
Medical Image Analysis 94 (2024) 103134

A
1

Contents lists available at ScienceDirect

Medical Image Analysis

journal homepage: www.elsevier.com/locate/media

Optimisation of quantitative brain diffusion-relaxation MRI acquisition
protocols with physics-informed machine learning
Álvaro Planchuelo-Gómez a,b, Maxime Descoteaux c, Hugo Larochelle d, Jana Hutter e,
Derek K. Jones a, Chantal M.W. Tax f,g,∗

a Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
b Imaging Processing Laboratory, Universidad de Valladolid, Valladolid, Spain
c Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Université de Sherbrooke, Sherbrooke, QC, Canada
d Google DeepMind, Montréal, QC, Canada
e Centre for Medical Engineering, Centre for the Developing Brain, King’s College London, London, United Kingdom
f Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
g Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom

A R T I C L E I N F O

Keywords:
Quantitative MRI
Machine learning
Brain
Diffusion-relaxation

A B S T R A C T

Diffusion-relaxation MRI aims to extract quantitative measures that characterise microstructural tissue proper-
ties such as orientation, size, and shape, but long acquisition times are typically required. This work proposes
a physics-informed learning framework to extract an optimal subset of diffusion-relaxation MRI measurements
for enabling shorter acquisition times, predict non-measured signals, and estimate quantitative parameters.

In vivo and synthetic brain 5D-Diffusion-𝑇1-𝑇 ∗
2 -weighted MRI data obtained from five healthy subjects were

used for training and validation, and from a sixth participant for testing. One fully data-driven and two physics-
informed machine learning methods were implemented and compared to two manual selection procedures and
Cramér–Rao lower bound optimisation.

The physics-informed approaches could identify measurement-subsets that yielded more consistently
accurate parameter estimates in simulations than other approaches, with similar signal prediction error. Five-
fold shorter protocols yielded error distributions of estimated quantitative parameters with very small effect
sizes compared to estimates from the full protocol. Selected subsets commonly included a denser sampling of
the shortest and longest inversion time, lowest echo time, and high b-value.

The proposed framework combining machine learning and MRI physics offers a promising approach
to develop shorter imaging protocols without compromising the quality of parameter estimates and signal
predictions.
1. Introduction

Clinical magnetic resonance images (MRI) typically show quali-
tative tissue contrast, with intensities arbitrarily scaled according to
different MR-phenomena. Quantitative MRI, on the other hand, aims to
extract reproducible measures more directly related to tissue properties
that can be studied longitudinally and/or across populations. Examples
of the phenomena that can be studied to assess tissue changes quanti-
tatively in health and disease are diffusion and relaxation (Cercignani
and Bouyagoub, 2018).

To quantify tissue properties, distinct MRI experiments are typi-
cally performed to probe and subsequently quantify each individual
phenomenon by acquiring multiple images in which one or a few ex-
perimental MRI parameters are varied. Diffusion MRI (dMRI) sensitises

∗ Corresponding author at: Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
E-mail address: c.m.w.tax@umcutrecht.nl (C.M.W. Tax).

the MRI signal to the random molecular motion of water by acquiring
MR data with externally applied field gradients with different ampli-
tudes and along different orientations. Relaxation MRI measures the
return to equilibrium of nuclear spin polarisation after a radiofrequency
pulse, and relaxation times can provide valuable insights into tissue
composition and pathology. Notwithstanding the ultimate promise of
quantitative diffusion and relaxation measures to improve diagnosis,
disease monitoring, and understanding of pathophysiology, accurate
and precise quantification – particularly the characterisation of mul-
tiple distinct tissue compartments within a voxel – commonly requires
acquisition times beyond the realm of clinical adoption.

Moreover, each individual MRI contrast provides only part of the
picture. In brain white matter (WM), for example, dMRI can disentangle
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intra- and extra-axonal water motion but is only minimally sensitive to
water trapped between the insulating myelin layers, whereas relaxation
MRI, particularly at short echo time, has sensitivity to myelin water
but can typically not separate intra- and extra-axonal water. As such,
rather than acquiring diffusion and relaxation contrasts separately,
recent works have adopted the simultaneous variation of multiple ex-
perimental variables to optimally exploit their joint and complementary
information (de Almeida Martins et al., 2021b; Slator et al., 2021;
Tax, 2020) inspired by approaches common in physical chemistry
NMR (Lindblom et al., 1977). Correlation experiments offer valuable
insights, but the soaring dimensionality of MRI acquisition parameters
makes diffusion-relaxation MRI designs frequently ad hoc and time-
inefficient, particularly when resolving orientational features in dMRI.
Faster image readout strategies, e.g. through compressed sensing, pro-
vide exciting opportunities to acquire more images per unit time (Lustig
et al., 2007). Still, the question remains which parts of the high-
dimensional parameter space contain the most important information,
and which trade-offs need to be made to sample the extremities of the
space while adhering to hardware constraints.

Experimental design to optimise the MRI acquisition has been an
active area of research, with most approaches taking a ‘top-down’ or
model-based strategy by assuming that it is known which tissue prop-
erties/physical phenomena are important to quantify. Alternatively, a
‘bottom-up’ data-driven strategy can identify measurements containing
the most important information without any prior assumptions about
the relevant parameters to be quantified or their distribution.

The top-down optimisation methods commonly rely on a priori
nalytical expressions that link the measured signals to relevant pa-
ameters such as compartmental diffusivities, relaxation times, and
ignal fractions. Optimisation approaches include minimisation of pa-
ameter variance through optimisation of the Cramér–Rao lower bound
CRLB) or features of the Fisher information matrix (Alexander, 2008;
oelho et al., 2019; Lampinen et al., 2020) and Monte Carlo simu-

ations (Lemke et al., 2011). Knutsson (2019) simulated distributions
f tissue compartments and optimised dMRI protocols based on the
utual information between measurements. However, several tissue
roperties such as compartmental-exchange times or fibre undulation
ften remain elusive because analytical models become intractable.
Data-driven methods can use Machine Learning (ML) to establish

omplex non-linear relationships between signals and parameters. Two
ata-driven methods were implemented in the MICCAI MUlti-DIffusion
MUDI) challenge (Pizzolato et al., 2020) aiming at selecting an optimal
ubsets of MRI volumes to predict the whole set of MR signals. The
ub-protocols resulting from these methods could achieve better pre-
ictions than other model-based approaches. The Select and retrieve via
irect upsampling network (SARDU-Net) approach (Grussu et al., 2021b)
oncatenates two fully-connected neural networks (NN), where the first
etwork is used to extract the optimal subset of MRI measurements with
he highest weights from a comprehensively-sampled dataset, and the
econd to predict the MR signal of the whole dataset from the reduced
ataset. In the MUDI challenge, a method based on the use of concrete
utoencoders, a neural network which extracts an optimal subset of
easurements (Abid et al., 2019; Maddison et al., 2016; Tax et al.,
021b) consistently showed the lowest prediction error when reducing
he number of selected measurements. However, the design of these
ethods for optimising protocols to accurately predict the MRI signal
oes not implicitly consider the importance of accurately estimating
uantitative parameters.

In this work, we propose data-driven and physics-informed bottom-
p approaches to reconstruct the MR signal and characterise diffusion
nd relaxation phenomena with a reduced number of MRI measure-
ents. Starting with rich multi-dimensional data, the approach seeks

he most important signals to acquire, which can be cast as a feature
election (i.e., measurement-subset selection) problem. We build on
he concrete autoencoder approach described in Tax et al. (2021b) to
2

evelop a physics-informed data-driven methods that select the most [
representative measurements of an MRI dataset guided by a signal
representation.

Our hypothesis is that physics-informed optimisation identifies sub-
sets of MRI measurements that provide, per unit time, better estimates
of quantitative parameters characterising diffusion and relaxation com-
pared to full data-driven or other methods. To test this hypothesis,
the estimation of quantitative parameters and prediction of the MRI
signal was compared between the proposed approach, the original
concrete autoencoder method, manually selected protocols, and CRLB
optimisation.

2. Materials and methods

2.1. Data

2.1.1. In vivo data
The main dataset used for training and validation was composed

of five controls (age between 19 and 46 years, three women) who
were scanned after informed consent was obtained (West London REC
12/LO/1247) on a 3T 80 mT/m scanner with a 5D Diffusion-𝑇1-𝑇 ∗

2
rotocol varying b-value (trace of the b-tensor, b; Westin et al. (2016)),
radient orientation (first eigenvector of the b-tensor (𝛩𝑔 , 𝛷𝑔)), inver-
ion time TI and delay time TD (delayed readout with respect to the
cho using an asymmetric spin echo) (Pizzolato et al., 2020; Hutter
t al., 2018) (1344 unique settings). Specifically, b-values included [0,
00, 1000, 2000, 3000] s/mm2, TD [0, 25, 50] ms and TI ranged
etween 20 and 7322.7 ms. Repetition time TR and b-tensor anisotropy
𝛥 were 7500 ms and 1, respectively. In addition to the main dataset,
ata from another healthy subject with the same acquisition parameters
ere employed for testing.

The data were preprocessed as previously described (Pizzolato et al.,
020). Briefly, this included denoising in the complex domain based
n the Marchenko–Pastur Principal Component Analysis (MP-PCA) pro-
edure (Cordero-Grande et al., 2019), co-registration of the diffusion-
eighted images using Dipy (Garyfallidis et al., 2014), and correction

or susceptibility-induced distortion (Andersson et al., 2003; Smith
t al., 2004).

A global scaling factor between each subject and the first subject
as estimated from the median of the images, and intensities were

ubsequently divided by the 95th-percentile intensity of subject 1.
White matter (WM), grey matter (GM) and cerebrospinal fluid (CSF)

asks were obtained through multi-tissue constrained spherical decon-
olution (Jeurissen et al., 2014; Dhollander et al., 2019), and voxels
lassified as WM, GM and CSF to enable evaluation per tissue type.

.1.2. Synthetic data
Synthetic signals were generated based on the in vivo data to eval-

ate the accuracy of the estimated parameter maps from subsets of
easurements. The use of synthetic data provided a ground truth for

he maps and provided a mean to evaluate accuracy, which is not
ossible for the in vivo data. The following signal equation was fitted
o the in vivo data using a NN as described in Section 2.4 using all the
cquired measurements (Hutter et al., 2018; Tax et al., 2021a):

= 𝑆0𝑒
−𝐛∶𝐃 |

|

|

|

1 − 2𝑒−
TI
T1 + 𝑒−

TR
T1
|

|

|

|

𝑒−
TD
T2∗ , (1)

where:

𝐛 ∶ 𝐃 =
(

1
3
𝑏𝑏𝛥[𝐷∥ −𝐷⟂] −

1
3
𝑏[𝐷⟂ + 2𝐷∥]

− 𝑏𝑏𝛥[(𝛩𝑔 , 𝛷𝑔) ⋅ (𝜃, 𝜙)]2[𝐷∥ −𝐷⟂]
)

.
(2)

Hence, the ‘ground truth’ maps reflect a realistic distribution of
issue parameters as can be found in in vivo data. The parameter-
anges were as follows: 𝑆0 [0.5–5], longitudinal relaxation time 𝑇1
100–5000 ms], transverse relaxation time 𝑇 ∗ [0.01–2000 ms], parallel
2
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diffusivity 𝐷∥ [0.01–3.2 μm2∕ms], perpendicular diffusivity 𝐷⟂ imple-
mented as 𝑘 ⋅𝐷∥ [𝑘 = 0.01–1], and first eigenvector angles 𝜃 [0-𝜋] and
𝜙 [0-(2𝜋−0.001)].

Next, considering the estimated parameters on the full dataset as
the ground truth, noiseless signals were computed by applying Eq. (1).
Finally, Gaussian noise was added with a signal-to-noise ratio (SNR) of
30 for minimum b-value (0), TD (0) and maximum TI (7322.7 ms).

2.2. Sub-selection of measurements

Three ML-based selection procedures were implemented (one fully
data-driven and two physics-informed, Fig. 1A), as well as two manual
selection strategies: uniform reduction of gradient directions (Uniform),
and random selection of volumes (Random), examples in Fig. 1B. Fur-
thermore, a comparison was performed with discrete selection of mea-
surements based on a continuous optimisation of the CRLB (Alexander,
2008). The selected subprotocols were composed of 𝑁 measurements
equal to 500, 250, 100 and 50 measurements out of a total of 1344.

2.2.1. Selection layer
All ML-based selections of a subset of 𝑁 MRI volumes were based on

a concrete autoencoder (Abid et al., 2019; Maddison et al., 2016; Tax
et al., 2021b) with an additional regularisation procedure to avoid the
selection of repeated measurements (Strypsteen and Bertrand, 2021).
Concrete autoencoders have shown to predict non-selected measure-
ments from a subset of measurements with higher accuracy than other
techniques (Abid et al., 2019; Pizzolato et al., 2020).

Specifically, the encoder was a concrete selection layer (CL) that
selected the optimal subset of measurements through stochastic linear
combinations of input features (Abid et al., 2019). These combinations
were controlled by a temperature parameter that gradually decreased
its value throughout training. The temperature controls the continu-
ous relaxation of a one-hot vector that determines the sampling of a
concrete random variable, i.e., the selection of the optimal subset of
measurements. With high temperature values, the output of the CL is
a linear combination of features. Low temperature values restrict the
number of linear combinations of features in the output of the CL,
promoting the extraction of the most informative individual measure-
ments. Two regularisation parameters (Strypsteen and Bertrand, 2021)
were employed. The first was a threshold that applied a penalisation
when the sum of the probabilities across the selection neurons exceeded
the threshold value. Lower values of the threshold were associated
with higher penalisation of the selection of duplicated measurements,
restricting the potential combinations for the selection. The second
parameter determined the strength of the regularisation, where high
values promote the selection of non-duplicate measurements at the cost
of reducing the weight of data loss (mean-squared error; MSE) term and
potentially increasing the loss.

To train the CL, the maximum temperature was set to 10, and
the minimum to 0.1 as in Abid et al. (2019), Tax et al. (2021b). For
the regularisation, the threshold value was set to 1, and the strength
parameter was set to 0.1 similar to Strypsteen and Bertrand (2021),
which achieved the selection of non-duplicate measurements for each
𝑁 .

2.2.2. Decoder
The decoder for signal prediction was either purely data-driven

(one method) or physics-informed (two methods). These methods are
represented graphically in Fig. 1A. Furthermore, the decoder either
aimed to predict the MRI signal (loss computed with respect to the mea-
sured signal) or quantitative parameters (loss computed with respect to
estimated parameters on all measurements).

The first ML technique with loss based on the MRI signal was
CL+eq (concrete layer encoder and decoder with signal equation).
This decoder was a physics-informed technique that combined a NN
with a physical signal equation. The network was composed of two
3

hidden layers, whose number of nodes was determined with a one
dimensional linear interpolation procedure between the number of
selected measurements and the number of parameters (7), ReLU as
activation function, and a final Softplus layer. The first layer of the
decoder was composed of seven nodes corresponding to the parameters
in Eq. (1). Thus, this method simultaneously sub-selects measurements,
estimates the physical parameters, and predicts the signal.

The full data-driven ML method with loss based on the MRI sig-
nal, coined CL+NN (concrete layer encoder and neural network de-
coder), consisted of a decoder with two hidden fully-connected layers
of variable number of nodes depending on the number of selected
measurements, and Leaky Rectified Linear Units (ReLU) as activation
functions. The number of nodes for the two layers was extracted
through one dimensional linear interpolation between the number of
selected measurements and the total number of MRI measurements
(1344).

The ML physics-informed method with loss based on the quan-
titative parameters, CL+par (concrete layer encoder and decoder to
directly predict the parameters), was a fully-connected NN that used
the parameters estimated on the full dataset (i.e. the ground truth
parameters in synthetic experiments evaluating the best-case scenario)
to compute the loss instead of the MRI signal as in CL+eq. Therefore,
Eqs. (1) and (2) were only applied before training. To avoid bias
during training caused by the different ranges of each parameter, the
parameters were normalised as:

𝑥𝑖 =
𝑥𝑖 − 𝑥𝑖,min

𝑥𝑖,max − 𝑥𝑖,min
, (3)

where 𝑥𝑖 represents the value for the parameter 𝑖, one of the seven
arameters following Eqs. (1) and (2), and 𝑥𝑖,min and 𝑥𝑖,max are the

minimum and the 97.5th percentile of the maximum values of the
range for the parameter 𝑖, described in Section 2.1.2. CL+par was only
evaluated in the synthetic experiments where the ground truth maps
were available, reflecting the best-case scenario.

2.2.3. Selection based on the CRLB
To compare the selected measurements from ML-based approaches

with techniques previously employed to obtain optimal diffusion MRI
acquisition parameters, we additionally extracted the optimal sets of
measurements following an optimisation of the Fisher information
matrix and the CRLB. Specifically, we employed the technique devel-
oped by Alexander (2008), but optimising the acquisition parameters
relevant to the signal representation in Eqs. (1) and (2), i.e., b-value,
TI and TD. The set of gradient directions was fixed as in Alexander
(2008) with ‘shells’ of three directions or less to arrive at the desired
𝑁 (Caruyer et al., 2013). It is worth noting that this approach did not
subsample a set of prespecified measurements, but directly provided
an optimal combination of the parameters for a specific number of
measurements. Thus, to select the measurements, those with the lowest
overall Euclidean distance on b, TI, and TD (with the parameters nor-
malised to the same order of magnitude and the Hungarian algorithm
used for assignment) compared to the set provided by the CRLB-based
optimisation were selected (Kuhn, 1955). The average ground truth
values in WM and GM of the training subjects were taken as the priors
for CRLB optimisation, i.e., 𝜃 = 1.56 rad, 𝜙 = 1.88 rad, 𝐷∥ = 0.81
μm2∕ms, 𝐷⟂ = 0.58 μm2∕ms, 𝑇 ∗

2 = 73 ms, 𝑇1 = 1159 ms, and 𝑆0 =
2.37. This approach was exclusively evaluated on synthetic data where
such ground truth values were available.

2.3. Network training

Selection and estimation networks were trained based on leave-
one-out cross-validation over all subjects from the main dataset (five
subjects) using the Adam optimiser (Kingma and Ba, 2014) with learn-
ing rate 0.001, batch size 256, and MSE loss. Specifically, the employed
loss function was the squared L2 norm, with regularisation as described
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Fig. 1. An overview of the methods used to select a subset of MRI measurements. (A) Networks with a concrete selector layer (CL). CL+eq simultaneously selects a subset of
volumes and estimates the parameters based on Eqs. (1) and (2). CL+NN is a pure data-driven technique with a fully-connected decoder. CL+par has as output directly the
estimated parameters (based on the full dataset) instead of the signal. (B) Measurements selected for the two manual selection procedures. For each method, Uniform or Random,
examples of subsets with 500 are shown. (C) Example with the 500 measurements selected for the Cramér–Rao Lower Bound-based procedure. The translucent histograms represent
the original set of MRI volumes.
in Section 2.2.1 for selection networks, and this approach was applied
for all the methods. To assess the reproducibility, the sub-selection was
repeated with three different seeds. The variability across seeds was
compared to the variability of leave-one-out runs across subjects with
a single seed, by comparing the standard deviations for each setting of
TI, TD, and 𝑏 between the two scenarios.

The dataset used for training comprised data from four subjects,
(approximately 80% of available voxels). 20% of voxels (from the
remaining subject) were used for validation. All the selection networks
with a CL were trained until the mean of the concrete samples was
equal or higher than 0.998 or after running 5000 epochs. The mean of
the concrete samples is the mean of the maximum value per vector of
weights, where a value of 0.998 indicates a close approximation to a
one-hot vector.

For the estimation network, the results with the lowest validation
error across seeds were saved after running 100 epochs, or 200 epochs
4

in the case of a small number of selected measurements, setting as
stopping criterion a validation error lower than 0.00001. To compare
the results between estimations from different selection methods, the
estimated results from the test subject, not included in any training or
validation subset, were computed.

2.4. Evaluation of sub-selections

The sub-selections from the ML and manual approaches were eval-
uated based on the ability to (1) predict all measurements, including
the non-selected measurements, and (2) estimate quantitative maps. To
this end, a separate network for each of the subsets was trained with
a similar structure to the decoder of the CL+eq approach (Fig. 1A),
providing predictions of the signals as well as estimated maps. Subse-
quently, for the unseen test dataset, the error between (1) the predicted
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and measured signals (noisy signals for the synthetic simulations) and
(2) the estimated and ground truth parameter maps (i.e. the parameter
maps estimated on all the in vivo measurements, see Section 2.1.2)
was computed. For the first eigenvector, the error was computed from
the dot product of the estimated and ground truth directions. All the
errors were obtained in the whole brain, GM and WM, using the
masks described in Section 2.1.1. Error distributions over all voxels
were investigated. For the predicted signals, distributions of the mean
absolute error (MAE) across volumes and their median values were
computed, and for the estimated parameters distributions of absolute
errors (AE) and their medians were extracted. In addition to errors,
the interquartile range (IQR) and coefficient of variation (CV) of errors
across all voxels were computed as measures of variability.

To quantify the difference between the errors of the estimations
from the selected sub-protocols and those obtained with the whole
dataset, the effect size was computed using the Cohen’s d value for
paired data as follows:

𝑑 =
�̄�1 − �̄�2
𝜎𝑥1−𝑥2

, (4)

where �̄�1,2 represents the mean error for each estimation method, and
𝜎𝑥1−𝑥2 the standard deviation of the difference between the errors for
each method. Effect sizes were categorised as very small (0.01 ≤ d <
0.2), small (0.2 ≤ d < 0.5), medium (0.5 ≤ d < 0.8), large (0.8 ≤ d <
1.2), very large (1.2 ≤ d < 2.0) and huge (d ≥ 2.0) (Sawilowsky, 2009).

The effect of the sub-selection on the quantitative maps depends on
the estimator, and the described NN-based strategy allowed leveraging
the information of all the measurements from the training subjects. This
was hypothesised to become more beneficial as the number of selected
measurements decreased. To further investigate the effect of estima-
tor, a non-linear least squares (NLS) trust-region-reflective approach –
which only obtains estimations from the sub-selected measurements –
was also employed.

3. Results

3.1. Synthetic data

3.1.1. Sub-selection of measurements
Fig. 2 shows a comparison of the sub-selection of 𝑁 = 500 measure-

ments across the different ML methods. In this figure, each selection
method was trained three times with different initialisation seeds on
the same training and validation subjects (validation subject 3, training
carried out with the other subjects).

All methods consistently selected low and high TI for higher b-
values (1000, 2000 and 3000 s∕mm2), and more measurements for the
lowest TD. CL+eq more frequently selected lower b-values (0 and 500
s∕mm2) than the other methods, together with the lowest TI values
for all b-values. CL+NN selected fewer volumes with medium-high TI
for all b-values except 3000 s∕mm2. CL+par selected similar volumes
compared to CL+eq, albeit fewer medium-low TI values for all b-values,
particularly at b = 3000 s∕mm2 and higher TD. Results were similar
when assessing the variability in selection across different subjects and
one fixed seed, as shown in Supplementary Figure 1.

Regarding the variability of the selection across seeds (single sub-
ject) and across subjects (single seed), the average standard deviation
for each setting of TI, TD, and 𝑏 was lower across seeds than across
subjects for CL+eq (0.517 vs. 0.523) and CL+par (0.470 vs. 0.506), but
higher for CL+NN (0.452 vs. 0.402).

The pattern of selections for different numbers of measurements 𝑁
and for the different ML approaches is summarised in Table 1, and
the distributions of selected parameters are shown in Supplementary
Figure 2. The selection from the Uniform and Random approaches is
shown in Fig. 1B for 𝑁 = 500 and in Supplementary Figure 3 for all 𝑁 .
Similar patterns were observed for CL+eq and CL+NN, whereas CL+par
revealed distinct patterns.
5

Fig. 2. Comparison of the selected 500 measurements between the machine learning
methods. The histograms represent the mean number of chosen volumes (gradient
orientations) for each b-value (0, 500, 1000, 2000 and 3000 s∕mm2), TD (0, 25
and 50 ms), and TI (28 values from 20 to 7322.7 ms) across three different seeds.
The errorbars represent the standard deviation. The red rectangles highlight the
measurements more frequently selected with the physics-informed selection (CL+eq)
compared to the pure data-driven selection (CL+NN). The translucent histograms show
the original distribution.



Medical Image Analysis 94 (2024) 103134Á. Planchuelo-Gómez et al.
Table 1
Main changes of the subsampling strategy of 𝑁 for synthetic data.
Selection 500 to 250 250 to 100 100 to 50

CL+eq ↓ b = 3000 s/mm2

↓ medium-high TI
(b = 2000 s/mm2)

↓ b = 0 s/mm2

↓ low-medium TI
(b = 500; 1000;
2000 s/mm2)

↓ b = 500; 1000
2000 s/mm2

CL+NN ↓ b = 3000 s/mm2

↓ medium TI
(b = 2000 s/mm2)
↓ b = 500 s/mm2

(TD = 50 ms)

↓ b ≤ 500 s/mm2

↓ medium-high TI
(b ≥ 1000 s/mm2)

↓ b = 1000;
2000 s/mm2

CL+par ↓ b ≤ 500 s/mm2

↓ TD = 50 ms
(b ≥ 1000 s/mm2)

↓ medium TI
(b ≥ 1000 s/mm2)

↓ b ≥ 1000 s/mm2

↓ = reduced sampling.
Regarding the CRLB-based selection, the estimated priors were: 𝜃 =
1.56 rad, 𝜙 = 1.88 rad, 𝐷∥ = 0.81 μm2∕ms, 𝐷⟂ = 0.58 μm2∕ms,
𝑇 ∗
2 = 73 ms, 𝑇1 = 1159 ms, and 𝑆0 = 2.37. The selections from

the CRLB-based optimisations are shown in Fig. 1C for 𝑁 = 500 and
in Supplementary Figure 4 for all 𝑁 . Overall, the highest TIs and
lowest TDs and b-values were prioritised. The CRLB approach extracted
optimal settings to improve the precision per contrast in Eq. (1); for
example, for the longest TI and shortest TD, the signal becomes mostly
diffusion-weighted and it is exactly these measurements that were
frequently selected across the whole range of b-values.

3.1.2. Prediction of signals from a selected subset
The MAE across selection procedures is summarised in Fig. 3A and

Table 2. The ‘‘best case’’ scenario of predicting all measurements from
all 1344 noisy synthetic measurements is also shown in Fig. 3A.

ML-based selection methods, particularly CL+eq and CL+NN, re-
sulted in the lowest error for 𝑁 > 50 and the CRLB-based selection
presented the lowest MAE for 𝑁 = 50, whereas the Random selection
resulted in larger MAE for 𝑁 < 500. Across selection subjects and for
𝑁 = 500, MAE values were similar and CL+eq presented the smallest
maximum median among the five leave-one-out runs (Supplementary
Table 1). Separating out the prediction of the selected and non-selected
measurements (Supplementary Figure 5 A and Supplementary Table 2),
CL+eq yielded slightly lower values for the error (all volumes, non-
selected volumes, GM and WM). CV/IQR values were lower for CL+eq
situations than for CL+NN, but values were similar compared to the
other selection approaches. The errors and IQR were higher in GM than
in WM, but the CV in WM was higher compared to GM (Supplementary
Tables 2–3 and Supplementary Figure 5B).

3.1.3. Parameter estimation
Fig. 3B and Table 2 show errors of quantitative estimates compared

to the ground truth; again the ‘‘best case’’ scenario of estimating
parameters on all 1344 noisy synthetic measurements is also shown.

For all 𝑁 and quantitative parameters, CL+eq consistently resulted
in low median AE, and most frequently performed among the two best
methods (14 out of 24 comparisons, i.e. all 𝑁 and all parameters)
followed by CRLB (12 out of 24 comparisons), while CL+eq was only
once among the two highest median absolute error (eigenvector for
𝑁 = 50). In comparison with the CRLB-based optimisation, CL+eq
showed lower errors for 𝑇 ∗

2 (except for 𝑁 = 50) and 𝑇1, but higher
errors for 𝐷∥ (except for 𝑁 = 100) and the eigenvector (except for
𝑁 = 500), without clear patterns for 𝐷⟂ and 𝑆0. The effect sizes
compared to the 1344 scenario are indicated with symbols (Fig. 3B),
revealing consistently very small effect size for CL+eq at 𝑁 = 500
(𝑑 < 0.2), except for 𝑆0 (𝑑 < 0.5). Furthermore, CL+eq showed the
most consistent very small effect size for all values of 𝑁 (17 out of 24
comparisons), followed by CRLB and Uniform selection (15 and 14 out
6

of 24 comparisons, respectively).
Looking at 𝑁 = 500 across different folds of training and validation
subjects, physics-informed networks consistently were amongst the two
lowest AE compared to manual approaches (CL+eq in 21 and CL+par
also in 21 out of 30 comparisons, Supplementary Figure 6 and Sup-
plementary Table 1). CL+par estimations had the lowest AE for the
parameters related to diffusion, i.e., the eigenvector, 𝐷∥ and 𝐷⟂ (11
out of 15 comparisons), 𝑇1 (3 out of 5 comparisons), and 𝑆0 (3 out of
5 comparisons).

In some cases subsampling with 𝑁 = 500 resulted in lower MAE
and variability than the best case scenario of all 1344 measurements,
e.g. 𝐷∥ and 𝐷⟂; upon closer inspection per tissue type it could be
observed that this was primarily due to higher errors in CSF in the
latter case (results not shown). Yet, this did not result in notable
effect sizes. When assessing GM and WM separately (Supplementary
Figure 7 and Supplementary Table 3), the observed patterns were
similar to the analysis of the whole brain. Example maps of the spatial
distribution of the error values are shown in Fig. 4, and the maps for
the different values of 𝑁 are shown in Supplementary Figure 8. Errors
were mostly distributed around zero, yet biases were visible in some
cases (e.g. negative bias for 𝑇 ∗

2 Uniform subsampling). Regions of high
errors showed similar patterns across methods (e.g. CSF).

Considering the variability across voxels, the pattern of methods
showing the lowest variability was less obvious. Supplementary Table 4
reports the CV for the test subject averaged across the cross-validation
runs, where CL+eq showed lower CV for 𝑇1, the Uniform selection for
the first eigenvector, the Random selection for 𝐷∥, 𝐷⟂ and 𝑆0, and
CL+NN for 𝑇 ∗

2 . Supplementary Table 5 shows the CV and IQR values
for different 𝑁 . CL+eq or CL+par presented one of the two lowest IQR
across all values of 𝑁 , with two exceptions (𝐷∥ for 𝑁 = 50, and 𝑆0
for 𝑁 = 500), with the Uniform selection frequently being the other
method among the two best cases. For the CV, there was no clear
pattern for the lowest values. Additionally, it is worth noting that,
where as 𝑁 = 250 resulted in similar median absolute error compared
to 𝑁 = 500, the error distribution was wider in general.

Finally, a comparison of quantitative maps from the ML-based esti-
mator and NLS for each number of sub-selected measurements is shown
in Supplementary Figure 9 (CL+eq selection is taken as an example). In
summary, across all parameters and 𝑁 (500, 250, 100 and 50), the NLS
estimation generally showed lower error (68 out of 72 comparisons)
and variability (61 out of 72 comparisons). These differences were
reduced or inverted for the eigenvector for the lowest number of mea-
surements (100 and 50), except for the WM, where the NLS estimation
showed better results. In addition, comparing the NLS estimation for
all selection approaches and 𝑁 , the physics-informed networks also
showed lower errors compared to the other selection procedures, with
the differences between methods being larger compared to the ML
estimations (Supplementary Figure 10). CL+eq again showed no effect
sizes 𝑑 > 0.2 for 𝑁 ≥ 250, where other methods showed larger effect
sizes.
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Fig. 3. Comparison of the error of the predicted signal (A) and the estimated maps (B) from the synthetic test subject in one of the cross-validation procedures for six selection
strategies according to the number of selected measurements. All the error values are shown for the whole brain. In (A), the left subfigure represents the whole range of mean
absolute error (MAE) values, and the right subfigure is zoomed between 0.049 and 0.08. For the first eigenvector, the error was represented as one minus the dot product between
the estimated and the ground truth maps to facilitate the interpretation. The boxplot 1344 represents the prediction of the whole dataset following the same estimation method
as described for the subselected measurements, i.e., the difference between the ground truth and the fitting performed using all the 1344 measurements. The dashed line shows
the median error of the 1344 estimation. The highest errors have been omitted for visual purpose. A.u. = arbitrary units. *;+ = small/medium effect size (d > 0.2; 0.5) of the
difference of the errors of the estimated parameters between the estimation from the selected subprotocol and the estimation with the whole dataset.
3.2. In vivo data

3.2.1. Sub-selection of measurements
The distributions of 500 subselected measurements across valida-

tion subjects are shown in Fig. 5. The CL+eq selection resulted in a
similar distribution in synthetic and in vivo experiments. In contrast,
the CL+NN selection showed more pronounced differences between in
vivo and synthetic data with different sampling patterns for the low TI
values between the lowest and highest b-values.

Table 3 summarises the selections when the number of measure-
ments was reduced, and their distributions are shown in Supplementary
Figure 11. The patterns of subselection were similar for CL+eq and
CL+NN. When reducing the number of selected measurements to 250,
CL+eq and CL+NN showed an approximate uniform reduction from the
500 selected measurements. From 250 to 100 measurements, volumes
with high b-values and medium TI values were selected with lower
frequency for both selection procedures. From 100 to 50 measurements,
the reduction of volumes for CL+eq was almost uniformly distributed,
7

and CL+NN presented a lower frequency of volumes with low or
medium TI values and non-zero b-values.

3.2.2. Prediction of signals from a selected subset
The MAE across the predicted signals with respect to the measured

signals are shown in Fig. 6A. The MAE across methods was overall simi-
lar, with larger differences between ML and manual selection strategies
for 100 and 50 selected volumes, and the Random selection having
the largest MAE. CL+NN and the Uniform selection approach resulted
in lower MAE for predictions of the non-selected measurements than
the selected measurements (shown for 𝑁 = 500 in Supplementary
Figure 12 A), and the MAEs were similar regardless of the tissue type
(Supplementary Figure 12B). The errors of the predicted signals across
different validation subjects for 𝑁 = 500 (Supplementary Table 7 and
Supplementary Figure 12C) were similar for all the leave-one-out runs.
CV and IQR values are presented in Supplementary Table 8, with the
Random approach showing the lowest CV but the highest IQR values
for 𝑁 ≤ 250, and CL+NN and CL+eq the lowest IQR values for a high
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Table 2
Median values of the mean absolute error (MAE) values of the predicted MRI signal and the estimated quantitative
parameters on a test subject depending on the number of selected measurements for synthetic data. a.u. = arbitrary
units. The error obtained for the estimation with the full dataset has been included (𝐸1344). The error for the first
eigenvector was shown as 1 minus the dot product between the ground truth and the estimated eigenvector to
facilitate the interpretation of the results. The two best results are marked in yellow, and the two worst in magenta.
Parameter Selection N = 500 N = 250 N = 100 N = 50

CL+par 0.051 0.052 0.053 0.055
CL+eq 0.051 0.052 0.052 0.055

Signal MAE CL+NN 0.051 0.051 0.053 0.055
(a.u.) Uniform 0.052 0.052 0.053 0.055

Random 0.051 0.053 0.057 0.058
CRLB 0.052 0.051 0.053 0.054

𝐷∥ CL+par 0.016 0.018 0.024 0.034

Error CL+eq 0.017 0.018 0.023 0.036

(𝜇𝑚2∕𝑚𝑠) CL+NN 0.020 0.017 0.026 0.033
𝐸1344 = Uniform 0.018 0.019 0.025 0.037
0.015 Random 0.018 0.024 0.025 0.047

CRLB 0.016 0.016 0.034 0.030

𝐷⟂ CL+par 0.018 0.022 0.028 0.051
Error CL+eq 0.020 0.024 0.029 0.044
(𝜇𝑚2∕𝑚𝑠) CL+NN 0.023 0.022 0.032 0.046

𝐸1344 = Uniform 0.022 0.026 0.035 0.047
0.022 Random 0.020 0.030 0.086 0.058

CRLB 0.022 0.020 0.034 0.041

𝑇 ∗
2 CL+par 1.337 1.972 2.591 3.688

Error CL+eq 1.037 1.232 1.981 2.604

(ms) CL+NN 1.605 1.640 2.098 2.689

𝐸1344 = Uniform 1.444 1.149 1.705 2.411
1.248 Random 1.221 1.811 2.956 4.705

CRLB 1.379 1.445 2.083 2.595

𝑇1 CL+par 16.134 21.359 33.590 29.915

Error CL+eq 12.535 13.839 20.145 29.236
(ms) CL+NN 16.995 15.226 24.850 29.699
𝐸1344 = Uniform 14.269 16.628 23.261 31.678
10.903 Random 16.642 24.116 36.354 54.682

CRLB 14.330 16.262 25.064 35.239

𝑆0 CL+par 0.029 0.035 0.044 0.040
Error CL+eq 0.019 0.019 0.036 0.037
(a.u.) CL+NN 0.043 0.030 0.043 0.045
𝐸1344 = Uniform 0.018 0.021 0.031 0.041
0.016 Random 0.025 0.038 0.055 0.095

CRLB 0.017 0.020 0.034 0.041

Eigenvector CL+par 0.006 0.011 0.023 0.028
(1 - dot CL+eq 0.008 0.012 0.017 0.037
product) CL+NN 0.009 0.009 0.025 0.036

𝐸1344 = Uniform 0.011 0.016 0.019 0.034
0.007 Random 0.009 0.027 0.025 0.047

CRLB 0.009 0.010 0.011 0.022
a.u. = arbitrary units.
Table 3
Main changes of the subsampling strategy for each reduction step of the number selected measurements for in vivo data.
Selection 500 to 250 250 to 100 100 to 50

CL+eq ↓ low TI
(b ≥ 1000 s/mm2)
Uniform reduction

↓ low-medium TI
(b ≥ 500 s/mm2)

↓ medium-high TI
Uniform reduction

CL+NN ↓ low-medium TI
(b ≥ 1000 s/mm2)
Uniform reduction

↓ medium-high TI
(b ≥ 1000 s/mm2)

↓ low-medium TI
(b ≥ 500 s/mm2)

↓= reduced sampling.
8
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Fig. 4. Voxelwise error of the estimated maps from the synthetic test subject for six selection strategies in one of the cross-validation procedures for 500 selected measurements.
The first row represents the ground truth for all parameters, and the remaining rows the error considering positive and negative values. The black regions within the brain mask
represent values of the errors or parameters outside the shown range. The eigenvector error was represented as one minus the dot product between the estimated and ground
truth maps. The black line in the colourbar represents the intermediate value, i.e., 0.5 for the eigenvector error and 0 for the remaining error values (the same for the ground
truth bars). The red ellipses remark areas with differences compared to the estimation from the physics-informed selection (CL+eq and/or CL+par), or the Uniform selection for
𝑇1 as it was the method with lower number of areas with higher error. RGB = Red Green Blue. +: The maximum absolute value of the error was considerably higher than 20,
but the error was saturated at 20 to better appreciate the errors in the rest of the brain.
(𝑁 ≥ 250) and low (𝑁 < 250) number of sampled measurements,
respectively.

3.2.3. Parameter estimation
Fig. 6 shows the absolute error distributions of estimated maps

with respect to estimation on all 1344 measurements. CL+eq showed
consistently lower or similar median errors for all parameters and 𝑁
with the exception of 𝑆0 and 𝑁 = 250, where the median error and
variability from the Uniform procedure were lower. Random selection
showed the highest absolute errors, and for 𝑁 < 250 the manual
approaches show larger errors compared to the best performing CL+eq.
9

Supplementary Figure 13 shows the spatial distribution of the errors in
maps for each number of selected measurements.

4. Discussion

This study shows a proof-of-principle of using ML methods for
the integrated selection of an optimal subset of MRI volumes, pre-
diction of the MR signal, and estimation of quantitative parameters.
Specifically, physics-informed networks incorporate a signal equation
(either directly as in CL+eq or indirectly through predicting estimated
parameters as in CL+par) to drive the sub-selection. The main finding
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Fig. 5. Comparison of the selected 500 measurements between the machine learning methods in in vivo data. The histograms represent the mean number of chosen volumes
(gradient orientations) for each b-value (0, 500, 1000, 2000 and 3000 s∕mm2), TD (0, 25 and 50 ms), and TI (28 values from 20 to 7322.7 ms) across five different validation
subjects. The errorbars represent the standard deviation. The red rectangles remark the measurements more frequently selected with the physics-informed selection (CL+eq)
compared to the pure data-driven selection (CL+NN). The translucent histograms show the original distribution.
d

of the work is that physics-informed NNs were able to select a sub-
set of measurements that provide consistently accurate estimation of
quantitative maps with CL+eq yielding the most similar estimates to
those from all noisy measurements, especially in comparison with pure
data-driven approaches and Random selection.

4.1. Sub-selection of measurements

4.1.1. Variability in the selection
For all the ML selection procedures, physics-informed or data-

driven, we assessed the stability of the distributions of the selected
measurements across different initialisations and leave-one-out subjects
for in vivo and synthetic data.

For 𝑁 = 500 selected measurements, all ML selection methods
showed stable results. Higher variability of the selected measurements
was seen for different leave-one-out validations (Supplementary Figure
1) in comparison to different initialisations for a single subject (Fig. 2)
for the physics-informed approaches (CL+eq and CL+par), but the
main features of the distributions remained intact. A possible expla-
nation for the variability is that measurements can correlate, e.g., for
10
volumes with similar TIs, and hence there can be multiple subsets
of selected measurements that contain the necessary information to
similarly estimate maps and predict signals.

4.1.2. Differences between ML-based selection methods
The main difference of the distributions between the physics-informe

(CL+eq) and the pure data-driven (CL+NN) approaches, for both real
and synthetic data, was the selection of the lowest SNR volumes with
500 selected submeasurements. The selection resulting from CL+eq
presented a higher proportion of the lowest SNR volumes, i.e., the
highest b-values (2000 and 3000 s∕mm2) and lowest TI values (TI
lower than 1000 ms). The increased selection of volumes with a higher
SNR in the CL+NN approach is in line with the data-driven SARDU-
Net selection (Grussu et al., 2021b), which consistently avoided the
selection of the lowest SNR volumes. This may be explained by the
relative importance of these volumes to predict the signal rather than
estimate the quantitative maps. To predict the MRI signal, low SNR
measurements may be less useful than others, but they may contain
important information to characterise specific properties of biological
tissues. Furthermore, the two physics-informed selection procedures
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Fig. 6. Comparison of the error of the predicted signal (A) and the estimated maps (B) from the test subject considering subject 3 as validation for four selection strategies
according to the number of selected measurements with respect to the estimation obtained from the whole dataset. In (A), the left subfigure represents the whole range of mean
absolute error (MAE) values, and the right subfigure is zoomed between 0.06 and 0.12. All the error values are shown for the whole brain. For the first eigenvector, the error
was represented as one minus the dot product between the estimated and the ground truth maps to facilitate the interpretation. The highest errors have been omitted for visual
purpose. A.u. = arbitrary units.
CL+eq and CL+par showed similar selection results, although the
proportion of lower SNR volumes was lower for the latter.

4.1.3. Differences between the selection in synthetic and in vivo data
Regarding the comparison between the selection in synthetic and

in vivo data with 500 measurements, the physics-informed selection
showed similar distributions of the selected parameters, while the pure
data-driven approach showed notable differences; i.e., fewer selected
measurements with the highest SNR (b-values of 0 and 500 s∕mm2) to
increase the selection of low SNR volumes (b-values of 2000 and 3000
s∕mm2 and TI values lower than 1000 ms). Differences between the
in vivo and synthetic data include the noise distribution, presence of
artifacts, and signal generation.

The noise distribution in the synthetic data was Gaussian whereas
the noise distribution in in vivo magnitude data is typically Rician
or non-central Chi distributed and may be (locally) altered by pre-
processing. The reason for this choice was that the in vivo data was
available and denoised in the complex domain and had relatively
high SNR, reducing effects of the Rician noise floor (Gudbjartsson
and Patz, 1995). Furthermore, with preprocessing strategies becoming
more readily adopted to deal with the Rician noise (Tax et al., 2022),
the current assessment is still representative. Finally, the primary aim
was to address whether the proposed framework could make correct
11
estimations of the quantitative parameters in the general presence of
noise. Nevertheless, the influence of Rician noise, low SNR, and other
loss functions than the L2 loss should be further explored.

The in vivo data contained some artifacts which may have affected
the sampling. The synthetic data was generated based on a signal
representation with one diffusion tensor, also for high b-values. How-
ever, kurtosis effects start to play a role at higher b-values due to
e.g. microscopic kurtosis or multiple compartments. CL+NN may better
capture this complexity as it is not restricted by assumptions on the
signal equation. The framework can be extended with more complex
signal representations accounting for these effects in future work.

4.1.4. Selection on different tissue types
In this study, a whole-brain mask was used to train the selector

layer, but the optimal selection of measurements most likely depends
on tissue type. Training the selection procedure on WM and GM voxels
separately in simulations did not result in significant improvement
(results not shown); potentially because the same signal representation
was used for both tissue types yet their parameter distribution was dif-
ferent. For in vivo data different biophysical models have been proposed
for different tissue types, e.g. an isotropic tensor for CSF (Jelescu et al.,
2016), intra-axonal sticks plus extra-axonal axially symmetric tensors
for WM (Novikov et al., 2018, 2019) and additional contributions of a
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soma compartment and exchange for GM (Palombo et al., 2020; Jelescu
et al., 2022). Physics-informed selection networks should therefore
ideally be adapted to and trained on different tissue types, depending
on the focus of a particular study. This could improve the estima-
tion of quantitative maps and better characterise the microstructural
properties of various tissues.

4.1.5. Concrete selector
This work employs a concrete layer as selection layer, which can be

regularised to select unique measurements, as carried out in this study.
We hypothesised that as each parameter setting was included only
once in the dataset (as opposed to repeated measurements), selecting
measurements multiple times does theoretically not add new informa-
tion, and it would be more informative to add new measurements.
Yet, this may result in a higher loss compared to the selection without
regularisation, but this was reduced by adopting very low values for the
regularisation strength. However, the framework is fully flexible to tune
the penalisation of repeated selection, and repeated selection could be
an indication of further data redundancy (i.e. fewer measurements than
the defined 𝑁 are needed).

The CL has shown favourable results in predicting non-selected
measurements in MRI (Pizzolato et al., 2020) and other tasks (Abid
et al., 2019) compared to other selection techniques such as imposing
(group) sparsity on the first layer. Nevertheless, the integrated selection
and estimation approach presented here offers flexibility to implement
other types of selection layers, e.g. the progressive subsampling sug-
gested by Blumberg et al. (2022), which will be explored in future
work. Furthermore, the proposed method was unable to provide rec-
ommendations on the acquisition of MRI measurements not included
in the acquisition of the training dataset. Future work should explore
the optimisation of acquisition parameters that are not necessarily a
subset of the training data.

4.2. Prediction of signals and parameter estimation

The MAE of signal predictions was similar across methods for 500
and 250 measurements but higher for Random selections of 100 and
50 measurements.

Physics-informed approaches resulted more consistently in lower er-
rors for quantitative maps in synthetic data and lower differences with
estimates on the full dataset across parameters in synthetic experiments
(quantified by the effect size) and in vivo data. Specifically, looking
at the median error and its variability (IQR), an ML-based selection,
mainly CL+eq, was usually among the two best methods, frequently
presenting very small effect size. Yet, Uniform sampling performed
relatively well with low estimation error and variability, especially for
𝑁 250 and 500. We hypothesise that this is because the initial set of all
1344 measurements was designed by experts and hence Uniform sub-
sampling reflected this. Compared to CRLB, physics-informed selection
(CL+eq) showed lower errors particularly for relaxation parameters,
likely due to the a priori choice of tissue parameters in the CRLB ap-
roach and consequent narrow range of selected TIs. Both approaches
ncorporate a signal equation, but the CRLB approach relies on previous
nowledge on tissue parameters (which is commonly set to a single
alue, in this study the mean of the ground truth distribution in the
ynthetic data), while the physics-informed approach implicitly consid-
rs the empirical distribution of the parameters. Moreover, the CL+par
rocedure minimises the error with respect to previously estimated
arameters, and CL+eq explicitly considers no parameter estimates, but
inimises the error with respect to the predicted signal. The need for
etailed a priori knowledge, considering different tissue types, makes an
ptimal extraction of the acquisition parameters difficult in comparison
ith an empirical approach such as the physics-informed framework
roposed in this work. Furthermore, noise may have influenced the
esults, considering that CRLB a priori parameter values were estimated

from ground truth maps. Therefore, physics-informed learning seems an
appropriate approach for diffusion-relaxation MRI experiment design
12

providing reliable results for distributions of multi-contrast parameters.
4.2.1. Network for the evaluation of sub-selections
To evaluate the sub-protocols from different selection methods, a

separate network for each subset was trained with a similar structure
to the decoder of the CL+eq approach (Fig. 1A), providing predic-
tions of the signals as well as estimated maps by integrating a signal
equation (Hutter et al., 2018; Tax et al., 2021a). This network was
kept consistent between selection procedures to assess the effect of the
selected measurements only. However, the concrete selection layer of
each approach was trained in conjunction with their specific decoder,
and hence training a network similar to this decoder for the evalu-
ation of the sub-selection may result in lower errors. For example,
to predict the MR signal without necessarily estimating parameter
maps, non-physics informed methods (e.g. a fully-connected NN di-
rectly predicting the signal) could provide more accurate values as
they may be able to better represent higher complexity at the cost of
potential overfitting. On the other hand, physics-informed or model-
based approaches can be used to simultaneously estimate quantitative
maps, which is often the eventual goal when analysing data, at the cost
of losing accuracy for the prediction of the signal.

4.2.2. Considerations on the estimation of quantitative parameters
The quantitative estimates showed biases (i.e. non-zero errors com-

pared to the ground truth) potentially related to local minima, par-
ticularly for a low number of selected volumes. Here we have used
both ML-based estimators as well as NLS. The use of ML for the
estimation of quantitative maps has received increased attention re-
cently, particularly in the area of dMRI with its many degrees of
freedom (Nedjati-Gilani et al., 2017; Reisert et al., 2017; de Almeida
Martins et al., 2021a; Palombo et al., 2020).

Most ML-based estimation work focused on estimation from full
protocols and were either based on supervised and self-supervised
strategies, which inspired the CL+par and CL+eq approaches, respec-
tively (Grussu et al., 2021a). Supervised approaches rely on training
data with known outputs (i.e. estimated maps), and for dMRI es-
timation Random forest (Nedjati-Gilani et al., 2017) and NNs have
been employed, amongst others. Several studies have raised awareness
regarding potential caveats in supervised NN estimation. Specifically,
estimation can be significantly impacted by the training data distri-
bution. This work used a distribution reflecting healthy brain, but
other choices could be made, e.g. uniform distributions or a mix, each
with their advantages and disadvantages such as biases in atypical
parameter combinations not present in the training set (Gyori et al.,
2022). In most cases the approach is trained on synthetic data with
added noise reflecting the in vivo data, but it could also be trained
on estimates from in vivo data as silver standard, in which case the
approach may become dependent on the estimator. In contrast to most
previous works, this work does not take the directional average which
may provide richer information and reduce bias. Compared to random
forest regression, Gyori et al. (2022) showed lower variability yet lower
accuracy for NNs, but NNs could be slower and potentially present
higher risk of local minima than regression methods (Coelho et al.,
2022). Gyori et al. (2022) found better accuracy but lower precision
of NLS estimates compared to NN-based estimates, especially when
reducing the SNR.

Grussu et al. (2021a) compared supervised and self-supervised NN
strategies for the estimation of quantitative maps and found that the
former leads to lower tissue parameter MSE in the case of Rician noise,
whereas the latter results in lower predicted signal MSE. Kaandorp et al.
(2021) used unsupervised physics-informed deep learning to estimate
rotationally invariant intravoxel incoherent motion (IVIM) parameters
in simulated and in vivo data from pancreatic cancer patients. They
showed in simulated data lower estimation error of the parameters for
NN considering low SNR (SNR < 50), but not for high SNR, and similar
values compared to LS and Bayesian approaches in in vivo data. Lim
et al. (2022) included the estimation of orientational features and

showed better estimation of the parameters from the 𝑇1-ball-stick model
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using a NN compared to NLS in synthetic and in vivo data considering
416 volumes of the MUDI dataset.

In the present study generally a self-supervised strategy was adopted
for estimation of both rotationally invariant and orientational features,
with the advantage that it does not require training on synthetic data
and could in theory handle spatial variations in acquisition parameters,
e.g. in the case of slice-interleaving (Hutter et al., 2018) or gradient
non-uniformities (Bammer et al., 2003). The use of a supervised strat-
egy (e.g. based on simulations or previously obtained estimates on data
such as in the decoder of CL+par) could improve the estimations of
the parameters, particularly for Rician noise (Grussu et al., 2021a).
However, the normalisation to avoid a higher weight of the parameters
with the highest values (𝑇1 and 𝑇 ∗

2 ) may influence the results. A
ossible solution is to use a loss function incorporating the CRLB (Zhang
t al., 2022). Specifically, a normalisation of the squared error for
ach quantitative parameter estimated with NNs was proposed to get
minimum variance unbiased estimator and avoid a major effect of

arameters that are difficult to predict. The self-supervised approach
ntrinsically adjusts the weights for each parameter and, possibly, the
roper adjustment of the components with higher importance on the
alues of the signal may also contribute to a better estimation of pa-
ameters that explain a lower percentage of the variance of the signal.

supervised selection approach (CL+par) was only implemented for
ynthetic data. It could also be implemented for in vivo data with the
stimates from the full dataset as output.

Regarding the comparison with NLS estimation, we observed that
he ML estimated quantitative maps showed higher error and variability
n general for any number of selected measurements, especially in WM
nd non-diffusion related parameters (𝑇1, 𝑇 ∗

2 and 𝑆0). Compared to
ther work (Lim et al., 2022), the NNs employed for the estimation
resented a similar architecture but were less complex, i.e., the num-
er of hidden layers was lower to match the decoder in the CL+eq
election network, which could be a key factor of the different results
n unseen data. Furthermore, the use of data augmentation techniques
ay contribute to improve the estimation results.

In this study, as expected, we obtained estimates with lower error
alues when training on synthetic compared to in vivo data. Apart
rom the difference between in vivo data and model fitting, a reason
f the difference may be related to the complexity of the NN. Gyori
t al. (2022) showed that more complex network architectures are
ecessary to map parameters from noise-free data, and in this work
he complexity of the architecture was equal for data with and without
oise, i.e., synthetic and in vivo volumes, respectively. Additionally,
L methods, particularly NNs, estimate smoothed maps, as shown

n Gyori et al. (2022), which would justify the lower variability but
igher bias of these methods compared to NLS. In our case, potentially
ue to the relatively simple architecture of the NNs, higher variability
nd error was observed using ML to estimate the quantitative maps.
hus, it is also important to consider whether training is carried out
ith preprocessed or raw volumes, as the architecture employed for a

pecific type of data may differ according to the nature of the input
ata.

Previous studies employing ML techniques have assessed the ef-
ect of reducing the number of MRI volumes and different sampling
trategies (Merlet et al., 2013; Golkov et al., 2016; de Almeida Martins
t al., 2021a; Grussu et al., 2021b; Chen et al., 2020; Tian et al., 2020).
hen reducing the number of acquired volumes, it has been observed

hat the estimation of the diffusion direction was more sensitive to
oise (Merlet et al., 2013), but the estimation of other parameters with
Ns was less affected by suboptimal protocols in comparison with least-

quares approaches (de Almeida Martins et al., 2021a) or acquisition
ubprotocols not based on ML selection (Grussu et al., 2021b). Golkov
t al. (2016) achieved a similar or even better estimation with 12 out
f 158 MRI volumes using Deep Learning compared to the standard
itting estimation using the full dataset for kurtosis and NODDI pa-
13

ameters. Here, we show a proof-of-principle of the joint optimisation h
f a reduced acquisition, the prediction of non-selected measurements,
nd/or the estimation of quantitative maps, instead of applying these
teps separately, and obtaining comparable results to the whole dataset
hen highly reducing the number of employed volumes. Therefore, the

esults from our study suggest that an intelligent sampling optimised
or the employed models may be beneficial not only to reduce the
RI acquisition time to one adequate for clinical routine, but also to

etrieve the full potential of the data for the characterisation of brain
icrostructure.

.3. Other limitations and future work

.3.1. Generalisability
The current study performed extensive evaluation on a publicly-

vailable diffusion-relaxation dataset. Nevertheless, future work should
xplore generalisability to datasets from other organs or acquired with
ther encoding techniques (e.g. beyond linear tensor encoding) to opti-
ise the selection of efficient protocols and estimation of quantitative
aps (Szczepankiewicz et al., 2021). Previous work has evaluated the
ure data-driven approach (CL+NN) on a different 5D dataset that var-
ed b-value, TE, gradient direction, and diffusion encoding waveform
𝑏𝛥) (Tax et al., 2021b). The physics-informed approaches require prior
nowledge on the model and the set of acquisition parameters and can
e adapted accordingly. Although this work focused on the optimisa-
ion of diffusion-relaxation protocols for which the dimensionality of
he acquisition-parameter space becomes exceedingly large compared
o diffusion or relaxation MRI alone, the method can easily be adapted
o further shorten protocols for diffusion or relaxation MRI currently
sed in clinical research studies.

The simulations in this study used the same simplified signal equa-
ion to generate ground truth signals as to estimate parameters, to be
ble to assess accuracy. Consequently, there were effects that were not
onsidered such as partial volume, IVIM or kurtosis with a potential
ffect on the estimated parameters and predicted MRI signal. Fu-
ure work could consider more realistic simulations including multiple
ompartments or Monte Carlo simulations in realistic meshes.

The total number of subjects for this proof-of-concept, five for
raining and validation and another one for testing, was relatively low
ue to the acquisition time, which could limit the generalisability of
he results as the distribution of a healthy population cannot fully
e captured. Nevertheless, as each voxel is considered as a training
xample, the network can leverage the wide range of microstruc-
ural configurations throughout the brain. Additionally, only data from
ealthy subjects were assessed, and future work could include data
rom various neurological or psychiatric disorders.

.3.2. Hyperparameter optimisation
The use of concrete autoencoders showed promising results, but the

isk of local minima should be considered. Temperature and regularisa-
ion hyperparameters in this work were chosen based on previous work,
nd the number of layers in the selection networks was based on an
ssessment of up to three layers of the original CL+NN approach (Tax
t al., 2021b), with the validation error being lowest for the used
etting. The estimation network was set to match the decoder of CL+eq,
ut hyperparameters can be further optimised in future work. Finally,
he current approach does not incorporate rotational invariance.

. Conclusion

The present approach combining ML feature selection with physics-
nformed signal modelling can exploit MRI data redundancy to estimate
on-acquired data and quantitative parameters from reduced datasets
ore suitable for clinical research studies. Non-acquired data could be
redicted and quantitative parameters estimated with a 5-fold reduced
rotocol, yielding the most consistently very small effect size and

ence similar error-distributions compared to the full protocol across
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the evaluated methods. Manual Uniform sampling can perform well
particularly for a high number of sampled measurements (𝑁 ≥ 250),
resumably because it reflects the expert design of the full protocol.
his framework can be extended for the selection of optimal sets of
cquisition parameters for a wide range of MRI sequences and tissue
ypes.
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