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ABSTRACT This work presents a framework for coffee maturity classification from multispectral image
data based on Convolutional Neural Networks (CNNs). The system leverages the use of multispectral image
acquisition systems that generate large amounts of data, by taking advantage of the ability of CNNs to extract
meaningful patterns from very high-dimensional data. We validated the use of five different popular CNN
architectures on the classification of cherry coffee fruits according to their ripening stage. The different
models were trained on a training dataset balanced in different ways, which resulted in a top accuracy higher
than 98% when applied to the classification of 600 coffee fruits in 5 different stages of ripening. This work
has the potential of providing the farmer with a high-quality, optimized, accurate and viable method for
classifying coffee fruits. In order to foster future research in this area, the data used in this work, which was
acquired with a custom-developed multispectral image acquisition system, have been released.

INDEX TERMS Coffee maturity classification, convolutional neural network, data augmentation, deep
learning, multispectral images, transfer learning.

I. INTRODUCTION perspectives. Since quality control influences the viability

Nowadays, one of the most important aspects for consumers
in the agricultural industry is product quality. Traditionally,
the inspection process is carried out manually, which is
time-consuming, subjective, and unreliable. For this reason,
a great effort is being made by the scientific community to
develop automatic systems that help to improve the inspec-
tion process, from the time consumption and consistency
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of products, agricultural commodity producing countries are
investing significant research efforts in automated quality
monitoring and control [1].

One of the research approaches uses machine vision sys-
tems [2]-[5]. Thanks to significant advances in this field,
including the possibility of using measurements invisible to
the human eye, many applications have been developed, and
sorting processes for different types of fruits and vegetables
have been improved. [6], [7]. Recently, hyperspectral imag-
ing technology has shown significant growth in the field of
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produce grading [8]. These systems are considered useful
for the industry from two perspectives: the first is from the
artificial vision that has been widely studied and on which
there is enough information available, and the second is from
the capability to generate large amounts of data, which is seen
as one of the challenges of Industry 4.0 [9]. The hyperspectral
systems capture the spectral signature of fruits and vegeta-
bles, which provides a large amount of information on their
quality [10]. This increased discriminant capacity comes at
the expense of increased acquisition time, so they are not
implemented in industries with massive sorting needs [11]
Therefore, an alternative that preserves space, the increased
feature, and can work at higher speeds is to employ multi-
spectral systems. These systems capture data from multiple
informative wavelengths and have an appropriate speed for
industrial implementations.

Multispectral and hyperspectral vision systems provide
measurements about both the spatial configuration of objects
and their spectral characteristics. Thus, a three-dimensional
hypercube of information is generated, where two of the
dimensions correspond to space in the same way as a conven-
tional vision system, while the third dimension corresponds
to the spectral response. These systems have diversified in
recent years and can be divided into several groups, depend-
ing on the method for discriminating wavelengths, acquir-
ing information from the hypercube, or the amount of data
collected.

Both multispectral and hyperspectral machine vision sys-
tems have been developed to study persimmon and nectarine
citrus fruits [12]-[15] with better results than traditional
vision systems. Taghizade [16] compares a classical RGB
system against a hyperspectral system from 400 to 1100 nm
to estimate mushroom quality by calculating the L component
of the Hunter LAB space. Jianwei Qin et al. [17] developed
a multispectral citrus cancer detection system mounted on
a commercial fruit sorting machine; working at a rate of
60 frames per second and joins two cameras with specific
filters at 730 and 830nm to obtain an accuracy of 95.3%.
Xing et al. [18], used a hyperspectral system to determine
the optimal wavelengths for detecting mechanical damage
in Golden Delicious apples and then classify the bruises
using the four wavelengths that provide the most information.
These wavelengths were established by a Principal Com-
ponent Analysis (PCA)-based procedure. Baohua Zhang [4]
evaluated the consistency of apple damage search algo-
rithms between a 6-wavelength multispectral system and a
600 nm effective range (400 - 1000nm) hyperspectral system.
Bennedsen and Peterson in 2005 [19] developed a multi-
spectral vision system to detect surface defects in apples.
The system employs two optical filters at 740 and 950 nm,
respectively. Eight apple varieties with a classification rate
between 78% and 92% were used.

In Colombia, coffee cultivation is an important industry,
and there are currently great efforts to improve the efficiency
of the harvest and post-harvest processes [20]. According to
international standards, it is necessary to achieve very high
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TABLE 1. Results achieved by the researchers.

Research Numbe.r of Accuracy
categories
Bazame [30] 3 86.0%
Buitrago [31] 4 95.0%
Costa [32] 3 100%
Manrique [29] 2 99.0%
Montes [27] 4 75.7%
Ramos [26] 4 95.0%
Sandoval [25] 11 92.5%
Tamayo [28] 5 93.9%

performance in quality control to produce Colombian mild
coffee. In fact, the price of coffee improves when at least 98%
of ripe coffee fruits can be guaranteed [21], particularly with
specialty coffees that have a higher commercial value due
to their better quality, acquired by more efficient cultivation,
and a rigorous selection process according to the state of
ripening, to guarantee the levels of sweetness and acidity of
the final product, among others [22], [23]. In practice, manual
harvesting is the only possible option for coffee producers,
increasing the total cost of production without having a
product with guaranteed quality levels. However, technology
advances in precision agricul-ture and agriculture 4.0 pose the
challenge of involving machine learning and deep learning
techniques to improve coffee processes [24]. Particularly the
quality of the fruit to guarantee the production of specialty
coffees.

Although most coffee classification studies are realized
after the pulping process, there are some examples of cherry
fruit classification in the literature, based on the color of the
epidermis, according to the stage of ripening. 6 uses coffee
cherries according to the number of weeks after planting,
between 26 and 33 weeks. This work reports two classifi-
cation methods, the first one, a Bayesian method with an
accuracy of 94.5% and the second one a neural network with
an accuracy of 92.5%. Ramos [26] reports a classification
accuracy between 94.8%, and 99.6% for four different ripen-
ing stages (immature, semi-mature, mature and overripe).
Montes [27] reports an average efficiency of 75.7% for clas-
sification among the same four different stages, with a rate
of 25 fruits per second, using an FPGA as the deployment
method.

Tamayo [28] shows a KNN sorter with an efficiency of
93.9% with a division into five different stages, including
the dry fruit. Manrique [29] ensures a classification accuracy
higher than 99.0% in the mature stage using multispectral
information and an LDA classifier.

Table 1 shows a compilation of some results reported by
different researchers, which seek to classify cherry coffee
fruits at different stages of ripening, with an emphasis on
color.

Artificial neural networks have been a widely used tool
to identify the main features present in the large amount of
data generated by spectral systems [33]. Particularly Con-
volutional Neural Networks (CNNs) [34] have seen great
development in imaging because they contain several hid-
den layers [35] with hierarchies to detect the basic mor-
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phologies of images in the first layers, and deeper layers
that recognize complex shapes and unconventional color
structures. In Lukas Cavigelli [36] they achieve a vehicle
classification rate of over 99%, by incorporating spectral
images and convolutional networks into the classification
task. Jingxiang Yang [37] shows how to efficiently fuse infor-
mation from multispectral and hyperspectral systems through
feature extraction with fully connected layered neural net-
works. Li and Liu [38],proposed a compression method for
multispectral images based on CNNs, where the compres
sion improves computational efficiency without affecting the
image quality. Reinel Tabares [39] proposed to compare
multiple deep learning and machine learning algorithms for
multiclass classification tasks.

In this study, the convolutional neural network architec-
tures VGG16 [40], VGG19 [41], Inception-ResNetV2 [42],
InceptionV3 [43], and DenseNet201 [44] are explored in
different experiments to extract the characteristics of the
spectral images of coffee fruits in different stages of ripen-
ing to determine which of them achieves the best results
compared with the traditional classification carried out by
experts who evaluate the color tonalities present in the skin
of the fruits at the moment of harvesting. For this pur-
pose, 4 experiments were carried out, implementing the tech-
niques of unbalance balancing, subsampling, oversampling,
and weighting on the training data. Once the database was
balanced, the Deep Learning models mentioned above were
trained with and without applying transfer learning (TL) on
a model pre-trained on the popular ImageNet dataset [45].
Some of our TL experiments achieved an accuracy of 100%
in a 10-fold cross-validation procedure.

Based on these criteria, we consider that this paper presents
a significant advance for the agriculture of the region since
having the certainty of the state of maturation of the harvested
fruits increases the final quality of the product, which again is
a trend of precision agriculture and agriculture 4.0, especially
for Colombian specialty coffees. Our multispectral database
and GitHub repository will be available to the public as a final
contribution so that the community can use the same data to
replicate the results presented in this research, as well as using
it future research and algorithms.

The paper is organized as follows. Section II presents the
acquisition system, the dataset, and the proposed methodol-
ogy. Section III provides the experimental results, which are
then discussed in Section IV. Finally, the paper concludes in
Section V.

Il. METHODOLOGY

A. CHERRY COFFEE

We performed a series of experiments using a total of
640 cherry coffee fruits of Arabica type Caturra variety [46],
[47], which is a variety grown in the department of Caldas,
Colombia. These fruits were harvested during the first harvest
period of the year 2020 and were classified by expert coffee
growers, into 5 different categories, as shown in Figure 1.
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FIGURE 1. Different stages of ripening in cherry coffee fruit.

in this technique, the traditional way of classifying the fruit
an expert observes the changes of coloration in the epidermis
of the fruit [48]. These color changes span from green in the
immature state, go through different shades of yellow and
orange during semi-mature stages until reaching the reds in
the mature state. Once the fruit has passed the mature stage,
they show violet shades until reaching a dark brown fruit
when they are dry. Although color sorting is the most widely
implemented due to its ease and speed, it has several prob-
lems, among them the non-homogeneous color that is present
throughout the skin, due to non-uniform maturation [31].
This phenomenon can be observed when zooming in on one
of the semi-mature fruits shown in Figure 1. Color change
correlated with maturation starts at the lower part of the fruit
until it reaches the peduncle attached to the tree. Due to
this lack of homogeneity, the color should be observed on
the fruit’s entire surface so the correct ripening stage can be
inferred, showing the importance of the use of cameras.

B. ACQUISITION SYSTEM
Traditional RGB image capture systems capture only three
wavelengths corresponding to the colors red, green, and blue.
With this information, they can reproduce the color of objects
in a similar way to the human eye. By contrast, a multispectral
vision system can acquire a larger number of wavelengths to
generate an increased feature space that can improve classi-
fication processes. These systems require a wide spectrum
camera to capture information from the visible spectrum to
some wavelengths outside of it [49]. Also, they require an
illumination source that contains all the wavelengths to be
captured and different filters to separate this information [50].

The proposed multispectral system is a proprietary design,
which is calibrated and validated within a spectral range
of 400 to 1000 nm and can be seen in detail in [51]. This
system has three main elements: The broad electromagnetic
spectrum camera, a controlled illumination environment to
improve image quality, and a narrow bandwidth LED illu-
mination corona to generate the necessary illumination at
different wavelengths.

The wideband electromagnetic spectrum camera is a
monochrome Flea3 FL3-GE-03SIM-C (FLIR PointGrey,
Wilsonville, Oregon, USA). It has a 1/4” Sony ICX618
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FIGURE 2. LED crown with spectral camera.

CCD sensor with 0.3 megapixels (640 x 480 pix-
els) and an acquisition rate of 120 frames per sec-
ond. It captures information between 300 and 1000 nm,
comprising the entire visible spectrum and part of the
near-infrared NIR.

The illumination space is controlled to improve the images’
quality, reducing problems generated by glare and shadows,
and avoiding the influence of ambient light. This space was
designed based on the application to perform the training of
the machine learning systems with the best possible image
quality; this structure has walls that eliminate the external
light and reflect the internal light, so that the generated illumi-
nation is dispersed and, brightness and shadows are reduced,
thus improving the image quality by generating more useful
information.

The third element, the illumination system, is responsible
for generating illumination at different wavelengths sepa-
rately to identify the reflectance of each one. This system is
designed as a circular crown with 15 different wavelengths
between 400 and 1000nm, 30 different power LEDs of 1 watt
with a bandwidth (1) of les than 20nm. Figure 2 shows the
camera attached to the LED crown, with the array of LEDs,
the drivers, and in the back the microcontroller in charge
of generating a pulse width modulation (PWM) control to
modify the amount of light emitted; a camera trigger control
to facilitate synchronization between the illumination; and a
serial communication port to perform the configuration of
the light trigger times, in order to adjust to different envi-
ronments and generate the best possible image. The crown is
designed to multiplex each of the wavelengths independently
with different trigger times to be calibrated to generate a
uniform response at each wavelength. For the coffee tests, the
13 wavelengths within the visible spectrum represent the dif-
ferent features of color, and an additional pair of wavelengths
in the near-infrared is used to study additional non-visible
characteristics. The table 2 shows the wavelengths selected
and the manufacturers’ bandwidths; both were selected
so that they cover the greatest percentage of the visible
spectrum.
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TABLE 2. Selected wavelangeths LEDs.

Wavelength (nm) Color A

410
450
470
490
505
530
560
590
600
620
630
650
720
840 NIR

950 NIR 50

TABLE 3. Number of images per ripening stage.

Ripening stage Number of images

Inmature 130

Semi-mature 160

Mature 160

Overripe 112

Dry 78
C. DATABASE

The database has 640 images of cherry coffee fruits in dif-
ferent stages of ripening. These images were captured with
dimension of 480 x 640, and 15 channels (each channel
represents a different wavelength). They were also resized to
224 x 224 x 15 to be accepted by the computational models
in order to apply transfer learning and to optimize the training
process. The number of fruits per ripening phase is shown in
Table 3.

The database has been released for use by the scien-
tific community and will be available at the following link:
https://doi.org/10.5281/zenodo.4914786

D. CLASSIFICATION

Traditionally, image classification problems have been solved
using CNNs. This paper compares the performance of dif-
ferent CNN based models present in the Keras library which
includes MobilNet, Xception and EfficieNet, among others,
where all models were tested and only the 5 best performing
models were chosen, then these were used carefully in the
four experiments. The experiments take advantage of TL to
improve both training resource requirements and accuracy
and their convergence. The CNN architectures explored in
this work are as follows:

VGG-16 and VGG-19 network structures are very regular,
there are not so many hyperparameters, and they focus on
building a simple and deep network, with several convolu-
tional layers in a row [40] [41]. On the other hand, Inception-
V3 is based on inception modules. These use a series of
parallel convolutions with different kernel sizes for feature
extraction. The input image is projected through a sequence
of convolutional and pooling layers for feature extraction.
[43] Inception-ResNet-V2 uses a sophisticated architecture
to retrieve the essential features from the images. The initial
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layers of the network consist of standard convolutional layers
followed by a maximum pooling layer. The next stage con-
sists of simultaneously convolving one input using different
filter sizes for each convolution and then concatenating them.
The next parts of the network repeat 10 or 20 times the inputs
and the network uses dropout layers to make the filter values
equal to 0 to avoid overfitting [42].

Finally, DenseNet was proposed to solve the leakage gra-
dient problem, which it solves using a ResNet, as it preserves
the information through additive identity transformations,
thus increasing the complexity of the model. DenseNet uses
layer-to-layer connectivity and connects each previous layer.
It uses dense blocks, and feature maps from all later layers
are used as inputs to all later layers. [44]

E. TRANSFER LEARNING

The models were trained with and without using TL. The
weights of the base model were obtained by training on
ImageNet, a dataset with millions of images, and 1000 pos-
sible labels [45]. Since we work on 15-channel data, it is
not possible to apply TL on the default configuration of the
neural networks with the pre-trained weights of ImageNet.
Therefore, fine tuning is performed on the first convolutional
layer was configured so that the neural network could read
15-channel images. This was achieved by averaging the three
pre-trained weights and then replicating it 15 times in this
convolutional layer.

The neural networks were configured so that the first layers
of the network were not trained, in order to take advantage of
the general characteristics learned from the models with the
ImageNet dataset and leaving the deeper layers as trainable,
thus extracting the more complex characteristics of the coffee
fruits, optimizing the training process and helping the model
to converge faster and achieve better results.

Figure 3 shows the architecture of the VGG16 model used
for the classification of the different stages of coffee ripening.

The red boxes are the blocks that were left untrained in
order to use TL and allow the model to obtain better feature
extraction properties with respect to our database. The other
blocks were set as trainable, allowing the model to adapt in a
better way to the database and better classify the coffee fruits.

In addition, for each network used, a variation of the
trainable layers was performed in order to obtain the appro-
priate layers for our problem. Therefore, the trainable and
non-trainable layers of the models used are mentioned below:

o VGGI16 has 16 trainable layers, of which the first five
were left fixed and the other layers were left trainable,
modifying the fully connected layers by 256 and 128.

o VGG19 has 19 trainable layers of which the first 7 were
left untrained and the others were left trainable, modify-
ing the fully connected layers by 256 and 128.

o DenseNet201 has 706 trainable layers of which the first
150 were left untrained and the others were left train-
able, also modifying the modules of the fully connected
layers.
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o InceptionV3 has 310 trainable layers of which the first
150 were left untrained and the other layers were left
trainable, also modifying the modules of the fully con-
nected layers.

o Inception-ResNetV?2 has 728 trainable layers of which
the first 150 were left un-trained and the others were
left trainable, also modifying the modules of the fully
connected layers.

F. HYPERPARAMETER OPTIMIZATION

Initially, we focused on fine tuning, this step is explained
in detail in Section II E Transfer Learning. We then carried
out an exhaustive search to determine the appropriate number
of fully connected hidden layers for the model classification
layers. Figure. Figure 3 shows the number of fully connected
hidden layers of the VGG16 model which is 256 for its first
dense block and 128 for the second one. Both blocks use
ReLu as non-linear activation functions. On the other hand,
we use batch normalization layers in the dense blocks of
the models, applying a transformation that keeps the output
mean close to 0 and the output standard deviation close
to 1, this type of normalization modifies its variance between
0 and 1. That said, we use the RelLu activation function after
batch normalization for the fully connected layer, as shown
in Figure 3 allowing the deeper networks to converge more
easily. We also searched for the best optimizer for the five
chosen models, among multiple optimizers such as Adam,
Adamax, Adamgrad, SGD, among others provided by Keras,
finally choosing the Adam optimizer. The output layer was
adjusted to the number of classes contained in the dataset,
and with a Softmax activation function. Finally, the Learning
Rate Scheduler function allows the model to decrease the
learning rate as time passes. Thus, the model learns more
slowly which allows to find with higher probability a local
minimum or global minimum, as a consequence the model
converges more quickly. This model was trained for an initial
learning rate of 0.0001 for the initial epoch and finally, the
Learning Rate Scheduler function allowed us to modify the
learning rate down to 0.000001 after 100 epochs.

G. CROSS-VALIDATION

Machine learning models often do not generalize adequately
when trained on a small database, or often the results vary
significantly, so splitting the data into training, validation and
testing is not the best approach when you have a database with
little information. Therefore, cross-validation (CV) is used
to assess model generalization when a small volume of data
is available. CV divides the dataset into equal amounts, also
known as folds, defined by the experimenter. If an experi-
menter decides to take 5 folds, the data set is divided into
5 equal parts training is performed with 4 folds and testing
with 1. Subsequently, the test set is passed to the training
set and one fold from training is passed to testing. This
is repeated until all possible combinations are completed,
ensuring that all data pass at least once through the training
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FIGURE 3. Trainable and non-trainable layers of the VGG16 model used by TL training.

and once through the test, evaluating the generalization of the
model [52].

H. METRICS
The metrics used to evaluate the generalization performance
of the models in this work are the same as those utilized in

the literature [53]:
o Accuracy: this measures the overall percentage of sam-

ples that the model has correctly classified, allowing us
to measure the quality of the model and the number of
hits.

« Average recall: the recall metric calculates what portion
of the true positives the model correctly classified as
positive. This metric is used to select the best model
when there is a high cost associated with false negatives.

« Precision: this is the fraction of all relevant instances
divided by the instances obtained. It is used to measure
the quality of the model, identifying the positive predic-
tions that were actually correct.

o Fl-score: this is used to combine the precision and recall
measures into a single value. This is practical because it
makes it easier to compare the combined performance
of accuracy and completeness(recall) between various
solutions, regardless of whether the test set is balanced
or not. It should also be noted that it is the most widely
used metric to measure the classification capability of a
model in unbalanced databases.

o Standard deviation [o]: this number describes how
spread out the values are. A low standard deviation (SD)
means that most of the numbers are close to the
mean (average) value. A high SD means that the values
are spread out over a wider range. [54]

lIl. EXPERIMENTS AND RESULTS
Our experimental protocol included one training and one
inference run with the dataset as it was collected. The original
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dataset is slightly unbalanced, so in addition to the experiment
with the unbalanced dataset, other experiments were carried
out utilizing as input the dataset balanced using the following
three techniques:

1) Balancing to the smallest class (78 images per cate-
gory).

2) Balancing to the largest class, generating an artificial
increase of data (160 images per category).

3) Adjusting the model parameters by obtaining weights
for the training data, penalizing the class with more
data, and giving more importance to the class with
fewer data.

The Keras class weight library can set the class weight
for each class when the data set is unbalanced. For
example, if we have 5000 samples of a class “x”
and 45000 samples of a class ““y”, then the weighting
obtained by class weight would be 0:5, 1:0.5. That gives
class “x” 10 times the weight of class “y”, which
means that in its loss function it assigns a higher value
to these instances.

The loss becomes a weighted average when the weight
of each sample is specified by class weight and its
corresponding class.

Using this technique, the following weights were
obtained for each class in Table 4:

For the best performing experiment, a distribution of
70% for training data and 30% for test data was guaran-
teed. And finally, 20% of the training data was used for
validation.

A. EXPERIMENT 1: UNBALANCED

All CNNs were trained with an unbalanced data distribution
as shown in Table 3. Table 5 shows a comparison between
the results of the 10-fold cross-validation without applying
TL and applying TL.

VOLUME 10, 2022
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TABLE 4. Weights calculated by Keras class weigth library for balancing
data.

Ripening stage Class weight

Inmature 0.9955
Semi-mature 0.8000
Mature 0.7593
Overripe 1.2108
Dry 1.6592

B. EXPERIMENT 2: DOWNSAMPLING

For this experiment, the models were trained to use a dataset
balanced by subsampling according to the minority class,
which in this case was the dry class. The balanced data set
contains 78 images per class. The results achieved by this
experiment are shown in Table 6.

C. EXPERIMENT 3: UPSAMPLING

For this experiment, the data were artificially up-sampled,
so that 160 images per class were available at training time.
This data balancing was achieved by randomly rotating, trans-
lating, and reflecting the images corresponding to all classes
except the majority one. This sort of data preprocessing
allowed our model to achieve 97.18% accuracy when transfer
learning was applied and 97.81% accuracy without applying
TL, as shown in Table 7.

D. EXPERIMENT 4: WEIGHTING

In this experiment, instead of balancing the dataset before
training, the training procedure was modified by utilizing a
loss function weighted according to the class frequencies in
the dataset and thus allowing the training samples to have
an influence that is proportional to these frequencies: the
under represented class ends up being more influential. The as
signed weights are shown in Table 4. The accuracies obtained
are as follows: up to 98.75% when using 10-fold cross-
validation without TL and 99.84% by applying TL as shown
in Table 8.

E. BEST CONFIGURATION

The best results were obtained during experiment 1, in which
the model DenseNet201 was trained by applying TL with
the unbalanced data, as shown in Table 3. Fine tuning the
model, previously trained on ImageNet, made training con-
verge faster and with better results, compared to the training
without TL, as shown in Table 5.

Figure 4 shows that the prediction improves as a function of
the epochs in both training and validation thus, showing that
the model has learned to classify coffee beans, with a high
percentage of accuracy, according to their ripening stages.

As can be seen in Figure 5, both the learning and validation
loss curves decrease in a very similar way as the epochs
increase, from which it can be deduced that the model does
not overfit.

In order to evaluate the proposed model for each class,
precision, recall and Fl-score metrics were calculated as
shown in Figure 6.
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FIGURE 6. Precision, recall and f1-score calculated for each class applying
transfer of learning in the DenseNet201 model.

The confusion matrix shown in Figure 7 helps us to observe
the errors that the model has and for which classes it is making
mistakes more frequently.

Finally, the ROC curve shown in Figure 8 represents the
true positives and false positives, which demonstrates the
success rate of our model for the five classes corresponding
to the stages of coffee ripening.

IV. DISCUSSION

In this paper, four experiments were carried out to demon-
strate the potential of CNNss in the classification of five differ-
ent coffee ripening stages; these different experiments aimed
to demonstrate the level of reliability of some of the most
popular convolutional neural network architectures and how
each can find different features, important to perform a clas-
sification process from multispectral images. In addition, this
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TABLE 5. Metrics calculated in the 10 folds cross-validation for the CNNs with the unbalanced database, without applying and applying TL.

Experiment 1: Unbalanced Dataset

Without Applying TL

Applying TL

CNN Accuracy Sensitivity Fl-score Accuracy Sensitivity F1-score

[%] SD [%] SD [%] SD [%] SD [%] SD [%] SD
VGG16 68.43 2121 68.12 2087 6405 2590 84.79 18.65 83.53 22.00 83.87 20.72
VGG19 6234 1339 65.64 1330 5841 15.60 92.39 2280  90.60 28.20  90.96 27.09
Inception-ResNetV2 ~ 99.06  1.25 99.05 1.23 98.99 1.34 100.00  0.00 100.00  0.00 100.00  0.00
InceptionV3 99.06 1.87 99.08 1.80 99.12 178 97.19 5.94 98.57 2.71 97.90 4.14
DenseNet201 9421 1527 9370 1681 92.54 2038 100.00 0.00 100.00  0.00 100.00  0.00

TABLE 6. Metrics calculated in the 10 folds cross-validation for the CNNs with the database balanced to the minor class (downsampling) without
applying transfer learning and applying transfer learning.

Experiment 2: Downsampling

Without Applying TL

Applying TL

CNN Accuracy Sensitivity F1-score Accuracy Sensitivity F1-score

[%] SD [%] SD [%] SD [%] SD [%] SD [%] SD
VGG16 71.01 1344 71.04 13.16 67.88 14.73  91.09 18.77  91.76 19.88  90.55 21.40
VGGI19 6299 2386 62.16 24.16 57.89 2887 93.90 9.79 96.24 5.27 93.92 8.71
Inception-ResNetV2  97.36  3.74 97.67 3.65 9736 3.77 99.37 1.87 99.49 1.52 99.44 1.67
InceptionV3 98.22 2.77 98.33 2.54 98.29  2.64 96.56 3.26 96.33 3.95 96.19 3.59
DenseNet201 94.66 7.83 9478  7.64 9391 942 100.00  0.00 100.00  0.00 100.00  0.00

TABLE 7. Metrics calculated in the 10 folds cross-validation for the CNNs with the database balanced to the class with the highest amount of
data (oversampling) without applying transfer learning and applying transfer learning.

Experiment 3: Artificially Increasing Data

Without Applying TL

Applying TL

CNN Accuracy Sensitivity F1-score Accuracy Sensitivity F1-score

[%] SD [%] SD [%] SD [%] SD [%] SD [%] SD
VGG16 91.87 7.32 9235 936 89.66 1092 80.00 19.15 81.75 20.10 7849 2271
VGG19 7093 1342 7249 1930 67.82 1836 8515 17.03 86.44 2049 8441 19.3]
Inception-ResNetV2  94.68  7.50 96.86  3.26 9526  6.57 97.18 5.62 97.88 4.18 97.40 5.28
InceptionV3 71.87 2039 76.73 1949 6799 22.64 9171 474 9352 3.38 9232  4.02
DenseNet201 97.81 3.64 98.04 3.39 97.81 3.72 97.18 354 97.40  3.65 97.19  3.75

TABLE 8. Metrics calculated in the 10 folds cross-validation for the CNNs implementing the weighting method without applying transfer learning and

applying transfer learning.

Experiment 4: Weighting

Without Applying TL Applying TL
CNN Accuracy Sensitivity Fl-score Accuracy Sensitivity Fl-score

[%] SD [%] SD [%] SD [%] SD [%] SD [%] SD
VGG16 83.28 2024 8723 17.89 81.54 2259 8500 1970 8731 1793 8251 22.63
VGG19 90.15 21.85 90.01 2222 89.55 2392 8593 22.64 8839 2362 8517 2531
Inception-ResNetV2 ~ 98.75  1.53 98.52 1.70 98.55 1.61 99.84 0.46 99.87 0.37 99.87 0.36
InceptionV3 97.03 634 97.59 541 96.94  6.40 94.06 521 9524 415 9372 528
DenseNet201 98.75 1.95 9891 1.59 98.84 1.60 99.06  2.33 99.17  2.07 99.07 232

study allows us to identify, from efficiency measures such as
precision and the F1-score, the impact of data augmentations
and different tradeoffs on the original database, in order to
present a possible benchmark for future research in the field
of agriculture-oriented machine learning. As a regulatory test
in this type of work, a 10 folds cross-validation is presented,
so that a generalization of the result can be identified and no
bias is incurred.

This work demonstrates the use of validated CNN architec-
tures, TL techniques, and data scaling, on the classification of
coffee fruit ripening from multispectral images. To the best
of our knowledge, these technologies had not been applied
to the coffee fruit ripening classification problem as reported
in the literature. In this study, 10 folds cross-validation was
implemented in order to validate the trained models and
calculate performance metrics. Given the low number of cap-
tured images in the database, analyzing these results shows
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a significant improvement in the mentioned metrics when
implementing TL with the ImageNet pre-trained weights.

The best results were obtained with an unbalanced data set
after applying TL, as shown in Table 5. 100% accuracy and
0% standard deviation were achieved using 10-fold cross-
validation for the Inception-ResNet v2 and the DenseNet
201 architectures. These results are very encouraging because
the experiment does not need synthetic data augmentation,
which on many occasions can prove to be negative because
of the potential biases introduced by data augmentation.
In Table 6, the DenseNet 201 model also had 100% accu-
racy after applying TL, but in this case, a data balancing
procedure was performed with respect to the lowest class,
which means that information was removed from the dataset,
a process that is not normally recommended in Deep Learning
tasks due to the biases and overfitting that a small dataset
may cause.
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respectively.

In Table 7 the accuracies are approximately 97% but with
standard deviations between 3.64% and 3.54% (with or with-
out TL) for the DenseNet201, which shows that an increase
of synthetic data in this type of problem does not guarantee
the best accuracies or the best generalization of the model.
We claim that this is due to the fact that generating a data
increase by adding synthetic samples, which may not align
with the real data generation process can cause certain biases,
worsening the results. Table 8 shows that when a class penalty
balancing is performed, the results are very encouraging with
TL, with an accuracy close to 98.75% and a standard devi-
ation close to 1.95%, leaving as evidence that this type of
balancing can be a good option for future research, in cases
where the imbalances are much larger than those tackled in
this publication. In Tables 5 to 8, it can be seen that the
best architectures, without applying TL are Inception V3 and
DenseNet 201. Applying TL, the best models are Inception
ResNetV2 and DenseNet 201. By observing the trend in the
results of the DenseNet 201 network and taking as reference
Table 5 with TL, a deep analysis of the experiment showed
that, as illustrated in Figures 5 and 6, during the training pro-
cess, the percentages in the validation set are close to 100%
without generating overfitting. Additionally, it is observed
that the training process has quickly converged, after just
30 epochs. Finally, Figures 7, 8 and 9, show that despite
the class imbalance in the experiment, the behavior of the
different metrics, the confusion matrix, and the ROC curves
are very stable and accurate for each class independently, evi-
dencing the good generalization of the models and discarding
the possibility of overfitting.

Along with this research article, the database and
code used for experimentation have been published at:
https://doi.org/10.5281/zenodo.4914786 and https://github.
com/BioAlTeam/Coffee-Maturity-Classification-using-Conv
olutional-Neural-Networks-and-Transfer-Learning. Thanks
to the experience gained in recent years by the different
members of the workgroup, we have been able to record and
recognize different combinations of techniques that can be
applied to classification processes from CNNs, and that can
improve classification systems such as the one presented in
this article. In this way, multispectral systems that generate
large amounts of information can benefit, both from the
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FIGURE 8. ROC curves of the proposed TL models with 95% confidence
interval. Note that classes 0 to 4 represent ‘dry, ‘mature’, ‘semi-mature’,
‘overripe’ and ‘immature’, respectively.

results found and from the possibility of comparison with a
reference.

V. CONCLUSION

In this work, we developed a total of four experiments for
the classification of cherry coffee fruit ripening stages, each
experiment comparing five different convolutional neural
network architectures and the application of TL. In these
experiments, the TL allows us to train the models more
efficiently, in addition to identifying the different techniques
for hyperparameter, optimization, class leveling and TL tech-
niques to experiment in training the models when classifying
the different stages of coffee ripening.

Five models well recognized for their efficiency were
used, namely VGGI16, VGG19, Inception-ResNet-V2,
Inception-V3, and DenseNet201, where the best results were
achieved by DenseNet201, in which it was not necessary
to use data augmentation, which can generate biases or
overtraining, but it is important to use TL. DenseNet201
under different accuracy metrics popularly used in this type
of experiments achieved up to 98% accuracy on the dataset
and 100% accuracy on cross-validation.

With the publication of the multispectral images of the
coffee database and the modifications made in the CNN
architectures, we define a benchmark for future research in
the area. We show precise results to the scientific community
about the potential of joining the CNN with multispectral
systems. It also provides a tool for precision agriculture to aim
for better quality when classifying the coffee fruit automati-
cally, guarantees a better quality than traditional coffees, and
provides more characteristic data of the fruit when seeking a
special coffee production.

As future work, we propose a deeper study of the networks,
including the testing of more complex and newly designed
CNN architectures, oriented to precision agricultural classi-
fication problems based on spectral images. We also propose
to implement a color reproduction from the multispectral
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database. We then seek to apply these algorithms to differ-
ent data extracted from multispectral images, such as the
relationship of the true color of fruits with traditional classifi-
cation processes, or the possibility of extracting information
outside the visible spectrum to allow early identification of
physicochemical conditions and even early detection of dis-
eases all this through the improvement of the multispectral
system and the increase of the database. Also we propose
to increase the database through using artificial data gener-
ated by generative antagonistic networks (GANs) and includ-
ing information from different coffee varieties to improve
the results presented in this research and further apply the
benchmark.
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