
Graphical Models 133 (2024) 101216

A
1
n

Contents lists available at ScienceDirect

Graphical Models

journal homepage: www.elsevier.com/locate/gmod

Point cloud denoising using a generalized error metric
Qun-Ce Xu a, Yong-Liang Yang b, Bailin Deng c,∗

a Tsinghua University, China
b University of Bath, UK
c Cardiff University, UK

A R T I C L E I N F O

Keywords:
Geometry processing
Optimization
Point cloud denoising

A B S T R A C T

Effective removal of noises from raw point clouds while preserving geometric features is the key challenge for
point cloud denoising. To address this problem, we propose a novel method that jointly optimizes the point
positions and normals. To preserve geometric features, our formulation uses a generalized robust error metric
to enforce piecewise smoothness of the normal vector field as well as consistency between point positions
and normals. By varying the parameter of the error metric, we gradually increase its non-convexity to guide
the optimization towards a desirable solution. By combining alternating minimization with a majorization-
minimization strategy, we develop a numerical solver for the optimization which guarantees convergence. The
effectiveness of our method is demonstrated by extensive comparisons with previous works.
1. Introduction

With the recent development of 3D sensing technologies, 3D acqui-
sition has been made easy for novice users. Nowadays, large amounts
of 3D point clouds can be obtained from not only high-end devices
such as laser scanners, but also commodity devices such as mobile
phones, RGBD cameras, and head-mounted displays. However, the
captured data usually deviates from the ground truth due to several
factors, including the precision of the 3D sensor, the physical material
of the target object, the lighting condition, etc. As a result, removing
noises from the raw point cloud is important for real-world applications
that require high-quality geometry, such as reverse engineering, digital
cultural heritage, and person identification, just to name a few.

To solve this problem, point cloud denoising has been actively
studied in the past, and various methods have been proposed. A key
requirement here is to remove the noises while preserving inherent
geometric features of the target object such as sharp edges [1]. A
popular approach is to first modify the point cloud normals to promote
their piecewise smoothness and thereby preserve sharp features, using
sparsity optimization [2,3], filtering [4], or low-rank optimization [5];
afterwards, the point positions are updated accordingly, often via an
optimization that enforces the consistency between the modified nor-
mals and the point positions [2,3]. Since the normals are sensitive to the
underlying surface shape, they can be an effective proxy for denoising
the point cloud. Indeed, such a two-step approach is commonly used
for denoising mesh surfaces [6–11], a problem closely related to point
cloud denoising. On the other hand, such a modification of normals
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does not take their integrability into account, i.e., the normals are modi-
fied without considering the existence of shapes that are consistent with
the new normals. As a consequence, the actual normals resulting from
the updated point positions may deviate from the modified normals in
the first step, which can lead to sub-optimal results.

To address this issue, we propose a new formulation that jointly
optimizes the point positions and normals, with a target function
that enforces both smoothness and integrability of the normals. To
preserve sharp features, we apply a robust error metric to the smooth-
ness and integrability measures to promote their sparsity. However,
unlike [2,3] that optimize using a single robust metric, we adopt a
generalized metric recently proposed in [12] that unifies a family of
metrics with different levels and non-convexity. By gradually changing
the metric parameter to increase its non-convexity and robustness, our
optimization first improves the overall smoothness of the shape and
then progressively enhances the sharp features, which helps to avoid
undesirable local minima. To solve the optimization problem for each
instance of the generalized metric, we develop a numerical solver using
an alternating minimization approach together with a majorization-
minimization strategy [13]. Our solver is guaranteed to monotonically
decrease the target function and converge to a stationary point. We
test our method on a variety of synthetic and scanned point clouds.
Both quantitative and qualitative results demonstrate its effectiveness.
To summarize, our contributions include:

• We propose a point cloud denoising approach that jointly optimizes
the point positions and normals, enforcing both piecewise smoothness
and integrability of the normals.
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• We adopt a generalized error metric for our optimization, and gradu-
ally increase its non-convexity and robustness to guide the optimiza-
tion towards a desirable solution.

• We develop a numerical solver for the proposed optimization, which
guarantees a monotonic decrease of the target function as well as
convergence to a stationary point.

2. Related work

Point cloud filtering has been actively studied in the last few years.
A comprehensive review is beyond the scope of the present paper. We
refer readers to recent surveys [1,14] for a detailed summary of the
literature. Here we focus on reviewing the landmark works according
to different filtering methodologies that are representative in the field.

2.1. Local projection based methods

Local projection based methods project points onto a smooth es-
timate of the underlying surface within a local neighborhood. Based
on the framework of Moving Least Squares (MLS) [15,16], a number
of filtering methods [17–20] are proposed to iteratively project points
onto a locally fitted polynomial. The difference is in how to represent
the MLS surface for efficient projection. As MLS is originally designed
for smooth surface approximation, to better handle sharp features,
several variation methods are presented based on different approaches
such as cell complexes [21], algebraic sphere fitting [22], and robust
regression [23,24]. Unlike MLS-based methods that usually require
local normal and parameterized surface for point projection, Lipman
et al. [25] present a Locally Optimal Projection operator (LOP) which en-
ables parameterization-free filtering. The basic idea is to project points
according to the local 𝐿1 median of the original point cloud. Weighted
LOP (WLOP) [26] involves locally adaptive density weights to generate
a more evenly distributed point set. Anisotropic LOP (ALOP) [27]
applies anisotropic projection with respect to point normal to better
preserve sharp features. To improve the projection efficiency, kernel
LOP (KLOP) [28] down-samples the point cloud using kernel density
estimate thus reduces the computation cost of LOP, but the result
quality is largely affected by the number of kernels. Continuous LOP
(CLOP) [29] utilizes Gaussian mixture to continuously describe the
input point density, allowing a high sampling rate using only a few
Gaussian components.

2.2. Statistical based methods

Statistical based methods process point cloud from a statistical
point of view. Various approaches in statistics have been adopted for
filtering noisy points, such as mean shift [30], Bayesian statistics [31],
iteratively re-weighted least squares [32], and moving robust Principal
Component Analysis (PCA) [33]. More related to our work, recent
techniques utilize sparse representation of point normals for robust
point cloud filtering while preserving sharp features. Avron et al. [2]
employ 𝐿1-sparsity paradigm to remove noise by first applying a re-
weighted 𝐿1 optimization to estimate point normals, then restoring
smooth point positions along the estimated normals. To better maintain
sharp features, Sun et al. [3] utilizes a sparser 𝐿0 solution which also
restores point normals and positions alternatively. While this method
successfully produces piecewise smooth point sets, edge recovery and
point upsampling are further required to handle cross artifact and gap
near sharp edges, especially when the point cloud contains a large
amount of noise.

2.3. Learning based methods

Learning based methods leverage the recent advances in deep
learning and train deep neural networks for point cloud filtering/
2

consolidation. PU-Net [34] up-samples the input point cloud by aggre-
gating and expanding features learned locally using the PointNet++
structure [35]. EC-Net [36] further preserves sharp features for point
cloud consolidation based on manually annotated edge segments and
specifically designed edge-aware losses. PointProNets [37] relies on
2D heightmaps to represent local 3D point patches. This allows the
use of 2D CNNs for heightmap filtering, while back-projection is
needed to obtain the resultant point cloud. Based on a local variant
of PointNet [38], PointCleanNet [39] utilizes a two-stage network
for outlier removal and point denoising respectively. The first stage
classifies and rejects the outliers, and the second stage iteratively cleans
points by predicting displacement vectors that denoise the remain-
ing points. Pointfilter [40] employs an encoder–decoder structure to
denoise point cloud patches. Lu et al. [41] estimate normals in a
feature-preserving manner for point cloud denoising. More recently,
gradient-based methods [42,43] formalize point cloud denoising as
an iterative process of increasing the log-likelihood of each point via
estimating the gradient of the underlying distribution. After that, recent
advancements in deep-learning-based methods, such as SVCNet [44]
and FCNet [45], have emerged, focusing on leveraging noise during the
learning phase. SVCNet [44] introduces the concept of Self-Variation,
aiming to learn potential commonalities by perturbing the noise on
noisy points. An edge constraint module is also employed to mitigate
the low-pass effects during the denoising process. On the other hand,
FCNet [45] adopts a two-step network framework to address feature
noise and learn noise-free features through feature domain losses.
To achieve this, the FCNet proposes the utilization of non-local self-
similarity and weighted average pooling modules, which effectively
smooth features and suppress feature noise resulting from outliers.
Unlike the above supervised methods that require access to the ground-
truth clean data, ‘Total Denoising’ [46] performs in an unsupervised
manner. It maps a point cloud to itself based on a spatial locality
and a bilateral appearance prior, achieving competitive results against
supervised methods at the time.

3. Our method

In this paper, we assume the input noisy point cloud consisting
of 𝑛 points, represented using their positions {𝐩0𝑖 ∈ R3} and outward
normals {𝐧0𝑖 ∈ R3} (𝑖 = 1,… , 𝑛). The normals are either generated
by the scanning device, or estimated from the positions using PCA
followed by post-processing to choose consistent orientations of the
normals (cf. [47,48] and references therein). Given the input point
positions and normals, we would like to compute the positions {𝐩𝑖}
and normals {𝐧𝑖} for the denoised point cloud. Many existing methods
such as [2,3] adopt a two-step approach to solve the problem: first, the
denoised normals are computed using a feature-preserving smoothing
method; afterwards, the positions are updated using a consistency
condition between positions and normals, e.g. by enforcing small dis-
tance between the new tangent plane at a point and its neighboring
points while penalizing the change of point positions. Although such
an approach is simple to implement, the normal denoising step does
not take into account the coupling between positions and normals,
which may not produce a desirable result. Indeed, similar issues exist
for many mesh denoising methods that take such a two-step approach,
where the normals computed in the first step may not correspond
to a valid mesh and the vertex positions need to be updated in a
least-squares manner [6,11]. In this paper, we propose an optimization-
based approach that performs feature-preserving denoising on both
positions and normals simultaneously. Our optimization enforces the
piecewise smoothness of the resulting normal field, along with the
coupled relation between the normals and point positions. In this way,
the optimization ensures that the normals and point positions are
smoothed in a consistent manner, helping to achieve desirable results.
In the following, we present our formulation, and propose a numerical
solver for the optimization problem.
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Fig. 1. Sample points on a surface (in red) close a sharp feature. Here neighboring
points 𝐩1 and 𝐩2 belong to the same smooth region, with a small difference between
heir normals 𝐧1 ,𝐧2, and the vector 𝐩1 −𝐩2 is approximately orthogonal to both 𝐧1 and
𝐧3. Points 𝐩1 and 𝐩3 lie across the sharp feature, with a large difference between their
ormals 𝐧1 ,𝐧3, and the vector 𝐩1 − 𝐩3 is not orthogonal to 𝐧1. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version
of this article.)

3.1. Optimization formulation

Let 𝐏,𝐍 ∈ R3𝑛 denote the concatenation of new positions and
ew normals, respectively. We compute 𝐏 and 𝐍 via the following

optimization

min
𝐏,𝐍

𝐸fid +𝑤u𝐸unit +𝑤d𝐸disp +𝑤r𝐸reg. (1)

Here 𝐸fid is a fidelity term that penalize changes in positions and
normals:

𝐸fid = 𝑤p
‖

‖

‖

𝐏 − 𝐏0‖
‖

‖

2
+𝑤n

‖

‖

‖

𝐍 − 𝐍0‖
‖

‖

2
, (2)

where 𝐏0,𝐍0 ∈ R3𝑛 are the initial positions and normals respectively,
and 𝑤p, 𝑤n are user-specified weights. 𝐸unit penalizes the deviation of
the new normals from unit vectors:

𝐸unit =
𝑛
∑

𝑖=1

‖

‖

𝐧𝑖 − 𝐧𝑖‖‖
2 , (3)

here 𝐧𝑖 = 𝐧𝑖∕‖𝐧𝑖‖. The term 𝐸disp requires the position change 𝐱𝑖 − 𝐱0𝑖
or each point to be as parallel to the normal 𝐧𝑖 as possible:

disp =
𝑛
∑

𝑖=1
‖𝐧𝑖 × (𝐩𝑖 − 𝐩0𝑖 )‖

2. (4)

Finally, 𝐸reg is a robust regularization term for the new normals that
also considers their consistency with the new positions; it will be
explained in detail later. 𝑤u, 𝑤d, 𝑤r are user-specified weights that
ontrol the trade-off between different terms.

To define 𝐸reg, we assume that the underlying surface for the
round-truth point cloud is piece-wise smooth. Therefore, the differ-
nce between normals 𝐧𝑖,𝐧𝑗 at two neighboring points should be small

on most parts of the surface, while they can be large on some local
regions corresponding to sharp features (see Fig. 1). Such distribution
of normals can be induced using a target function term that promotes
sparsity across the normal difference between all neighboring points. In
addition, within a smooth region of the surface, the positions 𝐩𝑖,𝐩𝑗 and
normals 𝐧𝑖,𝐧𝑗 of two neighboring points should satisfy a consistency
condition that the vector 𝐩𝑖 − 𝐩𝑗 is approximately orthogonal to both
𝐧𝑖 and 𝐧𝑗 ; across a sharp feature, on the other hand, this condition
may not be satisfied as shown in Fig. 1. Therefore, the absolute values
of inner products (𝐩𝑖 − 𝐩𝑗 ) ⋅ 𝐧𝑖 and (𝐩𝑖 − 𝐩𝑗 ) ⋅ 𝐧𝑗 should be small
for most neighboring points, while they can be large on some local
regions around sharp features. This behavior can be similarly induced
via a sparsity-promoting terms for all such inner products across the
surface. However, simply adding two separate sparsity terms for normal
differences and position-normal consistency may not lead to a desirable
result. This is because the sparsity patterns for these two quantities are
coupled: a pair neighboring points with a large difference between their
normals, which indicates their proximity to a sharp feature, are also
likely to violate the consistency condition. Simple addition of the two
3

sparsity-promoting terms only induces sparsity for the two quantities
individually rather than their coupled sparsity. For the latter purpose,
we need to promote their group sparsity [49] instead. Specifically,
we promote sparsity for the following quantity that measures normal
difference and position-normal consistency simultaneously for a pair of
neighboring points:

ℎ𝑖𝑗 =
1
𝐿𝑖𝑗

√

(
𝐩𝑖 − 𝐩𝑗
𝐿𝑖𝑗

⋅ (𝐧𝑖 + 𝐧𝑗 ))2 + 𝛾‖𝐧𝑖 − 𝐧𝑗‖2, (5)

where 𝐿𝑖𝑗 is the initial distance between 𝐩𝑖 and 𝐩𝑗 , and 𝛾 is a user-
specified weight. Here the term ( 𝐩𝑖−𝐩𝑗𝐿𝑖𝑗

⋅ (𝐧𝑖 + 𝐧𝑗 ))2 measures the con-
sistency between the normals and positions of two adjacent points,
and evaluates to zero when the positions and normals are consis-
tent with a locally-second-order surface centered between the two
points [50]; this helps to account for high-curvature regions where a
line segment connecting two adjacent points may not be orthogonal
to their normals [51]. The term ‖𝐧𝑖 − 𝐧𝑗‖2 penalizes the deviation
between neighboring normals and induces smoothness of the normal
field. The scaling factor 1

𝐿𝑖𝑗
acts as normalization to account for the

uneven spacing between the points. The quantity ℎ𝑖𝑗 should be small
on most parts of the surface except for regions around sharp features.
The regularization term 𝐸reg is then defined as

𝐸reg =
∑

𝑖<𝑗
(𝑖,𝑗)∈

𝜙(ℎ𝑖𝑗 ), (6)

where  denotes the index set of neighboring points, and 𝜙 is a robust
error metric. To determine the neighboring relation between points, we
perform 𝑘-nearest neighbor search for each point. Two points 𝑖, 𝑗 are
considered to be neighbors if point 𝑖 is among the 𝑘-nearest neighbors
of point 𝑗 or point 𝑗 is among the 𝑘-nearest neighbors of point 𝑖.

In Eq. (6), the choice of function 𝜙 plays an important role in the
erformance of our method. One possible choice is to define 𝐸reg as the
0-norm of all ℎ𝑖𝑗 , in which case

(𝑥) =
{

0, if 𝑥 = 0,
1, otherwise.

(7)

owever, this will lead to a highly non-convex and non-smooth opti-
ization problem that is challenging to solve, in particular since ℎ𝑖𝑗 is
non-linear function of 𝐕 and 𝐍. Inspired by the recent work of [52],
e choose 𝜙 as a member of a parameterized family of error metric

unctions instead:

𝛼,𝑐 (𝑥) =
|𝛼 − 2|

𝛼

(

(

(𝑥∕𝑐)2

|𝛼 − 2|
+ 1

)

𝛼∕2 − 1

)

. (8)

ere 𝑐 is a scale parameter for normalization, while 𝛼 ∈ R is a shape
arameter that controls the robustness of the error metric. For a given
, as 𝛼 is decreased 𝜙𝛼,𝑐 becomes increasingly robust and non-convex,
nd reproduces different robust loss functions used in the literature. For
xample, when 𝛼 approaches 2, 𝜙𝛼,𝑐 approaches the 𝓁2 loss:

lim
→2

𝜙𝛼,𝑐 (𝑥) =
1
2

(𝑥
𝑐

)2
. (9)

When 𝛼 = 1, it becomes a smoothed 𝓁1 loss also known as the
harbonnier loss [53]:

1,𝑐 (𝑥) =
√

(𝑥
𝑐

)2
+ 1 − 1. (10)

when 𝛼 approaches 0, it approaches the Cauchy loss [54]:

lim
𝛼→0

𝜙𝛼,𝑐 (𝑥) = log
(

1
2

(𝑥
𝑐

)2
+ 1

)

. (11)

When 𝛼 = −2, it becomes the Geman-McClure loss [55]:

𝜙−2,𝑐 (𝑥) =
2 (𝑥∕𝑐)2

2
. (12)
(𝑥∕𝑐) + 4
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Fig. 2. The generalized metric functions with different values of the parameter 𝛼.

hen 𝛼 → −∞, it approaches the Welsch function [56]:

lim
→−∞

𝜙𝛼,𝑐 (𝑥) = 1 − exp
(

−1
2

(𝑥
𝑐

)2
)

, (13)

This metric has been used in [11] for robust mesh filtering since it
s bounded from above and it approaches the 𝓁0-norm when 𝑐 → 0.
ollowing the convention from [52], we adopt the following definition
f 𝜙𝛼,𝑐 as illustrated in Fig. 2:

𝛼,𝑐 (𝑥) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
2

(𝑥
𝑐

)2
if 𝛼 = 2,

log
( 1
2
(𝑥
𝑐
)2 + 1

)

if 𝛼 = 0,

1 − exp
(

−1
2
(𝑥
𝑐
)2
)

if 𝛼 = −∞,

|𝛼 − 2|
𝛼

(

(

(𝑥∕𝑐)2

|𝛼 − 2|
+ 1

)𝛼∕2

− 1

)

otherwise.

(14)

We solve the optimization problem (1) with 𝛼 gradually decreased from
2 to −∞. As discussed in Section 3.2.4, our choice of 𝜙 enables us
to derive an simple solver, and the strategy of decreasing 𝛼 helps the
solver to find a desirable local minimum and improves the denoising
accuracy compared to using a fixed 𝛼.

3.2. Numerical solver

The optimization (1) is a non-convex problem for the positions 𝐏
and the normals 𝐍, and the term 𝐸reg can be highly non-linear. To
effectively solve this problem, we adopt an alternating minimization
strategy. We first fix 𝐏 and optimize 𝐍, then fix 𝐍 and optimize 𝐏. This
rocess is repeated until convergence. In the following, we present the
etails of each sub-problem.

.2.1. The 𝐍-update
For the ease of presentation, we assume that the variable values

efore the 𝐍-update are 𝐏(𝑘) and 𝐍(𝑘), with the individual positions
nd normals denoted by {𝐩(𝑘)𝑖 } and {𝐧(𝑘)𝑖 }, respectively. We update 𝐍
y fixing 𝐏 = 𝐏(𝑘) and minimizing the target function of (1) over 𝐍,
esulting in the following sub-problem:

in
𝐍

𝑤n
‖

‖

‖

𝐍 − 𝐍0‖
‖

‖

2
+𝑤d

𝑛
∑

𝑖=1

‖

‖

‖

𝐧𝑖 × (𝐩(𝑘)𝑖 − 𝐩0𝑖 )
‖

‖

‖

2

+ 𝑤u

𝑛
∑

‖

‖

𝐧𝑖 − 𝐧𝑖‖‖
2 +𝑤r𝐸reg(𝐏(𝑘),𝐍).

(15)
4

𝑖=1
C

The first two terms are convex quadratic, but the remaining terms are
still highly non-convex. To solve this problem, we adopt the idea of the
majorization-minimization (MM) algorithm [13]: to minimize a target
function 𝐹 (𝑥), it repeatedly constructs a surrogate function 𝐹 (𝑥; 𝑥(𝑘))
ased on the current variable value 𝑥(𝑘) which satisfies the conditions:

𝐹 (𝑥(𝑘); 𝑥(𝑘)) = 𝐹 (𝑥(𝑘)),

𝐹 (𝑥; 𝑥(𝑘)) ≥ 𝐹 (𝑥) ∀𝑥.
(16)

n other words, the surrogate function bounds the target function from
bove, and their graphs touch at the current variable value 𝑥(𝑘). The
urrogate function is then minimized to update the variable, and the
bove process is repeated until convergence. To apply this idea, we
se the current variable value 𝐍(𝑘) to construct a convex quadratic
urrogate function 𝑄(𝐍;𝐍(𝑘)) for the target function in Eq. (15), and

update the value of 𝐍 via

𝐍(𝑘+1) = arg min
𝐍

𝑄(𝐍;𝐍(𝑘)). (17)

It can be shown that the following function meets the surrogate func-
tion condition in Eq. (16) (see Appendix A for verification):

𝑄(𝐍;𝐍(𝑘)) = 𝑤n
‖

‖

‖

𝐍 − 𝐍0‖
‖

‖

2
+𝑤u

𝑛
∑

𝑖=1

‖

‖

‖

𝐧𝑖 − 𝐧(𝑘)𝑖
‖

‖

‖

2

+ 𝑤d

𝑛
∑

𝑖=1

‖

‖

‖

𝐧𝑖 × (𝐩(𝑘)𝑖 − 𝐩0𝑖 )
‖

‖

‖

2

+ 𝑤r
∑

𝑖<𝑗
(𝑖,𝑗)∈

(

𝐴(𝑘)
𝑖𝑗 ⋅

(

ℎ𝑖𝑗 (𝐏(𝑘),𝐍)
)2 + 𝐵(𝑘)

𝑖𝑗

)

, (18)

here 𝐧(𝑘)𝑖 = 𝐧(𝑘)𝑖 ∕‖𝐧(𝑘)𝑖 ‖, 𝐴(𝑘)
𝑖𝑗 = 𝛹 (ℎ𝑖𝑗 (𝐏(𝑘),𝐍(𝑘))), and 𝐵(𝑘)

𝑖𝑗 = 𝛩(ℎ𝑖𝑗 (𝐏(𝑘),
(𝑘))) with

(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
2𝑐2

if 𝛼 = 2,

1
2𝑐2

exp
(

− 𝑡2

2𝑐2
)

if 𝛼 = −∞,

1
2𝑐2

( (𝑡∕𝑐)2

|𝛼 − 2|
+ 1

)
𝛼−2
2 otherwise.

(19)

𝛩(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if 𝛼 = 2,

1 − 2𝑐2 + 𝑡2

2𝑐2
exp

(

− 𝑡2

2𝑐2
)

if 𝛼 = −∞,

𝜙𝛼,𝑐 (𝑡) −
𝑡2

2𝑐2
( (𝑡∕𝑐)2

|𝛼 − 2|
+ 1

)
𝛼−2
2 otherwise.

(20)

Since 𝑄(𝐍;𝐍(𝑘)) is convex quadratic in 𝐍, its global minimum can be
omputed by solving a linear system:
(

(𝑤n +𝑤u)𝐈 +𝑤d𝐉𝑇 𝐉 +𝑤r(𝐊𝑇𝐊 + 𝛾𝐃𝑇𝐃)
)

𝐍

𝑤n𝐍0 +𝑤u𝐍
(𝑘)
. (21)

Here 𝐈 ∈ R3𝑛×3𝑛 is an identity matrix. 𝐍
(𝑘)

∈ R3𝑛 concatenates {𝐧(𝑘)𝑖 }.
𝐉(𝑘) ∈ R3𝑛×3𝑛 is a block diagonal matrix:

𝐉 =

⎡

⎢

⎢

⎢

⎣

𝐉(𝑘)1
⋱

𝐉(𝑘)𝑛

⎤

⎥

⎥

⎥

⎦

(22)

ith each block 𝐉(𝑘)𝑖 representing the cross product with 𝐩(𝑘)𝑖 − 𝐩0𝑖 so
hat 𝐉(𝑘)𝑖 𝐧 = 𝐧 × (𝐩(𝑘)𝑖 − 𝐩0𝑖 ) for any 𝐧 ∈ R3. 𝐊 is a sparse matrix, where
ach row corresponds to a neighboring normal pair (𝐧𝑖,𝐧𝑗 ) and has non-

ero entries
√

𝐴(𝑘)
𝑖𝑗

𝐿2
𝑖𝑗

(𝐩(𝑘)𝑖 − 𝐩(𝑘)𝑗 )𝑇 for both 𝐧𝑖 and 𝐧𝑗 . 𝐃 is a block sparse
atrix, where each block row corresponds to a neighboring normal

air (𝐧𝑖,𝐧𝑗 ) and contains non-zero blocks
√

𝐴(𝑘)
𝑖𝑗

𝐿𝑖𝑗
𝐈3 and −

√

𝐴(𝑘)
𝑖𝑗

𝐿𝑖𝑗
𝐈3 for 𝐧𝑖

and 𝐧𝑗 respectively, with 𝐈3 being the 3 × 3 identity matrix. The linear
ystem (21) is sparse symmetric positive definite, and we solve it via

holesky factorization. Moreover, since the matrix has a fixed sparsity
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pattern, we perform its symbolic factorization as a pre-processing step,
and only perform numerical factorization in each iteration.

Note that the single update step in Eq. (17) may not produce
the solution to the sub-problem (15). However, as discussed later in
Section 3.2.3, it is guaranteed to decrease the target function and is
sufficient for the convergence of our iterative solver.

3.2.2. The 𝐏-update
After updating 𝐍 according to Eq. (17), we fix 𝐍 = 𝐍(𝑘+1) and

minimize the target function of (1) over 𝐍, resulting in the following
sub-problem:

min
𝐏

𝑤p‖𝐏 − 𝐏0
‖

2 +𝑤d

𝑛
∑

𝑖=1
‖𝐧(𝑘+1)𝑖 × (𝐩𝑖 − 𝐩0𝑖 )‖

2

+ 𝑤r𝐸reg(𝐏,𝐍(𝑘+1)).

(23)

Similar to the update of 𝐍, we construct a surrogate function 𝑅(𝐏;𝐏(𝑘))
for the target function based on the current variable value 𝐏(𝑘), and
minimize it to update 𝐏:

𝐏(𝑘+1) = arg min
𝐏

𝑅(𝐏;𝐏(𝑘)). (24)

It can be shown that the following convex quadratic function meets the
requirement for the surrogate function (see Appendix A):

𝑅(𝐏;𝐏(𝑘)) = 𝑤p
‖

‖

‖

𝐏 − 𝐏0‖
‖

‖

2
+𝑤d

𝑛
∑

𝑖=1

‖

‖

‖

𝐧(𝑘+1)𝑖 × (𝐩𝑖 − 𝐩0𝑖 )
‖

‖

‖

2

+ 𝑤r
∑

𝑖<𝑗
(𝑖,𝑗)∈

(

𝐶 (𝑘)
𝑖𝑗 ⋅

(

ℎ𝑖𝑗
(

𝐏(𝑘),𝐍
)

)2
+𝐷(𝑘)

𝑖𝑗

)

. (25)

where 𝐶 (𝑘)
𝑖𝑗 = 𝛹 (ℎ𝑖𝑗 (𝐏(𝑘),𝐍(𝑘+1))) and 𝐷(𝑘)

𝑖𝑗 = 𝛩(ℎ𝑖𝑗 (𝐏(𝑘),𝐍(𝑘+1))), with 𝛹
and 𝛩 defined in Eqs. (19) and (20), respectively. Its global minimum
can be computed by solving a sparse symmetric positive definite linear
system:
(

𝑤p𝐈 +𝑤d𝐋𝑇𝐋 +𝑤r𝐌𝑇𝐌
)

𝐏 =
(

𝑤p𝐈 +𝑤d𝐋𝑇𝐋
)

𝐏0. (26)

Here 𝐋 ∈ R3𝑛×3𝑛 is a block diagonal matrix:

𝐋 =

⎡

⎢

⎢

⎢

⎣

𝐋(𝑘+1)
1

⋱
𝐋(𝑘+1)
𝑛

⎤

⎥

⎥

⎥

⎦

(27)

with each block 𝐋(𝑘+1)
𝑖 representing the cross product with 𝐧(𝑘+1)𝑖 so

that 𝐋(𝑘+1)
𝑖 𝐩 = 𝐧(𝑘+1)𝑖 × 𝐩, ∀𝐩 ∈ R3. 𝐌 is a sparse matrix where each

row corresponds to a neighboring point pair (𝐩𝑖,𝐩𝑗 ) and contains non-

zero entries
√

𝐶(𝑘)
𝑖𝑗

𝐿2
𝑖𝑗

(𝐧(𝑘+1)𝑖 + 𝐧(𝑘+1)𝑗 )𝑇 and −

√

𝐶(𝑘)
𝑖𝑗

𝐿2
𝑖𝑗

(𝐧(𝑘+1)𝑖 + 𝐧(𝑘+1)𝑗 )𝑇 for 𝐩𝑖
and 𝐩𝑗 respectively. Similar to the update of 𝐍, we solve the system
using Cholesky factorization, performing symbolic factorization in a
pre-processing step and numerical factorization in each iteration.

3.2.3. Convergence
Our solver alternates between the 𝐍-update step (17) and the 𝐏-

update step (24). It can be shown that such an iteration is guaranteed
to decrease the target function of (1) unless it converges to a stationary
point:

Proposition 3.1. Let 𝐸(𝐏,𝐍) denote the target function of the optimiza-
tion problem (1). Then using the updates in Eqs. (17) and (24), we have

𝐸(𝐏(𝑘+1),𝐍(𝑘+1)) ≤ 𝐸(𝐏(𝑘),𝐍(𝑘)). (28)

Moreover, 𝐸(𝐏(𝑘+1),𝐍(𝑘+1)) = 𝐸(𝐏(𝑘),𝐍(𝑘)) if and only if 𝐏(𝑘+1) = 𝐏(𝑘) and
𝐍(𝑘+1) = 𝐍(𝑘), which is equivalent to the condition that ∇𝐸(𝐏(𝑘),𝐍(𝑘)) = 𝟎.
5

Fig. 3. For any given parameter 𝛼, our solver monotonically decrease the target
function, as shown here for the ‘Fandisk’ model with 𝛼 = 1.

A proof is given in Appendix B. Therefore, we perform the update
steps (17) and (24) until max𝑖 ‖𝐧

(𝑘+1)
𝑖 − 𝐧(𝑘)𝑖 ‖ < 𝜖1 and max𝑖 ‖𝐩

(𝑘+1)
𝑖 −

𝐩(𝑘)𝑖 ‖ < 𝜖2 ⋅ 𝐿, where 𝜖1, 𝜖2 are user-specified thresholds, and 𝐿 is the
average distance between neighboring points in the initial point cloud.
We choose 𝜖1 = 1×10−3 and 𝜖2 = 1×10−4 in all experiments. An example
of convergence is shown in Fig. 3.

3.2.4. Gradual decrease of 𝛼
From the function graphs in Fig. 2. we can see that as 𝛼 is decreased,

the error metric function becomes more non-convex and closer to the
𝓁0-norm, and regularizer terms with large values of ℎ𝑖𝑗 (such as those
arising from sharp features) will have less influence on the target func-
tion and can be better tolerated by the optimization. Ideally, we would
like to perform the optimization (1) with 𝛼 = −∞ in order to maximize
its capacity of inducing sparsity and accommodating sharp features.
However, optimizing with 𝛼 = −∞ from the beginning can lead to sub-
optimal results. This is because with 𝛼 = −∞, a regularization term
with a large error value of ℎ𝑖𝑗 may have a very small weight (𝐀𝑘

𝑖𝑗 in
Eq. (18) or 𝐶 (𝑘)

𝑖𝑗 in Eq. (25)) according to the formula in (19). As a
result, these terms are effectively discarded in the surrogate function,
regardless of whether their large error value is caused by the noise or
an actual underlying sharp feature. To make the optimization more
robust, we would like to incorporate more effective terms into the
surrogate function initially to perform a coarse optimization, and only
disregard regularization terms with large errors in a later stage when
they emerge from the coarse optimization to indicate sharp features.
We achieve this by gradually decreasing 𝛼 to −∞, since the weight
formula (19) shows that a larger 𝛼 will result in less attenuation
of weights for regularization terms with large errors. Concretely, we
prescribe a decreasing sequence of 𝛼 values 𝛼1 > 𝛼2 > ⋯ > 𝛼𝑚 with
𝛼𝑚 = −∞. We start with 𝛼 = 𝛼1, and perform the optimization (1).
Then we use the result as the initial value to re-run the optimization
with 𝛼 = 𝛼2. This process is repeated until we complete the optimization
with 𝛼 = 𝛼𝑚, and the final solution is taken as the denoising result. In all
our experiments, we use the sequence (2, 1.0, 0.5, 0,−1.0,−2.0,−8.0,−∞)
for 𝛼. Before running an optimization with a new 𝛼, we also update the
value of 𝑐 according to the distribution of ℎ𝑖𝑗 with the current result.
Specifically, we first update the 𝑘-nearest neighbor relationship based
on the latest point positions, and compute all values of ℎ𝑖𝑗 accordingly.
Then we choose 𝑐 as:

𝑐 = max
(

ℎ, 𝑐min

)

, (29)

where ℎ is the median of all ℎ𝑖𝑗 values, and 𝑐min is a lower bound that
prevents 𝑐 from being too small. Noting that the scale of ℎ in Eq. (5)
𝑖𝑗



Graphical Models 133 (2024) 101216Q.-C. Xu et al.

1

1

2

Algorithm 1: Robust point cloud denoising.
Input: 𝐏0,𝐍0: initial positions and normals;
𝐿: average distance between neighboring points in the initial

point cloud;
𝜖1, 𝜖2: variable convergence thresholds;
𝑘max: the maximum number of iterations;
(𝛼1,… , 𝛼𝑚): a sequence of decreasing 𝛼 values.

1 𝐏latest = 𝐏0; 𝐍latest = 𝐍0;
2 for 𝑗 = 1, 2,… , 𝑚 do
3 𝛼 = 𝛼𝑗 ; 𝐏(1) = 𝐏latest; 𝐍(1) = 𝐍latest;
4 Compute 𝑘-nearest neighbors for each point using positions

𝐏latest;
5 Compute 𝑐 according to Eq. (29);
6 Perform symbolic factorization for the linear systems (21)

and (26);
7 𝑘 = 1;
8 while TRUE do
9 Compute 𝐍(𝑘+1) according to Eq. (21);
10 Compute 𝐏(𝑘+1) according to Eq. (26);
11 𝑒1 = max𝑖 ‖𝐧

(𝑘+1)
𝑖 − 𝐧(𝑘)𝑖 ‖;

12 𝑒2 = max𝑖 ‖𝐩
(𝑘+1)
𝑖 − 𝐩(𝑘)𝑖 ‖;

13 𝑘 = 𝑘 + 1;
14 if 𝑘 > 𝑘max OR (𝑒1 < 𝜖1 AND 𝑒2 < 𝜖2 ⋅ 𝐿) then
15 𝐏latest = 𝐏(𝑘); 𝐍latest = 𝐍(𝑘);
16 break;
17 end if
8 end while
9 end for
0 return 𝐏latest ,𝐍latest ;

is roughly
√

1 + 𝛾 ‖𝐧𝑖 − 𝐧𝑗‖∕𝐿𝑖𝑗 and the quantity ‖𝐧𝑖 − 𝐧𝑗‖∕𝐿𝑖𝑗 can be
considered as a local curvature measure, we choose 𝑐min =

√

1 + 𝛾∕𝑟𝑏
where 𝑟𝑏 is the bounding sphere radius for the initial point cloud.
Algorithm 1 summarizes our method for denoising with decreasing
values of 𝛼.

4. Results

In this section, we extensively evaluate our method by comparing
it with existing methods on publicly available dataset for point cloud
denoising, as well as validating our design choice.

4.1. Implementation details

Our optimization framework is implemented in C++, using the
Eigen library [57] for linear algebra operations and OpenMP for paral-
lelization. All experiments are run on a PC with a 3.7 GHz Intel Core
i7-8700K CPU (6 Cores) and 16 GB memory. The parameter setting is
shown in Table 1. While the default parameters are generally sufficient,
empirically fine-tuning the parameters would help to achieve further
improvements. The computational time is affected by both the number
of points in the point cloud and the neighborhood size. For models with
11∼50K points, our method takes 3∼10 min, which is comparable to
previous statistical methods [2,3]. The statistics of running time and
iteration numbers on different datasets are shown in Table 2.

4.2. Test data

We evaluate our method based on the dataset used in PU-Net [34],
similar to the majority of existing papers. We gather 20 meshes and
apply Poisson disk sampling to generate point clouds. All shapes are
6

normalized to fit within a unit sphere. After sampling, we introduce
Table 1
Parameter settings.

Parameter Range(default)

neighbor size 7∼21(16)
weight 𝑤p 1∼10(10)
weight 𝑤n 1∼10(10)
weight 𝑤u 1(1)
weight 𝑤d 10∼100(10)
weight 𝑤r 10∼100(10)
balance weight 𝛾 0.1∼1.0(1.0)

noise to the point positions by adding Gaussian noises with standard
deviations of 1.0%, 2.0%, and 3.0% relative to the bounding box
diagonal, respectively. To test the performance under different sam-
pling densities, we sample each mesh using 10 K and 50 K points,
respectively. We also test our method on point clouds sampled from
the CAD models in the ABC dataset [58], as well as the real-world point
clouds from the Kinect v1 dataset from [10].

4.3. Evaluation metrics

For quantitative evaluation, we use two metrics to measure the
quality of the denoising results. First, to measure the deviation between
the denoised point cloud and the ground-truth shape, we compute the
average distance from each denoised point to its closest point on the
ground-truth mesh surface (the P2M distance). In addition, we use the
Chamfer Distance (CD) to measure the deviation between the denoised
point cloud and the original (noise-free) sample points. To make the
metric values more intuitive, we normalize them with the bounding
box diagonal length of the model. In the following, we also use color
coding to visualize the distance between the denoised point cloud and
the ground-truth mesh surface.

4.4. Comparison

We compare our method with existing procedural methods based on
edge-aware point set resampling (EAR) [27] and robust non-linear ker-
nel regression of moving least squares (RIMLS) [24], as well as recent
learning based approach called PointCleanNet (PCN) [39], Score-based
Methods [42], DF-PCF [41], PointFilter [40] and PSR [43]. Note that
EAR and RIMLS require suitable parameters related to scale, neighbor
size, etc. to adapt to different noise levels, while PCN handles different
noise levels using the same hyper-parameters trained with varying
noisy data. In our experiment, we tune the parameters for EAR and
RIMLS for each model, in order to achieve their best results for a fair
comparison.

Table 3 shows the quantitative evaluation on the synthetic dataset,
by computing the average CD and P2M values over all models for each
configuration of sampling density and noise level. We can see that
our method based on adaptive robust error metric generally achieves
better performance. Fig. 4 further shows the color-coding visualization
of denoising errors on some models. It can be seen that our method
not only removes noises from the point clouds, but also achieves
better preservation of details and sharp features than other methods.
On the other hand, due to the resampling strategy, EAR [27] causes
relatively large errors around detailed features while it performs well
near prominent edges (see the 1st and 3rd row of Fig. 4). RIMLS [24]
works well on cases with low-level noises, especially on simple planar
and spherical geometries. However, it starts to blur detailed features
when the noise level increases. PCN [39] effectively reduces the noise
level but struggles to generalize well to point clouds with varying
densities that were not part of the training data. Note that PCN requires
outlier removal as a preparatory step; otherwise, the denoising may
fail in some cases. Meanwhile, although DF-PCF [41] demonstrates
the ability to preserve certain features, the model does not generalize
well in some test cases, resulting in poorer denoising performance.

Furthermore, the time required for processing is deemed unacceptable,
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Fig. 4. Qualitative comparison of a variety of point clouds with different number of points and noise levels. Different colors in the color map illustrate distances to the ground
truth. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 2
Statistics of running time and iteration count for different datasets according to point numbers.

Point number Running Time(s) Iteration number

min max average min max average

PU-Net [34] 1 0K 47.5 484.3 176.4 94 697 269
50 K 42.1 623.4 321.9 113 693 274

ABC [58] 10 K 44.6 352.2 162.8 70 495 204
50 K 53.4 590.1 175.4 69 489 290

Kinect v1 [10] 13 K ∼ 25 K 33.6 440.1 201.2 197 548 221
Table 3
Quantitative evaluation based on the Chamfer Distance (CD) between the denoised and ground-truth point cloud, and the average distance from the denoised points to the
ground-truth mesh faces (P2M).

# Points 10 K (Sparse) 50 K (Dense)

Noise 1% 2% 3% 1% 2% 3%

Metric (10−4) CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

EAR [27] 4.311 1.629 6.010 3.470 8.821 4.673 2.876 1.878 3.740 2.198 6.549 4.672
RIMLS [24] 6.891 3.702 9.172 5.680 14.553 9.724 3.509 1.899 4.608 2.390 6.722 3.936
PCN [39] 3.422 1.129 7.562 4.312 13.077 9.505 1.142 0.353 1.559 0.712 3.498 1.371
Score-based [42] 3.409 0.512 5.890 1.391 6.895 1.946 0.746 0.161 1.244 0.534 2.602 1.021
DF-PCF [41] 3.609 1.251 4.311 1.322 6.425 4.567 1.263 0.186 1.381 0.273 1,844 0.939
Pointfilter [40] 4.129 1.333 6.812 4.214 11.874 7.649 1.375 0.267 1.465 0.671 3.697 1.783
PSR [43]a 2.353 0.306 3.350 0.734 4.075 1.242 0.649 0.076 0.997 0.296 1.344 0.531
Ours 2.034 0.252 2.97 0.692 4.339 1.566 0.535 0.061 0.723 0.269 1.145 0.442

a The results are taken from the original paper as there is no released model available.
where a model consisting of only 10 K points can take over 30 min
to complete even on an Nvidia RTX 4090, as indicated in the code
released by the authors. Pointfilter [40] is not robust to high-level
noise, as indicated by the results. While score-based methods [42]
and PSR [43] achieve good performance overall, their design does not
7

consider feature preservation and the results are sub-optimal in this
regard. In summary, the aforementioned learning-based methods have
their limitations, stemming from issues related to model generalization,
variations in point cloud density, and challenges associated with noise
levels. In contrast, our methods demonstrate improved robustness and
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Table 4
Evaluation on a subset of the ABC dataset [58] based on the Chamfer Distance (CD) between the denoised and ground-truth point cloud, and the average distance from the
denoised points to the ground-truth mesh faces (P2M).

# Points 10 K (Sparse) 50 K (Dense)

Noise 1% 2% 3% 1% 2% 3%

Metric (10−4) CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

Ours 2.232 0.339 3.24 0.782 4.529 1.803 0.825 0.076 1.011 0.317 1.323 0.541
able 5
blation study that disables different terms in the target function. The evaluation is done on the PU-Net dataset [34] using the Chamfer Distance (CD) between the denoised and
round-truth point cloud, and the average distance from the denoised points to the ground-truth mesh faces (P2M).
# Points 10 K (Sparse) 50 K (Dense)

Noise 1% 2% 3% 1% 2% 3%

Metric (10−4) CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

Ours(full) 2.034 0.252 2.97 0.692 4.339 1.566 0.535 0.061 0.723 0.269 1.145 0.442
w/o 𝐸disp 4.340 2.157 6.982 4.664 10.184 7.478 1.493 0.589 2.414 1.648 4.138 2.574
w/o 𝐸unit 3.606 0.710 3.460 1.121 5.891 2.511 0.764 0.122 1.213 0.402 1.497 0.573
w/o 𝐸reg 7.238 2.201 9.243 5.439 13.692 10.241 1.827 0.614 4.901 2.725 7.367 2.772
ig. 5. Experimental results on a subset of the ABC Dataset [58]. The first row displays the ground-truth mesh, while the second row shows the noisy point clouds with varying
oint numbers and noise levels. The denoised results obtained using our method are presented in the last row. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)
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verall performance while endeavoring to preserve the input model’s
harp features.

We also evaluate the performance of our method on a subset of the
BC dataset [58] consisting of 1000 CAD models. The visualization of

he results is shown in Fig. 5, and the corresponding quantitative results
re provided in Table 4. The results show that our method is effective
n point clouds from CAD models.

.5. Additional results

One of the main strengths of our generalized error metric is its
apability to preserve sharp features. To highlight our performance
ere, we compare different methods on two representative models
ith prominent sharp features. The input point cloud is constructed
y sampling the ground-truth mesh and adding Gaussian noise. After
enoising the point cloud, we reconstruct a mesh from the result
sing the ball pivoting method [59], in order to visualize the features
fter denoising. The results are shown in Fig. 6. It is easy to see that
ur method can remove noises on the surface while preserving sharp
eatures, producing results with the best visual quality.

Furthermore, we test our method on the real-world point clouds in
he Kinect v1 dataset from [10]. The point clouds in the dataset are
8

t

erived from depth images produced by a Kinect v1 camera, and are
on-uniform on the object surface. Fig. 7 shows the denoising results.
t shows that our method remains effective on non-uniformly sampled
oints.

.6. Ablation study

To validate the effectiveness of the components of our optimization
arget function, we conduct an ablation study to assess the influence
f different terms. Specifically, we disable 𝐸disp, 𝐸unit and 𝐸reg respec-
ively by setting their weights to zero, and run the optimization on the
U-Net dataset. The results are presented in Table 5 and Fig. 8. It shows
hat the term 𝐸disp firmly guides the direction of vertex movement,
nsuring that the overall shape remains as close as possible to the initial
hape. When the term 𝐸disp is excluded, the vertices tend to move in
ncorrect directions influenced by other factors, leading to suboptimal
utcomes, such as the clustering of points in a single location and
he occurrence of shape holes, as illustrated in Fig. 8(a). On the other
and, the term 𝐸unit demonstrates a less explicit influence on overall
erformance. Serving as an auxiliary term, it helps control the normals’
ength to improve the accuracy of normal computation. Removing
his term may lead to a slight performance degradation. According
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Fig. 6. Comparison on sharp feature preservation. The model ‘Star’ at the top is with 2.0% Gaussian noise. The ‘Polyhedron’ in the bottom is with 1.5% Gaussian noise.
Fig. 7. Our method is effective on non-uniform point clouds. Here we show some
experimental results on the Kinect v1 dataset from [10], where the point clouds are
captured using depth images from a Kinect camera and are non-uniform on the object
surface. The input and results are visualized using the mesh connectivity provided by
the Kinect v1 dataset.

Fig. 8. Ablation study results on the Bunny Model with 10 K points and 1% Gaussian
noise. (a) Without 𝐸disp, the preservation of shape is compromised, resulting in a poor
outcome. (b) Without 𝐸unit, the performance suffers particularly in areas with prominent
features, while smoother areas are relatively better preserved. (c) Without 𝐸reg, the
optimization will reach the minimum and terminate at the beginning.

to Eq. (1), the core term 𝐸reg cannot be disregarded in the optimization.
The optimization fails to proceed without this regularization term as all
the energy is minimized.

To demonstrate the effectiveness of gradually decreasing the value
of 𝛼, in Fig. 9 we compare our results with alternative settings with
a fixed parameter value of 𝛼 = 2 and 𝛼 = −∞, respectively. We can
see that with a fixed 𝛼 = 2, the resulting 𝓁2-norm metric can cause
over-smoothing and fail to preserve details. With a fixed 𝛼 = −∞,
the result achieves better preservation of details thanks to the use of
Welsch function as a robust norm, but there are still areas with large
9

Fig. 9. Comparison on different metric settings using Gargoyle model with 20 K points
and 1.0% Gaussian noise. From left to right, top to bottom, the noisy input data, our
adaptive metric result, result from 𝓁2-norm (𝛼 = 2), Welsch function (𝛼 = −∞).

deviations from the ground-truth shape. This is because the noisy input
point cloud is not a suitable initial solution for the Welsch-function-
based formulation, and the solver produces a local minimum that is still
far away from the desirable result. In contrast, our strategy of gradually
changing 𝛼 helps to steer the point cloud towards a desirable solution,
achieving a notably better outcome than fixing 𝛼.

5. Discussion and conclusion

In this paper, we present a novel point cloud denoising method
based on a generalized robust metric. By optimizing the objective
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function with an adaptive metric setting, the point cloud can be effec-
tively denoised with features being successfully preserved. We demon-
strate that our approach achieves state-of-the-art performances com-
pared with representative methods in the field.

In the future, we would like to further improve the method in
the following directions. First, although the optimal parameters of our
method lie within a small range, they still need to be manually chosen
according to the level of noise and the sharpness of prominent features.
A strategic and systematic parameter setting optimization is worth
exploring. Second, currently our method cannot handle extremely noisy
data with outliers. A preprocessing step of outlier removal may be
added to enhance its robustness in the future. Lastly, although we do
not observe topological changes resulting from our denoising algorithm
in our experiments, our current framework does not guarantee the
preservation of topology. This is because it uses KNN to determine
the neighbors of a point: as KNN is based on the Euclidean distance,
points that are nearby in the ambient space but far away on the
underlying surface may be mistakenly treated as neighbors, which can
potentially lead to topological changes. Improving our method with
topology preservation guarantee will be an interesting future work.
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Appendix A. Verification of surrogate functions

In this section, we first show that the function in Eq. (18) is indeed
a surrogate function for the target function in Eq. (15), i.e., they satisfy
the surrogate function conditions given in Eq. (16). We note that the
first three terms in Eq. (15) are already convex quadratic and are used
directly in Eq. (18). Thus we only need to verify the property for the
10

i

term 𝐸reg, which amounts to showing that given 𝑥0 ≥ 0, the quadratic
function

𝜙̄(𝑥; 𝑥0) = 𝛹 (𝑥0) ⋅ 𝑥2 + 𝛩(𝑥0)

s a surrogate function for the function 𝜙𝛼,𝑐 in Eq. (14) with 𝛼 ≥ 2,
nd the coefficient functions 𝛹,𝛩 are defined in Eqs. (19) and (20),
espectively. Since it is trivial to verify the first condition of Eq. (16), we
ill focus on the second condition, namely that the surrogate function
ounds the original function from above.

We first consider the cases 𝛼 = 2 and 𝛼 = −∞. The former case is
rivial as the function 𝜙𝛼,𝑐 is already quadratic. The latter case has been
erified in [60].

Next, we consider the case where −∞ < 𝛼 < 2. We compute the
erivative functions of 𝜙𝛼,𝑐 (𝑥) and 𝜙̄(𝑥; 𝑥0) as

𝜙′
𝛼,𝑐 (𝑥) =

𝑥
𝑐2

(

(𝑥∕𝑐)2

|𝛼 − 2|
+ 1

)(𝛼−2)∕2

,

̄′(𝑥; 𝑥0) =
𝑥
𝑐2

(

(𝑥0∕𝑐)2

|𝛼 − 2|
+ 1

)(𝛼−2)∕2

.

ince 𝛼 < 2, we have
(

(𝑥∕𝑐)2

|𝛼 − 2|
+ 1

)(𝛼−2)∕2

>
(

(𝑥0∕𝑐)2

|𝛼 − 2|
+ 1

)(𝛼−2)∕2

if 𝑥 < 𝑥0,

(

(𝑥∕𝑐)2

|𝛼 − 2|
+ 1

)(𝛼−2)∕2

<
(

(𝑥0∕𝑐)2

|𝛼 − 2|
+ 1

)(𝛼−2)∕2

if 𝑥 > 𝑥0.

Therefore,

𝜙′
𝛼,𝑐 (𝑥) ≥ 𝜙̄′(𝑥; 𝑥0) ∀𝑥 ∈ [0, 𝑥0),
′
𝛼,𝑐 (𝑥) < 𝜙̄′(𝑥; 𝑥0) ∀𝑥 ∈ (𝑥0,+∞).

ince 𝜙𝛼,𝑐 (𝑥0) = 𝜙̄(𝑥0; 𝑥0), then for any 𝑥 ∈ [0, 𝑥0) we have

̄(𝑥; 𝑥0) = 𝜙̄(𝑥0; 𝑥0) − ∫

𝑥0

𝑥
𝜙̄′(𝑥; 𝑥0)𝑑𝑥

≥ 𝜙𝛼,𝑐 (𝑥0) − ∫

𝑥0

𝑥
𝜙′
𝛼,𝑐 (𝑥)𝑑𝑥

= 𝜙𝛼,𝑐 (𝑥).

nd for any 𝑥 ∈ (𝑥0,+∞) we have

̄(𝑥; 𝑥0) = 𝜙̄(𝑥0; 𝑥0) + ∫

𝑥0

𝑥
𝜙̄′(𝑥; 𝑥0)𝑑𝑥

≥ 𝜙𝛼,𝑐 (𝑥0) + ∫

𝑥0

𝑥
𝜙′
𝛼,𝑐 (𝑥)𝑑𝑥

= 𝜙𝛼,𝑐 (𝑥).

herefore, 𝜙̄(𝑥; 𝑥0) ≥ 𝜙𝛼,𝑐 (𝑥) if 𝑥 ≥ 0. Since both 𝜙̄(𝑥; 𝑥0) and 𝜙𝛼,𝑐 (𝑥) are
even functions, we have

𝜙̄(𝑥; 𝑥0) ≥ 𝜙𝛼,𝑐 (𝑥) ∀𝑥 ∈ R,

which completes the proof.
Using the same arguments, we can verify that the function in

Eq. (25) is a surrogate function for the target function in Eq. (23).

Appendix B. Proof of Proposition 3.1

We first prove the following:
Lemma B.1. The 𝐍-update step in Eq. (17) satisfies:

𝐸(𝐏(𝑘),𝐍(𝑘+1)) ≤ 𝐸(𝐏(𝑘),𝐍(𝑘)). (30)

Moreover, 𝐸(𝐏(𝑘),𝐍(𝑘+1)) = 𝐸(𝐏(𝑘),𝐍(𝑘)) if and only if 𝐍(𝑘+1) = 𝐍(𝑘), which
is equivalent to the condition that 𝜕𝐸

𝜕𝐍
(𝐏(𝑘),𝐍(𝑘)) = 𝟎.

Proof. Let 𝑄(𝐍) denote the target function in Eq. (15). Since 𝐍(𝑘+1)

s the global minimum of its surrogate function 𝑄̄(𝐍;𝐍(𝑘)), we have
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𝑄̄(𝐍(𝑘+1);𝐍(𝑘)) ≤ 𝑄̄(𝐍(𝑘);𝐍(𝑘)). Combined with the conditions (16) for
surrogate functions, we have:

𝑄(𝐍(𝑘+1)) ≤ 𝑄̄(𝐍(𝑘+1);𝐍(𝑘)) ≤ 𝑄̄(𝐍(𝑘);𝐍(𝑘)) = 𝑄(𝐍(𝑘)), (31)

i.e., the update to 𝐍(𝑘+1) does not increase the value of function 𝑄. The
Eq. (30) follows from the fact that the difference between 𝑄(𝐍) and
𝐸(𝐏(𝑘),𝐍) is a constant.

Next we show 𝐸(𝐏(𝑘),𝐍(𝑘+1)) = 𝐸(𝐏(𝑘),𝐍(𝑘)) if and only if 𝐍(𝑘+1) =
𝐍(𝑘). Obviously, if 𝐍(𝑘+1) = 𝐍(𝑘) then 𝐸(𝐏(𝑘),𝐍(𝑘+1)) = 𝐸(𝐏(𝑘),𝐍(𝑘)).
On the other hand, if 𝐸(𝐏(𝑘),𝐍(𝑘+1)) = 𝐸(𝐏(𝑘),𝐍(𝑘)), then 𝑄(𝐍(𝑘+1)) =
𝑄(𝐍(𝑘)), and Eq. (31) means that

𝑄̄(𝐍(𝑘+1);𝐍(𝑘)) = 𝑄̄(𝐍(𝑘);𝐍(𝑘)). (32)

Since 𝑄̄(𝐍;𝐍(𝑘)) is a strongly convex quadratic function, it has a unique
minimizer. Since 𝐍(𝑘+1) is a minimizer of 𝑄̄(𝐍;𝐍(𝑘)), Eq. (32) implies
that 𝐍(𝑘+1) = 𝐍(𝑘).

Finally, we show that 𝐍(𝑘+1) = 𝐍(𝑘) is equivalent to the condition
that 𝜕𝐸

𝜕𝐍
(𝐏(𝑘),𝐍(𝑘)) = 𝟎. 𝐍(𝑘+1) = 𝐍(𝑘) if and only if 𝐍(𝑘) is a minimizer

f 𝑄̄(𝐍;𝐍(𝑘)), which means that ∇𝑄̄(𝐍(𝑘);𝐍(𝑘)) = 𝟎. From the surrogate
function conditions (16) we have

∇𝑄(𝐍(𝑘)) = ∇𝑄̄(𝐍(𝑘);𝐍(𝑘)) = 𝟎.

ince 𝐸(𝐏(𝑘),𝐍) and 𝑄(𝐍) differ by a constant, we have
𝜕𝐸
𝜕𝐍

(𝐏(𝑘),𝐍(𝑘)) = ∇𝑄(𝐍(𝑘)) = 𝟎,

hich completes the proof. □

Similarly, we can prove the following:

emma B.2. The 𝐏-update step in Eq. (24) satisfies:

𝐸(𝐏(𝑘+1),𝐍(𝑘+1)) ≤ 𝐸(𝐏(𝑘),𝐍(𝑘+1)). (33)

Moreover, 𝐸(𝐏(𝑘+1),𝐍(𝑘+1)) = 𝐸(𝐏(𝑘),𝐍(𝑘+1)) if and only if 𝐏(𝑘+1) = 𝐏(𝑘),
which is equivalent to the condition that 𝜕𝐸

𝜕𝐏
(𝐏(𝑘),𝐍(𝑘+1)) = 𝟎.

Then we prove Proposition 3.1:

roof of Proposition 3.1. From Lemma B.1 and Lemma B.2 we have

(𝐏(𝑘+1),𝐍(𝑘+1)) ≤ 𝐸(𝐏(𝑘),𝐍(𝑘+1)) ≤ 𝐸(𝐏(𝑘),𝐍(𝑘)), (34)

hich proves Eq. (28).
If 𝐸(𝐏(𝑘+1),𝐍(𝑘+1)) = 𝐸(𝐏(𝑘),𝐍(𝑘)), then from Eq. (34) we have

𝐸(𝐏(𝑘+1),𝐍(𝑘+1)) = 𝐸(𝐏(𝑘),𝐍(𝑘+1)) = 𝐸(𝐏(𝑘),𝐍(𝑘)). (35)

Then from Lemma B.1 we have 𝐍(𝑘+1) = 𝐍(𝑘), and from Lemma B.2 we
have 𝐏(𝑘+1) = 𝐏(𝑘). On the other hand, if 𝐏(𝑘+1) = 𝐏(𝑘) and 𝐍(𝑘+1) = 𝐍(𝑘),
then Eq. (35) follows from Lemma B.1 and Lemma B.2. This proves
the equivalence between 𝐸(𝐏(𝑘+1),𝐍(𝑘+1)) = 𝐸(𝐏(𝑘),𝐍(𝑘)) and 𝐏(𝑘+1) =
𝐏(𝑘),𝐍(𝑘+1) = 𝐍(𝑘).

If 𝐏(𝑘+1) = 𝐏(𝑘),𝐍(𝑘+1) = 𝐍(𝑘), then from Lemma B.1 and Lemma B.2
we have 𝜕𝐸

𝜕𝐍
(𝐏(𝑘),𝐍(𝑘)) = 𝟎 and

𝜕𝐸
𝜕𝐏

(𝐏(𝑘),𝐍(𝑘)) = 𝜕𝐸
𝜕𝐏

(𝐏(𝑘),𝐍(𝑘+1)) = 𝟎. (36)

On the other hand, if ∇𝐸(𝐏(𝑘),𝐍(𝑘)) = 𝟎, then from Lemma B.1 we
have 𝐍(𝑘+1) = 𝐍(𝑘), which implies Eq. (36). Then it follows from
Lemma B.2 that 𝐏(𝑘+1) = 𝐏(𝑘). This proves the equivalence between
𝐏(𝑘+1) = 𝐏(𝑘),𝐍(𝑘+1) = 𝐍(𝑘) and the condition ∇𝐸(𝐏(𝑘),𝐍(𝑘)) = 𝟎, which
completes the whole proof. □
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