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A B S T R A C T   

Neurosurgeons receive extensive technical training, which equips them with the knowledge and skills to 
specialise in various fields and manage the massive amounts of information and decision-making required 
throughout the various stages of neurosurgery, including preoperative, intraoperative, and postoperative care 
and recovery. Over the past few years, artificial intelligence (AI) has become more useful in neurosurgery. AI has 
the potential to improve patient outcomes by augmenting the capabilities of neurosurgeons and ultimately 
improving diagnostic and prognostic outcomes as well as decision-making during surgical procedures. By 
incorporating AI into both interventional and non-interventional therapies, neurosurgeons may provide the best 
care for their patients. AI, machine learning (ML), and deep learning (DL) have made significant progress in the 
field of neurosurgery. These cutting-edge methods have enhanced patient outcomes, reduced complications, and 
improved surgical planning.  
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1. Introduction 

Neurosurgery is a demanding profession with extensive training, 
many years of tuition, and a combination of highly developed cognitive, 
decision-making, and surgical abilities. Neurosurgeons commonly work 
alongside neuroanesthetists, neuroradiologists, neurologists, neurolog-
ical specialist nurses, and even medical students in multidisciplinary 
teams. The necessary skill set comprises empathy, the capacity to work 
long shifts, and adequate psychomotor skills. As with any form of 
medicine, neurosurgical interventions are not guaranteed to result in 
positive outcomes. For example, technical faults account for one-fourth 
of all errors in neurosurgery which may lead to worse patient outcomes.1 

However, prudent integration and utilisation of artificial intelligence 
(AI) can grant significant opportunities to address these mistakes more 
rapidly to the benefit of the patient. 

AI has rapidly advanced both inside and outside of the medical sector 
over the past decade, and it has certainly transformed most neurosur-
gical subspecialties (Fig. 1). Machine learning (ML), a subfield of AI, is 
concerned with using data to create self-teaching and self-improving 
algorithms. Deep learning (DL), a subset of ML, uses artificial neural 
networks (ANNs) to automatically extract, analyse, and grasp pertinent 
information from raw data. Surgery, such as the further complex disci-
pline of neurosurgery, carries a considerable risk of morbidity and 
mortality. To revolutionise neurosurgery, however, combining AI, ML, 
and DL has the potential to improve clinical treatment diagnostic and 
prognostic outcomes, assist neurosurgeons in making decisions during 
surgical interventions, and ultimately improve patient outcomes. 

Further, augmented prognostic ability may not necessarily precipi-
tate modification in clinical and neurosurgical care, or even increased 
patient survival. Although, by giving recommendations to foster 
consensus among neurosurgeons on surgical approaches, AI may lower 
variability in patient outcomes while also improving prognostication 
and cutting expenditure. This contributes to the global improvement of 
safe, equitable, and high-quality neurosurgical care. Current conven-
tional methods may not effectively address some challenging preoper-
ative and postoperative neurosurgical issues, which highlights the 
potential benefits of AI integration to improve patient outcomes. The 
primary preoperative concerns include precise prediction of surgical 
risks and benefits, strategic planning of surgical approaches, and iden-
tification of suitable surgical candidates.2,3 In contrast, the main post-
operative issues encompass averting and managing common 

complications such as infection, bleeding, stroke, pain, early mobi-
lisation and rehabilitation, and monitoring neurological status and 
recovery.3–5 The literature suggests that AI can contribute to various 
aspects of neurosurgery, including diagnosis, clinical decision-making, 
surgical procedures, prognosis, data collection, education and 
research.2,3 AI utilisation may augment the accuracy, efficiency, safety, 
and quality of care provided to neurosurgical patients, leading to 
improved outcomes.2,3 

However, as the use of these technologies in neurosurgery increases, 
new challenges arise, including data quality, algorithm bias, regulatory 
issues, and ethical considerations. To better understand the potential 
benefits and limitations of AI, ML, and DL in neurosurgery, this litera-
ture review ought to examine recent outcomes and challenges, identify 
areas of progress and limitations, and discuss ethical and regulatory 
considerations. This comprehensive review aims to guide future 
research in this rapidly evolving field. 

2. Application and outcomes of AI, ML and DL in various 
neurosurgery specialties 

2.1. Spinal neurosurgery 

2.1.1. Accurate detection of spinal cord compressions and lesions 
DL models have been shown to accurately detect compressions and 

lesions in the spinal cord using radiological images. Merali et al (2021) 
conducted a large prospective study employing cervical spine magnetic 
resonance imaging (MRI) data and identified spinal cord compressions 
with a DL model with an accuracy of 94%, 88% sensitivity, 89% speci-
ficity and 82% precision and recall in the classification task (Table 1).6 

Halliman et al (2022) also used DL models to classify low-grade or 
high-grade metastatic epidural spinal cord compression (MESCC) using 
the Bilsky grading scale.7 The output of the DL models has shown 
excellent results with a 92%–98% agreement by the radiologists for the 
Bilsky classification.7 Thus, a dependable DL model with a high degree 
of specificity was recognized, with a value of 93.6 being identified 
(Table 1).7 Hence, this shows the significant importance of DL models in 
diagnosing, classifying spinal cord diseases, identifying the proper team 
for referrals and planning a proper management to achieve better out-
comes for the patients (Fig. 1). 

Fig. 1. Artificial intelligence (AI) application in various neurosurgical fields (created with Biorender.com).  
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2.1.2. Precise and sensitive vertebral fracture diagnosis 
DL models can be utilised to produce precise and sensitive vertebral 

fracture diagnoses on simple spinal radiography (Fig. 2).29 In a retro-
spective examination, the computed tomography (CT) scans of 111 in-
dividuals with thoracolumbar spinal injuries were merged into a DL 
model, which was able to classify non-injured and suspected injury with 
an accuracy of 86.8% (Table 1).8 

Table 1 
Evaluation metrics and clinical outcomes of artificial intelligence models in 
neurosurgery diagnosis and treatment.  

Author, Year, 
Country 

Specialty AI Model Types 
Used In the 
Study 

Evaluation Metrics 
and Clinical Outcomes 

Merali et al, 
2021, 
Canada6 

Spinal 
Neurosurgery 

DL (CNN) Cervical Spinal Cord 
Compression 
Detection: 
Accuracy: 94% 
Sensitivity: 88% 
Specificity: 89% 

Hallinan et al, 
2022, 
Singapore7 

Spinal 
Neurosurgery 

DL (CNN) Spinal Metastases 
Detection: 
Internal test sets: 
Sensitivity: 97.6% 
Specificity: 93.6% 
External test sets: 
Sensitivity: 89.9% 
Specificity: 98.1% 

Doerr et al, 
2022, United 
States8 

Spinal 
Neurosurgery 

DL (CNN) Injury Classification 
Accuracy: 86.8% 

Kim et al, 
2020, 
Republic of 
South Korea9 

Spinal 
Neurosurgery 

ML (Random 
forest, XGBoost, 
Bayesian 
generalized 
linear model, 
decision-making 
tree model, k- 
cluster analysis, 
logistic 
regression 
analysis and 
neural network 
analysis) 

Operation time 
Accuracy: 97.5% 
Reoperation 
occurrence Accuracy: 
95.2% 

Hopkins et al, 
2020, United 
States10 

Spinal 
Neurosurgery 

ML (DNN) Prediction of 
Postoperative SSI 
Accuracy: 78.7% 

De la Garza 
Ramos et al, 
2022, United 
States11 

Spinal 
Neurosurgery 

ML (ANN) Prediction of 
Perioperative Blood 
Transfusion: 
Accuracy: 77% 
Sensitivity: 80% 

Azimi et al, 
2014, Iran12 

Spinal 
Neurosurgery 

ML (ANN) Surgical satisfaction 
Accuracy: 96.9% 

Elahian et al, 
2017, United 
States13 

Epilepsy and 
Functional 
Neurosurgery 

ML (Logistic 
regression) 

Abnormal SOZ 
identification 
Accuracy: 83% 

Roy et al, 
2020, United 
Kingdom14 

Epilepsy and 
Functional 
Neurosurgery 

ML (k-NN, SGD, 
XGBoost, and 
CNN) 

Seizure-wise cross 
validation Accuracy: 
90.1% 
Patient-wise cross 
validation Accuracy: 
56.1% 

Saputro et al, 
2019, 
Indonesia15 

Epilepsy and 
Functional 
Neurosurgery 

ML (SVM) Classification of 
Seizure Type: 
Accuracy: 91.4% 
Sensitivity: 90.25% 
Specificity: 97.83% 

Ahmedt et al, 
2018, 
Australia16 

Epilepsy and 
Functional 
Neurosurgery 

DL (CNN, Long 
short-term 
memory) 

Multi-fold cross- 
validation Accuracy: 
92.10% 
Leave-one-subject-out 
cross-validation 
Accuracy: 58.49% 

Varatharajah 
et al, 2022, 
United 
States17 

Epilepsy and 
Functional 
Neurosurgery 

ML (Naïve Bayes 
classifier) 

Prediction of Seizure 
Occurrence 1 year 
Post-op: 
Dataset 1 Accuracy: 
78% 
Dataset 2 Accuracy: 
76% 

Kassahun et al, 
2014, 
Germany18 

Epilepsy and 
Functional 
Neurosurgery 

ML (Genetic 
-based data 
mining, 

Epilepsy Classification 
Accuracy: 60%  

Table 1 (continued ) 

Author, Year, 
Country 

Specialty AI Model Types 
Used In the 
Study 

Evaluation Metrics 
and Clinical Outcomes 

ontology-based 
classification) 

Shi Z et al, 
2020, 
China19 

Endovascular and 
Cerebrovascular 
Neurosurgery 

ML (CNN) Aneurysm detection/ 
Lesion level: 
Accuracy: 88.6% 
Sensitivity: 94.4% 
Specificity: 83.9% 

Faron et al, 
2020, 
Germany20 

Endovascular and 
Cerebrovascular 
Neurosurgery 

ML (CNN) 1st diagnosis 
sensitivity: 95% 
2nd diagnosis 
sensitivity: 94% 

Park et al, 
2019, United 
States21 

Endovascular and 
Cerebrovascular 
Neurosurgery 

DL (DNN) Threshold of 
Aneurysm Size for 
Intraprocedural 
Rupture 
Accuracy: 68.7% 
Sensitivity:60% 
Specificity: 79.1% 

Nishi et al, 
2021, 
Japan22 

Endovascular and 
Cerebrovascular 
Neurosurgery 

DL (CNN) Subarachnoid 
Hemorrhage 
Detection: 
Patient based analysis: 
sensitivity: 99% 
Specificity: 92% 
Slice based analysis: 
Sensitivity: 89% 
Specificity: 98% 

Cepeda et al, 
2021, 
Spain23 

Neurosurgical 
Oncology 

DL (Inception 
V3, Cox 
regression) 

B-mode Accuracy: 
72–89% 
Elastography 
Accuracy: 79–95% 

Tandel et al, 
2020, 
India24 

Neurosurgical 
Oncology 

DL (CNN) and 
ML (CNN) 

Classification between 
normal and abnormal 
(tumorous) 
Accuracy: 
DL: 94.7% 
ML: 73.1% 

Patil et al, 
2023, 
India25 

Neurosurgical 
Oncology 

DL (Ensemble 
deep-CNN) 

Classification of early 
stage brain tumor 
Accuracy: 97.77% 

Alnowami et 
al, 2022, 
Saudi 
Arabia26 

Neurosurgical 
Oncology 

DL (DenseNet) Ten-fold cross- 
validation; 
Accuracy: 96.52% 
Sensitivity: 98.5% 
Specificity: 82.1% 

Khan et al, 
2021, United 
Kingdom27 

Neurosurgical 
Oncology 

ML (DNN) Surgical phase 
accuracy: 91% 
Surgical Steps 
accuracy: 76% 

Park, Y.W. et 
al, 2021, 
South 
Korea28 

Neurosurgical 
Oncology 

ML (Radiomics) Differentiating GBM 
recurrence from 
Radiation Necrosis RN 
post-concurrent 
chemoradiotherapy: 
Accuracy: 78% 
Sensitivity: 66.7% 
Specificity: 87% 

AI, artificial intelligence; DL, deep learning; ML, machine learning; CNN, con-
volutional neural network; XG, extreme gradient; DNN, deep neural network; 
ANN, artificial neural network; SGD, stochastic gradient descent; SVM, support 
vector machines; DenseNet, densely connected convolutional network; SSI, 
surgical site infection; SOZ, seizure onset zone; GBM, glioblastoma multiformes. 
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2.1.3. Predicting surgical outcomes in spinal cord procedures 
DL may be applied to evaluate how a spinal procedure would sub-

sequently impact a spinal condition or associated damage. Liu and Kong 
(2021) used the Convolutional Neural Network (CNN) DL approach to 
analyse data from 27 patients who had undergone posterior cervical 
vertebral canal decompression angioplasty.30 An ML model was also 
developed to predict the outcomes of lumbar spinal stenosis decom-
pression surgery for patients (Fig. 2). The accuracy of the model was 
highest when it accurately predicted changes in mental state.31 

2.1.4. Clinical decision-making and clinical outcome prediction in spinal 
surgery 

ML models can support clinical decision-making and clinical 
outcome prediction in spinal surgery. In a study conducted in Korea, a 
prognostic prediction was produced for 111 individuals who had spinal 
stenosis (Table 1).9 An ML model also had a 92.56% positive predictive 
value for post-operative surgical site infections following posterior spi-
nal infusions (Table 1).10 Another ML model that was trained to predict 
the frequency of blood transfusions post-adult spinal deformity surgery 
produced encouraging results (Table 1).11 Azimi et al (2014) compared 
the accuracy of an ANN model to a traditional predictive model that 
used logistic regression and showed that the accuracy rate of the ANN 
model was 96.9%, whereas the logistic regression model’s accuracy rate 
for patients was 80% (Table 1).12 

2.2. Epilepsy and functional neurosurgery 

2.2.1. ML-based seizure categorization 
ML methods have been developed to categorise seizure types with 

high accuracy using scalp electroencephalography (EEG) recordings 
labelled with seizure categories (Table 1).14–16,18,32 These models have 
utilised various techniques including CNNs, support vector machine 
(SVM), and k-nearest neighbour (k-NN) (Fig. 1).14–16,18,32 Studies have 
shown F1 scores of 97.4% and 97.2% for accurately identifying seizure 
types in two datasets with 8 and 4 distinct seizure classes, respectively.32 

2.2.2. ML-based epilepsy subtype classification 
ML models have been developed to classify epilepsy subtypes based 

on patient symptom data that is text-based (Fig. 2). Kassahun et al 
(2014) proposed ontology-based and genetics-based algorithms to 
classify temporal lobe epilepsy (TLE) and extra-temporal lobe epilepsy 
with a 60% accuracy rating (Table 1).18 Based on clinical data, these 
algorithms may be able to identify illness characteristics and assist in 
determining the optimal course of treatment for patients. 

2.2.3. ML-based seizure onset zone localization 
Recent research has elucidated that ML-based technology may be 

used to locate the seizure onset zone (SOZ) in patients with epilepsy 
(Fig. 2). Elahian et al (2017) developed a model using patient intra-
cranial electroencephalography (iEEG) recordings to categorise each 
electrode position into SOZ and non-SOZ (Table 1).13 They trained the 
algorithm using signal characteristics found at the corresponding elec-
trodes of the two classes, specifically the phase locking values (PLVs) 
between the phase of lower frequency rhythms and the amplitude of 
high gamma activity. The model has shown to accurately predict SOZ 
and non-SOZ electrodes in patients with seizure-free outcomes. Also, 
they have demonstrated a link between surgical outcomes and the per-
centage of non-resected SOZ electrodes. 

2.2.4. ML-based EEG analysis for epilepsy diagnosis 
ML-based systems have been developed to quantitatively evaluate 

EEG data for epilepsy diagnosis. Varatharajah (2022) developed an ML- 
based system to examine the EEG data of 41 patients with TLE pre- 
operatively.17 The study observed changes in spectral power and 
coherence parameters of a typical EEG between TLE patients who ach-
ieved symptom freedom one-year post-anterior temporal lobectomy 
(ATL) and those who continued to experience post-surgical seizures. 
Patients who had postoperative seizures exhibited a reduction in spec-
tral power and coherence in the 10–25 Hz frequency region. The authors 
postulate that this variation is due to networks that generate temporal 
lobe seizures either inside or outside of the ATL borders. 

2.3. Endovascular and Cerebrovascular Neurosurgery 

2.3.1. Overview 
Endovascular and Cerebrovascular Neurosurgery refer to surgical 

procedures performed in the brain and blood vessels of the central 
nervous system (CNS). The application of AI has brought a revolutionary 
change in the diagnosis and treatment of life-threatening conditions 
such as stroke, intracerebral haemorrhage (ICH), burst aneurysms, and 
large vessel occlusion (LVO) (Fig. 1). 

2.3.2. Diagnosis and classification of neurological disorders 
One of the significant advantages of AI is its ability to analyse vast 

datasets quickly and accurately. AI can assist in diagnosing complex 
neurological disorders such as LVO, ICH, and cerebral aneurysms using 
ML and DL algorithms. For instance, Morey et al (2021) used the Viz 
LVO algorithm in a real-world experiment on ischemic stroke patients.33 

The study showed that the algorithm led to quicker reperfusion, quicker 

Fig. 2. Algorithms/Models of Artificial Intelligence for Neurosurgery Diagnostics and Treatment Approach. AI, artificial intelligence; DL, deep learning; ML, machine 
learning; CNN, convolutional neural network; ANN, artificial neural network; CV, computer vision; DSA, digital signature algorithm (Created With Biorender.com). 

W.A. Awuah et al.                                                                                                                                                                                                                              

http://Biorender.com


World Neurosurgery: X 23 (2024) 100301

5

door-to-neurovascular team notification times, and improved clinical 
results.33 Similarly, DL algorithms were found to be more efficient than 
radiologists in detecting intracranial aneurysms (IAs) (Table 1).20 These 
findings suggest that AI can improve the accuracy and speed of diag-
nosis, which is essential in time-sensitive medical conditions such as 
stroke. 

2.3.3. Surgical planning and decision making 
AI can also aid in surgical planning and decision making, especially 

in complicated procedures such as endovascular treatment. Studies have 
shown that ML risk prediction is more accurate in predicting aneurysm 
rupture than traditional methods.34 However, there is minimal research 
on using ML to predict periprocedural complications related to endo-
vascular treatment (Fig. 2). Nevertheless, recent studies have shown the 
potential of ML in predicting neurological deficits post-microsurgery.35 

Moreover, AI-powered semi-autonomous systems, such as Aneurysm 
Occlusion Assistant (AnOA), have been developed to anticipate surgical 
outcomes immediately after the device installation and enable thera-
peutic adjustment (Table 1).21 These advancements in AI can signifi-
cantly improve surgical planning and decision-making in complex cases. 

2.3.4. Distal aneurysms and intraoperative imaging 
Distal aneurysms pose a significant challenge in endovascular 

treatment due to their small size, anatomical variations, and high risk of 
postoperative complications. AI can assist in accurately identifying 
distal aneurysms and predicting their size (Fig. 2). For example, Shi et al 
(2020) developed a 3-dimensional (3D) CNN segmentation model, 
DAResUNET, which demonstrated 100% accuracy for aneurysms larger 
than 5 mm and a sensitivity of 98.6% for aneurysms ≤3 mm (Table 1).19 

Furthermore, intraoperative imaging is crucial in identifying and 
treating complications during surgery. Studies have shown that DL has 
an excellent success rate in identifying aneurysms and predicting their 
size using CT angiograms and noncontrast CT (Table 1).36,22 Intra-
operative angiography using indocyanine green video angiography (ICG 
VA) has been found to be effective in identifying the remains of an an-
eurysm’s postoperative neck and improving the success rate of extra-
cranial and intracranial (EC-IC) bypass surgery.37 

2.4. Neurosurgical oncology 

2.4.1. Introduction to AI in neurosurgical oncology 
In recent years, the use of AI has significantly impacted the field of 

neurosurgical oncology. AI algorithms, ANNs, have been applied to 
patient data to predict one-year survival rates in patients with brain 
metastases.38 These models have demonstrated better performance than 
traditional prediction techniques, indicating their potential to improve 
treatment outcomes. AI has also made it possible to evaluate each case 
individually and strike a balance between the benefits of resection and 
the danger of neurological impairment (Fig. 1).39 Furthermore, AI has 
the potential to aid in complex surgical decision-making processes and 
make image analysis more rapid.36,40 

2.4.2. AI-assisted surgical planning and decision-making 
The use of AI in surgical planning and decision-making has the po-

tential to greatly improve outcomes and reduce neurological sequelae 
from surgery. Dundar et al (2022) suggested using a surgical route 
planning algorithm based on heuristics in combination with Q-learning, 
a form of reinforcement learning-based AI, to determine the optimal 
points of entry into the skull and the most advantageous routes for 
minimally invasive tumour removal.41 Additionally, computer vision 
(CV) has been used to aid in challenging procedures such as trans-
sphenoidal pituitary resection, removal of malignant tumours, and 
skull-base surgeries. A cutting-edge ML model was developed to accu-
rately discriminate the numerous steps and techniques of the endoscopic 
transsphenoidal approach for pituitary adenoma excision (Fig. 2), and 
was able to accurately identify the different steps and surgical phases 

with high accuracy even with high variability in the training data 
(Table 1).27 

2.4.3. AI in glioma disease prediction and grading 
AI has been extensively studied for its potential to improve glioma 

disease prediction and grading. Marcus et al (2020) found that an ANN 
model outperformed the conventional grading system in forecasting the 
surgical resectability of glioblastoma multiformes (GBM).42 Similarly, 
Moradmand et al (2021) found that a DL-based survival model out-
performed other models in predicting surgical outcomes.43 Logistic 
regression classifiers have also been utilised to forecast glioma grade, 
achieving high accuracy rates, sensitivity rates, and negative predictive 
values.44 Furthermore, ANN trained on 2-dimensional (2D) T1-weighted 
MRI images have been used to accurately separate low-grade gliomas 
(LGGs) from high-grade gliomas (HGGs).45 The SVM has also been uti-
lised to forecast glioma grading by relying on resting-state functional 
MRI images, achieving impressive accuracy rates46 

2.4.4. AI improving neurosurgical oncology diagnoses and tumour 
classification 

In recent studies, AI has highlighted great potential in improving the 
diagnosis and classification of brain tumours. Cepeda et al conducted a 
retrospective study on intraoperative ultrasound with DL models, 
showing an accuracy of 79–95% for elastography and 72–89% (Table 1) 
for B-mode in differentiating glioblastomas and solitary brain metasta-
ses (Fig. 2).23 Tandel and Patil conducted studies on 
transfer-learning-based AI systems and CNN respectively, achieving 
significant results in multi-class brain tumour grading with accuracy 
rates of 94.7% and 97.77% respectively (Table 1).24,25 Alnowami et al 
also showed promising results in brain tumour classification using MRI, 
achieving an accuracy rate of 96.25%, sensitivity rate of 98.5% and 
specificity rate of 82.1% (Table 1).26 These studies demonstrate that AI 
can potentially improve patient outcomes by providing quick diagnosis 
and accurate tumour classification in neurosurgical oncology. 

Morell et al, also utilised Quicktome, an ML-based software to assess 
the effects of intra-axial brain tumours on large-scale brain networks.47 

Their study was able to gain a better knowledge of how various brain 
regions are interconnected and interact by utilising the Quicktome 
platform. Also, the platform allowed them to spot previously undis-
covered patterns or connections between various brain regions.47 

2.4.5. AI utilisation in oncological radio-neurosurgery 
Radiosurgery uses high-energy beams to target tumours in the brain 

and nervous system, but accurate detection and segmentation of lesions 
can be challenging for human practitioners.48 AI/ML/DL techniques can 
help in radiosurgery for neuro-oncology by automating tumour detec-
tion and segmentation, analysing quantitative features from medical 
images, and designing personalised treatment plans.48,49 

Automated detection and segmentation of brain tumours using deep 
neural networks (DNNs) can reduce inter-practitioner variability and 
increase efficiency and accuracy.48 It can also save time in tumour 
contouring for radiation planning,48 improve accuracy and consistency 
in tumour diagnosis and classification,50 and monitor treatment 
response and detect tumour recurrence or progression.50 Examples 
include using U-Net and DenseNet models to detect and segment brain 
metastases and gliomas.50,51 Radiomics is the extraction and analysis of 
quantitative features from medical images using AI/ML/DL tech-
niques.52 It can improve diagnosis and classification of brain tumours, 
predict treatment response and survival outcomes, and provide insights 
into tumour biology and molecular subtypes.52–54 Examples include 
predicting local control and overall survival post-radiosurgery for brain 
metastases and correlating radiomic features with genomic alterations 
in gliomas.28,55,56 

Personalised treatment planning and optimization uses AI/ML/DL 
models to design and deliver customised radiation therapy regimens 
based on individual characteristics such as tumour type, location, size, 
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shape, genomic profile, etc.57 It may improve accuracy and consistency 
in target delineation and dose prescription for brain tumours, predict 
treatment response and survival outcomes, and design chemo-radiation 
therapy regimens.48,58 Detecting and segmenting brain metastases, 
predicting overall survival for GBM patients, and designing CRT regi-
mens for GBM patients based on their genomic profile comprise a few 
examples.48,58 

3. AI reshaping neurosurgery education and training 

The application of AI, ML, and DL could significantly advance 
neurosurgery. These enhancements may be accommodated in two ways: 
through training and sensible implementation. Examples of models that 
have been utilised to reduce hand tremors perioperatively have been 
administered. Hand tremors perioperatively have been observed to in-
crease the risk of complications both during and postoperatively, as well 
as collateral damage.59 Many AI models have been incorporated into 
surgical education under the pretence of virtual reality (VR) and 3D 
simulators to provide sufficient, skill-oriented training for resident and 
mid-career surgeons to increase their confidence and reduce hand 
tremors perioperatively (Fig. 1).60 This kind of integration may also be 
conducted in the classroom by developing a curriculum. A series of 
evidence-based trainings are recommended as a structural approach to 
curriculum, according to one Sridhar’s study. The training may be per-
formed in stages, beginning with fundamental robotic abilities in a 
laboratory setting and progressing to individualised assistance utilising 
a variety of techniques, including simulators, before training in the 
operating room.60 

The application of VR simulations has provided trainees with an 
immersive and interactive learning experience that may help individuals 
develop the necessary skills and confidence to perform real-life sur-
geries. For example, in a study conducted by Sugiyama and colleagues, it 
was found that VR sessions were highly effective in improving the un-
derstanding of patient-specific anatomy among neurosurgeons in 83.3% 
of cases.61 Moreover, the study also found that VR sessions also aided in 
the decision-making process for minor surgical techniques in 61.1% of 
cases and even helped neurosurgeons make critical surgical decisions for 
cases involving complex and challenging anatomy.61 AI-powered VR 
simulations offer a safe and controlled environment for trainees to 
practise surgical procedures. Interestingly, Sugiyama et al’s., trainees 
rated the utility of the VR system significantly higher than experts. A 
study by Zoli et al (2022) also found that out of 152 young neurosur-
geons surveyed, only 31.6% received adequate dedicated AI training. 
The majority of respondents (92.1%) believed that operative devices 
were useful, and 89.5% expressed a strong desire to acquire techno-
logical neurosurgical skills.62 

Reshaping training using AI, ML, and VR is paramount when 
expanding the scope of neurosurgical education. Despite technological 
advances being encumbersome financially and inaccessible to low-to 
middle-economic countries, educators must employ an open approach 
when implementing AI-powered VR simulations for appropriate training 
purposes. 

4. Challenges and potential risks of AI application in 
neurosurgery 

Some obstacles one may face when utilising AI models comprise the 
type and quality of the datasets that are accessible, the cost, workflow 
integration, and expertise (Fig. 3). In neurosurgery, pre-, intra-, and 
postoperative algorithms for personalised medicine have not yet been 
fully integrated into one model using AI, ML, and DL.2 

Having patients interpret and comprehend ML, DL, and their asso-
ciated models in terms of management and predictions is another 
challenge. ML and DL should not be followed blindly since error and 
uncertainty may occur even if AI has demonstrated satisfactory values in 
prediction accuracy.63,64As these models rely on categorical and 

numerical data as inputs and are unable to react to inherent unplanned 
occurrences during diagnosis and treatment in neurosurgery, AI is still 
constrained by how uncertainty may be addressed. Repeating a scan to 
produce a duplicate diagnostic image is an example of one of the 
aforementioned random occurrences.65 

Moreover, the development of an improved AI-enhanced, semi- 
automated robotic operating system is a potent illustration of numerous 
challenging stumbling blocks in the creation of the infrastructure’s 
hardware and software. Clearly, a broader integration of AI will require 
major financial and human resource investment, with the source of 
funding being another potential barrier.36 The benefits of applying AI 
must be scrupulously compared to its expenditure. Despite claims to the 
contrary, there have not been any economic studies concerning the cost 
reduction of brain tumour surgery following the introduction of AI ap-
plications.66 Thus, cost-effectiveness must be appreciated and explored 
while developing novel, innovative AI systems. 

Furthermore, the integration of AI in neurosurgery poses several 
potential risks. One significant concern is the cybersecurity vulnerabil-
ities that arise as AI systems become more connected to networks and 
databases. These systems, if not properly secured, may become attrac-
tive targets for cyberattacks. A breach of AI systems used in neurosur-
gery could lead to unauthorised access, data manipulation, or 
disruptions in surgical procedures.67 Additionally, a greater dependence 
on AI systems might result in a decline in the clinical expertise and 
decision-making ability of surgeons. Without a thorough examination, 
relying too heavily on AI recommendations might precipitate missed 
diagnoses or futile treatment strategies.67,68 

Moreover, flawed, insufficiently taught, or poorly comprehended 
algorithms may introduce technical errors.68,69 Any malfunction in the 
AI model could lead to adverse outcomes for the patient, including 
surgical complications or injuries.69 This may have a long-lasting, 
large-scale impact on patients’ quality of life.68 

The probability of systematic bias in AI prediction models is another 
noteworthy potential concern. Due to a dearth of historical information 
concerning treatment placement in earlier years, populations in disad-
vantaged geographic locations who lack access to medical prescriptions 
may have underdiagnosed conditions.70 Patients who either neglected to 
disclose or refused to furnish the information compound the risk of 
systematic bias.70 

Fig. 3. Challenges with artificial intelligence integration in neurosurgery.  
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Overcoming the challenges and careful consideration of AI’s poten-
tial risks enables the utilisation of the full potential of AI, reshaping the 
delivery of neurosurgical care and ultimately engendering favourable 
patient outcomes. 

5. Ethical considerations 

While the integration of AI has the potential to transform neuro-
surgical care, ethical concerns need to be carefully considered (Fig. 3). 

The possible rise in health inequities is concerning when employing 
ML models. Patients who either failed to disclose or refused to provide 
information, alongside a lack of diagnoses in underserved and under-
prescribed populations, increase the probability of systematic bias.70 As 
such, addressing this risk is important to bridge the gap in health ser-
vices in different geographical locations and minimise ethical concerns. 

Another ethical concern is data privacy. Vast quantities of patient or 
case-specific data are necessary to build AI models.71 As such, it is 
imperative to safeguard data privacy to ensure confidentiality. Howev-
er, the current solution to address privacy concerns poses a new chal-
lenge. When collating and populating text from patient logs concerning 
discharge or triage notes provided by doctors, it may contain repetitions 
of similar comments regarding a patient.71This makes it arduous to 
distinguish between duplicates and might result in erroneous in-
terpretations. Therefore, it is crucial to develop a thorough framework 
that protects data privacy without sacrificing its quality. 

Transparency within AI neurosurgical implementation remains 
clouded, and an objective to offer legislators and policymakers assis-
tance when addressing morally cumbersome situations mandating AI 
within healthcare environments is warranted.72 The limitations of 
algorithmic transparency have affected most legal concerns circum-
venting AI, where such employment in increasingly high-risk cases 
precipitates more responsibilities concerning the programme’s design, 
governance, and egalitarianism.72 Accessibility and comprehension of 
information are its two most important foundations, where AI systems 
are not at the precipice of modern standards of healthcare. 

To ensure the appropriate and ethical incorporation of AI in neuro-
surgery, it is crucial to address the ethical concerns that arise, such as the 
potential increase in health inequities, data privacy, transparency, and 
erroneous interpretations. 

6. Future directions 

Innovations are very important in today’s technological age. Since AI 
in healthcare has advanced considerably in recent years, it is possible 
that neurosurgeons and the innovations of robotic application will ul-
timately work in conjunction with the limits of healthcare systems 
globally for the betterment of patient care. Moreover, ML has the po-
tential to improve neurosurgical decision-making by shedding light on 
radiological interpretation, surgical outcomes, and complication pre-
diction, as well as patients’ quality of life and surgical satisfaction. It 
suggests that a sizable majority of neurosurgeons have implemented ML 
into their clinical practises in some capacity. The equitable distribution 
of ML users in neurosurgery is proof that ML algorithms may be applied 
even in resource-constrained settings. 

However, the administrative efforts of AI might come as a detriment, 
where a personalised holistic approach to neurosurgical care should be 
of paramount importance as opposed to system-based AI-dominated 
management. Neurosurgeons often offer AI as a helping hand rather 
than a means of replacing the management employed by humans. Heavy 
reliance on machine-based systems impedes medical professionals, 
especially neurosurgeons, from acquiring the required surgical skills. In 
order for AI to function at its greatest capacity, a large number of 
therapeutically beneficial algorithms must be installed. While it is 
arguable whether or not to record patient data, moral and legal issues 
must be addressed in the event of AI-based misdiagnoses. Suggestions 
for AI-based solutions being vetted and authorised for patient safety are 

crucial. 
Clinicians from various specialties may increase the precision and 

usefulness of these technologies in their particular surgical specialties by 
exchanging knowledge and skills. For instance, DL models have been 
used in ophthalmology to identify diabetic retinopathy.73 ML algorithms 
have been utilised in orthopaedics to predict surgical outcomes in pa-
tients with joint replacement surgery.74 Moreover, AI and ML are based 
on cardiothoracic surgery to anticipate postoperative problems and 
enhance outcomes for patients with heart failure.75,76 Neurology is also 
an area where AI, ML, and DL are being applied to assist in diagnosis and 
treatment planning for conditions such as stroke and Parkinson’s dis-
ease.77,78 The potential of AI, ML, and DL in surgery must be fully 
realised through collaboration and knowledge exchange. Together, 
surgeons from different specialties may increase the precision and 
application of AI, ML, and DL, improving patient outcomes beyond 
neurosurgery. 

Furthermore, in order to comprehend and utilise the data and AI 
systems more effectively, clinicians would need computer science 
training. Additionally, VR and AI-powered neurosurgical simulators 
may efficiently and accurately assess the performance of residents and 
medical students alike. Patient safety may be increased by using AI- 
assisted coaching systems to support trainees during challenging surgi-
cal procedures. Integrating the knowledge and expertise of experienced 
clinicians into AI algorithms is a promising approach to improving the 
accuracy of clinical diagnosis. AI has already demonstrated accuracy in 
clinical diagnosis comparable to that of experienced clinicians. By pro-
gramming AI with the input of these experienced clinicians, junior 
doctors may benefit from valuable guidance that will aid in improving 
their clinical skills. 

In the midst of the excitement surrounding the promising benefits of 
AI applications in neurosurgery, it is critical to note that there is a 
critical gap in economic studies pertaining to the alleged cost reduction 
of brain tumour surgeries.66 Despite claims to the contrary, the lack of 
such studies gives us an incomplete understanding of the economic 
impact of AI on this critical aspect of healthcare. More research in this 
area is required to realise AI’s full potential and ensure its seamless 
integration into the field of neurosurgery. 

Instead of replacing human abilities, the idea is to apply AI as a tool 
to assist healthcare professionals and act as conduits for continuing 
professional development. Neurosurgeons and AI may continue to 
enhance the discipline and improve patient care through active 
collaboration. 

7. Conclusion 

Neurosurgery may be introduced to the wonders of AI, ML, and DL, 
where improving diagnostic and prognostic results is a future possibility. 
The application of such innovations may assist with decision-making 
perioperatively, ultimately improving patient outcomes for the better-
ment of their care. Studies have demonstrated high accuracy, sensitivity, 
specificity, and precision in several fields of neurosurgery. However, 
unprecedented issues must be solved prior to the application of AI in 
neurosurgical disciplines. Cost expenditure, workflow integration, AI 
expertise, and restrictions on the types and standards of freely accessible 
datasets are such issues warranting consideration. Despite said chal-
lenges, utilising AI in neurosurgery has the potential to improve clinical 
outcomes, reduce postoperative complications, and decrease costs, 
making it a desirable option for healthcare systems globally. 
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