)

batch_size

⌉
∗ epochs (6)

As the weight-pruning rate is polynomially decaying, the pruning rate grows rapidly
in the beginning from initial_sparsity but then plateaus slowly to the target sparsity.
Equation (7) expresses how the current sparsity is calculated depending on the initial
sparsity, which is 0; final sparsity, which is the given desired sparsity; and begin_step,
which is 0. After the completion of weight pruning, the wrapper mask is stripped, and the
model is evaluated.

Si = S f + (S0 − S f ) ∗
(

1−
(

i− i0
i f − i0

))e

(7)

Sparsifying the weight matrices leads to reduced overfitting while enhancing the
performance and generalization of the model. This is effective later in the filter pruning
step. Since weight pruning is an unstructured compression technique that introduces
sparse matrices, the resulting model is not suitable to be deployed on edge devices. This
obstacle is mitigated by later applying filter pruning, a structured compression technique,
to the weight-pruned model.

3.3.3. Filter Pruning

Filter pruning optimizes the model by reducing computational complexity while
maintaining high accuracy. We achieve structural compression of the model by applying
filter pruning (channel pruning). This is carried out by ranking the channels globally in
the model and deleting the channels with the lowest rankings. This removes noisy filters
from the model. Equation (8) is used to calculate the importance of filters, where zl is the
filter parameters in the model with zl ∈ Rhl×wl×cl , where hl × wl is the dimension and cl
are the channels of layers with l ∈ [1, 2, 3, . . . , L], an individual feature map is denoted
as zi

l with i ∈ [1, 2, 3, . . . , cl ]. Following the filter importance calculation, the normalized
importance values are sorted according to Equation (9). Furthermore, the filters with the
least importance are pruned using Equation (10).

Ω(zl) =
L2(zi

l)√
∑ L2(zl)2

(8)

zrank = sort(Ω(zl)) (9)

zprune = { zrank | zrank ≤ zthreshold } (10)

The magnitude-based L2 norm is used as the filter importance criterion with the
assumption that filters with small L2 norms do not significantly affect the outputs of the
activation functions, therefore having a negligible impact on the final prediction of the
network. Henceforth, filters with low L2 norms are pruned. The L2 norm for a filter F



Sensors 2024, 24, 1149 13 of 28

is calculated as in Equation (11), where C is the total number of channels and K is the
dimensions of a given filter.

|| F ||2 =

√√√√ C,K1,K2

∑
c,k1,k2=1

| F(c, k1, k2) |2 (11)

When implementing the filter pruning in this proposed pipeline, the pruning config-
uration is defined such that the pruning steps are 15, the initial pruning level is 0.0, the
pruning target is selected on the model behavior to being filter-pruned, the L2 norm is
the filter importance criteria and an exponential schedule for the pruning rate. We have
empirically determined that filter pruning levels of 0.7 and 0.8 yield the best balance of
accuracy and model compression. This pruning configuration and the prunable filters are
then used to determine a mask, from which the model filters are wrapped in the next step.

Following the filter pruning, the initial pruning level of the model is set to 0, and on
each pruning step, an exponential pruning rate scheduler steadily increases the pruning
level from 0 to the pruning target. After each pruning training epoch, the pruning algorithm
calculates the filter importance using Equation (11) for all convolutional filters and zeros
out the current pruning level part of filters with the smallest importance. After achieving
the pruning target, the remaining epochs are used to fine-tune the model with pruned filters
being frozen to avoid retraining them. After pruning, the wrapper and the zero filters are
removed from the model by applying a model conversion with a pruning transformation.
We apply filter pruning with and without pre-weight pruning to compare the performance
and the statistics of the resulting models.

3.3.4. Quantization

Given the real-time classification requirements of forest sound classification and the
inherent resource-constrained nature of edge devices, we employed 8-bit integer quantiza-
tion to compress the models further. With this choice of quantization, maximum latency
improvements, reductions in peak memory consumption, compatibility with hardware
limited to integers (e.g., 8-bit microcontrollers), and minimization of power consumption
can be achieved. A representative subset of the validation dataset is employed for the
calibration of weights, biases, model input, and intermediate tensors when converting the
32-bit floating-point values to 8-bit integers.

Subsequently, the evaluation of weight pruning, filter pruning, and quantization
techniques is conducted through a 5-fold cross-validation approach. The quantization
process in this pipeline utilizes the 8-bit integer quantization functionalities provided
by Tensorflow Lite, alongside post-training quantization facilitated by Neural Network
Compression Framework (NNCF).

3.4. ACDNet Pipeline

The initial stage of the pipeline involved the application of data preprocessing tech-
niques to the resampled data in the ACDNet pipeline, as shown by the green color processes
in Figure 2. We standardized the input data array length, ensuring equal importance. This
standardization is achieved through preprocessing methods such as padding or random
cropping, contingent upon the length of the datum. Additionally, amplitude normalization,
according to Equation (12), based on the 16-bit float representation of the audio signal, is
applied to normalize the data. The effect of amplitude normalization can be observed by
comparing Figure 3a,b as the y-axis scale is drastically different, but the waveform remains
unchanged. Furthermore, the pipeline incorporates experimentation with three augmenta-
tion techniques: time stretch, pitch shift, and mix-up. These augmentation methods are
implemented to enhance the robustness and diversity of the training dataset for improved
model performance.

Sn =
S

216−1 (12)



Sensors 2024, 24, 1149 14 of 28

Figure 3. (a) Original audio signal. (b) Preprocessed audio signal for ACDNet input.

With data augmentation, we generated two additional audio samples through pitch
shifting and time-stretching, involving a reduction in the speed of the audio clip to 0.8 times
that of the original sample time-stretching, pitch shifting accompanied by an increase in
pitch to 1.5 times the original sample. The values for pitch shifting and time-stretching
are obtained empirically with manual auditory observations to obtain augmented audio
samples that the human ear can identify.

Subsequently, a mix-up is applied to create miniature batches for each epoch, dynami-
cally augmenting the dataset. In the context of the baseline ACDNet [40], mix-up refers to
the mixing up of randomly selected two audio samples from different classes in a random
ratio together to create a new synthesized audio sample as depicted in Figure 4a. However,
in this experimentation, variations are introduced by exploring the mix-up of 3 audio clips
and 4 audio clips as depicted in Figure 4b,c, respectively, providing a comparative analysis
of different mix-up configurations.

Figure 4. Mix-up with different number of audio signals. (a) Mix-up of 2 audio clips from classes
Chainsaw and Fire. (b) Mix-up of 3 audio clips from classes Chainsaw, Fire, and Squirrel. (c) Mix-up
of 4 audio clips from classes Chainsaw, Fire, Squirrel, and Axe.



Sensors 2024, 24, 1149 15 of 28

As of [58], if the randomly selected samples are S1 and S2 with the maximum gain
of g1, g2, respectively, the mixed radio p can be obtained by Equation (13), where r is a
random number between 0 and 1 and the resulting mixed sample Smix can be determined
by Equation (14).

p =
1

1 + 10 ∗ g1 − g2

20
∗ 1− r

r

(13)

Smix2 =
ps1 + (1− p)s2√

p2 + (1− p)2
(14)

If we take the maximum gain of the Sm as gm, we mix this resulting sample Sm with
another randomly selected sample S3 with the maximum gain g3 to obtain the sample with
three mixed sounds as in Equation (15), where p′ is denoted by Equation (16), where r′ is
another random number between 0 and 1.

Smix3 =
p′ ∗ p ∗ s1 + p′(1− p)s2 + (1− p′)

√
p2 + (1− p)2s3√

[(p′)2 + (1− p′)2][p2 + (1− p)2]
(15)

p′ =
1

1 + 10 ∗ gm − g3

20
∗ 1− r′

r′

(16)

Within the ACDNet pipeline, feature extraction is exclusively performed using the
convolution layers in the Spatial Feature Extraction Block and the Temporal Feature Ex-
traction Block [40]. This chosen approach for feature extraction is intended to optimize
the ACDNet model for edge applications, accommodating raw audio input without the
application of feature extraction techniques that are resource-consuming.

A distinctive aspect of the ACDNet pipeline lies in the dynamic construction of training
batches within the training loop for each epoch. This involved the random selection of
data points from the original training dataset and the utilization of mix-up to create a
training data point, ensuring a diverse and augmented training set. Given the use of
mix-up as an augmentation technique, the choice of Kullback–Leibler divergence loss is
imperative. This loss function provided a fair representation of error by calculating the
disparity between the true label probability distribution and the predicted label probability
distribution. Subsequently, the trained models, considering various mix-up configurations
with or without PS TS augmentation, undergo evaluation using a 5-fold cross-validation.

The chosen best-performing models progress through the compression pipeline. This
pruning pipeline provided four pruning options for the ACDNet model. These options
encompass weight pruning, magnitude pruning, Taylor pruning, and hybrid pruning [40].
Weight pruning is an unstructured pruning approach, while magnitude pruning and Taylor
pruning adopt structural pruning methodologies. Hybrid pruning combines unstructured
and structured pruning techniques. Two variants of hybrid pruning are implemented,
wherein weight pruning is the unstructured pruning approach, and either magnitude or
Taylor pruning techniques are employed as structured pruning approaches.

3.5. Implementation Aspects

The CNN models and the ACDNet models are implemented using TensorFlow
2.10 [59], and PyTorch 2.1.0 [60], respectively. The CNNs are subjected to hyperparameter
optimization using the create_study() and optimize() functions in Optuna [61] to fine-tune the
models to obtain the best performance. The compression pipeline of ACDNet consisting
of weight pruning, filter pruning, and quantization is implemented using NumPy [62]
and PyTorch. The TFLiteConverter with default optimizations and 8-bit integer configu-
ration is used to quantize the CNNs prior to compression using the convert() function
provided by TensorFlowLite [63]. Weight pruning of the CNNs is implemented using the
prune_low_magnitude() function with a pruning schedule of polynomial decay provided
by the Tesnorflow model optimization module. Filter pruning of the CNNs is achieved



Sensors 2024, 24, 1149 16 of 28

using the create_compressed_model() function with a filter pruning compression defined in
the Neural Network Compression Framework (NNCF) [64], the configuration provided by
the OpenVINO toolkit [65]. The quantize_with_accuracy_control() function provided by the
NNCF in the OpenVINO toolkit is used to quantize the pruned networks. All the results
are obtained using a machine with Intel(R) Core(™) i7-9700 CPU @ 3.00 GHz 8 cores, 32 GB
RAM, and NVIDIA GeForce RTX 2080 SUPER as the GPU.

4. Results and Analysis
4.1. ACDNet Pipeline Results

We compared the novel augmentation approaches and pruning techniques against
the base ACDNet [40]. The base ACDNet trained on FSC22 with the default mix-up
augmentation of 2 audio samples gave an accuracy of 87.69% with a model size of 18.13 MB.
Initially, we augmented the FSC22 dataset with a time shift of 0.8 to reduce the speed and
a pitch shift of 1.5 to increase the pitch. With the augmented dataset for the ACDNet
with a 2 audio clip mix-up, an accuracy of 85.90% was achieved, which is a performance
reduction compared to the baseline. Subsequently, we increased the number of clips used
in the mix-up by mixing 3 audio clips and 4 audio clips. The highest accuracy obtained
for ACDNet was given by this 3 audio clip mix-up, which is 87.95%, and for the 4 audio
clip mix-up, the accuracy obtained was 87.69%, which is the same as the baseline. As the
accuracy improvement with a 3 audio clip mix-up is trivial, we compressed the baseline
ACDNet with a 2 audio clip mix-up using the ACDNet compression pipeline.

In the process of compression, the baseline ACDNet was subjected to weight pruning
as the first step, and with a pruning ratio of 0.95, an accuracy of 87.44% was obtained. This
was followed by a different approach to structural pruning methods, namely magnitude
pruning, Taylor pruning, hybrid-magnitude pruning, and hybrid Taylor pruning. Table 2
shows the performance of ACDNet with each pruning approach, and the highest pruned
accuracy, 85.64%, was obtained for both magnitude pruning and hybrid-magnitude pruning.
Figure 5 shows the complete comparison of the experiments conducted on ACDNet along
with the results obtained.

Table 2. Results of ACDNet subjected to pruning.

Pruning Approach Pruning Ratio Highest Accuracy (%) Number of Parameters (M) FLOPs (M) Size (MB)

Baseline - 87.69 4.72 0.54 18.13
Weight pruning 0.95 87.44 4.72 0.54 18.13

Magnitude Pruning 0.8 85.64 0.12 0.04 0.48
Taylor pruning 0.8 84.10 0.15 0.02 0.61

Hybrid Taylor pruning 0.8 84.87 0.15 0.01 0.61
Hybrid-Magnitude pruning 0.8 85.64 0.12 0.04 0.48

Figure 5. ACDNet models for different augmentation and pruning techniques, where the notation ★

denotes the best model in each category.



Sensors 2024, 24, 1149 17 of 28

4.2. Proposed CNN Pipeline Results

We augmented the FSC22 dataset in two combinations of data augmentation tech-
niques as described in Section 3.3. The first combination involved time stretch and pitch
shift only. The second combination involved GWN addition with pitch shift and time
stretch. Data augmentation was followed by feature extraction, where we employed three
feature extraction techniques as described in Section 3.3. Table 3 shows the performance
of each CNN with each combination of preprocessing techniques. The best-performing
models for all the CNNs were obtained from time stretch and pitch shift data augmentation
and mixed spectrograms approach except for MobileNet-v3-small. The best performances
were 97.47%, 99.22%, 98.88%, 96.33% and 98.65% for AlexNet, DenseNet-121, Inception-v3,
EfficientNet-v2-B0 and ResNet-50 using mixed spectrograms, respectively. Additionally,
MobileNet-v3-small with Mel-spectrogram feature extraction resulted in the best accuracy
of 98.27%.

Table 3. Accuracy (%) of CNN models for augmentation and feature extraction techniques, where
MFCC: Mel Frequency Cepstral Coefficients, MEL: Mel-spectrogram, MIX: Mix-up, TP: Time Stretch,
PS: Pitch Shift, GWN: Gaussian White Noise.

Model
Augmentation with TS and PS Augmentation with TS, PS, GWN

MFCC MEL MIX MFCC MEL MIX

AlexNet 93.69% 97.17% 97.47% 93.09% 94% 95.48%
ResNet-50 97.91% 96.72% 98.65% 96.26% 97.8% 96.98%

DenseNet-121 98.91% 98.99% 99.22% 97.68% 98.21% 98%
Inception-v3 98.3% 98.75% 98.88% 96.44% 97.63% 97.21%

MobileNet-v3-small 94.3% 98.27% 97.9% 92.96% 96.93% 96.56%
EfficientNet-v2-B0 88.76% 95.08% 96.33% 93.42% 94.71% 94.94%

Figure 6 shows the accuracies of the different CNNs for the two augmentation meth-
ods concerning the feature extraction techniques that achieved maximum accuracy for
that augmentation. Augmentation with only pitch shift and time stretch outperformed
augmentation with pitch shift, time stretch, and Gaussian noise addition in all models. This
is due to excessive data augmentation amplifying the peculiarities of the dataset and the
high distortion of the audio due to the addition of noise.

Figure 6. Comparison of data augmentation techniques for CNN models.

Table 4 presents the attributes of these selected models. The inference time was lowest
in AlexNet with 2.668 ms, while the highest inference time was obtained for the model with
the highest accuracy out of the selected best-performing models, which was DenseNet-
121. Noticeably, the model size of MobileNet-v3-small was relatively small compared to
other models.



Sensors 2024, 24, 1149 18 of 28

Table 4. Summary of selected best CNN models considering data augmentation and feature engineer-
ing techniques.

Model Accuracy (%) Number of Parameters (M) GFLOPs Size (MB) Inference Time (ms)

AlexNet 97.47 4.24 0.75 16.2 2.49
ResNet-50 98.65 23.62 3.69 90.6 22.61

DenseNet-121 99.22 7.06 2.8 28.1 28.6
Inception-v3 98.88 21.86 2.44 84.2 9.98

MobileNet-v3-small 98.27 0.95 0.06 4.3 3.8
EfficientNet-v2-B0 96.33 5.95 0.76 23.4 12.21

Although MobileNet-v3-small performed differently than the rest of the models in
terms of feature extraction, the accuracy difference between the best-performing model
and the model trained with mixed spectrograms was relatively small. To have an equal
set of training conditions to compare compression approaches without a bias, considering
the majority, we selected the models trained with mixed spectrograms to be used in the
downstream tasks in the experiment. Figure 7 graphically represents this process of
selecting the best augmentation and feature extraction techniques and proceeding to the
subsequent steps of the workflow.

Figure 7. Model compression comparison of selected CNNs.

Subsequently, these models obtained from mixed spectrograms are subjected to com-
pression following the compression pipeline as described in Section 3.3. We performed
three compression techniques for the best-performing models, namely 8-bit quantization,
weight pruning, and filter pruning, as shown in Figure 7. Table 5 shows the model details
when the models are compressed with 8-bit quantization. The performance of MobileNet-
v3-small has reached an optimal trade-off between a model size of 1.2 MB and an accuracy
of 95.28%, although Inception-v3 obtained the highest accuracy of 96.41% accounting for
the vast difference in parameter count of the two models.

Table 5. 8-bit quantization results of base CNN classifiers.

Model Accuracy (%) Size (MB)

AlexNet 69.74 4.1
ResNet-50 88.46 23.2

DenseNet-121 85.08 7
Inception-v3 96.41 21.3

MobileNet-v3-small 95.28 1.2
EfficientNet-v2-B0 68.67 6.8



Sensors 2024, 24, 1149 19 of 28

The number of parameters does not change when a model is compressed using 8-bit
quantization, as it only rescales the model weights and biases. Accuracies of AlexNet,
ResNet-50, DenseNet-121, and EfficientNet-v2-B0 are significantly reduced due to the
high connectivity between the layers in the model architectures and the large dense layers
present in AlexNet. These filters and layers are highly affected because they tend to be
noisy without any weight pruning or filter pruning. The model sizes are approximately
4 times smaller than the base models, which was as expected since 8-bit integers require
4 times less space to store than 32-bit floats.

Simultaneously, weight pruning was applied to the selected models, and Table 6
presents the performance of the selected models on weight pruning with different pruning
ratios. Weight pruning using L1 normalization removed most of the insignificant learned
parameters, sparsifying the weight matrices without significantly affecting the classification
accuracy. However, there is a drastic decline in model performance if the pruning ratio is
too high without much benefit from other factors, such as a reduction in inference time as
explained by [49]. Weight pruning did not reduce the number of parameters of the model
or the Floating-Point Operations (FLOPs). Since weight pruning introduced sparse matrices
in the model, it is not suitable to be deployed in most edge devices. Here, the weight prune
ratio, also known as the pruning sparsity, indicates the percentage of weights that should
be 0 at the end of the weight-pruning process. We have evaluated weight-pruning ratios
starting at 80% and increasing until a significant drop-off of the model accuracy is observed.

Table 6. Sparsifying the weights in CNN models.

Model Weight-Pruned Ratio Accuracy (%) GFLOPs Inference Time (ms)

AlexNet
0.8 96.87

0.75
2.48

0.9 96.1 2.57
0.95 59.95 2.43

ResNet-50
0.8 98.21

3.69
20.9

0.9 98.41 22.62
0.95 75.74 22.47

DenseNet-121 0.8 98.46 2.8 28.73
0.9 6.21 29.64

Inception-v3
0.8 98.77

2.44
10.56

0.9 92.31 10.83
0.95 71.44 9.72

MobileNet-v3-small
0.8 95.85

0.06
3.92

0.9 92.97 3.96
0.95 7.95 3.86

EfficientNet-v2-B0
0.8 95.49

0.76
11.36

0.9 95.64 11.47
0.95 94.82 11.23

When the best-performing models were subjected to filter pruning based on magnitude-
based L2 norm filter impotence criteria, it was observed that different models behave
differently, as shown in Table 7. This is largely due to the architectural differences, filter con-
nectivity, and branching of channels in the models. Since AlexNet has two very large dense
layers with 1024 channels each, these layers are heavily pruned, resulting in a massive
accuracy reduction. Most of the parameters of MobileNet-v3-small are confined to several
large Conv2D layers. Filter pruning these layers resulted in a significant accuracy drop.
The parameter count and the number of FLOPs have been reduced as expected by imputing
the unimportant filters. Henceforth, the model sizes have been reduced too. However, due
to the extremely sparse filter connectivity of the Inception-v3 architecture, very few layers
have been completely pruned, resulting in a minimal size reduction of the filter-pruned
model compared to the base model. The inference times of the models that exhibit dense



Sensors 2024, 24, 1149 20 of 28

connectivity among the layers, such as AlexNet, DenseNet-121, and MobileNet-v3-small,
have all reduced or remained relatively stable. The inference times of the models with
sparse and residual connectivity, such as Inception-v3 and ResNet-50, have increased. This
is due to the removal of residual and branching connections between layers, making the
resulting model essentially a densely connected network, thus heavily compromising and
disrupting the intended model architecture and its inference capabilities. Furthermore, due
to the fused mobile inverted bottleneck (Fused-MBConv) being the main building block of
EfficientNet-v2-B0, the inference times have been affected adversely, reflecting the heavy
impact on filter pruning on the residuals of the bottleneck layer of Fused-MBConv and the
squeeze and excite (SE) optimization [38]. Figure 8 shows the effect of the pruning level
on the accuracy and the parameter count. It was evident that models that have a smaller
number of parameters are adversely affected by channel pruning with minimal reduction
of parameters and model size.

Table 7. CNN Models after channel pruning using L2 norm-based ranking.

Model Filter-Pruned
Ratio Accuracy (%) Number of

Parameters (M) GFLOPS Size (MB) Inference Time
(ms)

AlexNet 0.7 80.82 0.63 0.31 11.5 3.76
0.8 75.59 0.38 0.26 11.1 3.15

ResNet-50 0.7 96.77 2.52 0.52 15.9 32.25
0.8 91.95 1.24 0.33 9.5 30.85

DenseNet-121 0.7 95.33 0.97 0.54 10.3 18.6
0.8 94 0.43 0.32 8.91 17.25

Inception-v3 0.7 95.44 2.92 0.38 83.2 21.48
0.8 91.9 1.53 0.19 83.2 21.78

MobileNet-v3-small 0.7 78.56 0.14 0.02 0.67 2.1
0.8 73.23 0.09 0.02 0.44 2.09

EfficientNet-v2-B0 0.7 94.21 0.75 0.16 11.1 21.29
0.8 93.08 0.37 0.11 11.1 21.85

Figure 8. Comparison of model accuracy and parameters for filter pruning levels 0.7 and 0.8.

After utilizing each of the compression approaches individually, we selected the best-
performing model with weight pruning from each CNN architecture and applied filter
pruning followed by quantization. DenseNet-121, Inception-v3, and MobileNet-v3-small
were obtained with a pruning ratio of 0.8, AlexNet and ResNet-50 were obtained with a
pruning ratio of 0.9, and EfficientNet-v2-B0 from a pruning ratio of 0.95 are selected as
the best-performing weight-pruned models. The hybrid pruning approach has resulted in
much-improved results compared to solely resting on weight pruning or filter pruning, as
shown in Table 8. The prior application of weight pruning has acted as a regularization
technique, removing the unimportant weights, resulting in a more generalized model that



Sensors 2024, 24, 1149 21 of 28

has aided the filter pruning algorithm to execute efficiently without overfitting and remove
the filters with the least effect on the model while maintaining higher accuracies. The
parameter count, FLOPs, and model size have been reduced compared to the base model
and the previously pruned models. However, the inference times of the hybrid pruned
models have remained relatively equal to the inference times displayed with filter pruning
as a compression technique. These observations can be explained by the aforementioned
reasons expressed previously in filter pruning the base model. A filter pruning level of 0.7
resulted in the best model in every CNN architecture, considering the trade-off between
accuracy and the other factors.

Table 8. CNN Models after channel pruning the weight-pruned models (hybrid pruning).

Model Filter-Pruned
Ratio Accuracy (%) Number of

Parameters (M) GFLOPS Size (MB) Inference Time
(ms)

AlexNet 0.7 90.31 0.63 0.31 11.5 3.52
0.8 70.21 0.38 0.26 11.1 3.02

ResNet-50 0.7 97.64 2.52 0.52 15.9 8.62
0.8 94.82 1.24 0.33 9.5 6.66

DenseNet-121 0.7 93.39 0.97 0.54 10.3 18.5
0.8 92.05 0.43 0.32 8.91 18.32

Inception-v3 0.7 96.82 2.92 0.38 83.2 22.22
0.8 94.62 1.53 0.19 83.2 22.31

MobileNet-v3-small 0.7 88.26 0.14 0.02 0.67 2.28
0.8 86.72 0.09 0.02 0.44 1.98

EfficientNet-v2-B0 0.7 94.41 0.75 0.16 11.1 20.55
0.8 92.44 0.37 0.11 11.1 20.58

The best-performing models out of the weight and filter-pruned are quantized with
8-bit quantization. The best performances of all models are achieved with the filter pruning
ratio of 0.7. Table 9 shows the performance after quantizing these best models obtained
after weight and filter pruning.

Table 9. CNN model metrics after hybrid pruning and quantization.

Model Accuracy (%) Number of Parameters (M) Size (MB) Inference Time (ms)

AlexNet 90.21 0.63 2.9 2.55
ResNet-50 97.28 2.52 4.1 5.95

DenseNet-121 92.87 0.97 2.7 11.35
Inception-v3 90.56 2.92 20.9 12.73

MobileNet-v3-small 87.95 0.14 0.24 2.2
EfficientNet-v2-B0 92.77 0.75 5.8 19.58

The decline of the accuracy after 8-bit quantization of the pruned models was negligible
compared to the post-quantization accuracies of the base models. This is because filter
pruning removes noisy filters from the model, consequently narrowing down value ranges
of weights and activations and culminating in the reduction of the total quantization error.
These are the best models to be deployed on edge devices for forest sound classification,
considering their performance and resource requirements. MobileNet-v3-Small is suitable
for forest monitoring applications where real-time event detection is paramount and edge
device flash memory capabilities are limited. However, ResNet-50 achieves excellent
performance while maintaining the model size and the inference time relatively small
compared to the other models. Figure 9 displays the evolution of the accuracy, FLOPs, and
sizes of the models through different stages of the compression pipeline.



Sensors 2024, 24, 1149 22 of 28

Figure 9. (a) Comparison of 70% filter-pruned models from Table 7. (b) Comparison of hybrid pruned
models from Table 8. (c) Comparison of hybrid pruned and 8-bit quantized models from Table 9.

When the performances of these CNNs, which are initially designed for images, are
compared with ACDNet, designed for compression and edge deployment, it is evident
that the efficacy of image-based CNNs relies heavily on their architecture. As depicted in
Figure 10, CNN architectures with high compressibility achieve a smaller model size while
maintaining commendable accuracy. Among the selected CNNs, ResNet-50 attains the
highest accuracy at 97.28%, but its model size of 4.1MB raises doubt regarding deployment
on extremely resource-constrained edge devices. Conversely, MobileNet-v3-small emerges
as the optimal choice, with an accuracy of 87.95% and a compact model size of 0.24 MB.

Figure 10. Comparison of accuracy, parameter count, and model size of compressed CNNs and
ACDNet.

Correspondingly, the compressed ACDNet achieves an accuracy of 85.64% with a
model size of 0.484 MB. Although MobileNet-v3-small outperforms compressed ACDNet
based on these metrics, it is crucial to note that ACDNet can process raw audio input
and perform feature extraction with convolutional layers using fewer parameters and the
additional cost of feature extraction using mixed spectrograms for MobileNet-v3-small
is not accounted for in this comparison. Henceforth, it follows that both of these models
exhibit suitability for edge deployment, each with its minor trade-offs.

5. Discussion
5.1. Study Contribution

We conducted this comparison analysis using two pipelines, the ACDNet pipeline and
the proposed CNN-based pipeline, which is involved with AlexNet, ResNet-50, DenseNet-
121, Inception-v3, MobileNet-v3-small, and EfficientNet-v2-B0.

When training the ACDNet, this study involved comparisons of baseline ACDNet
with time stretch and pitch shift data augmentation, 3 audio clip mix-up augmentation, and
4 audio clip mix-up augmentation. Furthermore, ACDNet compression is associated with



Sensors 2024, 24, 1149 23 of 28

the comparison of baseline ACDNet with weight-pruned ACDNet, magnitude-pruned
ACDNet, Taylor-pruned ACDNet, weight and hybrid-magnitude-pruned ACDNet, and
weight and hybrid Taylor-pruned ACDNet. The best accuracy was given by the 3 audio
mix-up as 87.95%, and the baseline ACDNet with 2 audio clip mix-up gave an accuracy
of 87.69%, where the difference with 3 audio clip mix-up is 0.26%, which is relatively
small. Furthermore, the baseline ACDNet was subjected to compression using weight
pruning as a structured pruning approach, followed by magnitude pruning and Taylor
pruning, which are unstructured pruning approaches. Table 2 shows the results obtained
with the compression pipeline for the ACDNet. The best pruning approaches recorded are
magnitude pruning or hybrid-magnitude pruning, which gives an accuracy of 85.64% with
a 0.48 MB model size.

The proposed CNN pipeline compared the training of the selected six CNN architec-
tures with time stretch and pitch shift data augmentation and time stretch, pitch shift, and
GWN addition data augmentation, which resulted in 5 times and 6 times expansion in the
FSC22 dataset, respectively. Each of these augmentation combinations was associated with
MFCC, Mel-spectrogram, and mixed-spectrogram feature extraction, resulting in a total of
6 data preprocessing combinations to be compared. By comparing the performance of the
CNNs with each of the data preprocessing combinations, the best set of models with the
highest classification accuracy was selected. According to Table 3, the lowest performance
of 88.76% was recorded from EfficientNet-v2-B0 trained with data augmentation of time
stretch and pitch shift along with MFCC as the feature extraction technique. The best
performance of 99.22% was obtained for DenseNet-121 trained with data augmentation
of time stretch and pitch shift along with mixed spectrograms as the feature extraction
technique. The best model obtained from each architecture was subjected to model com-
pression. Consequently, the model compression pipeline compares the selected model by
the application of weight pruning, filter pruning, quantization, weight pruning, followed
by filter pruning, and weight and filter pruning, followed by quantization. Tables 6–8 show
results obtained from respective compression techniques. Additionally, we selected the best-
performing weight-pruned models and applied filter pruning followed by quantization for
further compression.

With these experiments, it could be concluded that time stretch and pitch shift data
augmentation with mixed-spectrogram feature extraction performed best for every model
in the context of forest sound classification. From the compression comparisons, it was
evident that using weight pruning, then structured magnitude-based filter pruning, and
finally, 8-bit quantization yielded the best models with an optimum trade-off between
classification accuracy and model size.

Moreover, when compared to the ACDNet pipeline and other CNN pipelines, the
ACDNet architecture is designed specifically for environmental sound classification, fo-
cusing on the feasibility of deploying on extremely resource-constrained edge devices.
On the other hand, AlexNet, ResNet-50, DenseNet-121, Inception-v3, MobileNet-v3-small,
and EfficientNet-v2-B0 are initially designed for image classification. When applied to
acoustic classification, these CNNs achieved higher accuracies, as indicated in Table 4.
However, when it comes to resource-constrained edge device deployment, model size is
a critical consideration, and these models shown in Table 4 were subjected to a series of
model compressions.

Out of the compressed models, MobileNet-v3-small stands out as the best model to
be deployed on edge. When this model is compared with the compressed ACDNet, it can
be observed that the MobileNet-v3-small performs better than ACDNet in the context of
accuracy and model size. However, ACDNet performs implicit feature extraction through
its convolutional layers, with fewer parameters compared to MobileNet-v3-small. In
the case of MobileNet-v3-small, an additional computational cost is incurred for feature
extraction using mixed spectrograms, which is not accounted for in this analysis, and it
may be a limiting factor when deploying the model due to CPU and memory bottlenecks.
Given these considerations, both models are likely to exhibit comparable performance



Sensors 2024, 24, 1149 24 of 28

when deployed on edge devices. Since ACDNet has been successfully deployed on an
off-the-shelf MCU [40], it can be concluded that compression-friendly CNNs specifically
designed for environmental sound classification on edge devices are more viable in the real
world for deforestation observatories in heavily resource-constrained environments.

5.2. Comparison with Existing Studies

Existing studies that involve CNN compression in the domain of environmental sound
classification are limited. Mohaimenuzzaman et al. [40] have presented a compression
pipeline for deep acoustic networks in resource-constrained environments. This study
incorporates this with minor improvements in data augmentation techniques. ACDNet uses
the ESC-50 dataset and achieves an accuracy of 87.10% [40] on the baseline, while this study
achieves an accuracy of 87.69% on the baseline model with the FSC22 dataset. Furthermore,
we were able to improve the accuracy up to 87.95% with the augmentation of 3 audio
clips mix-up. Following the compression pipeline, the best pruning approach recorded for
ACDNet with ESC-50 is hybrid Taylor pruning [40], although the best pruning approach for
ACDNet trained with the FSC22 dataset is the magnitude or hybrid-magnitude pruning.

Yuzhong Wu et al. [51] introduced a methodology for audio classification model size
reduction using low-dimensional feature representation of audio segments. This study has
obtained a size reduction of 4.55% and 11.11%, respectively, on AlexNet and ResNet-50,
along with an accuracy of 85.9% and 91.4%. The study by Ma et al. [66], which investigated
a structured pruning approach with network purification and unused path removal, could
achieve accuracies of 81.76% and 92.26% on AlexNet and ResNet-50 trained on ImageNet,
respectively. AlexNet and ResNet-50 trained on FSC22 when subjected to weight and filter
pruning followed by quantization achieved an accuracy of 90.21% and 97.28%. Moreover,
Molchanov et al. [49] presented a Taylor criteria-based pruning approach to pruning CNNs.
This study has evaluated the performance of the AlexNet on the dataset Flowers-102 with
Taylor pruning and obtained an accuracy of 80.1%.

Compared to the existing studies, we have proposed a pipeline encompassing data
augmentation, feature extraction, and model compression to achieve forest sound classifi-
cation using CNN classifiers. Furthermore, this study has evaluated the efficacy of such
CNNs against ACDNet, which is tailor-made for environmental sound classification in
resource-constrained environments, and concluded that they perform nearly identically
but with the caveat of extra processing needed in the case of image CNNs.

5.3. Challenges and Future Work

This study aimed to find a suitable CNN architecture for edge deployment. As a result,
one possible future direction is to research the edge deployment of the best-performing
CNN. Although we concluded that the best-performing CNN is MobileNet-v3-small, de-
pending on the memory availability on the selected edge device, other CNNs that have
higher accuracy and model size could be deployed on the edge. Moreover, a Neural Archi-
tecture Search (NAS)-based process can be applied to automate the design of lightweight
CNNs for sound classification on edge devices. It supports automating the steps in the
pipeline, from data cleaning to feature engineering and selection to hyperparameter and
architecture search [67]. In addition, hardware-aware NAS addresses the challenge of
balancing performance with resource constraints on resource-limited edge devices. Fur-
thermore, these models should be evaluated under real-time forest environment conditions,
which can be challenging for the models.

6. Conclusions

This study presented a comparison analysis of popular CNN architectures in the
context of data augmentation, feature extraction, and model compression to find a suitable
model with the optimal trade-off between model size and performance. As we specifically
focused on forest sound classification to address deforestation, this study involved the
FSC22 dataset, which is a publicly available forest sound classification dataset. Among



Sensors 2024, 24, 1149 25 of 28

deep-learning approaches for classification, CNNs are a promising approach. Hence-
forth, we selected 7 popular CNNs, namely ACDNet, AlexNet, ResNet-50, DenseNet-121,
Inception-v3, MobileNet-v3-small, and EfficientNet-v2-B0 and compared the performance
of these models with different augmentation and feature extraction techniques. The highest
performance is obtained for DenseNet-121 with an accuracy of 99.22%, and the model size
is 28.1 MB. As a result, model compression is required to minimize the model size while
maintaining the accuracy. This study compared the compression performance with weight
pruning, filter pruning, and quantization. With these comparisons, it can be concluded
that the hybrid pruning approach yields improved results than using standalone filter
pruning due to the removal of unimportant features, thus increasing the generalizability
and enabling efficient structural pruning of the models. Furthermore, quantization per-
forms best after hybrid pruning the models due to the removal of noisy filters during the
hybrid pruning process. Following the compression pipelines, MobileNet-v3-small and
ACDNet achieved the optimal performance with accuracies of 87.95% and 87.69% while
being in the size of 243 KB and 484 KB, respectively. These models can be deployed on
resource-constrained edge devices for effective forest monitoring to address deforestation.

Author Contributions: Conceptualization, D.M. and C.P; methodology, T.P., P.R. and D.R.; software,
T.P., P.R. and D.R.; validation, T.P., P.R., D.R., D.M. and C.P.; investigation, T.P., P.R., D.R. and
D.M.; data curation, T.P., P.R. and D.R.; writing—original draft preparation, T.P., P.R. and D.R.;
writing—review and editing, D.M. and C.P.; visualization, T.P., P.R. and D.R.; supervision, D.M. and
C.P.; project administration, D.M. and C.P. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: “FSC22 dataset”, IEEE Dataport, doi: https://doi.org/10.21227/4
0ds-0z76 (accessed on 30 January 2024), GitHub Repository https://github.com/Neural-Dreamers/
Forest-Sound-Analysis-on-Edge.git (accessed on 30 January 2024).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sarker, I.H. Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput.

Sci. 2021, 2, 420. [CrossRef]
2. Zhao, M.; Li, M.; Peng, S.L.; Li, J. A Novel Deep Learning Model Compression Algorithm. Electronics 2022, 11, 1066. [CrossRef]
3. Vandendriessche, J.; Wouters, N.; da Silva, B.; Lamrini, M.; Chkouri, M.Y.; Touhafi, A. Environmental sound recognition on

embedded systems: From FPGAs to TPUs. Electronics 2021, 10, 2622. [CrossRef]
4. Andreadis, A.; Giambene, G.; Zambon, R. Monitoring illegal tree cutting through ultra-low-power smart iot devices. Sensors 2021,

21, 7593. [CrossRef] [PubMed]
5. Mporas, I.; Perikos, I.; Kelefouras, V.; Paraskevas, M. Illegal logging detection based on acoustic surveillance of forest. Appl. Sci.

2020, 10, 7379. [CrossRef]
6. Olteanu, E.; Suciu, V.; Segarceanu, S.; Petre, I.; Scheianu, A. Forest monitoring system through sound recognition. In Proceedings

of the 2018 International Conference on Communications (COMM), Kansas City, MO, USA, 20–24 May 2018; IEEE: Piscataway,
NJ, USA, 2018; pp. 75–80. [CrossRef]

7. Marcu, A.E.; Suciu, G.; Olteanu, E.; Miu, D.; Drosu, A.; Marcu, I. IoT system for forest monitoring. In Proceedings of the 2019
42nd International Conference on Telecommunications and Signal Processing (TSP), Budapest, Hungary, 1–3 July 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 629–632. [CrossRef]

8. Kahrs, M.; Brandenburg, K. Applications of Digital Signal Processing to Audio and Acoustics; Springer Science & Business Media:
New York, NY, USA, 1998.

9. Stowell, D.; Giannoulis, D.; Benetos, E.; Lagrange, M.; Plumbley, M.D. Detection and classification of acoustic scenes and events.
IEEE Trans. Multimed. 2015, 17, 1733–1746. [CrossRef]

10. Han, B.; Hwang, E. Environmental sound classification based on feature collaboration. In Proceedings of the 2009 IEEE
International Conference on Multimedia and Expo, New York, NY, USA, 28 June–3 July 2009; IEEE: Piscataway, NJ, USA, 2009;
pp. 542–545. [CrossRef]

https://doi.org/10.21227/40ds-0z76
https://doi.org/10.21227/40ds-0z76
https://github.com/Neural-Dreamers/Forest-Sound-Analysis-on-Edge.git
https://github.com/Neural-Dreamers/Forest-Sound-Analysis-on-Edge.git
http://doi.org/10.1007/s42979-021-00815-1
http://dx.doi.org/10.3390/electronics11071066
http://dx.doi.org/10.3390/electronics10212622
http://dx.doi.org/10.3390/s21227593
http://www.ncbi.nlm.nih.gov/pubmed/34833669
http://dx.doi.org/10.3390/app10207379
http://dx.doi.org/10.1109/ICComm.2018.8484773
http://dx.doi.org/10.1109/TSP.2019.8768835
http://dx.doi.org/10.1109/TMM.2015.2428998
http://dx.doi.org/10.1109/ICME.2009.5202553


Sensors 2024, 24, 1149 26 of 28

11. Chu, S.; Narayanan, S.; Kuo, C.C.J. Environmental sound recognition with time–frequency audio features. IEEE Trans. Audio
Speech Lang. Process. 2009, 17, 1142–1158. [CrossRef]

12. Gibb, R.; Browning, E.; Glover-Kapfer, P.; Jones, K.E. Emerging opportunities and challenges for passive acoustics in ecological
assessment and monitoring. Methods Ecol. Evol. 2019, 10, 169–185. [CrossRef]

13. Meedeniya, D.; Ariyarathne, I.; Bandara, M.; Jayasundara, R.; Perera, C. A Survey on Deep Learning Based Forest Environment
Sound Classification at the Edge. ACM Comput. Surv. 2023, 56, 1–36. [CrossRef]

14. Chu, H.C.; Zhang, Y.L.; Chiang, H.C. A CNN Sound Classification Mechanism Using Data Augmentation. Sensors 2023, 23, 6972.
[CrossRef]

15. Jaiswal, K.; Patel, D.K. Sound classification using convolutional neural networks. In Proceedings of the 2018 IEEE International
Conference on Cloud Computing in Emerging Markets (CCEM), Bangalore, India, 23–24 November 2018; IEEE: Piscataway, NJ,
USA, 2018; pp. 81–84. [CrossRef]

16. Arevalo, J.D.C.; Calica, P.C.; Celestino, B.A.D.; Dimapunong, K.A.; Lopez, D.J.D.; Austria, Y.D. Towards Real-Time Illegal Logging
Monitoring: Gas-Powered Chainsaw Logging Detection System using K-Nearest Neighbors. In Proceedings of the 2020 IEEE
10th International Conference on System Engineering and Technology (ICSET), Shah Alam, Malaysia, 9 November 2020; IEEE:
Piscataway, NJ, USA, 2020; pp. 156–160. [CrossRef]

17. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv 2015, arXiv:1510.00149.

18. Meedeniya, D. Deep Learning: A Beginners’ Guide; CRC Press LLC: Boca Raton, FL, USA, 2023.
19. Bandara, M.; Jayasundara, R.; Ariyarathne, I.; Meedeniya, D.; Perera, C. Forest sound classification dataset: Fsc22. Sensors 2023,

23, 2032. [CrossRef]
20. Zhu, M.; Gupta, S. To prune, or not to prune: Exploring the efficacy of pruning for model compression. arXiv 2017, arXiv:1710.01878.
21. Polino, A.; Pascanu, R.; Alistarh, D. Model compression via distillation and quantization. arXiv 2018, arXiv:1802.05668.
22. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM

2017, 60, 84–90. [CrossRef]
23. Copiaco, A.; Ritz, C.; Abdulaziz, N.; Fasciani, S. A study of features and deep neural network architectures and hyper-parameters

for domestic audio classification. Appl. Sci. 2021, 11, 4880. [CrossRef]
24. Lu, T.; Han, B.; Yu, F. Detection and classification of marine mammal sounds using AlexNet with transfer learning. Ecol. Inform.

2021, 62, 101277. [CrossRef]
25. Tsalera, E.; Papadakis, A.; Samarakou, M. Comparison of pre-trained CNNs for audio classification using transfer learning. J.

Sens. Actuator Netw. 2021, 10, 72. [CrossRef]
26. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]
27. Palanisamy, K.; Singhania, D.; Yao, A. Rethinking CNN models for audio classification. arXiv 2020, arXiv:2007.11154.
28. Hershey, S.; Chaudhuri, S.; Ellis, D.P.; Gemmeke, J.F.; Jansen, A.; Moore, R.C.; Plakal, M.; Platt, D.; Saurous, R.A.; Seybold, B.; et al.

CNN architectures for large-scale audio classification. In Proceedings of the 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 131–135.
[CrossRef]

29. Yang, C.; Gan, X.; Peng, A.; Yuan, X. ResNet Based on Multi-Feature Attention Mechanism for Sound Classification in Noisy
Environments. Sustainability 2023, 15, 10762. [CrossRef]

30. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.
[CrossRef]

31. Bian, W.; Wang, J.; Zhuang, B.; Yang, J.; Wang, S.; Xiao, J. Audio-based music classification with DenseNet and data augmentation.
In Proceedings of the PRICAI 2019: Trends in Artificial Intelligence: 16th Pacific Rim International Conference on Artificial
Intelligence, Yanuca Island, Fiji, 26–30 August 2019; Springer: Cham, Switzerland, 2019; pp. 56–65. [CrossRef]

32. Wang, D.; Zhang, L.; Xu, K.; Wang, Y. Acoustic scene classification based on dense convolutional networks incorporating
multi-channel features. J. Phys. Conf. Ser. 2019, 1169, 012037. [CrossRef]

33. Le Thuy, D.T.; Van Loan, T.; Thanh, C.B.; Cuong, N.H. Music Genre Classification Using DenseNet and Data Augmentation.
Comput. Syst. Sci. Eng. 2023, 47. [CrossRef]

34. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceed-
ings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016;
pp. 2818–2826. [CrossRef]

35. Sevilla, A.; Glotin, H. Audio Bird Classification with Inception-v4 extended with Time and Time-Frequency Attention Mechanisms.
CLEF Work. Notes 2017, 1866, 1–8.

36. Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; et al. Searching for
MobileNetV3. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of
Korea, 27 October–2 November 2019; pp. 1314–1324. [CrossRef]

37. Wang, M.; Mei, Q.; Song, X.; Liu, X.; Kan, R.; Yao, F.; Xiong, J.; Qiu, H. A Machine Anomalous Sound Detection Method Using the
lMS Spectrogram and ES-MobileNetV3 Network. Appl. Sci. 2023, 13, 12912. [CrossRef]

http://dx.doi.org/10.1109/TASL.2009.2017438
http://dx.doi.org/10.1111/2041-210X.13101
http://dx.doi.org/10.1145/3618104
http://dx.doi.org/10.3390/s23156972
http://dx.doi.org/10.1109/CCEM.2018.00021
http://dx.doi.org/10.1109/ICSET51301.2020.9265375
http://dx.doi.org/10.3390/s23042032
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.3390/app11114880
http://dx.doi.org/10.1016/j.ecoinf.2021.101277
http://dx.doi.org/10.3390/jsan10040072
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/ICASSP.2017.7952132
http://dx.doi.org/10.3390/su151410762
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1007/978-3-030-29894-4_5
http://dx.doi.org/10.1088/1742-6596/1169/1/012037
http://dx.doi.org/10.32604/csse.2023.036858
http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1109/ICCV.2019.00140
http://dx.doi.org/10.3390/app132312912


Sensors 2024, 24, 1149 27 of 28

38. Tan, M.; Le, Q. Efficientnetv2: Smaller models and faster training. In Proceedings of the International Conference on Machine
Learning, Virtual, 18–24 July 2021; pp. 10096–10106. [CrossRef]

39. Wang, M.; Chen, C.; Xie, Y.; Chen, H.; Liu, Y.; Zhang, P. Audio-visual scene classification using transfer learning and hybrid
fusion strategy. In Proceedings of the Detection and Classification of Acoustic Scenes and Events, DCASE 2021, Virtual, 15–19
November 2021.

40. Mohaimenuzzaman, M.; Bergmeir, C.; West, I.; Meyer, B. Environmental Sound Classification on the Edge: A Pipeline for Deep
Acoustic Networks on Extremely Resource-Constrained Devices. Pattern Recognit. 2023, 133, 109025. [CrossRef]

41. Segarceanu, S.; Olteanu, E.; Suciu, G. Forest monitoring using forest sound identification. In Proceedings of the 2020 43rd
International Conference on Telecommunications and Signal Processing (TSP), Milan, Italy, 7–9 July 2020; IEEE: Piscataway, NY,
USA, 2020; pp. 346–349. [CrossRef]

42. Fang, Z.; Yin, B.; Du, Z.; Huang, X. Fast environmental sound classification based on resource adaptive convolutional neural
network. Sci. Rep. 2022, 12, 6599. [CrossRef]

43. Mushtaq, Z.; Su, S.F.; Tran, Q.V. Spectral images based environmental sound classification using CNN with meaningful data
augmentation. Appl. Acoust. 2021, 172, 107581. [CrossRef]

44. Wei, S.; Zou, S.; Liao, F.; Lang, W. A comparison on data augmentation methods based on deep learning for audio classification. J.
Phys. Conf. Ser. 2020, 1453, 012085. [CrossRef]

45. Nanni, L.; Maguolo, G.; Brahnam, S.; Paci, M. An ensemble of convolutional neural networks for audio classification. Appl. Sci.
2021, 11, 5796. [CrossRef]

46. Das, J.K.; Ghosh, A.; Pal, A.K.; Dutta, S.; Chakrabarty, A. Urban sound classification using convolutional neural network and
long short term memory based on multiple features. In Proceedings of the 2020 Fourth International Conference On Intelligent
Computing in Data Sciences (ICDS), Fez, Morocco, 21–23 October 2020; IEEE: Piscataway, NY, USA, 2020; pp. 1–9. [CrossRef]

47. Ting, P.J.; Ruan, S.J.; Li, L.P.H. Environmental noise classification with inception-dense blocks for hearing aids. Sensors 2021,
21, 5406. [CrossRef]

48. Wyatt, S.; Elliott, D.; Aravamudan, A.; Otero, C.E.; Otero, L.D.; Anagnostopoulos, G.C.; Smith, A.O.; Peter, A.M.; Jones, W.; Leung,
S.; et al. Environmental sound classification with tiny transformers in noisy edge environments. In Proceedings of the 2021 IEEE
7th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 14 June–31 July 2021; IEEE: Piscataway, NY, USA, 2021;
pp. 309–314. [CrossRef]

49. Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; Kautz, J. Pruning convolutional neural networks for resource efficient inference. arXiv
2016, arXiv:1611.06440.

50. Mohaimenuzzaman, M.; Bergmeir, C.; Meyer, B. Pruning vs XNOR-net: A comprehensive study of deep learning for audio
classification on edge-devices. IEEE Access 2022, 10, 6696–6707. [CrossRef]

51. Wu, Y.; Lee, T. Reducing model complexity for DNN based large-scale audio classification. In Proceedings of the 2018 IEEE
International Conference On Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; IEEE:
Piscataway, NY, USA, 2018; pp. 331–335. [CrossRef]

52. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning Filters for Efficient ConvNets. In Proceedings of the International
Conference on Learning Representations, Toulon, France, 24–26 April 2017. [CrossRef]

53. Lee, N.; Ajanthan, T.; Torr, P.H. Snip: Single-shot network pruning based on connection sensitivity. arXiv 2018, arXiv:1810.02340.
54. Cai, Y.; Hua, W.; Chen, H.; Suh, G.E.; De Sa, C.; Zhang, Z. Structured pruning is all you need for pruning CNNs at initialization.

arXiv 2022, arXiv:2203.02549.
55. Librosa. Audio and Music Processing in Python. Available online: https://librosa.org/ (accessed on 7 January 2024).
56. Audiomentations Python Library for Audio Data Augmentation. Available online: https://iver56.github.io/audiomentations/

(accessed on 7 January 2024).
57. Krohn, J.; Beyleveld, G.; Bassens, A. Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence; Addison-Wesley

Data and Analytics Series; Addison-Wesley: Boston, MA, USA, 2020.
58. Tokozume, Y.; Ushiku, Y.; Harada, T. Learning from between-class examples for deep sound recognition. arXiv 2017, arXiv:1711.10282.
59. TensorFlow An End-to-End Open Source Machine Learning Platform for Everyone. Available online: https://www.tensorflow.

org/ (accessed on 26 January 2024).
60. PyTorch An Imperative Style, High-Performance Deep Learning Library. Available online: https://pytorch.org/ (accessed on

26 January 2024).
61. Optuna A Hyperparameter Optimization Framework. Available online: https://optuna.org/ (accessed on 26 January 2024).
62. NumPy The Fundamental Package for Scientific Computing with Python. Available online: https://numpy.org/ (accessed on

26 January 2024).
63. TensorFlow Lite ML for Mobile and Edge Devices. Available online: https://www.tensorflow.org/lite (accessed on 26 January 2024).
64. NNCF Neural Network Compression Framework. Available online: https://github.com/openvinotoolkit/nncf (accessed on

26 January 2024).
65. OpenVINO An Open-Source Toolkit for Optimizing and Deploying AI Inference. Available online: https://github.com/

openvinotoolkit/openvino (accessed on 26 January 2024).

http://dx.doi.org/10.48550/arXiv.2104.00298
http://dx.doi.org/10.1016/j.patcog.2022.109025
http://dx.doi.org/10.1109/TSP49548.2020.9163433
http://dx.doi.org/10.1038/s41598-022-10382-x
http://dx.doi.org/10.1016/j.apacoust.2020.107581
http://dx.doi.org/10.1088/1742-6596/1453/1/012085
http://dx.doi.org/10.3390/app11135796
http://dx.doi.org/10.1109/ICDS50568.2020.9268723
http://dx.doi.org/10.3390/s21165406
http://dx.doi.org/10.1109/WF-IoT51360.2021.9596007
http://dx.doi.org/10.1109/ACCESS.2022.3140807
http://dx.doi.org/10.1109/ICASSP.2018.8462168
http://dx.doi.org/10.48550/arXiv.1608.08710
https://librosa.org/
https://iver56.github.io/audiomentations/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://pytorch.org/
https://optuna.org/
https://numpy.org/
https://www.tensorflow.org/lite
https://github.com/openvinotoolkit/nncf
https://github.com/openvinotoolkit/openvino
https://github.com/openvinotoolkit/openvino


Sensors 2024, 24, 1149 28 of 28

66. Ma, X.; Yuan, G.; Lin, S.; Li, Z.; Sun, H.; Wang, Y. Resnet can be pruned 60×: Introducing network purification and unused
path removal (p-rm) after weight pruning. In Proceedings of the 2019 IEEE/ACM International Symposium on Nanoscale
Architectures (NANOARCH), Qingdao, China, 17–19 July 2019; IEEE: Piscataway, NY, USA, 2019. [CrossRef]

67. Padmasiri, H.; Shashirangana, J.; Meedeniya, D.; Rana, O.; Perera, C. Automated license plate recognition for resource-constrained
environments. Sensors 2022, 22, 1434. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/NANOARCH47378.2019.181304
http://dx.doi.org/10.3390/s22041434

	Introduction
	Background
	Theoretical Background
	Related Work

	Methodology
	Dataset
	Process Flow
	The Proposed CNN-Based Pipeline
	Process Overview
	Weight Pruning
	Filter Pruning
	Quantization

	ACDNet Pipeline
	Implementation Aspects

	Results and Analysis
	ACDNet Pipeline Results
	Proposed CNN Pipeline Results

	Discussion
	Study Contribution
	Comparison with Existing Studies
	Challenges and Future Work

	Conclusions
	References

