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apparent states of each road user of the plurality of road 
users at successive time ps , the data processor assigns a 
behavioral model stored in the data storage device , the data 
processor calculating a new maneuver distribution that is a 
probability distribution over a finite plurality of alternative 
maneuvers and a new state distribution that is a probability 
distribution of possible states for each alternative maneuver 
of the finite plurality of alternative maneuvers . The data 
processor determines a risk of collision of the road vehicle 
with another road user , based on the new maneuver and state 
distributions of the target road user , and outputs one or more 
of a driver warning signal and executes an avoidance action 
if the risk of collision exceeds a predetermined threshold . 
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DRIVING ASSISTANCE METHOD AND the relationships with the other road users and the road . 
SYSTEM Underlying policies are learned from data using random 

forests . 
CROSS REFERENCE TO RELATED N. Lee and K. M. Kitani , in “ Predicting wide receiver 

APPLICATIONS trajectories in American football ” , in 2016 IEEE Winter 
Conference on Applications of Computer Vision ( WACV ) , 

This application is a National Stage of International March 2016 , pp . 1-9 , have proposed a planning - based 
Application No. PCT / IB2017 / 000856 filed Jun . 2 , 2017 . approach in the completely different field of predicting 

trajectories of an attacking player in American football . This 
TECHNICAL FIELD approach used a dynamic feature dependent on the motion of 

opposing players , which was predicted using supervised 
The disclosure relates to a driving assistance model and learning 

system for road vehicles , as well as to a road vehicle As discussed by S. Lefèvre , D. Vasquez , and C. Laugier , 
comprising such a driving assistance system . In this context , in “ A survey on motion prediction and risk assessment for 
" driving assistance ” should be understood broadly and not intelligent vehicles , ” ROBOMECH Journal , vol . 1 , no . 1 , 
be limited to the support of an active human driver , but pp . 1-14 , 2014 , approaches in behavior inference and motion 
extend even to fully autonomous driving . prediction for intelligent vehicles are typically classified into 

three main groups : Physics - based , Maneuver - based , and 
BACKGROUND 20 Interaction - aware models . 

Each of the following papers : K. Weiss , N. Kaempchen , 
There has been a significant increase in research on and A. Kirchner , “ Multiple - model tracking for the detection Advanced Driver Assistance Systems ( ADAS ) in recent of lane change maneuvers , ” in IEEE Intelligent Vehicles 

years . Especially in the sector of autonomous driving , that Symposium , 2004 , June 2004 , pp . 937-942 ; N. Kaempchen , 
has become a critical concern around the world , because 25 K. Weiss , M. Schaefer , and K. C. J. Dietmayer , “ Imm object 
autonomous driving can increase safety and security of tracking for high dynamic driving maneuvers , ” in IEEE 
drivers , passengers , or pedestrians , enhance mobility for Intelligent Vehicles Symposium , 2004 , June 2004 , pp . 825 
people and freight , or protect the environment . However , the 830 ; and R. Toledo - Moreo and M. A. Zamora - Izquierdo , 
available techniques used to predict the trajectories and “ Imm - based lane - change prediction in highways with low 
intents of road users are time and memory demanding , 30 cost gps / ins , ” IEEE Transactions on Intelligent Transporta 
which sets an obstacle to the development of safe and secure tion Systems , vol . 10 , no . 1 , pp . 180-185 , March 2009 , take 
autonomous driving systems . a Physics - based approach where the future motion is pre 

Planning - based approaches have been proposed which dicted using dynamic or kinematic models , limiting their 
assume that rational actors , in their motion , seek to minimize applicability to the immediate - term prediction . 
a cost function which depends on their preferences and the 35 Approaches based on the Interacting Multiple - Model fil 
context . Thus , given the cost function and the context , their ter ( IMM ) are included in this group . They rely on a bank of 
future actions can be predicted . Such methods have been Kalman Filters to track the state of the target , yielding as a 
disclosed , for instance , by B. D. Ziebart , N. Ratliff , G. byproduct a distribution over the current dynamics of the 
Gallagher , C. Mertz , K. Peterson , J. A. Bagnell , M. Hebert , target . The switching between dynamics is Markovian , caus 
A. K. Dey and S. Srinivasa , in “ Planning - based prediction 40 ing the performance to depend heavily on a proper tuning of 
for pedestrians ” , Proceedings of the 2009 IEEE / RSJ Inter- the regime transition matrix . 
national Conference on Intelligent Robots and Systems , ser . C. Tay , “ Analysis of Dynamic Scenes : Application to 
IROS’09 , Piscataway , N.J. , USA , 2009 , pp . 3931-3936 , by Driving Assistance , ” Theses , Institut National Polytech 
K. M. Kitani , B. D. Ziebart , J. A. Bagnell and M. Hebert , in nique de Grenoble — INPG , September 2009 , takes a Maneu 
“ Activity Forecasting ” , Springer Berlin Heidelberg , 2012 , 45 ver - based approach where the future trajectory of the target 
pp . 201-214 , and by D. Vasquez , in “ Novel planning - based is predicted by identifying the maneuver in execution from 
Algorithms for Human Motion Prediction ” , Proceedings of a finite set of maneuvers contained in a database . Methods 
the IEEE Conference on Robotics and Automation , Stock- used to identify the maneuver include Hidden Markov 
holm , Sweden , May 2016. These disclosures focus on the Models ( HMM ) . 
problem of pedestrian motion prediction . Whereas , G. Aoude , B. Luders , J. Joseph , N. Roy , and J. 

In this respect , in the specific field of road traffic , W. How , “ Probabilistically safe motion planning to avoid 
Schwarting and P. Pascheka , in “ Recursive conflict resolu- dynamic obstacles with uncertain motion patterns , ” Autono 
tion for cooperative motion planning in dynamic highway mous Robots , vol . 35 , no . 1 , pp . 51-76 , 2013 , also takes a 
traffic ” , 2014 IEEE 17th International Conference on Intel- Maneuver - based approach where the future trajectory of the 
ligent Transportation Systems ( ITSC ) , October 2014 , pp . 55 target is predicted by identifying the maneuver in execution 
1039-1044 , have proposed a more refined approach which from a finite set of maneuvers contained in a database , but 
seeks the best cooperative behavior between two road users the methods used to identify the maneuver include Gaussian 
using hand - tuned cost functions in case of potential conflict Processes ( GP ) . 
between their trajectories as initially predicted without con- T. Gindele , S. Brechtel , and R. Dillmann , “ A probabilistic 
sidering any interaction . 60 model for estimating driver behaviors and vehicle trajecto 
An alternative approach has been proposed by T. Gindele , ries in traffic environments , " in 13th International IEEE 

S. Brechtel and R. Dillmann in “ Learning driver behavior Conference on Intelligent Transportation Systems , Septem 
models from traffic observations for decision making and ber 2010 , pp . 1625-1631 , has shown that Dynamic Bayesian 
planning " , IEEE Intelligent Transportation Systems Maga- Networks ( DBN ) can explicitly formalize the interactions 
zine , vol . 7 , no . 1 , pp . 69-79 , 2015 , in which each road user 65 between traffic participants in the long - term prediction of 
in a traffic scene is represented within a Dynamic Bayesian traffic situations . This approach infers the behavior of each 
Network by a set of nodes representing its internal states and vehicle by identifying its current situation ( e.g. , close to the 
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vehicle in front ) as a function of its local situational context Y. Bar - Shalom and X.-R. Li , Estimation with Applica 
( e.g. , distance to the vehicle in front ) . tions to Tracking and Navigation . New York , N.Y. , USA : 

G. Agamennoni , J. I. Nieto , and E. M. Nebot , “ Estimation John Wiley & Sons , Inc. , 2001 . 
of multivehicle dynamics by considering contextual infor 
mation , ” IEEE Transactions on Robotics , vol . 28 , no . 4 , pp . 5 SUMMARY 
855-870 , August 2012 , presented another approach follow 
ing the same line of thought . In this approach , high - level A first object of the disclosure is that of proposing a 
discrete contexts determine the evolution of low - level driving assistance method which substantially increases the 
dynamics . In contrast to the IMM approaches discussed safety and security of a road vehicle by accurately predicting ? 
above , the switching process is only conditionally Markov , 10 a future traffic scene , and taking appropriate action in 
also depending on the continuous state at the preceding time response , using limited computational resources . 
step through a linear feature - based function . Accordingly , in at least one illustrative embodiment of a 

D. Barber , “ Expectation correction for smoothed infer- driving assistance method according to the present inven 
ence in switching linear dynamical systems , ” Journal of tion , the driving assistance method comprises the steps of 
Machine Learning Research , vol . 7 , pp . 2515-2540 , 2006 , 15 observing , in a traffic scene including the road vehicle 
discloses preforming approximate inference by using a among a plurality of road users , apparent states of each road 
variation of the forward pass for augmented Switching user of the plurality of road users at successive time steps ; 
Linear Dynamical Systems ( aSLDS ) . assigning a behavioral model to a target road user of the 

In M. Bahram , C. Hubmann , A. Lawitzky , M. Aeberhard , plurality of road users ; calculating , for the target road user , 
and D. Wollherr , “ A combined model- and learning - based 20 at a new time step , based on the apparent states that have 
framework for interaction - aware maneuver prediction , ” been observed , a new maneuver distribution that is a prob 
IEEE Transactions on Intelligent Transportation Systems , ability distribution over a finite plurality of alternative 
vol . 17 , no . 6 , pp . 1538-1550 , June 2016 , a cost - function that maneuvers , and a new state distribution that is a probability 
models the preferences and the risk - aversive behavior of distribution over possible states for each alternative maneu 
drivers is used to estimate the interaction - aware motion 25 ver of the finite plurality of alternative maneuvers ; a prob 
intention of each vehicle in the scene . The model - based ability of a selected maneuver in the new maneuver distri 
prediction is then complemented with a learning - based bution is calculated as proportional to the sum of the 
prediction to account for physical evidence of lane changes . product , for each previous time step's maneuver that is a 

However , in D. Sierra Gonzalez , J. S. Dibangoye , and C. possible maneuver of the target road user in a previous time 
Laugier , “ High - Speed Highway Scene Prediction Based on 30 step , of a first term that is a previously calculated probability 
Driver Models Learned From Demonstrations , ” in Proceed- of the previous time step's maneuver , a second term that is 
ings of the 2016 IEEE 19th International Conference on a probability of the selected maneuver in the new time step 
Intelligent Transportation Systems ( ITSC 2016 ) , Rio de from a probability distribution of possible states for the 
Janeiro , Brazil , November 2016 , and Patent No : PCT / previous time step's maneuver based on the behavioral 
IB2016 / 001737 , the balance between the different driver 35 model assigned to the target road user , and a third term that 
model terms is learned automatically from demonstrations is a probability of the apparent state observed at the new 
using Inverse Reinforcement Learning ( IRL ) . A dynamic time step calculated for the selected maneuver and the 
model learned from driving demonstrations is shown to probability distribution of possible states for the previous 
produce human - like , interaction - aware , long - term predic- time step's maneuver based on a set of motion parameters 
tions in highway scenarios . 40 associated to the selected maneuver ; and the new distribu 

Other disclosures relating to the field of predictive driving tion over possible states for each possible maneuver is 
are : L. Rummelhard , A. Nègre , M. Perrollaz , and C. Laugier , calculated from a merger , for example a sum , over all 
in “ Probabilistic Grid - based Collision Risk Prediction for previous time step's maneuvers , of the product , for each 
Driving Application , ” in ISER , Marrakech / Essaouira , previous time step's maneuver , of at least a state distribution 
Morocco , June 2014 ; 45 obtained by propagating the probability distribution of pos 

A. Lawitzky , D. Althoff , C. F. Passenberg , G. Tanzmeister , sible states for the previous time step's maneuver using the 
D. Wollherr and M. Buss , in “ Interactive scene prediction for set of motion parameters associated to each alternative 
automotive applications ” , 2013 IEEE Intelligent Vehicles maneuver and a remixing term proportional to a product of 
Symposium ( IV ) , Gold Coast City , Australia , Jun . 23-26 , the first , second , and third terms ; determining a risk of 
2013 , pp . 1028-1033 ; 50 collision of the road vehicle with another road user of the 

M. T. Wolf and J. W. Burdick , “ Artificial potential func- plurality of road users , based on the new maneuver and state 
tions for highway driving with collision avoidance , ” in 2008 distributions of the target road user ; and outputting a driver 
IEEE International Conference on Robotics and Automa- warning signal and / or executing an avoidance action if the 
tion , May 2008 , pp . 3731-3736 . risk of collision exceeds a predetermined threshold . 

B. D. Ziebart , A. L. Maas , J. A. Bagnell , and A. K. Dey , 55 By thus applying both a behavioral model assigned to the 
“ Maximum entropy inverse reinforcement learning , ” in Pro- target road user and a set of motion parameters associated to 
ceedings of the Twenty - Third AAAI Conference on Artifi- each alternative maneuver of the target road user out of a 
cial Intelligence , AAAI 2008 , Chicago , Ill . , USA , Jul . 13-17 , finite plurality of alternative maneuvers , this method takes 
2008 , 2008 , pp . 1433-1438 ; into account both the risk - averse behavior of the target road 
M. Treiber , A. Hennecke , and D. Helbing , “ Congested 60 user and its dynamics to obtain a faster identification of new 

traffic states in empirical observations and microscopic maneuvers and a greater ability to understand the traffic 
simulations , ” Phys . Rev. E , vol . 62 , pp . 1805-1824 , August scene , which leads to fewer false maneuver detections , and 
2000 ; thus to a more reliable driving assistance . 

L. Rummelhard , A. N’egre , and C. Laugier , “ Conditional When the third term , that is , the probability of the 
monte carlo dense occupancy tracker , ” in 2015 IEEE 18th 65 apparent state being observed at the new time step for the 
International Conference on Intelligent Transportation Sys- selected maneuver and the probability distribution of pos 
tems , September 2015 , pp . 2485-2490 ; and sible states for the previous time step's maneuver , is calcu 
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lated , this third term may be calculated by applying a set of finite plurality of alternative behavioral models , and the 
motion parameters associated to the selected maneuver to behavioral model with the lowest aggregated cost be 
the probability distribution over possible states for the selected . 
previous time step's maneuver so as to obtain a dynamics- By applying in this manner a behavioral model with a 
based predicted probability distribution for the new time 5 dynamic component for estimating a cost to the road user of 
step which is then compared with the apparent state taking each alternative maneuver , taking into account a state 
observed at the new time step . Further , the set of motion of at least another road user , a planning - based , risk - averse , 
parameters associated to the selected maneuver may be human - like behavior of the target road user may thus accu 
applied using at least a prediction step of an Extended rately be taken into consideration in the driving assistance 

10 method . Kalman Filter algorithm . In order to obtain a state distribution by propagating the The dynamics of the target road user can thus accurately 
be taken into consideration by the driving assistance method probability distribution of possible states for each previous 

time step's maneuver when calculating the new distribution in order to identify the maneuver being executed . of possible states for each alternative maneuver , the set of When the second term , that is , the probability of the 15 motion parameters associated to each alternative maneuver selected maneuver in the new time step from a probability may be applied using an Extended Kalman Filter algorithm , distribution of possible states for the previous time step's wherein the apparent state of the target road user at the new 
maneuver , is calculated , the behavioral model assigned to time step is used in an updating step . A more accurate 
the target road user may take the form of a cost function for reflection of the target road user's dynamics can thus be 
calculating a cost of a state of the target road user , with at 20 achieved . 
least one dynamic component for taking into account a state In the driving assistance method mentioned above , the 
of a road user other than the target road user , and the second behavioral model assigned to the target road user may be 
term may be calculated by : sampling a plurality of possible selected from among a finite plurality of behavioral models . 
states from the probability distribution among possible states The finite plurality of behavioral models may be learned 
of the target road user for the previous time step's maneuver ; 25 from observed road user behavior using a machine learning 
propagating each possible state sampled for the target road algorithm , and in particular an Inverse Reinforcement 
user , over a plurality of subsequent time steps , according to Learning algorithm . 
the set of motion parameters associated to each maneuver of In the driving assistance method described above , the 
the finite plurality of alternative maneuvers , to obtain an traffic scene may comprise a multi - lane road , and the finite 
alternative sequence of prospective states at the plurality of 30 plurality of alternative maneuvers comprises a lane - keeping 
subsequent time steps for each possible state sampled for and a lane - changing maneuver . 
each maneuver of the finite plurality of alternative maneu- The present disclosure also relates to a driving assistance 
vers and the target road user ; sampling at least one possible system for a road vehicle . According at least one embodi 
state and maneuver , from a state and a maneuver distribution ment , the driving assistance system may comprise a sensor 
of at least a road user , of the plurality of road users , other 35 set for observing a plurality of successive states for each 
than the target road user , for the previous time step ; propa- road user of a plurality of road users in a traffic scene 
gating the at least one possible state sampled for the at least including the road vehicle among the plurality of road users ; 
one road user other than the target road user , according to the a data storage device for a database comprising a finite 
set of motion parameters associated to the at least one plurality of predetermined alternative maneuvers for the 
maneuver sampled for the at least one road user other than 40 plurality of road users ; a data processor , connected to the 
the target road user , to obtain at least one sequence of sensor set and the data storage device , for assigning a 
prospective states at the plurality of subsequent time steps behavioral model to a target road user of the plurality of road 
for the at least one road user other than the target road user ; users ; calculating , for the target road user , at a new time step , 
estimating a cost of each prospective state of each alterna- based on the apparent states that have been observed , a new 
tive sequence of prospective states of the target road user , 45 maneuver distribution that is a probability distribution over 
according to the behavioral model assigned to the target road a finite plurality of alternative maneuvers , and a new state 
user , taking into account the at least one prospective state of distribution that is a probability distribution of possible 
the at least one road user other than the target road user at states for each maneuver of the plurality of alternative 
the same subsequent time step ; aggregating the costs of the maneuvers , wherein : a probability of a selected maneuver in 
prospective states of each alternative subsequent sequence 50 the new maneuver distribution is calculated as proportional 
of prospective states of the target road user to obtain an to the sum of the product , for each previous time step's 
aggregated cost for each alternative subsequent sequence of maneuver that is a possible maneuver of the target road user 
prospective states of the target road user ; averaging the in the previous time step , of a first term that is a previously 
aggregated costs of the alternative sequence of prospective calculated probability of the previous time step's maneuver , 
states of the target road user for each maneuver of the finite 55 a second term that is a probability of the selected maneuver 
plurality of alternative maneuvers to obtain an average in the new time step from a probability distribution of 
aggregated cost of each maneuver of the finite plurality of possible states for the previous time step's maneuver based 
alternative maneuvers ; and subtracting from one the ratio of on the behavioral model assigned to the road user , and a 
the average aggregated cost of the selected maneuver to the third term that is a probability of the apparent state observed 
sum of the average aggregated costs of the finite plurality of 60 at the new time step calculated for the selected maneuver 
alternative maneuvers . The at least one dynamic component and the probability distribution of possible states for the 
may in particular comprise a time - headway and / or a time- previous time step's maneuver based on a set of motion 
to - collision between the target road user and another road parameters associated to the selected maneuver ; and the new 
user of the plurality of road users . To assign a behavioral distribution of possible states for each possible maneuver is 
model to the target road user of the plurality of road users , 65 calculated from a merger , for example a sum , over all 
an aggregated cost of successive observed states of the target previous time step's maneuvers , of the product , for each 
road user may be calculated for each behavioral model of a previous time step's maneuver , of a state distribution 
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obtained by propagating the probability distribution of pos- features of any illustrative embodiment may be incorporated 
sible states for the previous time step's maneuver using the into an additional embodiment unless clearly stated to the 
set of motion parameters associated to each alternative contrary . 
maneuver and a remixing term proportional to a product of FIG . 1 illustrates schematically a road vehicle 1 with a 
the first , second and third terms ; determining a risk of 5 drivetrain 10 , brakes 30 , steering 20 and a driving assistance 
collision of the road vehicle with another road user of the system 100 according to an embodiment of the invention . 
plurality of road users , based on the new maneuver and state This driving assistance system 100 comprises a sensor set 
distributions of the target road user ; and an output device , 200 , a data storage device 102 , a data processor 103 , a 
connected to the data processor , for outputting a driver warning signal output device 104 and a driving command 
warning signal and / or executing an avoidance action if the 10 output device 105. The data processor 103 is connected to risk of collision exceeds a predetermined threshold . the sensor set 101 , to the data storage device 102 , and to the The present disclosure also relates to a road vehicle warning signal and driving command output devices 104 , comprising such a driving assistance system . 105. The driving command output device 105 is in turn The above summary of some example embodiments is not 
intended to describe each disclosed embodiment or every connected to the drivetrain 10 , brakes 30 and steering 20 of 

the road vehicle 1 . implementation of the invention . In particular , selected FIG . 2 is a functional scheme of the driving assistance features of any illustrative embodiment within this specifi system 100. As illustrated in this figure , the sensor set 200 cation may be incorporated into an additional embodiment 
unless clearly stated to the contrary . may comprise a variety of sensors , such as an inertial 

measurement unit 201 , a satellite navigation receiver 202 , a 
LIDAR 203 , a radar 204 , and a front camera 205. In the BRIEF DESCRIPTION OF THE DRAWINGS illustrated embodiment , the data processor 103 is adapted to 

The invention may be more completely understood in process the raw incoming data from the sensor set 200 to 
consideration of the following detailed description of an identify and track obstacles , as well as to identify and track 
embodiment in connection with the accompanying draw- 25 road lanes , and localize the road vehicle 1 on those road 

lanes and within a road network . This is illustrated in FIG . ings , in which 
FIG . 1 is a schematic view of a road vehicle equipped with 2 by a first functional processing layer 210 in the data 

a driving assistance system according to an embodiment of processor 103 , including an obstacle tracker module 211 , a 
lane tracker module 212 , a localization module 213 , an the present invention ; obstacle position and dynamics module 214 , a driver model FIG . 2 is a functional diagram of the driving assistance 30 assignment module 215. The driver model assignment mod system of FIG . 1 ; ule is in communication with a driver model database 101 . FIG . 3 is a schematic diagram illustrating how sampled The obstacle tracker module 211 processes the incoming states of a target road user and another road user are data from the inertial measurement unit 201 , satellite navi propagated over several subsequent time steps , using motion parameters associated to different sampled maneuvers , in a 35 gation receiver 202 , LIDAR 203 , and radar 204 in order to 

driving assistance method according to an embodiment of identify and track obstacles , in particular mobile obstacles 
such as other road users in a traffic scene within an area at the present invention ; and 

FIGS . 4A and 4B illustrate maneuver filtering results least longitudinally centered on the road vehicle 1. This can 
obtained for a rear cut - out lane change and a forward cut - in be performed , for instance , using any one of the alternative 
lane change . algorithms disclosed by Anna Petrovskaya , Mathias Perrol 

While the invention is amenable to various modifications laz , Luciano Oliveira , Luciano Spinello , Rudolph Triebel , 
Alexandros Makris , John - David Yoder , Christian Laugier , and alternative forms , specifics thereof have been shown by Urbano Nunes and Pierre Bessière in “ Awareness of Road way of example in the drawings and will be described in 

detail . It should be understood , however , that the intention is Scene Participants for Autonomous Driving ” in Chapter 
“ Fully Autonomous Driving ” of “ Handbook of Intelligent not to limit aspects of the invention to the particular embodi- 45 Vehicles ” , Vol . 2 , Springer - Verlag London Ltd , 2012 , edited ment described . On the contrary , the intention is to cover all by Azim Eskandarian . modifications , equivalents , and alternatives falling within On a multi - lane road within a road network , the lane the scope of the invention . tracker module 212 processes the incoming data from the 

DETAILED DESCRIPTION front camera 205 in order to identify and track the lanes of 
the multi - lane road , whereas the localization module 213 

For the following defined terms , these definitions shall be processes the same incoming data to approximate the global 
localization of the road vehicle 1 in the road network . applied , unless a different definition is given in the claims or 

elsewhere in this specification . The obstacle position and dynamics module 214 aggre 
As used in this specification and the appended claims , the 55 gates the output from the obstacle tracker module 211 and 

the lane tracker module 212 . singular forms “ a ” , “ an ” , and “ the ” include plural referents 
unless the content clearly dictates otherwise . As used in this The obstacle position and dynamics module 214 allocates 
specification and the appended claims , the term " or ” is an index i to each road user of a finite set V of N road users , 
generally employed in its sense including “ and / or ” unless including road vehicle 1 , within the area centered on road 
the content clearly dictates otherwise . vehicle 1 , and identifies its apparent current position , head 

The following detailed description should be read with ing and speed . Together , a tuple of apparent position , head 
reference to the drawings in which similar elements in ing and speed may represent an apparent state z of each 
different drawings are numbered the same . The detailed road user i . 
description and the drawings , which are not necessarily to A state and maneuver estimation framework may be 
scale , depict illustrative embodiments and are not intended 65 applied based on a combination of discrete model - based 
to limit the scope of the invention . The illustrative embodi- maneuver prediction and discrete - continuous Bayesian fil 
ments depicted are intended only as exemplary . Selected tering . More generally , the probabilistic model proposed can 
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be categorized as a Switching State Space Model ( SSSM ) , A Maximum Entropy IRL ( Inverse Reinforcement Learn 
in which a high - level layer reasons about the maneuvers ing ) algorithm may be used to learn the balance between the 
being performed by the interacting road users and deter- different terms of the cost function according to the behavior 
mines the evolution of the low - level dynamics . More spe- demonstrated . IRL algorithms aim to find a cost function 
cifically , this SSSM can have three layers of abstraction : corresponding to a behavioral model underlying a set of 

The highest level corresponds to a maneuver m , being observed apparent trajectories . 
performed by each road user i at each time step t . This is a The goal of an IRL algorithm is to find the weight vectors 
discrete hidden random variable . of the cost function for which the optimal policy obtained by 

The second level corresponds to the state , of each road solving the underlying planning problem would result in 
user i at each time step t . This state is not directly observable . trajectories sufficiently similar to the observed trajectories 

according to a given statistic . The third level corresponds to the apparent state Z ' of IRL algorithms have been considered as a possible viable 
each road user i as observed at ach time step t , which approach for learning cost functions describing driving 
represents a noisy measurement of its actual state x , .. behaviors . The cost function that results from the three - fold 

High - level reasoning can be performed through the method discussed above is linear on the features : 
fusion , by the state and maneuver estimation module 222 , of 
an anticipatory , interaction aware , model - based prediction Cost ( x ) = 0.78 ) 
by the planning - based prediction module 223 and probabi 
listic messages based on the observed apparent states , and 20 where ? = ( 0 , ... , 0x ) is the weight vector and f ( s ) = fil 
representing evidence about low - level dynamics as pro x ) , ... , 7 * ( x ) ) is the feature vector that parameterizes cessed by the dynamics - based maneuver matching module 
221 . 
A behavioral model database stored in the data storage In order for the model to capture the preferences and the 

device 101 in the present embodiment comprises a finite 25 risk - aversive behavior of a road user , the following features 
plurality of alternative dynamic behavioral models , each are considered : lane ; speed deviation ; and time - headway . 
comprising a set of weight vectors corresponding to a a ) Lane : aims to capture the preference of a road user to 
specific driving behavior . So , for instance , the database may drive on a particular lane . 
contain a safe driver model , corresponding to a road user b ) Speed deviation : encodes the penalty of deviating from 
with a preference for high time - headway and / or time - to- 30 the road user's desired speed , which is set to the maximum 
collision values ; an aggressive driver model , corresponding speed reached by the road user since the last change in the 

legal speed limit . to a road user with a high tolerance for low time - headway c ) Time - headway : defines the time elapsed between the and / or time - to - collision values and a preference for the back of a lead road user passing a point and the front of a left - most lane in a multi - lane road ; an exiting driver model , 35 following road user passing the same point . It indicates corresponding to a road user aiming to take an oncoming potentially dangerous situations . 
exit from the multi - lane road , and therefore giving prefer Two separate features associated to the time - headway 
ence to merging into the right - most lane over maintaining its may be considered : a time - headway to a closest road user in 
preferred speed ; and an incoming driver model , correspond- front in the current lane and the time - headway to a closest 
ing to a road user adapting its speed in order to merge into 40 trailing road user in the current lane . With continued refer 
the road lanes . ence to FIG . 2 , the data processor 103 is adapted to further 
A behavioral model assignment module 215 receives the process the output data from the first functional processing 

output from the ob cle position and dynamics module 214 layer 210 in order to predict a future traffic scene . This is 
and the localization module 213 and assigns a behavioral illustrated on FIG . 2 by an estimation layer 220 in the data 
model to a target road user in a current traffic scene . This 45 processor 103 , including a dynamics - based maneuver 
behavioral model is selected from a finite plurality of matching module 221 , a state and maneuver estimation 
behavioral models in a database stored in the data storage module 222 , and a planning - based prediction module 223 . 
device 101. The assignment is based on a prior trajectory of A maneuver dynamics database is stored in the data 
the target road user . This prior trajectory comprises the storage device 102 in the present embodiment and comprises 
successive apparent states of this road user perceived 50 a finite plurality of predetermined motion parameter sets , 
through the obstacle position and dynamics module 214 over each associated to an alternative maneuver . For example , the 
a plurality of time steps , eventually up to the current state . database may contain a lane change motion parameter set , 

In order to select the behavioral model which best corresponding to a road user changing lanes ; and a lane 
matches the prior trajectory of the road user from among the keeping motion parameter set , corresponding to a road user 
finite plurality of alternative behavioral models in the data- 55 staying in the same lane . However , it is envisioned that 
base 101 , an aggregated cost of successively observed several other possible maneuvers may be contained in the 
apparent states of that road user is calculated using a cost database . 
function associated to that behavioral model . Thereafter , the The dynamics - based maneuver matching module 221 
behavioral model with the lowest aggregated cost is receives the output from the obstacle position and dynamics 
selected . These behavioral models may be defined as 60 module 214 and applies the motion parameter sets stored in 
dynamic cost functions . the maneuver dynamics database 102 to produce a dynam 

To learn the feature - based cost function describing the ics - based maneuver estimation for a target road user . This 
preferences of a road user from driving demonstrations , a process may be performed using the predictive step of an 
three - fold method may be used . First , the dynamics of the Extended Kalman Filter algorithm and results in a new 
road user may be modeled as a Markov Decision Process 65 temporary state distribution at t + 1 , which can then be 
( MDP ) . Second , a number of relevant features using back- compared ( or “ matched ” ) with the apparent states observed 
ground knowledge may be selected . to predict the likelihood of each maneuver . 
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When determining a state for maneuver dynamics , it is ment of the given road user with the road , and is param 
assumed that road users move on a 2D environment and that etrized by Umar and w , which have been obtained experi 
the configuration of a road user i in a curved road frame is mentally 
given by the state vector x = [ x , y , W , V , m ] ' ER " , where x With reference to FIGS . 2 and 3 , the planning - based 
and y are the coordinates of target road user i , v is the target prediction module 223 also provided in the functional pro 
road user's absolute linear speed along its direction of travel cessing layer 210 uses the risk - aversive behavior model 
y and w is a yaw rate . All variables in the state vector except obtained with IRL to forecast the probability of each target 
for the yaw rate are observed . road user's next maneuver in response to the states and 

The values for the state vector are found using the maneuvers of the other road users . 
following differential equations , This behavior model balances the ( navigational and risk ) 

preferences of road users and enables a planning based 
X ( t ) = v ( t ) cos y ( t ) prediction of their anticipatory behavior . A target road user 

will perform a maneuver the current time step if , given his 
y ( t ) = v ( t ) sin ( t ) prediction for the behavior of the surrounding road users , 

15 this leads to a sequence of F future states that agree with its 
\ ( t ) = w ( t ) own preferences , which are encoded in its behavior model : 

10 

j ( t ) = didm 
> 1 : N 

= mi 
20 

F 

k = 0 E 1 : 1 : N 1 N 21 N F 

25 M ' k = 0 

30 

ing . 

P ( m +1 = M * , m :) o w ( t ) * = 0 
where y ( t ) is equal to the longitudinal acceleration of the ? ... ) 30 " f **** , M ) road user i , which is set using an Intelligent Driver Model 
( IDM ) . Hence , the acceleration of the target road user is File N mzi ) uplex N m / : 171 : ^ ) 
calculated at each time step as a function of the states of all Tf38k , MP ) 
the road users in the traffic scene . 
A maneuver - dependent predictive function g , integrates 

the set of differential equations above over an interval of the notation for the state may be overloaded to explicitly 
time At to obtain the next state of the target road user . The indicate the maneuver being used to propagate it between 
motion is assumed to be perturbed by Gaussian noise to time steps , and the notation m indicates the maneuvers for 
account for the maneuver specific modeling errors . all road users except the target road user i . The expectation 

In essence , the motion is dependent not only on the 
maneuver being performed by the target road user , but on the E is taken with respect to the posterior at the previous time 
states of the other road users . For example , a lane keeping step t , which factorizes across road users . 
maneuver involves adjusting the acceleration of the target The calculation starts from the probability distributions 

35 over states and maneuvers for all of the road users at a road user depending on the state of the preceding traffic . 
Although several different types of maneuvers are con previous time step In order to calculate the cost map for 

a target road user in future time steps , the future states of the templated , for illustrative purposes , the exemplary set of other road users are obtained by sampling a state and a maneuvers discussed will be lane changing and lane keep maneuver from the current probability distribution over 
1 ) Lane change ( LC ) : The target road user turns and 40 states and maneuvers for each other road user , and propa 

moves towards a neighboring lane . The dynamics of this gating forward the sampled state F time steps according to 
maneuver are perfectly specified with the differential equa the corresponding sampled maneuver . 

In contrast , a plurality of states and maneuvers are tions mentioned above and its process noise covariance 
matrix llc sampled from the state and maneuver distribution of the 

2 ) Lane keeping ( LK ) : The target road user remains on its 45 target road user at the previous time step t . Then , each one 
lane , aligned with the direction of the road , and driving at its of these samples states is propagated according to the 
desired speed unless it is slowed down by a leading road corresponding maneuver so as to obtain sequences of future 
user . However , this maneuver does not adopt the constant F states resulting from following each sampled maneuver 
yaw assumption of other approaches . from each sampled state of the target road user . Following 

50 that , the cost for each future state of each sequence of future A constant yaw assumption does not suffice to distinguish 
the LK and LC dynamics . Therefore , the lane keeping F states of the target road user propagated from a sampled 
motion model using the differential equation set mentioned state with a sampled maneuver is calculated and aggregated . 

Maneuvers for which the aggregated cost is very high in above and a corresponding process noise covariance matrix comparison to other alternative maneuvers will be assigned Qlk is parameterized with an artificial observation w ' for the LK 55 a low expected probability . Since the calculations use mul yaw rate : tiple samples from the distribution over maneuvers and 
states of the target road user , this procedure is repeated a 
sufficiently large number of times . To illustrate this , FIG . 3 merk yo ) shows two road users on a highway . A target road user is 

60 shown as driving behind another road user or second road 
user . The target road user has two alternative maneuvers . 

In essence , the artificial observation accounts for a cir- One is a lane keeping ( LK ) maneuver and the other is a lane 
cumstance when a target road user is performing a lane changing ( LC ) maneuver . The series of arrows indicating 
keeping maneuver and has a high yaw ( it is not aligned with that target road user performing an LK maneuver are the 
the road ) and a steering action is expected in order to 65 subsequent sequence of states that the target road user may 
re - align the target road user with the road . The magnitude of have . The series of arrows indicating that target road user 
the expected yaw rate will be proportional to the misalign- performing an LC maneuver are the subsequent sequence of 

W ' = = 
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states that the target road user may have . Finally , the series 
of arrows indicating that second road user is performing an 
LC maneuver are the subsequent sequence of states that the 
other road user may have . 

Applying this concept to the scenario shown in FIG . 3 , a 
lane change maneuver is propagated by setting a predefined where the term P ( Xlc , m , ' , Z 1 : 0 ) is a Gaussian distribution angular speed wzc until the yaw reaches a given threshold . with mean f ( c , m , ) and covariance F ( c , m , ) , and the term The lane keeping maneuver fixes the relative lateral position 
of the target road user and propagates it only longitudinally . P ( clm ' , Z 1. ) indicates the weight of the mixture compo 
When the maneuver being performed is a lane change and 10 nent . It must be noted that the Gaussian mixture distribution 

the vehicle reaches the centerline of the neighboring lane , may even have a single component ( C = 1 ) , and thus be a 
the maneuver is switched automatically to lane keeping . simple Gaussian distribution . 

The result is a risk - aversive predictive distribution over The recursion for the state probability distribution for 
maneuvers for the target road user . This prediction takes into each alternative maneuver at the next time step t + 1 can then 

be established as : account the interactions between road users and the prefer 
ences of the target road user . 

For example , a vehicle that is slowed down behind a truck 
on the highway may consider whether to keep driving P ( x + 2 | M - 1 , 312 + 1 ) = P ( x : +1 , m . , c , | m : -1 , Ži : + 1 ) 
behind the truck or to overtake . Using the features presented 20 mé , ct 

in above , if the driver keeps driving behind the truck he will Pvt.Co , mes + + 1 ) be penalized , or endure a cost , for deviating from his desired m , ct 
speed . In contrast , a lane change will mean a small penalty 
or cost for not driving in the right - most lane but will enable Pím , cz | m - 1 , ZL . + ) 
the driver to accelerate , minimizing thus the cost due to 25 
speed . The term P ( x + 1 ° C ,, me : +1 ' , Z 1 : 1 +1 ) can be obtained by ? The final component in the prediction and estimation 
layer 220 is a target state and maneuver estimation module propagating forward with the motion parameters associated 

with all alternative maneuvers mul ' each component of the 222. This module merges the information from maneuver model assignment module 221 with the PBM 223 and inputs 30 Gaussian mixture composing P ( x'lm " , 21 : 0 ) , in a predic ' ' z 
the information from the obstacle position and dynamics tion step , and conditioning on the newly observed apparent 
module 214 to output an approximate inference about the state ZH + 1 ' , in an update step . This leads to an exponential 
risk of collision with another road user . The merging of all increase in the number of Gaussian components that may 
of this information provides faster maneuver detections and however be collapsed back to C components per maneuver 
suppresses the number of false detections . in a subsequent merging step . The prediction and update 

Exact inference of the state and maneuver distribution PC steps may be performed using an Extended Kalman Filter 
( EKF ) algorithm . Hence , the non - linear predictive function X ' , m , ' IZ 1 : is intractable in both the standard SLDS and in ga may be associated to the motion parameters of the the aSLDS , scaling exponentially with time . The proposed maneuver m - 1 . approximate inference engine is similar to the filtering 40 To obtain the weights of the new mixture components , the approach presented by Barber in “ Expectation correction for following may be considered : 

smoothed inference in switching linear dynamical systems ” , 
with an extension to account for non - linear dynamics . Such P ( m ' , c , lm , + 1 ' , Z 1 : 2 + 1 ° ) ~ P ( Z : +1 ' \ CM7 + 1 Mer , an engine was already used by Agamennoni et al . in “ Esti z 1 .. ' ) P ( m - 1'lc , m , ' , 1.2 ) P ( clm , ' , 71 P ( m , ' | mation of multivehicle dynamics by considering contextual 21 
information ” , although with a non - Gaussian emission 
model . Here , such approximate inference may be performed The terms P ( clm , Ž ) and P ( m , | Z1 . ) are available 
individually per road user , which makes the algorithm from the previous step in the recursion ; the term P ( Z t + 1'1c , 
highly parallelizable . The intractable state and maneuver mt : t + 1 ' , Z 1 : 2 ) is the likelihood of observing the apparent state distribution P ( x4 , m , 1 Z 1.4 ' ) may be approximated with a Z +1 ' according to the Gaussian distribution , provided by the simpler distribution , such as a mixture of Gaussian prob dynamics - based maneuver matching module 221 by apply ability distributions , and a recursion be established to track ing the abovementioned prediction step of the Extended 
it over time . The state and maneuver distribution P ( x , m , | Kalman Filter algorithm to each Gaussian component c , for 
Z ) can be decomposed as : each previous time step's maneuver m using the motion 

parameters associated to each alternative maneuver m + 1 ' , 
PK ' , m , ' | 21 : ' ) = P ( 74 \ m , Z 1 : 0 ) P ( m1 | Z 1 : ) and the term P ( m + / Ic , m , ' , Ž ) , that is , the probability of 

each maneuver m , in the new time step from each Gauss 
where P ( m , 1 : 2 ) is the marginal probability of each 60 ian component c , for each previous time step’s maneuver 
maneuver m and P ( x , \ m , ' , Z 1 : ) is the state probability m ' , is provided by the planning - based prediction module 
distribution for each alternative maneuver m . A recursion 223. This is thus where the fusion between dynamics- and 
can be established for each of these terms . The state prob planning - based estimates takes place . 

Coming back to the equation for the state and maneuver ability distribution for each alternative maneuver P ( x , \ m ' , 65 distribution , the recursion for the marginal probability of 
21 : 1 ) may be approximated with a Gaussian mixture distri- each maneuver m 1 ' at the new time step t + 1 can be 
bution with C components , such as : established as : 
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lane change estimate produce a false positive . This does not 
P ( m +1 | Elut ) a PC , m , m +1 , 21 : ++ 1 ) occur in the final estimate according to the illustrated 

embodiment of the present invention , since the planning 
based prediction assigns a very low probability to a lane 

5 change maneuver around t = 3 , moment in which the target 
which can be calculated from the same components as road user drives right next to the other road user . 

Those skilled in the art will recognize that the present P ( m , ' , c , lm - 1 ' , Z 1 : 1 + 1 ) above . Finally , at each step of this 
inference procedure , the number of Gaussian mixture com invention may be manifested in a variety of forms other than 

the specific embodiment described and contemplated herein . ponents increases from \ m | C to Im / ? C , each with a weight 10 Accordingly , departure in form and detail may be made 
P ( m , ' , c , lm , + 1 ' , Ž 1 : + 1 ° ) . The Im / C components associated to without departing from the scope of the present invention as 
each maneuver mt 2x + 1 ' may however be collapsed back to C described in the appended claims . 
components using a single procedure , for instance by retain- The invention claimed is : 
ing the IC - 1 | components with the largest mixture weights 1. A driving assistance method for a road vehicle , the 
and merging the remaining to a single Gaussian distribution . 15 driving assistance method comprising the steps of : 

In essence , the target state and maneuver estimation observing , in a traffic scene including the road vehicle 
module 222 , by fusing the risk - aversive predictive maneuver among a plurality of road users , apparent states of 
distribution provided by the planning - based prediction mod each road user of the plurality of road users at 
ule 223 with the dynamics - based maneuver estimation pro successive time steps ; 
vided by the dynamics - based maneuver matching module 20 assigning a behavioral model to a target road user of the 
221 delays the detection of maneuvers that do not agree with plurality of road users ; 
the prediction based on the risk - averse behavior model calculating , for the target road user , at a new time step , 
assigned to the target road user , leading thus to a reduction based on the apparent states that have been observed , 
in the number of false maneuver detections , while acceler a new maneuver distribution that is a probability 
ating on the other hand a maneuver detection from observed 25 distribution over a finite plurality of alternative 
data if it matches the expected behavior of the road user . maneuvers , and a new state distribution that is a 

Turning to FIGS . 4A and 4B showing the results obtained probability distribution over possible states for each 
for two exemplary scenes , with only two alternative maneu alternative maneuver of the finite plurality of alter 
vers : lane keeping and lane changing . In the first scene , FIG . native maneuvers , wherein : 
5A , the target road user drives behind another road user until 30 a probability of a selected maneuver in the new maneuver 
the left lane is free of traffic and then performs a lane change distribution is calculated as proportional to a sum , over 
to overtake . The first row in shows the lateral position of the all previous time step's maneuvers , of a product , for 
target road user in road coordinates ( the center lane - marking each previous time step's maneuver that is a possible 
corresponds to y = 0 ) ; the second row shows the relative maneuver of the target road user in a previous time step , 
longitudinal position of the target road user with respect to 35 of a first term that is a previously calculated probability 
the other road user . As can be seen in the third row , a purely of the previous time step's maneuver , a second term 
planning - based prediction initially concedes a low probabil- that is a probability of the selected maneuver in the new 
ity to the lane changing maneuver due to the presence of time step from a probability distribution over possible 
traffic in the neighboring lane . Once the left lane becomes states for the previous time step's maneuver based on 
free , the probability for a lane change begins to grow as the 40 the behavioral model assigned to the target road user , 
distance with the preceding traffic increases . The increase in and a third term that is a probability of the apparent 
the probability of a lane change maneuver is due to the cost state observed at the new time step calculated for the 
penalty induced by driving behind the other road user at a selected maneuver and the probability distribution over 
speed lower than the target road user's desired speed , which possible states for the previous time step's maneuver 
had been set earlier during the target road user's approach . 45 based on a set of motion parameters associated to the 
A purely dynamics - based maneuver filtering estimate is selected maneuver ; and 

shown in the fourth row . The lane change maneuver is the new distribution over possible states for each alter 
detected only 0:51 s after it begins and roughly 1 : 5 s before native maneuver is calculated as the sum , over all 
the target crosses the lane marking . This is 0 : 2 s faster than previous time step's maneuvers , of the product , for 
an IMM - based estimate , which is shown in the last row . A 50 each previous time step's maneuver , of at least a state 
maneuver estimate according to an embodiment of the distribution obtained by propagating the probability 
invention , merging thus the planning - based and dynamics distribution of possible states for the previous time 
based approaches , is shown in the fifth row . As it can be step's maneuver using the motion parameters asso 
seen , the effect of the planning - based prediction in the lane ciated to each alternative maneuver and a fourth term 
changing maneuver estimate is a slightly quicker detection 55 proportional to the product of the first , second and 
both of the beginning and of the end of the maneuver . third terms ; 
FIG . 5B shows the filtering results for a different scene , in determining a risk of collision of the road vehicle with 

which the target road user overtakes the other road user and another road user of the plurality of road users , based 
then merges back to the right lane . It can be seen in the figure on the new maneuver and state distributions of the 
that integrating the planning - based prediction into the 60 target road user ; and 
dynamics - based filtering framework results in a quicker executing an avoidance action if the risk of collision 
detection of the start and the end of the lane changing exceeds a predetermined threshold . 
maneuver . An additional effect is shown in this figure . The 2. The driving assistance method of claim 1 , wherein the 
slight oscillations in the lateral position typical of a human third term is calculated by applying a set of motion param 
driven vehicle following a highway lane can be observed at 65 eters associated to the selected maneuver to the probability 
approximately t = 3 : 5 s . As a consequence of this lateral distribution over possible states for the previous time step's 
movement , both the purely dynamics - based and the IMM maneuver so as to obtain a dynamics - based predicted prob 
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ability distribution for the new time step which is then behavioral model of a finite plurality of alternative behav 
compared with the apparent state observed at the new time ioral models , and the behavioral model with the lowest 
step . aggregated cost is selected . 

3. The driving assistance method of claim 2 , wherein the 7. The driving assistance method of claim 1 , wherein , to 
set of motion parameters associated to the selected maneu 5 obtain a state distribution by propagating the probability 
ver is applied using at least a prediction step of an Extended distribution of possible states for each previous time step's 
Kalman Filter algorithm . maneuver when calculating the new distribution of possible 

4. The driving assistance method of claim 1 , wherein the states for each possible maneuver , the set of motion param 
behavioral model assigned to the target road user takes the eters associated to each possible maneuver is applied using 
form of a cost function for calculating a cost of a state of the 10 an Extended Kalman Filter algorithm , wherein the apparent state of the target road user at the new time step is used in target road user , with at least one dynamic component for an updating step . taking into account a state of a road user other than the target 8. The driving assistance method according to claim 1 , road user , and the second term is calculated by : wherein the behavioral model assigned to the target road sampling a plurality of possible states from the probability 15 user is selected from among a finite plurality of behavioral 

distribution among possible states of the target road models . 
user for the previous time step's maneuver ; 9. The driving assistance method of claim 8 , wherein the propagating each possible state sampled for the target finite plurality of behavioral models is learned from 
road user , over a plurality of subsequent time steps , observed road user behavior using a machine learning 
according to the set of motion parameters associated to 20 algorithm . 
each maneuver of the finite plurality of alternative 10. The driving assistance method of claim 9 , wherein the 
maneuvers , to obtain an alternative sequence of pro- traffic scene comprises a multi - lane road , and the finite 
spective states at the plurality of subsequent time steps plurality of alternative maneuvers comprises a lane - keeping 
for each possible state sampled for each maneuver of and a lane - changing maneuver . 
the finite plurality of alternative maneuvers and the 25 11. A driving assistance system for a road vehicle , the 
target road user ; driving assistance system comprising : 

sampling at least one possible state and maneuver , from a a sensor set configured to observe a plurality of successive 
state and a maneuver distribution of at least a road user , states for each road user of a plurality of road users in 
of the plurality of road users , other than the target road a traffic scene including the road vehicle among the 
user , for the previous time step ; plurality of road users ; 

propagating the at least one possible state sampled for the a data storage device for a database comprising a finite 
at least one road user other than the target road user , plurality of predetermined alternative maneuvers for 
according et of motion parameters associated the plurality of road users ; 
the at least one maneuver sampled for the at least one a data processor , connected to the sensor set and the data 
road user other than the target road user , to obtain at 35 storage device , configured to assign a behavioral model 
least one sequence of prospective states at the plurality to a target road user of the plurality of road users and 
of subsequent time steps for the at least one road user calculate , for the target road user , at a new time step , 
other than the target road user ; based on the apparent states that have been observed , a 

estimating a cost of each prospective state of each alter- new maneuver distribution that is a probability distri 
native sequence of prospective states of the target road 40 bution over a finite plurality of alternative maneuvers , 
user , according to the behavioral model assigned to the and a new state distribution that is a probability distri 
target road user , taking into account the at least one bution of possible states for each maneuver of the 
prospective state of the at least one road user other than plurality of alternative maneuvers , wherein : 
the target road user at the same subsequent time step ; a probability of a selected maneuver in the new maneuver 

aggregating the costs of the prospective states of each 45 distribution is calculated as proportional to a sum , over 
alternative subsequent sequence of prospective states all previous time step's maneuvers , of a product , for 
of the target road user to obtain an aggregated cost for each previous time step's maneuver that is a possible 
each alternative subsequent sequence of prospective maneuver of the target road user in the previous time 
states of the target road user ; step , of a first term that is a previously calculated 

averaging the aggregated costs of the alternative sequence 50 probability of the previous time step's maneuver , a 
of prospective states of the target road user for each second term that is a probability of the selected maneu 
maneuver of the finite plurality of alternative maneu ver in the new time step from a probability distribution 
vers to obtain an average aggregated cost of each of possible states for the previous time step's maneuver 
maneuver of the finite plurality of alternative maneu based on the behavioral model assigned to the target 

road user , and a third term that is a probability of the 
subtracting from one the ratio of the average aggregated apparent state observed at the new time step calculated 

cost of the selected maneuver to the sum of the average for the selected maneuver and the probability distribu 
aggregated costs of the finite plurality of alternative tion of possible states for the previous time step's 

maneuver based on a set of motion parameters associ 
5. The driving assistance method of claim 4 , wherein the 60 ated to the selected maneuver ; and 

at least one dynamic component comprises one or more of the new distribution of possible states for each possible 
a time - headway and a time - to - collision between the target maneuver is calculated as the sum , over all previous 
road user and another road user of the plurality of road users . time step's maneuvers , of the product , for each 

6. The driving assistance method of claim 4 , wherein , to previous time step's maneuver , of a state distribution 
assign a behavioral model to the target road user of the 65 obtained by propagating the probability distribution 
plurality of road users , an aggregated cost of successive of possible states for the previous time step's maneu 
observed states of the target road user is calculated for each ver using the motion parameters associated to each 
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alternative maneuver and a fourth term proportional 
to the product of the first , second and third terms ; 

determining a risk of collision of the road vehicle with 
another road user of the plurality of road users , based 
on the new maneuver and state distributions of the 5 
target road user ; and 

executing an avoidance action if the risk of collision 
exceeds a predetermined threshold . 

12. A road vehicle comprising a driving assistance system 
according to claim 11 . 

13. The driving assistance system for a road vehicle 
according to claim 11 , wherein the sensor set comprises one 
or more of an inertial measurement unit , a satellite naviga 
tion receiver , a LIDAR , a radar , and a front camera . 

14. The driving assistance system for a road vehicle 15 
according to claim 13 , wherein the data processor comprises 
one or more of an obstacle tracker module , a lane tracker 
module , a localization module , an obstacle position and 
dynamics module , and a driver model assignment module . 

15. The driving assistance system for a road vehicle 20 
according to claim 14 , wherein the data storage device 
comprises one or more of a driver model database and a 
maneuver dynamics database . 

a 


