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Abstract—This paper presents a comparative survey of
autonomous navigation systems for mobile robots on sidewalks.
The kinds of systems mentioned above endow robots with the
capability of estimating an optimal trajectory that once followed,
allows the robot to move autonomously from a current pose to
a target pose on a sidewalk. In addition, they allow avoiding
both static and dynamic obstacles reliably and efficiently. An
autonomous navigation system functions on data from multiple
sensors and a global representation of the environment in which
it is located, and allows the robot to perform its motion task
satisfactorily without leaving the sidewalk on which it is moving.

It is important to mention that an intense search of the state
of the art was made around the existing autonomous navigation
algorithms. Finally, different tools are mentioned such as ROS2
middleware, the Gazebo simulation program and the Rviz2
visualization program.

Index Terms—Autonomous navigation, sensors, obstacle
avoidance, sidewalks, ROS, Gazebo, Rviz.

I. INTRODUCTION

Mobile robots are being used for a large number of

applications due to their ability to move on different surfaces

and adapt to different situations, applications such as space

exploration, transportation, mining, agriculture, housework,

home delivery, among others [1]. These robots have sensors

and algorithms that allow them to detect and perceive their

environment, make decisions and execute them to fulfill

assigned tasks. However, it is important to clarify that these

sensors and algorithms must be adapted to the environment in

which the robot must work. Many of the mobile robots face

a wide variety of challenges, mainly because they move in

dynamic environments where a large number of variables and

aspects to take into account influence. Especially if they move

on the sidewalks of a city.

This is because these robots can find themselves with

different situations, which they do not find in other types

of places. In addition to everything that can be found on

a sidewalk, such as people walking in opposite directions,

lamp posts, traffic signals, traffic lights, animals and some

objects such as tables or chairs, among others, there is a very

important aspect that a sidewalk has that does not have, for

example, a shopping center or a university campus, and it is

the reduced space through which the robot must move, since

it is of vital importance that it does not leave the sidewalk

when it continues its trajectory.

978-1-6654-7470-2/22/$31.00 ©2022 IEEE

Therefore, the need arises to develop an autonomous

navigation system that allows a mobile robot to move from

point A to point B (target position) autonomously, estimating

a trajectory and detecting and avoiding any type of obstacle,

taking into account the environment in which it is going to

move, which is, in this case, an outdoor environment made up

of a sidewalk.

This process includes both the planning of a trajectory, as

well as the detection and avoidance of obstacles in a reliable

and efficient way, for which the trajectory must be constantly

updated, due to the fact that there is no prior knowledge of

the obstacles that may arise during the robot’s route, letting

it make decisions with the help of the information it receives

from its sensors and the processing of said information.

The problem of autonomous navigation in populated

areas has been studied many times in the past, especially

in indoor, non-urban outdoor environments or on roads.

However, relatively few studies have been carried out in urban

environments where there are large numbers of people or

dynamic objects, such as city centers or sidewalks, in which

they face a large number of similar challenges. In [2], an

autonomous sidewalk navigation system for mobile robots is

proposed, taking into account pedestrian flows in real time to

imitate their behavior and navigate all towards the same goal.

In [3], an autonomous navigation system in urban centers is

described, in which a SLAM approach is used for learning

maps of urban areas and subsequent location on them, as

well as dynamic obstacle avoidance. A similar approach is

developed in [4], in which a navigation system for a robot

in unknown and dynamic environments is created, using the

information extracted from its interaction with people and its

perception system.

II. CHALLENGES

For autonomous navigation on sidewalks, it must be

taken into account that the mobile robot faces two major

challenges: the first, moving only on the sidewalk, that is, not

leaving to the road, residential or commercial areas; and the

second, to navigate autonomously, without human intervention

and successfully reaching the target pose, without colliding

with obstacles. The way to tackle both approaches will be

developed throughout this work. However, it is important to

mention first that, for the robot to satisfactorily fulfill its task,

it is very important to have sensors that allow it to obtain



the necessary data for subsequent processing and decision

making. A mobile robot can have a wide variety of sensors

depending on the function for which it is built. However, there

are three types of sensors that are very important for the task

of autonomous navigation on sidewalks:

A. LiDAR

A Light Detection And Ranging (LiDAR) sensor allows

to measure the distance between the sensor and a person or

object. For this, the sensor emits a beam of light into the

environment. That light beam is then reflected by the object

and returns to the sensor. To calculate the distance, the sensor

measures the time it takes for the pulse to go back and forth,

taking into account the speed of light. It is important to note

that light travels at a high speed, approximately 300.000 km/s,

which means that the device responds quickly. The laser, for

its part, delivers points in 2D (a single plane) or in 3D (three-

dimensional reconstructions), which allow knowing how far

away those physical elements are that caused the light beam

to return to the sensor. The data measured by the sensor can

be used to find the closest points and thus, for example, make

the robot stop in front of an obstacle.

B. IMU

The Inertial Measurement Unit (IMU) sensor is an

electronic device capable of measuring the speed, orientation

and gravitational force of an object using the combination

of three sensors: accelerometer, gyroscope and magnetometer.

The accelerometer is used to measure inertial linear

acceleration in m/s2, the gyroscope to measure angular velocity

in rad/s, and the magnetometer to measure magnetic field

strength in mGs or µT, which can improve the gyroscope

reading. This sensor is very important because it allows you to

obtain information about the robot’s odometry, which means

that it allows you to obtain precise information about the

robot’s pose and speed based on its movement.

C. Camera

The camera allows to obtain information and images of

the environment in which the robot is. A commonly used

type of camera is the stereo camera, which is made up of

two fixed monocular cameras, side by side, taking images

simultaneously. These two images can be further processed

to obtain the distance (depth) at which the objects captured

in the photograph are located. For this reason, these types of

cameras are used to build three-dimensional representations of

the captured space.

III. BACKGROUND ABOUT AUTONOMOUS NAVIGATION

To tackle the challenge of autonomous navigation in this

paper, the ROS2 Navigation Stack [7] will be taken into

account, which contains all the necessary tools to successfully

achieve the goal. An autonomous navigation system must

necessarily be composed of the three navigation servers:

planners, controllers and recoveries. Next, a description of

each of them will be given.

A. Planners

The main task of a planner is to calculate an optimal path to

go from point A (current pose) to point B (destination pose),

avoiding obstacles along the way. In this way, the robot can

successfully move towards its target position, with the help of

the information from its sensors and a global representation

of the environment in which it is located. There are various

planners used in autonomous navigation tasks, which differ

in the implemented algorithm and the type of robot in which

they can be used. The planners mentioned below operate on a

costmap, using occupancy grids.

To correctly choose the planner to use, the type of

mobile robot in which the navigation system is going to

be implemented must be taken into account, as mentioned

above. The recommended planners for circular differential and

circular omnidirectional robots (holonomic robots), which can

drive in any direction or safely rotate on their axis, are the

following:

• NavFn Planner: The NavFn planner uses the A star

(A*) or Dijkstra algorithms to find the path between

the current pose and the target pose. Dijkstra’s search

algorithm guarantees to find the shortest path between

the two poses mentioned above, using the actual cost (in

distance or time) it takes to go from the starting point

of the trajectory to each of the points connected to it, at

equal to the cost between each of the points that make up

the trajectory. With the above, it is guaranteed to find the

route with the lowest cost. On the other hand, the search

algorithm of A* uses a heuristic function that takes into

account not only the actual cost it takes to reach each

of the points of the trajectory from the initial point, but

also the estimated cost from each one of them towards

the target pose. In this way, priority can be given to the

points of the trajectory that have a lower estimated cost

towards the target pose, making the search faster and

more efficient depending on the environment in which

the robot is located [5].

• Smac Planner 2D: Smac Planner 2D starts with the

implementation of the cost-conscious, highly optimized,

and reconfigurable A* search algorithm that supports

Moore and Von Neumann models. Although this 2D

A* planner is a bit slower, it is important to highlight

the higher quality of the routes. Also, this planner

provides a path between neighboring vertices of 4 or 8

connections. Said route may have small zig-zags to reach

another course that is not 90° or 45°, which will be the

points taken into account by the controller to follow the

trajectory. However, the robot’s final movement does not

reflect that mentioned zig-zag behavior.

The 2D A* algorithm is responsible for the search of a

graph of nodes, which contain the necessary methods

to calculate the heuristics (explained above), the search

neighborhoods and the travel costs between the different

points of the trajectory. In the 2D Smac planner, a 2D

node template is provided by default that searches a 2D



grid to make connections between neighboring points [6].

On the other hand, there are non-holonomic robots, such as

Ackermann-type robots or legged robots, which have rolling

restrictions. The recommended planner for this type of robots

is the following:

• Smac Hybrid-A* Planner: The Smac Hybrid-A*

planner implements the Hybrid-A* algorithm, which

is an optimized and reconfigurable extension of the

A* algorithm for non-holonomic robots, supporting the

Dubin and Reeds-Shepp models. This algorithm expands

the possible robot trajectories while considering the

constraint of the robot’s minimum turning radius and

the total footprint of the robot to avoid collisions [7].

This algorithm is useful for planning with curvature

constraints, such as when planning a robot at high speeds

to ensure that it does not tip over or run out of control

[6].

Therefore, this algorithm is designed for robots that can

only make orientation changes while moving between

vertices. Due to this, the trajectory generated by the

algorithm can include curved trajectories to reach the

target pose, that is, smooth trajectories (without sudden

changes in direction) that satisfy the dynamics of the

robot and that are kinematically feasible. This is due to

the fact that non-holonomic robots may have difficulty

following acute angles between trajectories when they

make the necessary orientation changes to accurately and

precisely follow the final route.

B. Controllers

The main task of a controller is to calculate a valid control

effort to follow the trajectory globally calculated by the

planner or to complete a local task. For this, the controller

performs route planning from the current pose to a few meters

ahead (up to the sensor range). In this way, it builds a trajectory

to avoid dynamic obstacles, which are not on the map, but

can be detected with the help of sensor data on the local

costmap. This is possible because the controller has access

to a representation of the local environment to try to calculate

the feasible control efforts to follow the global plan [7].

The controllers used in autonomous navigation are the

following:

• DWB: The DWB controller implements a Dynamic

Window Approach (DWA) algorithm, modified with

plugins that are configured to calculate the commands

that control the robot. This controller implements Critic

plugins, which allow users to specify new critical

functions to use in the system, and Trajectory Generation

plugins, in charge of generating the set of possible

trajectories of any shape that the robot can follow, which

are later evaluated by one or more critical plugins,

determining an overall score for each of them and

choosing the one with the best score. This path will

determine the speed of the output command [8].

The DWB controller is mainly used in circular or

non-circular differential and circular or non-circular

omnidirectional robots, and its main task is dynamic

obstacle avoidance [7].

• Timed Elastic Band (TEB): The TEB controller is

an optimal model predictive control (MPC) timing

controller, which implements the Timed Elastic Band

approach. This approach optimizes the robot’s trajectory

based on its execution time, distance to obstacles,

and feasibility with respect to the robot’s kinematic

constraints [7]. This approach can be used in holonomic

and non-holonomic robots, which means that it can be

used in both differential and omnidirectional robots as

well as Ackermann and legged robots. By considering

the temporal information, TEB explicitly considers and

controls the velocities and accelerations of the robot.

• Regulated Pure Pursuit (RPP): The RPP algorithm

can be considered as the best trajectory algorithm

among the available variations of Pure Pursuit algorithms

(Normal Pure Pursuit and Adaptive Pure Pursuit), and is

implemented to meet the needs of consumer, industrial

or service robots, being suitable for use with differential,

Ackermann and legged robots [7].

This algorithm implements active collision detection,

especially for confined or small spaces, by using a

parameter that sets the maximum time allowed before

the robot collides with a possible obstacle, which is used

in the current speed command. In addition, it implements

linear velocity regulations based on cost functions, which

include curvature scaling. Curvature scaling is responsible

for creating an intuitive behavior that allows the robot to

slow down when it makes sharp turns, when it encounters

sudden changes in direction, when it is close to a possible

collision with an obstacle, and when it is in partially

observable environments where it must turn into an

unknown and dynamic environment, which helps make

operations much safer. In this way, in environments where

the curvature of the trajectory is very high, the linear

speed of the robot drops and the angular speed takes over

to turn towards the heading [9].

Kinematic speed limits are also implemented in both

linear and angular speeds, when moving to follow

the trajectory and when performing pure rotations.

This ensures that the output commands are safe and

kinematically feasible [9].

C. Recoveries

The main task of recoveries is to allow the robot to deal with

different problems and get out of bad situations autonomously,

without the need for human intervention. A bad situation can

be, for example, a failure in the perception system, which

would cause a wrong representation of the environment with

obstacles that do not exist; encounter unknown situations or get

stuck due to the movement of dynamic obstacles [7]. In order

for the robot to be fault tolerant, a task server is implemented

that allows the robot to perform a certain behavior depending



on the situation in which it finds itself. Currently, there are
three types of recovery behaviors:

• Spin: The robot performs a rotation about its own axis,
according to the given angle. This angle can be set. This
can allow the robot, for example, to get out of a confined
space into a free space where it can successfully navigate.

• Back Up: This behavior is useful when the robot is
stuck or in case of a total failure. In this behavior, a
linear translation is performed for a given distance, which
can be configured [7]. In this case, the robot backs up
a certain distance and thus draws the attention of the
operators for help.

• Wait: The robot waits in a stationary state for a certain
time, which can be configured. This is useful in case of
time-based obstacles. For example, it is useful when the
robot is in crowded spaces where there are many people,
which does not allow it to move forward successfully. In
this case, the robot waits for a while until the space is a
bit clearer.

IV. BACKGROUND ABOUT ENVIRONMENT
REPRESENTATION

Environmental representation is “how the robot perceives
its environment” [7]. In this way, the representation of the
environment is vital for the correct operation of the navigation
servers and the satisfactory execution of the tasks that the robot
must perform, since it becomes one of the main sources of
data. This environmental representation is possible thanks to
one of the best known tools within autonomous navigation,
called the Costmap. A costmap can be defined as “the
representation of sensor data on a map” [7], in this case,
the map of the environment. The costmap is a regular 2D
grid of the environment, in which information from a series
of sensor processing plugins, also called costmap layers, is
stored. The cost of each grid cell can be unknown, free,
occupied or inflated, depending on the current conditions of
the environment where the robot is. Costmap layers are very
useful when detecting obstacles in the environment, as it helps
to prevent the robot from colliding with them [7].

The costmap layers currently available are: the static layer,
which is responsible for storing the occupancy information
in the costmap from the obtainment of a static map of the
environment, which represents a largely unalterable portion of
the map; the inflation layer, which adds new values around the
obstacles so that the robot does not collide with them and can
follow the path safely; the obstacle layer, which represents the
obstacles read by the sensors in a two-dimensional costmap;
and the Voxel layer, which does the same as the previous one
but in three dimensions [7]. For the construction of a costmap,
the use of a LiDAR sensor is important. Currently, there are
two types of Costmaps:

A. Global Costmap

The global costmap is generated upon the static map
obtained from the environment map, and helps to avoid known
obstacles of the map. In addition, it is important to note that

the global costmap remains static on the environment map, that
is, it does not move as the robot moves. This type of costmap
is used by the planner to generate a global long-range plan
[7].

B. Local Costmap

The local costmap ”is created from sensor data over a
small region specified in the parameters.” Unlike the global
costmap, the local costmap helps avoid dynamic obstacles
that are not known within the map. In addition, it moves
with the robot on the global costmap. This type of costmap
is used by the controller to calculate local control efforts
and generate a short-term plan, such as avoiding a moving
obstacle or completing an immediate task [7].

By correctly configuring each of the parameters that make
up the navigation servers and using the global and local
costmaps built from a static map of the environment, the robot
can navigate autonomously, avoiding both static and dynamic
obstacles that are in the trajectory that the robot must follow
to reach its objective.

V. RESULTS

To tackle the way in which the robot moves without leaving
the sidewalk, it is important to make (using the laser sensor)
and use the static global map of the environment, where the
sidewalk is the main element to be mapped. In addition to
the sidewalk, the static obstacles must also be part of the
global map. For this, the SLAM method is implemented,
which means Simultaneous Localization and Mapping. Using
this tool, a space can be fully or partially mapped in 2D,
enhancing and updating the map as the robot interacts with its
environment over time, as well as locating it in space. Since the
sidewalk is not detected by the laser sensor as an obstacle, it is
important to modify the map obtained in an editing program,
in such a way that the sidewalk can be drawn on the map, thus
guaranteeing that the robot cannot leave the sidewalk thanks
to the implementation of the global costmap.

To validate the behavior of a mobile robot in different
configurations, where what changes is the planner and the
controller to be used, an environment in the Gazebo simulation
program and the simulated model of a differential robot were
created, with two fixed standard wheels and a castor wheel.
The robot has IMU, LiDAR, camera and GPS sensors. The
simulated version of the differential mobile robot can be seen
in the figure 1.

Fig. 1. Simulated version of a differential robot.

Likewise, the simulated environment in which the robot is
going to move can be seen in the figure 2.



Fig. 2. Simulated environment with the sidewalk where the robot moves.

The global map of the environment, made using the SLAM
technique and modified in the editing program, can be seen in
the figure 3.

Fig. 3. Global environment map.

The parts of the map in black are the areas where the
robot cannot pass, that is, the areas that are occupied by other
objects. On the other hand, the parts of the map in white are
the clear areas where the robot can move, which in this case
would be the sidewalk.

It is important to mention the methodology used for the
development of this work, that is composed of three steps:
analyze the algorithms used for autonomous navigation in
urban environments composed of sidewalks, implement those
algorithms in the simulated version of the mobile robot and
evaluate the performance of the system developed in said
version. Taking into account the above, the tests are carried
out with the planners and controllers mentioned above that can
be used for this type of robot. In this case, as it is a differential
robot, the NavFn and Smac 2D planners are implemented, as
well as the DWB, TEB and RPP controllers. The initial pose
of the robot is set both in Gazebo and in the Rviz visualization
program, as can be seen in the figures 4 and 5, respectively.

Fig. 4. Initial pose in Gazebo.

Fig. 5. Initial pose in Rviz.

Once the initial pose of the robot is determined, the time
it takes to follow the trajectory from the initial pose to the
final pose is taken for each of the mentioned planners and
controllers, as part of the evaluation of the developed system.
For this, a maximum speed of 0.25 m/s was configured. The
results are shown in the table I.

TABLE I
ROBOT NAVIGATION TIME TO REACH THE TARGET, USING DIFFERENT

PLANNERS AND CONTROLLERS

Controller/Planner NavFn (Dijkstra) NavFn (A*) Smac 2D
DWB 77s 69s 73s

TEB 59s 62s 66s

RPP 71s 63s 79s

The global trajectory calculated by the NavFn planner can
be seen in the figure 6.

Fig. 6. Trajectory calculated by the NavFn planner.

On the other hand, the global trajectory calculated by the
Smac 2D planner can be seen in the figure 7.

Fig. 7. Trajectory calculated by the Smac 2D planner.

After navigation, the robot reaches the target pose given by
the user, as can be seen in the figures 8 and 9.



Fig. 8. Final pose in Gazebo.

Fig. 9. Final pose in Rviz.

The previous experiment was carried out taking into account
only static obstacles, that is, those that could be seen on the
global map. Now, the same experiment was performed, but
this time with a greater saturation of obstacles, increasing the
number of both static and dynamic obstacles. The results are
shown in table II.

TABLE II
ROBOT NAVIGATION TIME TO REACH THE TARGET, USING DIFFERENT

PLANNERS AND CONTROLLERS, WITH MORE SATURATION OF OBSTACLES

Controller/Planner NavFn (Dijkstra) NavFn (A*) Smac 2D
DWB 89s 80s 84s

TEB 65s 68s 71s

RPP 75s 70s 91s

According to the results shown in tables I and II, the
configuration that obtained the shortest navigation time,
managing to avoid both static and dynamic obstacles, was
the TEB controller together with the NavFn planner, using
Dijkstra’s algorithm. The results obtained may be due to
different factors. One of them is the shape of the trajectory
calculated by each planner. For example, the trajectory
generated by the Smac 2D planner passed very close to the
detected obstacles, which sometimes caused the trajectory to
not update as quickly when it encountered obstacles that were
not on the global map, which caused soft collisions with
them, but without affecting tracking towards the target. On
the contrary, the trajectory planned by NavFn did not pass
as close to the obstacles, which allowed the robot to have
a little more margin when avoiding them. Other elements
that can influence the result can be computational factors
(performance), the geometry of the robot, the type of obstacle
detected, the speed of movement of the robot or the speed
with which the trajectory was updated. However, regarding

speed, the one that best contributed to the achievement of the
objective was chosen, allowing the robot to correctly avoid
obstacles.

The planners and controllers used present very good
efficiency at the time of robot navigation, fulfilling the main
objective which is, in this case, to move from a start point to
an end point without colliding with obstacles or leaving the
sidewalk.

VI. CONCLUSIONS

This article presents a systematic review of the literature
and comparative evaluation of different trajectory planning
and tracking methods, validated in a simulated version of
a differential robot. When starting navigation, it is very
important to take into account the maximum speed at which
the robot can move to accurately follow the trajectory
estimated by the planner. Sometimes, when the speed was
very high, the orientation changes that can be observed,
for example, in the trajectory calculated by the Smac 2D
planner, could not be performed accurately by the robot, which
caused the collision with some obstacles. Another important
aspect that could be observed during the experiment is that
the trajectories calculated by the planners are very different,
which can influence the time it takes for the robot to move
from the initial point to the final point. As can be seen in
the images, the trajectory calculated by the NavFn planner
is more direct and linear than the one calculated by the
Smac 2D planner. Finally, it is important to highlight the
importance of correctly configuring the parameters for the
different navigation servers, especially the controller, since it
is responsible for the robot being able to faithfully follow the
globally calculated trajectory.
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