
Journal of Building Engineering 87 (2024) 108960

Available online 7 March 2024
2352-7102/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license
(http://creativecommons.org/licenses/by-nc/4.0/).

Design automation of sustainable self-compacting concrete 
containing fly ash via data driven performance prediction 

Tianyi Cui , Sivakumar Kulasegaram *, Haijiang Li 
School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK   

A R T I C L E  I N F O   

Keywords: 
Machine learning 
Self-compacting concrete 
Random forest 
Support vector machine 
Decision tree 
Artificial neural network 

A B S T R A C T   

Self-compacting concrete (SCC) is a highly flowable and segregation-resistant material, effectively 
facilitating proper filling and ensuring exceptional structural performance in confined spaces. 
Incorporating fly ash as a supplementary cementitious material in SCC mixtures yields numerous 
benefits, including enhanced cost-effectiveness in construction and the advancement of envi-
ronmental sustainability. Nevertheless, the addition of fly ash in SCC poses significant challenges 
in modelling and predicting the properties of SCC due to lack of understanding of its influence on 
material rheology and bonding. It is therefore desirable to develop more appropriate machine 
learning approach to compliment the large scale and costly laboratory-based experiments. This 
paper presents four well trained supervised machine learning models for the prediction of fresh 
and hardened properties of SCC containing fly ash: support vector machine (SVM), decision tree, 
random forest, and artificial neural network (ANN). Training datasets gathered from publicly 
available existing relevant literature, were analysed and processed prior to shape the required 
machine learning models. Optimization strategies of hyperparameters were also implemented for 
each model. To evaluate the performance of these machine learning models and to compare their 
accuracy, regression error characteristic curves and Taylor diagrams were utilized. The findings 
reveal that all models demonstrate promising results, with the random forest model out-
performing the others in predicting SCC properties with higher accuracy. This underscores the 
potential of random forest algorithms in accurately modelling and predicting the properties of fly 
ash-infused SCC. Finally, a data driven implementation framework has been developed, thereby 
offering robust and logical strategy for experimental designs and guidance for developing sus-
tainable SCC.   

1. Introduction 

Concrete is an essential construction material that plays a vital role in the development and advancement of modern society. Self- 
compacting concrete (SCC), firstly proposed by Okamura and Ozawa in 1996 [1], has emerged as a promising alternative to traditional 
concrete due to its unique properties and characteristics. SCC is a highly flowable and good segregation resistant material that can be 
easily placed and compacted without the need for any external vibration [2]. This excellent feature of SCC makes it highly efficient and 
reliable, especially in applications where traditional concrete placement methods are difficult or impossible to implement. The 
development and application of SCC have been a significant research focus in the field of construction materials in recent years, with a 
wide range of studies have been conducted to explore its properties and behaviour [3–7]. 
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SCC offers significant advantages over traditional vibrated concrete in terms of reducing construction costs and improving the 
construction environment, making it an important step towards sustainable concrete [8]. However, the current technology for the 
production of SCC often requires a higher volume of binder materials. This increase in binder materials not only results in higher 
production costs but also significantly increases the environmental impact including sustainability [9]. Hence, numerous researchers 
have investigated the incorporation of supplementary materials to SCC to reduce the cost and to increase its resistance to environ-
mental degradation. Fly ash, ground granulated blast furnace slag (GGBS), silica fume and other supplementary materials (SCMs) have 

Table 1 
Summary of research on the prediction of SCC properties based on machine learning models.  

Ref. Year Algorithms used Notation Dataset Input variables Output variables 

[23] 2011 Artificial neural 
network 

ANN-I 80 Cement, water/powder, FA, CA, SP, fly ash Compressive strength 
ANN-II 31 Cement, water, water/powder, SP, FA, CA, bottom 

ash, fly ash 
Compressive strength 

[24] 2016 Artificial neural 
network 

ANN 169 Cement, water, FA, CA, RHA, SP, VMA, limestone 
powder, fly ash, GGBS, silica fume 

Compressive strength 

[25] 2016 Biogeographical-based 
programming 
Artificial bee colony 
programming 

BBP 
ABCP 

413 Compressive strength Elastic modulus 

[26] 2017 Artificial neural 
network 

ANN 114 Binder, water/binder, FA, CA, SP, fly ash percentage Compressive strength, slump 
diameter, V-funnel time, L-box 
ratio 

[27] 2018 Decision tree DT 114 Binder, water/binder, FA, CA, SP, fly ash Compressive strength, slump 
diameter, V-funnel time, L-box 
ratio 

[28] 2019 Artificial neural 
network 

ANN 205 Cement, water, FA, CA, RHA, SP, VMA, limestone 
powder, fly ash, GGBS, silica fume 

Compressive strength 

[29] 2020 Support vector 
machines 

SVM 115 Binder, water/powder, FA, CA, SP, fly ash Compressive strength, slump 
diameter, V-funnel time, L-box 
ratio 

[30] 2020 Support vector 
machines 

SVM 340 Cement, water/cement, water/powder, water/ 
binder, FA/powder, CA/powder, HWR/powder, 
VMA/powder, fly ash/binder, microsilica/binder 

Compressive strength, slump 
diameter, V-funnel time, orimet, U- 
box and L-box ratio 

[31] 2020 Multivariate Adaptive 
Regression spline 

MARS 360 Fly ash/binder, silica fume/binder, temperature Rapid chloride permeability   

Minimax Probability 
Machine Regression 

MPMR    

[32] 2021 Artificial neural 
network 

ANN 300 Cement, water/binder, FA, CA, SP, fly ash Compressive strength 

Support vector machine SVM 
Gene expression 
programming 

GEP 

[33] 2021 Artificial neural 
network 

ANN 366 Binder, water/binder, FA, CA, SP, age, silica fume Compressive strength 

[34] 2021 Artificial neural 
network 

ANN 327 Cement, water, FA, CA, SP, age, fly ash Compressive strength 

Radial basis function 
neural network 

RBFNN 

Firefly optimization 
algorithm 

FOA 

Hybrid model  
[35] 2022 Multiple Linear 

Regression 
MLR 100 Water absorption, void ratio, sonic velocity at 1 day 

and 7 days, compressive strength at 1 day and 7 days 
Compressive strength 

Random Forest RF 
Decision Tree DT 
Support vector 
machines 

SVM 

[36] 2022 Multivariable regression 
model 

MRM 59 Slump flow diameter, V-funnel time, L-box ratio Yield stress, viscosity 

Artificial neural 
network 

ANN 

[37] 2022 Nine ensemble models  515 Cement, water, FA, CA, SP, Mineral admixture Compressive strength 
Two generalized 
additive model 

GAM 

[38] 2022 Artificial neural 
network 

ANN 85 Cement, water/binder, FA, CA, SP, fly ash, silica 
fume 

Compressive strength 

Support vector 
machines 

SVM 

[39] 2022 Artificial neural 
network 

ANN 400 Cement, water/binder, FA, CA, recycled plastic 
aggregate, SP, age, fly ash, silica fume, limestone 
powder, GGBS 

Compressive strength  
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been extensively studied for their potential to enhance the properties of SCC [10–15]. The addition of such materials in concrete, 
particularly SCC mixtures, presents significant challenges in accurately estimating concrete properties due to the highly nonhomo-
geneous mixture with various constituents. Accordingly, it is essential to develop reliable predictive models to reduce the cost of 
conducting more experiments. 

The main objective of the present study is to propose a highly efficient implementation of machine learning models on predicting 
fresh and hardened properties of SCC containing fly ash. For evaluating fresh properties, the yield stress is assessed using the slump 
flow test, while the plastic viscosity is determined by the V-funnel time [16]. In this work, four machine learning algorithms, namely 
support vector machine (SVM), decision tree (DT), random forest (RF) and artificial neural network (ANN), were developed and 
compared via regression error characteristic curves and Taylor diagrams. Moreover, the data processing strategies and the optimal 
hyperparameter selection were also investigated in this paper. This work aims to devise machine learning models addressing the stated 
issues through two key avenues: 

1) Innovating and delving into the parameter optimization strategies, emphasizing the examination and comparison of the effec-
tiveness of diverse algorithms.  

2) Assessing the precision of the predicted fresh and hardened properties of SCC by the developed framework. 

The outline of remaining sections of this study is as follows: Section 2 gives a general literature review on four machine learning 
algorithms. Section 3 presents an overview of the methodology. Section 4 elaborates on the dataset and the steps taken for data pre- 
processing. Section 5 of this study presents a detailed discussion on the development and evaluation of predictive models for fresh and 
hardened properties of SCC with fly ash. Additionally, an in-depth analysis of hyperparameter selection and related comparative 
analysis is also presented in this section. Subsequently, a data driven framework is established to foster additional research and 
exploration. Furthermore, the limitations of this study are also highlighted. The concluding remarks are summarized in Section 6. 

2. Literature review 

With the development of big data processing techniques and the continuous improvement of computer performance, machine 
learning technology has been widely used in various fields such as data mining, natural language processing, etc. However, the 
technology is in its early stages of implementation in the construction industry. With regards to the prediction of concrete properties, 
smart computing algorithms are utilized in the aim of achieving greater accuracy by minimizing the error between predicted results 
and data obtained from experiments or literature [17]. Young et al. [18] presented statistical and machine learning models to estimate 
the compressive strength based on concrete proportions in which a large dataset was taken into account. Subsequently, the predictive 
models were utilized to design concrete mixtures that are optimal in terms of both cost and environmental impact. Sun et al. [19] 
utilized a laboratory-prepared specimen to propose an evolved support vector regression tuned by antennae search, which predicted 
the permeability and unconfined compressive strength of pervious concrete. In the neural network model proposed by Behnood et al. 
[20], the tensile strength of steel fibre-reinforced concrete (SFRC) was predicted using compressive strength as an input variable. 
Recently, ensemble methods have also been developed and employed to predict concrete properties using various algorithms. Asteris 
et al. [21] proposed a hybrid ensemble model that utilizes four conventional machine learning algorithms to predict the compressive 
strength of concrete. The proposed model was demonstrated to achieve higher predictive accuracy compared to the individual models. 

Fig. 1. Flowchart of the presented data driven framework for the prediction of the SCC properties.  
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Nafees et al. [22] predicted the compressive strength of silica fume-based concrete based on six main input factors. In their study, the 
ensemble models showed a great improvement on the prediction efficiency. 

The popularity of SCC has grown significantly due to its excellent performance in terms of workability and mechanical properties. 
As a result, several studies have been conducted to predict the properties of SCC in recent years. Table 1 outlines some recent studies 
that adopted various machine learning algorithms for accessing SCC properties, along with the datasets and variables employed in each 
study. It is evident that the majority of the research has focused on developing prediction models based on the content of the primary 
SCC ingredients and the substitution level of SCMs. As an efficient machine learning algorithm, artificial neural network-based 
methods have gained more popularity among all others. It can also be noted that some researchers have studied the predictive per-
formance of single machine learning models on the fresh properties of SCC. 

3. Methodology 

Machine learning, fundamentally a data driven approach, refers to statistical approaches for data analysis and is commonly 
employed for tasks such as data classification and regression analysis. This section summarises the presented machine learning 
framework based on four basic algorithms integrating multiple innovative techniques. Performance metrics are defined to establish the 
validity of the proposed models on the prediction of SCC properties. 

3.1. Overview 

Fig. 1 shows the flowchart of the proposed framework with main factors considered in this paper. The primary steps are as follows: 
(1) Three groups of datasets are established, taking into account the most influential variables on SCC properties from the literature 
focused on SCC with fly ash. (2) The datasets are scaled and randomly split into training and testing tests. Section 4 presents the 
statistical analysis and preparation of datasets. (3) Initial models are developed based on the datasets. (4) Various hyperparameter 
optimization strategies based on five-fold cross-validation for each model are explored. Section 3.2 and 3.3 detail the model devel-
opment, optimization methods and the cross-validation method, respectively. This process is presented in Section 5.1. (5) The pre-
dictive models are evaluated using various performance metrics as defined in Section 3.4. (6) A comparative study is performed for the 
optimized models, with results presented via REC curves and Taylor diagrams. The best-performing machine learning models for 
predicting SCC properties with fly ash are identified based on the comparative study, as discussed in Section 5.2. (7) The impact of mix 
ingredients on the fresh and hardened properties of SCC is investigated in Section 5.3. (8) Potential implementation on the proposed 
data driven framework is developed in Section 5.4. 

3.2. Initial and optimized strategies for machine learning models 

Support vector machines (SVMs), originally developed by Vapnik and his colleagues [40–42] in the 1900s, have undergone sig-
nificant expansion and are widely applied in the domains of computer vision and data mining. The learning strategy of SVM focuses on 
margin maximization, which ultimately resolves into a convex quadratic programming problem [43]. To tackle the challenge of 
separating the nonlinear data that cannot be effectively separated within a 2D plane, linear inseparable data is mapped into a higher 
dimensional space through a kernel function [44]. To improve the estimation accuracy and generalization ability of SVM models, 

Fig. 2. The representative structure of a CART decision tree.  
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consideration of parameter settings is required. The penalty parameter, C, is used to control the trade-off between the ability of the 
model to generalize and its performance on the test dataset. A larger value of C decreases the margin and potentially overfits the model. 
Hyperparameter optimization greatly benefits from cross-validation based grid search. 

The decision tree (DT) employs a top-down recursive learning approach. The fundamental concept is to construct a tree that ex-
hibits the fastest entropy reduction, eventually reaching a leaf node with zero entropy. To enhance predictive accuracy of the decision 
tree, it is crucial to determine an appropriate impurity splitting criterion, which guides feature selection and partitions at each internal 
node. The prediction of numerical outcomes based on input variables predominantly utilizes four decision tree algorithms: CHAID 
(Chi-squared automatic interaction detection), CART (classification and regression trees), C4.5, and C5.0 [45]. In CART, each non-leaf 
node in the tree branches into two child nodes. Fig. 2 illustrates an exemplary structure of a CART decision tree, as employed in this 
study. This visual representation highlights the binary branching nature of the algorithm and the decision-making process at each 
internal node. To address the overfitting issue, the tree-based ensemble learning algorithm, random forest (RF), has been introduced 
for predicting SCC mixes. By leveraging the combined strength of multiple decision trees, random forest improves generalization 
performance while reducing the risk of overfitting. 

A typical artificial neural network (ANN) comprises three primary components: structure, activation functions, and learning rules. 
The structure specifies the variables and their topological relationships in the network. Generally, an ANN consists of the input layer, 
one or more hidden layers, and an output layer, which enable the processing and transformation of input data into meaningful pre-
dictions or classifications. The activation function, usually a nonlinear function, determines the rules governing the ways that dictate 
the modification of neuron activation values based on the activity of other neurons in the network. This nonlinearity enables the ANN 
to capture and model complex relationships in the data, thereby enhancing its predictive capabilities [46]. Learning rules decide the 
change of weights between neurons over time, enabling the network to improve its performance as it processes more data. This study 
employs the back-propagation neural network (BPNN), a multi-layer feedforward network. In practice, the number of the hidden 
layers and the number of nodes in the hidden layer are dictated by the collected dataset and its features [47]. The selection of the 
number of hidden nodes was a significant focus of investigation in this study. 

3.3. Five-fold cross-validation 

In the actual training process, the trained model usually behaves well to the training datasets while responds poorly when new 
datasets are provided. Cross-validation is a commonly used method in machine learning for building models and verifying model 
parameters [48]. It aims to improve the generalization ability of the model by dividing the sample datasets and combining them into 
different training and testing sets. In addition, the limited amount of available data can be reused to improve the modelling efficiency 
[49]. Therefore, the five-fold cross validation was employed in this study, and the steps are shown as following. 

Step 1. Randomly divide all datasets into 5 subsets by sampling without repetition. 

Step 2. Train the model by using 4 of the 5 subsets and the remaining 1 subset is used for testing. 

Step 3. Repeat the previous step five time to ensure each subset is used once as the test set. 

Step 4. Save the evaluation index of all five models. 

Step 5. Calculate the mean error of the test results of 5 models as the cross-validation error. 

All steps of the model training process, including model selection and feature selection, are performed independently within a 
single ‘fold’. The schematic description of five-fold cross-validation is presented in Fig. 3. 

3.4. Model performance evaluation 

The performance of fully developed models in predicting SCC mix properties is quantified using four statistical measures. The 

Fig. 3. The schematic structure of five-fold cross-validation.  
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accuracy indicators employed in this study are correlation coefficient (R), coefficient of determination (R2), mean absolute error 
(MAE), and root mean squared error (RMSE). The mathematical expressions are given in Equations (1)–(4). 

R=

∑N

i=1
(Pi − PA)(Ei − EA)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Pi − PA)

2 ∑
N

i=1
(Ei − EA)

2

√ (1)  

R2 = 1 −

∑N

i=1
(Pi − Ei)

2

∑N

i=1
(Ei − EA)

2
(2)  

MAE=
1
N

∑N

i=1
|Pi − Ei| (3)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(Pi − Ei)

2

√
√
√
√ (4) 

To demonstrate higher accuracy, R and R2 values should be closer to 1, indicating a strong correlation between the predicted and 
experimental values and signifying that they tend to vary in a similar manner. The values of MAE and RMSE are the measurements of 
the difference, near to zero means greater accurate, as they indicate smaller deviations between the predictions and the actual data. 

4. Data process and parameters 

This study aims to predict both fresh and hardened properties of SCC mixes containing fly ash. Many previous studies had focused 
mainly on assessing a single output characteristic based on a series of input variables. This study considers three output variables to 
achieve a more comprehensive forecast. Considering the database from the published literature, the properties of SCC mix design, 
including compressive strength (Fcu) of 501 mixes [3,11,50–74], slump flow diameter (SD) of 217 mixes [2,11,51–66,70–73,75,76] 
and V-funnel time (VF) of 144 mixes [11,51–64,66,72,75,76], were collected to evaluate the properties of SCC containing fly ash, by 
utilizing the machine learning modelling. The input variables encompass the amount of cement (C), fly ash(F), water to binder ratio 
(W/B), fine aggregates (FA), coarse aggregates (CA), superplasticizers (SP) and curing age, with the age being employed exclusively for 
compressive strength prediction. The relationships representing the SCC properties are expressed by Equations (5)–(7). 

Fcu, (MPa)= f1(C,F,W /B,FA,CA, SP,Age) (5) 

Table 2 
Statistical analysis on collected datasets.  

Variables Symbol Unit Category Min Max Average Standard deviation Count 

Dataset 1: SCC compressive strength (501 samples) 
Cement C kg/m3 Input 100 670 350 119 501 
Water to binder ratio W/B – Input 0.26 0.70 0.39 0.08 501 
Fly ash F kg/m3 Input 0 428 145 95 501 
Fine aggregate FA kg/m3 Input 369 1180 828 147 501 
Coarse aggregate CA kg/m3 Input 455 1085 790 137 501 
Superplasticizer SP kg/m3 Input 0.78 21.84 5.15 4.35 501 
Curing age Age days Input 1 720 47 82 501 
Compressive strength Fcu MPa Output 0.36 105.88 42.14 20.38 501 
Dataset 2: SCC slump flow (217 samples)  
Cement C kg/m3 Input 0 670 359 114 217 
Water to binder ratio W/B – Input 0.26 0.70 0.37 0.08 217 
Fly ash F kg/m3 Input 0 439 170 98 217 
Fine aggregate FA kg/m3 Input 369 1180 837 123 217 
Coarse aggregate CA kg/m3 Input 455 1085 740 124 217 
Superplasticizer SP kg/m3 Input 0.78 21.84 5.52 4.41 217 
Slump flow diameter SD mm Output 555 830 712 58 217 
Dataset 3: SCC V-funnel (144 samples)  
Cement C kg/m3 Input 0 670 367 126 144 
Water to binder ratio W/B – Input 0.26 0.70 0.38 0.09 144 
Fly ash F kg/m3 Input 0 439 146 103 144 
Fine aggregate FA kg/m3 Input 369 1180 820 145 144 
Coarse aggregate CA kg/m3 Input 533 944 763 103 144 
Superplasticizer SP kg/m3 Input 0.78 21.84 6.23 5.17 144 
V-funnel time VF sec Output 1.31 22.00 7.29 3.32 144  
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SD, (mm)= f2(C,F,W /B,FA,CA, SP) (6)  

VF, (s)= f3(C,F,W /B,FA,CA, SP) (7) 

The statistical results which were summarized and calculated from collected datasets are presented in Table 2. For the purpose of 
improving the accuracy of comprehensive predictions in SCC properties, the key variables have been confined within a consistent 
range. For instance, the W/B is set between 0.26 and 0.7, while the range for SP is established between 0.78 kg/m3 and 21.84 kg/m3. It 
can be seen that the dataset is complete and the handling on missing data is not required in this case. In order to reveal more in-
formation and to analyse the relationship between all input and output variables, the correlations of variables are provided. For this 
purpose, the Pearson’s correlation coefficient is used in this study as shown in Equation (1). The range of coefficient are limited to − 1 
to +1 as ensured by the formulation. The value close to 0 indicates weak relationship between variables. It should be noted that this 
coefficient can only measure the linear correlation between variables [77]. This means even though the coefficient is close to 0, it 
cannot be concluded that there is no other relationship between quantities. Fig. 4 displays the heatmaps illustrating the correlations 
between features within the datasets. There is a significant relationship between fly ash content and cement with correlation coeffi-
cient of − 0.8, − 0.78 and − 0.82, respectively. On the contrary, the correlation between superplasticizer and components of SCC 
mixtures is quite weak in Dataset 1 (in Table 2), which is consistent with reality. 

In order to evaluate the generalization error of the predictive models, each dataset was randomly split into two groups in this study. 
The training sets, which is 80% of all data points, were used for building machine learning models. The remaining 20% were used for 
testing the trained models. For example, in the case of Dataset 1, 400 groups of measurements were used as training set and 101 
measurements were used for the assessment of models. To eliminate the error caused by units and ranges of all variables, it is necessary 
to process datasets after the data splitting. It has been proven that scaling increases the speed in obtaining the optimal solution in some 
algorithms and also improves the accuracy of prediction [78]. In this study, the Standard Scaler function in scikit-learn library was 
employed. 

5. Results and discussion 

5.1. Determination of optimized machine learning models 

The compressive strength and fresh properties of SCC were predicted in this section via four machine learning algorithms which 
include SVM, decision tree, random forest and ANN. The training of models was implemented in MATLAB and PYTHON 3.6, utilizing 
essential libraries such as Scikit-learn, NumPy, Pandas, Matplotlib, and Seaborn. In addition to proposing parameter optimization 
strategies, these strategies were diligently applied within this section. These tactics were intricately executed to fine-tune the per-
formance of models, playing a crucial role in enhancing the overall quality of prediction outcomes. 

5.1.1. Prediction of SVM model 
As the SVM algorithm employs the Euclidean distance of the sample data, it is essential to standardize the input and output datasets 

to prevent data with larger values from dominating the model. Standardization involves transforming all data into a normal distri-
bution with a mean value of 0 and a variance of 1, thereby ensuring a more balanced representation of the data within the algorithm. 
The selection of kernel function typically relies on domain-specific knowledge, as well as the number of samples and feature variables 
in the dataset [79]. In this study, four commonly used kernel functions were investigated, encompassing Linear, Polynomial (Poly), 
Radial basis (RBF), and Sigmoid functions. Table 3 shows the performance of each kernel function for the corresponding output 
variables in different predictive models. 

To mitigate the impact of random grouping of training and testing datasets in programming, the random state was set to the optimal 
fixed value obtained by looping. As can be seen, the RBF kernel function performed the best for all output parameters, exhibiting the 
highest R2 values and the lowest errors. Indeed, the R2 values being less than 0.9, along with relatively high RMSE and MAE values, 
suggest that while the RBF kernel function outperforms the other kernel functions considered, there is still potential for enhancing the 
predictive capabilities of models. It should be noticed that the R2 values for the sigmoid function obtained using Scikit-learn Library are 

Fig. 4. Correlation matrix of variables for predicting (a) compressive strength, (b) slump flow, (c) V-funnel time.  
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less than zero in some models. This indicates that the prediction error of the fitted function is greater than that of a simple mean - value 
function [80]. In other words, the inferior performance of the sigmoid kernel function, when compared to a model that predicts only 
the average value of the output, indicates that it is not an appropriate choice for this specific problem domain. In summary, the 
effective RBF kernel was selected for the subsequent model optimization and performance evaluation. 

There are two main factors that need to be set for the RBF kernel function which are parameters C and gamma. The selection of 
optimal parameters significantly affects the accuracy of an SVM model [44,81]. The cross-validation based grid search technique was 
utilized to find the optimal parameter pairs of C and gamma. The steps involved in this process are summarized as follows: 

Step 1. Set C ∈ [2− 5, 215] and gamma ∈ [2− 15, 23]. This range of values for C and gamma provides a comprehensive search space to find 
the optimal parameters in this study [81]. 

Step 2. Obtain a 20 × 18 coarse grid within the specific range of values for C and gamma. 

Step 3. Perform five-fold cross-validation for the parameter pair corresponding to the first point in the grid and calculate five MAE 
values. Then, compute the average of these MAE values as the representative score for this particular point. 

Step 4. Traverse all points in the grid and repeat Step 3 for each point to calculate the corresponding MAE values, identifying the best 
parameter pair that yields the lowest error. 

The graphs of parameter optimization results are shown in Fig. 5. After setting the optimal values of RBF kernel parameters, new 
models were trained and tested using the same random states for data splitting and cross-validation. Table 4 presents the best 
parameter pairs and performance of the developed SVM models for predicting the compressive strength, slump flow diameter and V- 
funnel time. It can be observed that the optimized SVM with selected kernel parameters showed highest accuracy in estimating 
compressive strength of SCC mixes. The average MAE value obtained during the parameter selection process was used to evaluate the 
performance of the models during the training phase. As determined by five-fold cross-validation, the values were 0.292, 0.495 and 
0.476 for the models predicting compressive strength, slump flow diameter and V-funnel time, respectively. 

Fig. 6 illustrates the performance of the developed SVM model in the prediction of fresh and hardened properties of SCC mixes. As 
can be observed, generally the samples from testing datasets aligned well with the 1:1 line, with correlation coefficients of 0.968, 
0.911, and 0.949, respectively. In addition, more details on the estimation accuracy of SVM models could be obtained by the statistical 
parameters given in Tables 3 and 4. For instance, the R2, RMSE and MAE values of developed RBF-SVM models for compressive 
strength were 0.936, 5.311 and 4.000, respectively, while these parameters for initial RBF-SVM models were 0.860, 7.721 and 5.847, 

Table 3 
Statistical results of initial SVM models with various kernel functions.  

Output variable Kernel function Statistical parameters 

R2 RMSE MAE 

Fcu Linear SVM 0.634 12.480 10.002 
Poly SVM 0.636 12.452 9.322 
RBF SVM 0.860 7.721 5.847 
Sigmoid SVM − 24.609 104.447 72.941 

SD Linear SVM 0.578 35.601 28.937 
Poly SVM 0.636 33.078 26.263 
RBF SVM 0.733 28.320 21.918 
Sigmoid SVM − 6.533 150.389 111.121 

VF Linear SVM 0.810 1.352 1.064 
Poly SVM 0.444 2.314 1.908 
RBF SVM 0.860 1.162 0.990 
Sigmoid SVM − 1.149 4.549 3.769  

Fig. 5. Negative MAE as a function of log2(C) and log2(gamma).  
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respectively. In this case, the MAE values assessed the performance of the models on the testing datasets. Furthermore, the R2 values 
had increased by 8%, 13% and 1% due to the optimization using grid search. Consequently, optimizing the kernel parameters lead to 
obtaining a more accurate SVM model for predicting the properties of SCC mixes, with a particular emphasis on the improvement in 
predicting the slump flow diameter. 

5.1.2. Prediction of decision tree and random forest models 
To improve the performance of regression models, it is of paramount importance to identify the optimal hyperparameter combi-

nations for the decision trees and random forests. This study employed the Scikit-learn Library in Python to accomplish the parameter 
tuning. During this process, the training dataset was fed into the model, and grid search combined with five-fold cross-validation was 
utilized to continuously adjust the parameter combination. The objective is to obtain the maximum R2 value, ultimately leading to the 
determination of the optimal parameter combinations. 

Decision tree and random forest regressors included 11 and 17 parameters, respectively. This study focuses on selecting the primary 
parameters for each model that have the most significant influence on prediction accuracy. Taking both the processing time and 
performance of the algorithms into account, this paper provides several suitable values for the selected parameters. The value ranges 
and optimized values for each parameter of the two models are shown in Table 5. Subsequently, best parameter combinations were 
employed to construct the new models. The comparison of original models and optimized models are given in Fig. 7, where scores are 
represented by R2 values. The results indicate that the grid search has benefits on the prediction performance of both decision tree and 
random forest models. 

Fig. 8 demonstrates the performance of the optimized decision tree and random forest models in predicting fresh and hardened 
properties of SCC mixes. For the decision tree model, the correlation coefficients of experimental and predicted variables were 0.959, 
0.913 and 0.946, respectively. The coefficients in the RF model were 0.977, 0.930 and 0.956, respectively. In general, the random 
forest models gave more accurate predictions for the testing dataset of the three output properties. By developing random forest 
models, the correlation coefficient of each output variable increased by 1.9%, 1.9% and 1.2%, respectively. 

Table 4 
Values of kernel parameters and statistical results of developed SVM models.  

Output variable RBF parameters selection Statistical parameters of developed SVM 

C gamma MAE R2 RMSE MAE 

Fcu 32 0.125 0.292 0.936 5.311 4.000 
SD 4 0.125 0.495 0.831 25.153 19.498 
VF 32 0.031 0.476 0.901 1.000 0.806  

Fig. 6. Correlation between the experimental and predicted values of SCC properties of SVM.  

Table 5 
Selection of hyperparameters of decision tree and random forest from the grid search.  

Hyperparameters Range Tuned values of RF Tuned values of DT 

Fcu SD VF Fcu SD VF 

n_estimators (100,150,200,300,500) 100 100 100 – – – 
max_depth [10,20] 17 15 16 17 15 13 
min_impurity_decrease (0,0.001,0.01,0.1,0.2) 0 0 0 0 0 0 
min_samples_leaf (1,2,5,8,10) 1 1 1 1 1 1 
min_samples_split (2,5,8,10) 2 2 2 2 2 2 
random state [1,1000] 332 83 623 1 6 10  
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5.1.3. Prediction of ANN model 
To conduct an ANN model with good applicability, a MATLAB program was developed (R2021a). The networks with one hidden 

layer were chosen and Levenberg-Marquardt was defined as the training algorithm. All parameters for training ANN models are 
summarized in Table 6. The maximum training epoch and validation checking epoch were set to be twenty and six iterations, 
respectively. The calculation stopped when the error is smaller than 10− 6. The normalized datasets were split into three groups, with 
80% for training and 20% for testing, maintaining the same scale as the testing dataset for previous algorithms. In order to circumvent 
the issue of overfitting, this study carefully considered the number of neurons present within the hidden layer. A comprehensive 
exploration of models was conducted, wherein the number of nodes in the hidden layer was systematically varied from 5 to 15. The 
model’s generalization capability and accuracy were assessed through the R2 and RMSE metrics, as derived from the training datasets. 
The findings, as depicted in Fig. 9, enabled the identification of optimal models, characterized by the highest R2 values and the lowest 
RMSE s. 

Fig. 7. Accuracy (R2 values) of optimized models in decision tree and random forest models.  

Fig. 8. Correlation between the experimental and predicted values of SCC properties.  
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The evaluation metrics for the selected models, featuring optimal hidden node numbers, are presented in Table 6. As can be seen, 
the proposed ANN model for the prediction of compressive strength had the highest accuracy, with R2 of 0.927, in comparison with the 
prediction of slump flow and V-funnel time. However, the RMSE and MSE values in the prediction of slump flow were significantly 
higher than others. As demonstrated in Fig. 10, there were more scattered data points away from the line of equality between 
experimental and predicted slump flow results. The correlation coefficients for the output variables were 0.963, 0.833 and 0.885, 
respectively. In general, the output values predicted by ANN models showed significant correlations with experimental data and the 
network provided reasonable estimation accuracies. 

5.2. Comparison of machine learning models 

In this section, a comparative assessment of four machine learning algorithms in terms of predicting SCC properties is presented. 
The values of R2, RMSE and MAE and the dispersion degrees of the predicted result scatters were considered as the reasonable measures 
to judge the accuracy of the proposed models. In general, the machine learning models were able to predict all output variables in the 
test datasets with reasonable accuracy. 

Table 7 shows a comprehensive comparison between the precision of four machine learning algorithms using the same datasets for 
each property. It can be clearly noticed that the proposed random forest models exhibited superior performance compared to the other 
algorithms for each SCC performance index, as evidenced by the R2 values ranging from 0.8656 to 0.9542. In addition to the decision 
tree models, the proposed models behaved best in terms of predicting compressive strength, where the maximum R2 was 0.9199. On 
the other hand, the slump flow spread diameter was more challenging to predict than the other two properties, as the minimum R2 was 
0.6938 achieved by ANN model. In case of all predicted characteristics, the values of RMSE and MAE were relative higher in the 
prediction of the slump flow spread. 

To visualize the comparison among the results better, the regression error characteristic (REC) curve was used in estimating the 
accuracy of all machine learning models [21]. The REC curve presents the relationship between the error tolerance (x-axis) and the 
percentage of predicted results in the tolerance (y-axis). The curves express the cumulative distribution function of errors. The area 
over the curve defines the performance of the models, with a smaller area indicating higher accuracy. The REC curve for a perfect 
model should coincide with the y-axis. Fig. 11 shows the REC curves of all models for the predicting of the compressive strength, slump 
flow spread diameter and V-funnel time, respectively. The values of area over REC curves and the corresponding area ratios are given 
in Table 8. Overall, the area ratios of the prediction of compressive strength were on the lower side. Besides, the random forest models 
consistently achieved the lowest area ratios and therefore, appeared to be the best performing models for modelling SCC properties. 

In addition to REC curves, the Taylor diagrams were also employed to compare the accuracy of the three parameters as shown in 
Fig. 12. The plot measures the respective distance between each model and the reference point labelled as ‘Ref’. Decision tree models 

Table 6 
Parameters selection and performance of ANN models.   

Fcu SD VF 

Parameters 
Number of input variables 7 6 6 
Number of the hidden layer 1   
Number of neurons in the hidden layer 10 10 8 
Number of output variables  1  
Training function  Levenberg-Marquardt  
Transfer functions  Sigmoid for hidden layer  
Training epoch  20 iterations  
Training error 10− 6   

Measurements 
R2 0.927 0.694 0.783 
RMSE 5.568 35.224 1.675 
MAE 4.111 26.633 1.367  

Fig. 9. Accuracy and generalization of models versus the number of hidden layer nodes.  
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showed the highest standard deviation in all predictions, indicating that the predicted values were more spread out from the mean 
value compared to the other models. The random forest models, which exhibited lower RMSE values and higher correlation coefficient 
values, were found to be located closer to the true data points. This indicated that the random forest models appeared to be the best 
performing models for modelling SCC properties, which is fairly consistent with the previous discussion. 

Fig. 10. Correlation between the experimental and predicted values of SCC properties of ANN.  

Table 7 
Performance of tests metrics (20%) of various machine learning algorithms.  

Models Characteristic R2 RMSE MAE 

SVM Fcu 0.9363 5.3107 3.9999 
SD 0.8306 25.1535 19.4980 
VF 0.9009 0.9997 0.8061 

DT Fcu 0.9199 6.2417 4.6440 
SD 0.8340 25.5630 19.4031 
VF 0.8956 1.0247 0.8014 

RF Fcu 0.9542 5.3037 3.7623 
SD 0.8656 21.1175 16.8765 
VF 0.9130 0.9154 0.7962 

ANN Fcu 0.9269 5.5678 4.1113 
SD 0.6938 35.2245 26.6335 
VF 0.7830 1.6751 1.3670  

Fig. 11. REC curves of tests metrics (20%) of various machine learning algorithms (a) Fcu, (b) SD, (c) VF.  

Table 8 
The area over REC curves and area ratios of various machine learning algorithms.  

Properties Absolute area Area ratio (%) 

SVM DT RF ANN SVM DT RF ANN 

Fcu 3.926 4.514 3.631 4.014 7.851 9.028 7.263 8.027 
SD 18.729 18.589 16.236 25.451 20.810 20.655 18.040 28.279 
VF 0.763 0.745 0.739 1.303 15.258 14.904 14.772 26.059  
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In summary, from the statistical analysis and the visual interpretation of predictive performance of four machine learning algo-
rithms, the random forest models were proven to demonstrate the highest accuracy among all. This superior performance can be 
attributed to the ensemble learning characteristic of the random forest. This ensemble approach could enhance performance compared 
to individual models like the decision tree, helping reduce variance and the risk of overfitting [82]. For instance, the training scores of 
decision tree for predicting all SCC properties are high, often exceeding 0.999, as shown in Fig. 7. However, despite these high training 
scores, the accuracy of the decision tree models on the test datasets tends to be nearly 0.03 lower than that of the random forest models. 
Furthermore, random forest is less sensitive to outliers in the dataset than SVM and ANN, due to the method of aggregating the 
prediction from multiple trees [83]. Moreover, random forest can effectively capture the nonlinear relationship between the com-
positions and properties of SCC [84], while SVR and DT may struggle with the complex patterns. Additionally, when compared with 
SVM and ANN models, random forest models showed great potential due to the visual tree structure, which can be easily understood 
even by non-experts. Although the ANN models exhibited comparatively inferior performance relative to the other models, they still 
demonstrated a satisfactory level of accuracy. 

The models proposed in this study were compared with others highlighted in the current literature, as illustrated in Fig. 13. For the 
purposes of this comparison, the correlation coefficient (testing set only) was employed as the benchmark criterion. It is evident that all 
the models under investigation predict the compressive strength of SCC more accurately than its fresh properties. Notably, the al-
gorithms formulated in our study outperformed the majority of the examined models, excelling particularly in predicting both 
compressive strength and flowability properties of SCC. Comparing our discussions on the V-funnel time prediction with those pre-
sented in Ref. [27], despite the comparatively lower R2 value observed on the test set, the smaller RMSE (0.915 < 1.11) suggests a 
heightened precision in predictions. Conversely, on the overall dataset, a higher R2 value (0.926 > 0.87) exhibited in the proposed RF 
model, indicating a superior capacity for explicating variance in the entirety of the data and adeptly accommodating diverse subsets of 
data. Nonetheless, considering that no model can flawlessly predict SCC properties, there remains potential for further enhancement 
on the dataset collection and algorithmic approaches. 

5.3. Feature importance of influencing variables 

After conducting a comparison of the predictive performance of all algorithms, the random forest models with optimal hyper-
parameters were obtained. In conjunction with the SCC characteristics, six features were used for predicting fresh properties, and seven 
features were employed for predicting compressive strength in the random forest models. Figs. 14 and 15 display the importance of 
each input variable for the regression models based on the method of Shapley Additive explanation (SHAP) analysis. As a game theory- 
based approach, in SHAP, the output model is structured as a linear combination of the input variables, determining the contributions 
of each input variable to every prediction [85]. 

In Fig. 14, it is revealed that curing age, the content of cement and W/B ratio are the most sensitive factors dominating the 
compressive strength of SCC mixes, with the mean absolute SHAP value of 9.94, 8.35 and 3.14, respectively. This result is in agreement 
with the findings of previous studies [32,86,87]. In contrast, the SHAP value of fly ash is 1.04, indicating that the influence of fly ash is 
relatively less significant. This is because, relatively low chemical activity and hydration rate of fly ash make it less effective than 
cement in enhancing the early strength of concrete [88]. Similarly, the dosage of SP contributes less to SCC strength, with the SHAP 
value of 1.05. Conversely, it has the highest influence on predicting the fresh properties of SCC, as shown in Fig. 15. This suggests that 
the impact of SP on enhancing the workability of concrete is greater than its direct contribution to strength [89]. 

The SHAP summary plot is also shown in Fig. 14, with the x-axis representing the weight of influence, and the colour of scatter 
points indicating the impact degree of input variables on the predicted properties [87]. Therefore, a wider regional distribution sig-
nifies a greater influence of this variable. It can be observed that the compressive strength of SCC significantly increases with the 
progression of curing age, higher cement content, and more aggregates. However, a higher water to binder ratio results in a negative 
SHAP value, indicating a lower compressive strength of SCC. This finding is consistent with published literatures [90–92]. Addi-
tionally, the impact of fly ash is opposite to that of cement; an increase in fly ash content decreases SCC compressive strength, as 
observed in existing experimental investigations [93–95]. Besides, the influence of SP dosage is not as pronounced. 

Fig. 15 illustrates the feature importance of six input parameters in predicting SCC fresh properties, as evaluated by mean absolute 
SHAP values. Following the most influential parameter, SP, water to binder ratio exhibits a strong impact on both slump flow diameter 

Fig. 12. Taylor diagrams of different machine learning models for SCC prediction.  
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and V-funnel time. The significant effect can be observed in existing studies [96–99]. As a main ingredient in SCC, the aggregate 
content is demonstrated to have considerable effect on the slump flow diameter, as evident in published studies [100]. Compared to 
other main factors, the content of cement and fly ash has less impact on fresh properties. The flow behaviour of SCC is the result of 
SP-cement interaction and can be modified by adding cementitious materials such as fly ash. Fly ash promotes the adsorption of SP on 
cement particles, which depends on the concentration of C3A cement phase and the amount of gypsum in the system [101]. Although 
both cement and fly ash contribute to the enhancement of microstructure and workability of SCC, their effects in the fresh state are not 
as pronounced as those of water and chemical additives. It is worth noting that the feature importance analysed in this study are based 
on the specific dataset used. Thus, the results could be more representative with the expansion of dataset and the inclusion of more 
variables. 

5.4. Potential applications of the proposed data driven framework 

The design codes of SCC mixes typically rely on the conventional strength-based mix design methodologies used for normal 
vibrated concrete [102]. Studies in the past have also suggested reliable SCC mix design tactics that consider both strength and plastic 

Fig. 13. Comparative analysis of proposed models with existing literature (data from Refs. [26,27,32–34]).  

Fig. 14. Feature importance and SHAP summary plot using RF models for predicting Fcu.  

Fig. 15. Feature importance plot using RF models for predicting SD and VF.  
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viscosity [103]. However, the designed characteristics of SCC mixes might be subjected to several constraints because of the additional 
restrictions on the mixture contents, such as maximum value of W/B ratio and the aggregate contents. Furthermore, the synergistic 
effect of fly ash and other supplementary materials significantly impacts the properties of SCC, posing a great challenge to the con-
ventional proportioning approach. In response to evolving design prerequisites, there has been a growing demand for a precise and 
sustainable SCC design and validation framework in the construction industry. Consequently, this section proposes the development of 
a data driven machine learning framework. 

It has been proven in the previous discussion that the optimized machine learning models can accurately predict both fresh and 
hardened properties of SCC containing fly ash. These models could serve as a pre-experimental validation tool to ensure workload 
optimization, thus providing robust experimental support. Moreover, the efficacy of this framework can be further enhanced with 
other SCC proportioning methods by dynamically modulating the dosage of each ingredient in line with predictive outcomes. 

The execution of this framework, along with its further development, is depicted in Fig. 16. Initially, the target properties of SCC 
with fly ash are determined, followed by the calculation of the preliminary proportions based on strength-based mix design methods. 
These mix proportions are then input into the finely tuned machine learning models to predict SCC properties. By verifying and 
contrasting with the initial mix design, the dosage of each ingredient is adjusted to a suitable range, resulting in an optimized mix 
design. To further develop the data driven framework, it is recommended to incorporate larger datasets and more specific variables for 
model modification and broadening the applicability. Moreover, by considering the structure related parameters and the output from 
the proposed machine learning models, a more complex framework for structural design and identification could be developed. 

5.5. Limitations of this research 

The discussion on the development and comparative analysis of various predictive models has been carried out, demonstrating the 
effectiveness of the Random Forest (RF) model in predicting the properties of SCC. While these findings are significant, it is important 
to acknowledge certain limitations present within this study. All machine learning models were developed and optimized based on 
comprehensive datasets derived from a significant portion of existing literature on SCC with fly ash. However, the overall size of 
datasets remains relatively limited. This constraint may affect the generalizability of the models across different SCC mixes. Addi-
tionally, while this study considers several critical factors affecting SCC properties, there remains room to include additional variables 
that might further influence the behaviour of SCC. A more detailed categorization of input variables, based on the characteristics of 
materials, was not fully explored in current analysis. For instance, factors such as the strength grade of cement, the size of aggregates, 
and the specific chemical composition of supplementary materials were not thoroughly classified. This limitation could potentially 
impact the accuracy of developed models. To achieve a balance between the breadth of datasets and the practical constraints, further 
research involving more experiments could be conducted, ultimately enhancing the robustness of the findings. Furthermore, this study 
employed a limited selection of four machine learning algorithms. Although these models were proven effectiveness in similar ap-
plications, the exclusion of other algorithms may limit the scope of the finding. 

6. Conclusion 

In this study, four machine learning algorithms, including SVM, decision tree, random forest and ANN were employed to predict 
both fresh and hardened properties of SCC mixes with fly ash. All models demonstrated the potential to predict these properties with 
reasonable accuracy. The specific findings of this study are outlined below: 

Fig. 16. The application framework of the proposed data driven models and further development.  
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● Various hyperparameter optimization strategies are examined in detail, with the efficacy of various algorithms subjected to 
comparative evaluation. These include the choice of kernel functions and grid search techniques in SVM modelling, the deter-
mination of key parameters in decision tree and random forest modelling, and the selection process for hidden nodes in ANN 
modelling.  

● The random forest models exhibited the highest accuracy in predicting all SCC properties, as indicated by the high R2 values of 
0.9542, 0.8656 and 0.9130 for compressive strength, slump flow diameter and V-funnel time, respectively. Meanwhile, decision 
tree, SVM and ANN models also showed promising results.  

● The content of cement, curing age, and W/B ratio were found to be the main factors influencing the compressive strength of SCC 
mixes, which is consistent with previous findings.  

● The feature importance analysis indicated that the content of superplasticizers, W/B ratio, and aggregate were the most influential 
factors on the fresh properties of SCC mixes.  

● The REC curves and Taylor diagrams were utilized to compare the performance of all machine learning algorithms used. The 
random forest models consistently showed the lowest area ratios and smallest distance to the observation point in Taylor diagrams, 
indicating the highest level of accuracy among the four models.  

● The models proposed in this study were compared with others highlighted in the current literature. The algorithms formulated in 
our study outperformed the majority of the examined models.  

● The proposed machine learning models, particularly the random forest models, can provide valuable insights for designing and 
optimizing SCC mixes containing fly ash, which can ultimately lead to more sustainable construction practices. 

● A framework of the proposed data driven approach has been constructed, showcasing significant promise in its practical appli-
cation. The accuracy of this newly-established structure has been evaluated, focusing on its ability and accuracy in predicting the 
fresh and hardened properties of SCC. 

While the use of three extensive and reliable datasets contributed to accurate predictions of SCC properties containing fly ash, there 
is potential for further model improvement through the inclusion of additional variables and larger datasets. More efficient hybrid 
machine learning algorithms can be developed to accelerate the process of parameter tuning and selection. In addition, by leveraging 
the inherent adaptive learning capabilities of reinforcement learning techniques, the accuracy and efficiency of models are expected to 
be further enhanced in the application of SCC properties. Meanwhile, the development of models to predict other properties of SCC and 
soundness of produced structures are recommended for future research. 
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