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ABSTRACT
The slip style of continental midcrustal shear zones plays a crucial role in determining the 

seismogenic potential of faults, but it remains poorly understood because geological observa-
tions that can be directly tied to seismic behavior are scarce. We describe frictional-viscous 
shear zones in the Red River fault, China, which consists of two segments with distinct seismic 
behaviors and fluid availabilities. The northern segment hosts moderate to large earthquakes, 
and midcrustal fault slip is localized into mylonitized pseudotachylyte-bearing layers where 
dynamically recrystallized quartz records flow stresses exceeding 100 MPa and accelerated 
viscous creep. The southern segment is dominantly aseismic but active microseismically. Fault 
slip is accommodated in several mylonitized cataclasite layers, comprising interconnected 
biotite and intervening fractured clasts, with evidence for pervasive dissolution-precipitation 
creep. Microstructures, paleopiezometry, and microphysical modeling suggest transient aseis-
mic slip in response to increased strain rates during viscous creep at <50 MPa. We interpret 
that along-strike variations in fluid environment control fault slip styles and seismic behav-
iors. The dry and strong northern segment is capable of nucleating large earthquakes, while 
greater fluid availability in the southern segment activates dissolution-precipitation creep at 
low driving stresses, which limits interseismic elastic strain accumulation at frictional-viscous 
transition depths. In this model, compaction-driven fluid pressurization and dilatant harden-
ing are invoked to explain the aseismic slip transients in the southern segment.

INTRODUCTION
Some fault segments creep dominantly 

aseismically, while others lock between epi-
sodic earthquake slip events (Avouac, 2015). 
In addition, intermediate-speed slip events (slow 
earthquakes) have been reported from seismic-
aseismic transition zones in different tectonic 
settings (Behr and Bürgmann, 2021; Kirkpat-
rick et al., 2021). Fundamentally, competition 
between different mineral-scale deformation 
mechanisms may control the locked to creep-
ing transition (e.g., Thomas et al., 2014) as well 
as transient changes in slip speed (Menegon and 
Fagereng, 2021). However, many parameters, 
including composition, temperature, effective 
stress, and strain rate, will affect the spatial 
transition in slip style (e.g., Janecke and Evans, 
1988; Handy et al., 2007; Imber et al., 2008), 

raising the question: What key parameter con-
trols whether a fault segment is seismic or aseis-
mic? Traditionally, a critical thermal control has 
been proposed (e.g., Brace and Kohlstedt, 1980); 
however, it is also clear that the development of 
phyllosilicates and fluid involvement can lead 
to profound weakening, strain localization, and 
potential cyclic interplay between viscous creep 
and frictional slip within the seismic-aseismic 
transition zone (Janecke and Evans, 1988; Jef-
feries et al., 2006; Hardman et al., 2023). Here, 
we used the midcrustal rock record from seismic 
and aseismic segments of the Red River fault 
(RRF), China, to observe variations in structure 
and composition and infer critical controls on 
slip style.

GEOLOGICAL SETTING
The RRF extends ∼1000 km from the East-

ern Himalayan syntaxis to the South China Sea 
(Fig. 1A) and has played an important role in 
accommodating the southeastward extrusion 

of Tibet (Tapponnier et  al., 1990). At least 
nine historical large earthquakes (M ≥6) have 
occurred in the northern segment since A.D. 886 
(Fig. 1B). In contrast, no large earthquake has 
occurred in the southern segment during his-
torical or instrumental times. The distribution of 
small earthquakes (M <5) reveals a seismic gap 
around the segment boundary. However, given 
the lack of recent (large) earthquakes and low 
slip rates constrained by both global positioning 
system (GPS) data (0.9−1.6 mm/yr; Li et al., 
2020) and paleo-earthquakes (∼1.1 mm/yr; Shi 
et al., 2018), the present-day activity and seis-
mogenic potential of the RRF are still under 
debate.

Here, we describe pseudotachylyte- and cata-
clasite-bearing mylonite shear zones from seg-
ments of the RRF with distinct seismic behavior. 
These shear zones are found within the Ailao 
Shan shear zone (ASSZ; Fig. 1B), which bounds 
the RRF and which was deformed and exhumed 
from midcrustal depths by Oligocene–early 
Miocene left-lateral shear, followed by right-
lateral and normal transtension after the late 
Pliocene (Tapponnier et al., 1990; Searle et al., 
2010; Wintsch and Yeh, 2013). The ASSZ rocks 
experienced amphibolite-facies metamorphism, 
either before (Searle et  al., 2010) or coeval 
with (Leloup et al., 2001) the left-lateral shear. 
Most rocks in the ASSZ exhibit steeply dipping, 
strike-parallel mylonitic foliation and subho-
rizontal stretching lineation (Liu et al., 2012). 
The RRF comprises two parallel fault strands: 
the Range Front fault (RFF) along the north-
east flank of the ASSZ and the Mid-Valley fault 
(MVF) along the Red River valley (Fig. 1C). 
The RFF accommodated most of the left-lat-
eral and normal faulting components during the 
exhumation (Replumaz et al., 2001). The MVF 
accommodated right-lateral slip, as attested by 
fault scarps and displaced drainage (Replumaz 
et al., 2001). Deformation and foliation intensi-

CITATION: Duan, Q., et al., 2024, Fluid environment controls along-strike variation in slip style: Midcrustal geological signatures from the Red River fault, China: 
Geology, v. XX, p. XXX–XXX, https://doi .org /10 .1130 /G51865 .1

Qingbao Duan  https://orcid.org/0000-0002 
-1203-7092

*qbduan@ies .ac .cn

Published online 28 February 2024

Downloaded from http://pubs.geoscienceworld.org/gsa/geology/article-pdf/doi/10.1130/G51865.1/6275564/g51865.pdf
by guest
on 07 March 2024

http://www.geosociety.org
https://pubs.geoscienceworld.org/geology
http://www.geosociety.org
https://doi.org/10.1130/G51865.1
https://orcid.org/0000-0002-1203-7092
mailto:qbduan@ies​.ac​.cn


2 www.gsapubs.org | Volume XX | Number XX | GEOLOGY | Geological Society of America

ties in the ASSZ show trends of increasing strain 
toward the RFF. Mylonitized pseudotachylyte 
and cataclasite slip zones, defined as localized, 
very high-strain, frictional-viscous deformation 
zones, developed within mylonites near the RFF 
(Figs. 1C–1J). We examined these high-strain 
zones in fault outcrops at Gasa, Yuanjiang, and 
Yuanyang (Fig. 1B).

MICROSTRUCTURES
At the Gasa outcrop, in the seismic northern 

segment, centimeter-thick mylonitized pseudo-
tachylyte layers lie parallel to northeast-dipping 
foliation in granitic mylonites (Figs. 1D–1F; 
Fig. S1 in the Supplemental Material1). These 
mylonites primarily consist of quartz and feld-
spars (Figs. 2A and 2B). Vesicles filled with 
ultrafine-grained biotite crystals are signatures 

for interpreting the pseudotachylyte (Fig. 2C; 
Sibson, 1975; Kirkpatrick and Rowe, 2013). 
Quartz with jagged grain edges that pin into bio-
tite cleavages indicates crystal growth (Fig. 2D). 
The quartz-quartz boundaries are aligned at high 
angles to foliated biotite (Fig. 2E), indicating 
progressive growth and foliation development 
during subsequent viscous deformation (e.g., 
Campbell and Menegon, 2019).

At the Yuanjiang outcrop, in the segment 
boundary, three few-centimeter-thick cataclas-
ite slip zones are parallel to the mylonitic folia-
tion (Fig. S2). The composition and microstruc-
ture of these cataclasites are similar to those 
of the Yuanyang outcrop, in the predominantly 
aseismic southern segment, where five cata-
clasite slip zones, several to tens of centime-
ters thick, are parallel to foliation in mylonites 
(Figs.  1G–1J; Fig. S3). In these mylonites, 
dissolution-precipitation creep is recorded 
by dissolved feldspars and fine-grained neo-
blasts in stress shadows (Figs.  2F and 2G). 
Folded quartz veins in mylonitized cataclasites 
imply cyclical frictional and viscous deforma-

tion (Fig. 2H). A local micro–shear zone that 
formed along interconnected biotite and com-
petent clasts indicates strain incompatibility and 
stress concentration (Fig. 2I). Solution cleavage 
defined by biotite wraps around quartz and feld-
spar clasts (Fig. 2J), and overgrowths in pres-
sure shadows (Fig. 2K) indicate dissolution-
precipitation creep. A micrometer-thick slip 
surface, characterized by vesicles and biotite 
microlites, and interpreted as a fossilized melt, 
lies parallel to the foliation in cataclasite matrix 
(Figs. 2L and 2M; Fig. S4A). The amorphous 
groundmass and the crystallized biotite have 
similar compositions to the biotite in cataclas-
ites (Figs. S4B–S4E), suggesting local melting 
of biotite. Frictional heating is also evidenced 
by the replacement of biotite by ilmenite along 
cleavage planes (Fig. 2N). The slip surface is 
cemented by iron-oxide veins (Figs. S4G–S4I).

DEFORMATION TEMPERATURE, 
FLOW STRESS, AND STRAIN RATE

Microstructures of quartz ribbons commonly 
show lobate grain boundaries (Fig. S5), indicat-

1Supplemental Material. Method texts,  additional 
figures, and grain-size and mineral  chemistry data. 
Please visit https://doi .org /10 .1130 /GEOL .S.25219763 
to access the supplemental material; contact editing@
geosociety .org with any questions.
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Figure 1. (A) Regional setting of southeast Tibet area. Global positioning system (GPS) data are from Wang and Shen (2020) in Eurasian 
plate reference frame. (B) Geological map of Red River fault (RRF; after Liu et al., 2012). Small earthquakes are from Li et al. (2020). Historical 
earthquakes are from Gu et al. (1983). (C) Schematic cross section along profile A–A′. Pt—Proterozoic; Q—Quaternary; P—Permian. (D–F) 
Photographs of pseudotachylyte (Pst) hosted by mylonites at Gasa. (G–J) Photographs of cataclasites hosted by mylonites at Yuanyang.
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ing the dominance of grain boundary migration 
recrystallization. Pole figures showing electron 
backscatter diffraction data (Method Text S1) 
display point maxima around the kinematic y 
direction (Figs. 3A–3C), with misorientation 
angles peaking at low angles and misorienta-
tion axes clustering around the quartz c axis, 
suggesting prism <a> slip (Figs. S6–S8). Max-
ima between the kinematic x and z directions 
(Fig. 3C), along with clustering of misorienta-
tion axes around {m} and <a> (Fig. S6), indi-
cate a prism <c> slip system in host rock from 
Gasa. Although also dependent on strain rate, 
these data indicate dislocation creep of quartz 
at relatively high temperatures (>500 °C; Stipp 
et al., 2002). Application of the Ti-in-biotite geo-
thermometer (Wu and Chen, 2015) to biotite 
mineral chemistry data (Method Text S2; Table 
S1; Fig. S9) yielded foliation-forming defor-
mation temperatures of ∼650 °C in host rock 
and ∼600 °C near and in slip zones at Gasa 
(Fig. 3D). At Yuanjiang, the estimated tempera-
tures in the host rock, near the slip zone, and 
slip zone are ∼640 °C, 636 °C, and 622 °C, 
respectively (Fig. 3E). The estimated tempera-

tures in host rock and slip zone at Yuanyang 
are slightly colder, at ∼610 °C and ∼570 °C, 
respectively (Fig. 3F).

Recrystallized quartz grain sizes decrease 
toward slip zones and from the southern to 
northern segment (Figs. 3G–3O). Application 
of the quartz piezometer of Cross et al. (2017) 
to grain-size data revealed relatively high flow 
stresses that increase from 69 MPa in host rock 
to 145 MPa in slip zones at Gasa (Fig. 4A; Table 
S2). Flow stresses at Yuanjiang increase from 
44 MPa in host rock to 78 MPa in slip zones. 
At Yuanyang, the flow stresses increase from 
host-rock flow stress of ∼27 MPa to ∼49 MPa 
in slip zones.

Strain rates predicted by a quartz flow law 
(Lu and Jiang, 2019) at the temperatures from 
the Ti-in-biotite thermometer fit the paleopi-
ezometry data for 10−9–10−8 s−1 and 10−11–
10−10 s−1 in the northern and southern seg-
ments, respectively (Fig. 4A). Strength curves 
calculated considering weakening by pressure 
solution and frictional-viscous slip along bio-
tite cleavages (Bos and Spiers, 2002; Niemeijer 
and Spiers, 2005; Method Text S4; Table S3) fit 

well with piezometer-derived flow stresses in 
the southern segment when bulk strain rates are 
10−9 s−1–10−4 s−1 (Fig. 4A). The model predicts a 
transition in dominant deformation mechanisms 
from viscous creep to dilatant frictional sliding 
along biotite cleavages as strain rates increase 
to ∼10−4 s−1 in cataclasite slip zones.

ALONG-STRIKE VARIATION IN 
STRESS, STRENGTH, AND SLIP STYLE

The relative scarcity of microstructures 
that indicate dissolution-precipitation creep 
and the low phyllosilicate content (Fig. S10A), 
along with relatively high seismic velocity (Liu 
et al., 2023) and low electrical conductivity (Ye 
et al., 2022) at ∼20 km depth, indicate that the 
northern segment was deformed and exhumed 
in relatively dry conditions. We infer that the 
relatively dry quartzofeldspathic mylonite is 
strong enough to host localized high-stress 
creep and capable of accumulating elastic strain 
during low-strain-rate interseismic deforma-
tion (Figs. 4B–4D). This is supported by the 
occurrence of large historical earthquakes in the 
northern segment (Fig. 1B). Whereas the forma-

Figure 2. (A) Thin section 
image of pseudotachy-
lyte (Pst) layer from Gasa 
(cross-polarized light). 
(B–E) Backscattered 
electron (BSE) images 
of: (B) mylonitic foliation; 
(C) biotite-filled vesicles; 
(D) quartz filling voids 
in biotite cleavage; and 
(E) biotite foliation with 
quartz overgrowths. (F) 
Thin section image of 
viscously deformed cata-
clasite from Yuanyang. 
(G–I) BSE images of: (G) 
stress shadows adja-
cent to feldspar clasts; 
(H) folded quartz vein; 
(I) micro–shear zone 
across matrix and clasts. 
(J–K) Photomicrographs 
(cross-polarized light) of 
(J) solution cleavages 
and (K) close-up of stress 
shadow with biotite neo-
blasts. (L) BSE image of 
localized slip surface in 
cataclasite, characterized 
by (M) amorphous texture 
with vesicles and biotite 
microlites. (N) Energy-
dispersive spectroscopy 
map of biotite replaced by 
ilmenite along cleavages. 
Q—quartz; Plg—plagio-
clase; Kfs—K-feldspar; 
Bt—biotite; Ilm—ilmenite; 
FeOx—iron oxide.
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tion of pseudotachylyte requires seismic slip to 
have reached the midcrustal rocks, the recorded 
increase in flow stress from mylonite host rock 
to mylonitized pseudotachylyte is interpreted 
to represent transient and localized high-stress, 
high-strain-rate viscous creep following large 
earthquakes (Fig. 4B). Similar high-stress tran-
sients have been recorded in pseudotachylyte 
and interpreted as postseismic afterslip in the dry 
lower crust of Lofoten (Norway) by Campbell 
and Menegon (2019).

Fault displacement in the southern segment 
is distributed into a series of viscously deformed 
cataclasite slip zones. The presence of hydro-
thermal veins, well-developed pressure solu-
tion cleavage, and enrichment in phyllosilicate 
within the fault-related rocks (Fig. S10B), as 
well as relatively low seismic velocity (Liu et al., 
2023) and high electrical conductivity (Ye et al., 
2022) at ∼20 km depth, indicate that the south-
ern segment deformed in a fluid-rich environ-
ment. These conditions facilitated dissolution-
precipitation creep and frictional slip along 

phyllosilicate foliation (Figs. 2J–2N), enabling 
deformation at lower stresses (e.g., Janecke and 
Evans, 1988; Jefferies et al., 2006; Wallis et al., 
2015) and higher viscous strain rates, likely sup-
pressing earthquake nucleation by prohibiting 
elastic strain accumulation during interseismic 
periods.

In the southern segment, we interpret that 
the piezometer-derived spatial variations in flow 
stresses represent transient slips in cataclasite 
slip zones (Figs. 4B and 4C). Creep-driven fluid 
pressurization (Menegon and Fagereng, 2021) 
can explain these slip transients. Fine-grained 
foliated biotite-rich cataclasite matrix and dis-
solution cleavages (Fig. 2J) are potential low-
permeability seals, causing these slip zones to be 
poorly drained, thus building up local pressure 
efficiently during creep compaction. Once the 
decreasing effective failure strength meets the 
steady creep driving stress, frictional shear fail-
ure will happen (Fig. 4E). Under poorly drained 
and dilatant conditions, fault slip favors dilatant 
hardening, where shear-induced dilatation and 

the associated fluid depressurization prohibit a 
transition to full instability and limit the slip 
rate within the aseismic regime (Segall et al., 
2010; Chen, 2023). This decrease in fluid pres-
sure also causes a rheological transition back to 
creep without further frictional failure. The slip 
transient is cyclical as fluid pressure builds up 
to trigger new failure episodes with associated 
fluid depressurization (Fig. 4E), and the rate of 
fluid pressurization is expected to determine the 
repeat time. In addition, large earthquakes nucle-
ated in the locked northern segment may impose 
additional transient loadings on the aseismically 
slipping southern segment, leading to coherent 
deformation throughout the fault (Fig.  4D). 
Therefore, though the southern segment slips 
dominantly aseismically at frictional-viscous 
depths, we cannot exclude the possibility that 
the segment will slip seismically if an external 
loading increases the strain rate (e.g., Wallis 
et al., 2015), nor the possibility that this seg-
ment imposes elastic loading on the shallower 
seismogenic zone.
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Figure 3. (A–C) Representative pole figures (lower-hemisphere, equal-area projection) of recrystallized quartz. (D−F) Deformation temperature 
derived by Ti-in-biotite thermometer. (G−O) Grain-size distributions; n—number of grains; dRMS—root mean square grain size. See Supple-
mental Material for methods (see text footnote 1).

Downloaded from http://pubs.geoscienceworld.org/gsa/geology/article-pdf/doi/10.1130/G51865.1/6275564/g51865.pdf
by guest
on 07 March 2024



Geological Society of America | GEOLOGY | Volume XX | Number XX | www.gsapubs.org 5

In summary, the northern segment is domi-
nated by episodic large earthquakes at rela-
tively high-stress conditions in a relatively dry 
crust. The southern segment is dominated by 
low-stress, aseismic creep, in a fluid-infiltrated 
crust. The availability of fluids is the overarch-
ing control on slip style and may similarly con-
trol seismic versus aseismic slip in other faults. 
We detected local slip surfaces that experienced 
high, but not seismic, strain rates (∼10−4 s−1) 
within the fluid-rich southern segment. We inter-
pret these as examples of creep-driven, transient 
frictional failure, supporting that this is a mecha-
nism for slow earthquakes within dominantly 
creeping shear zones.
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