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We present mathematical theory for self-similarity
induced spectral gaps in the spectra of systems
generated by generalised Fibonacci tilings. Our results
characterise super band gaps, which are spectral
gaps that exist for all sufficiently large periodic
systems in a Fibonacci-generated sequence. We
characterise super band gaps in terms of a growth
condition on the traces of the associated transfer
matrices. Our theory includes a large family of
generalised Fibonacci tilings, including both precious
mean and metal mean patterns. We apply our
analytic results to characterise spectra in three
different settings: compressional waves in a discrete
mass-spring system, axial waves in structured rods
and flexural waves in multi-supported beams. The
theory is shown to give accurate predictions of
the super band gaps, with minimal computational
cost and significantly greater precision than previous
estimates. It also provides a mathematical foundation
for using periodic approximants (supercells) to predict
the transmission gaps of quasicrystalline samples, as
we verify numerically.

1. Introduction

Heterogeneous materials have the ability to manipulate
and guide waves in carefully controlled ways. The
discovery of exotic phenomena, such as negative
refraction and cloaking effects, led to the name
metamaterials being coined [1]. While many metamaterials
are based on periodic arrangements of meta-atoms,
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quasi-periodic metamaterials have fascinating wave scattering and transmission properties and
have the potential to greatly enlarge the metamaterial design space. However, the lack of concise
mathematical methods able to describe the transmission spectra of quasi-periodic materials
efficiently and with minimal computational cost, particularly at non-zero frequencies, is a
significant barrier to widespread usage. In this work, we help to overcome this barrier for the
specific example of quasicrystals based on Fibonacci tilings by developing the mathematical
theory that establishes a simple approach for characterizing the spectral gaps.

Characterizing the spectra of quasi-periodic differential operators is a longstanding and
fascinating problem [2,3]. In particular, one-dimensional Schrodinger operators with quasi-
periodic potentials have been widely studied. Typical results concern the Cantor-type properties
of the spectrum [4-7] and the extent to which its spectrum can be decomposed into pure-point,
singularly continuous and absolutely continuous eigenvalues [8,9].

In the present work, the aim is to quantify specific spectral features, rather than characterise
overall properties of the spectrum. A promising avenue in this direction, which we will not
make use of in this work, is to exploit the fact that quasicrystals can be obtained through
incommensurate projections of periodic patterns in higher dimensional spaces. This approach
has been used to develop homogenisation methodologies [10,11], to model wave propagation in
one-dimensional quasicrystals [12] and make predictions on the locations of spectral gaps [13]. In
the latter case, this approach has suffered from the occurrence of spurious modes and a precise
convergence theory has yet to be established. Given these challenges concerning the spectra of
quasicrystals, a common strategy is to consider periodic approximants of the material, sometimes
known as supercells. This approach is commonplace in the physical literature (for example, in
[14-16]) and has the significant advantage that the spectra of the periodic approximants can be
computed efficiently using Floquet-Bloch analysis. This method characterises the spectrum as a
countable collection of spectral bands with band gaps between each band.

This work will consider the specific example of generalised Fibonacci tilings, which are a type
of one-dimensional quasi-periodic patterns that can be generated by substitution rules. These
patterns were classified in [17] and are formed by tiling two distinct elements, labelled A and B,
according to some substitution rule

A—> My(A,B) and B— My,r(A,B), (1.1)

where M,,;(A, B) is some pattern that contains the A elements m times and the B elements / times.
The most widely studied example of such a tiling is the golden mean Fibonacci tiling, which is
given by (1.1) with m=I1=m'=1 and I' =0. The first few terms of this sequence are shown in
figure 1, from which it is clear that the sequence has the property that each word is given by
combining the previous two. That is, ;41 = F; U F;,—1, which is an equivalent definition for the
golden mean Fibonacci tiling. Generalised Fibonacci tilings have been studied extensively in the
literature for various elastic, mechanical and Hamiltonian systems [18-24]. Complex patterns of
stop and pass bands have been observed, whose features include large stop bands across multiple
frequency scales and self-similar properties.

In the setting of tilings where the quasi-crystalline pattern is generated using a substitution
rule, giving a growing sequence of tilings, the use of periodic approximants is particularly
promising. A natural question to ask is how the band gaps evolve as the unit cell is grown
according to the given tiling rule. An example is shown in figure 2, where we plot the band
diagrams for a system of axial waves in structured rods (which will be examined in detail in §4b)
with the unit cell designed to follow the golden mean Fibonacci tiling. We can see that while the
Bloch spectrum of the Fibonacci tilings F;, becomes increasingly complex as n grows, there are
some clear features that emerge. As 1 increases, the pattern of pass bands and band gaps becomes
increasingly fragmented, reminiscent of the Cantor-type behaviour predicted by the literature for
other quasi-periodic operators [4-7]. In spite of this complexity, several large band gaps seem to
appear for relatively small n (e.g. for F4) and persist as n grows. These features were noted in [23],
who coined the phrase super band gaps to describe these features.
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Figure 1. The golden mean Fibonacdi tiling (where m = 1and / = 1). The self-similarity of the structures is clear from later
terms in the sequence. As an example, 4 contains many repetitions of 4 (so we should expect their Bloch spectra to display
some similarities).
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Figure 2. The transmission spectra of periodic structures with unit cells given by generalised Fibonacci tilings can be computed
using Floquet—Bloch. (a) The Bloch band diagrams for periodic unit cells given by the golden mean Fibonacci tilings 7 and
JFs, with the band gaps between the bands shaded. (b) The band gaps for successive golden mean Fibonacci tilings, for which
the emergence of super band gaps is visible.

One explanation for the emergence of super band gaps in Fibonacci tilings is their structural
self-similarity. For example, figure 1 depicts the first few golden mean Fibonacci tilings and it is
clear that F9 contains F4 repeated many times, with a few other interspersed pieces. Thus, it is
to be expected that a periodic material with Fg as its unit cell should share some of the main
features of its transmission spectrum with the F4 periodic material. Similar relationships exist
between any two Fibonacci tilings 7, and F, (11 =4 and np; =9 were chosen arbitrarily for
the illustration in figure 1). Morini & Gei [23] developed a simple but successful approximation
strategy for predicting the approximate locations of super band gaps in generalised Fibonacci
tilings. However, a theoretical justification of this behaviour remains an open question. This work
takes a step in this direction by showing that super band gaps will exist if certain conditions are
satisfied at any given point in the sequence of Fibonacci-generated materials.

Understanding super band gaps is not only useful for characterizing the main features of the
transmission spectra of quasicrystalline materials, but also provides justification for the use of
periodic approximants (supercells). We will show in §5 that the transmission coefficient of a finite-
sized piece of a Fibonacci quasicrystal can be approximated by the transmission spectrum of a
periodic approximant. Our results show that even a periodic approximant with a small unit cell
can accurately predict the main spectral gaps of the finite one-dimensional quasicrystal. This is
predicted by our theory for super band gaps, which provides conditions for frequencies to always
be in spectral gaps, for any generalised Fibonacci tiling beyond a given term in the sequence.

The methods developed in this study will apply to one-dimensional wave systems with
two degrees of freedom, which can be described by a 2 x 2 transfer matrix. Three examples of
applicable systems are shown in figure 3. The first is a discrete system of masses and springs,
where we vary the spring constants and the masses to give the appropriate A and B pattern.
The second system concerns axial waves in structured rods, which are governed by a Helmholtz
equation. Here, we modulate the dimensions and also the material parameters (Young’s modulus
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Figure 3. One-dimensional wave systems with periodic unit cells corresponding to the golden mean Fibonacd tiling
JFs = ABAABABA are shown. (a) A discrete system of masses coupled with springs, where we modulate both the masses my
and the spring constants ky. (b) Axial waves in structured rods, where the cross sections Ay, Young's modulus £y and the mass
density oy can be modulated. (c) Flexural waves in multi-supported beams, where the distances /y between the supports are
varied.

and mass density). Finally, we will consider a continuous flexural beam that is supported at
varying intervals. We will examine these three systems in detail in §4 and present numerical
results showing that our theory for super band gaps can be used to reveal spectral features
accurately and with minimal computational cost.

2. Generalised Fibonacci tilings
Generalised Fibonacci structures are defined according to the substitution rule
A— A"B', B A, (2.1)

where m and [ are positive integers. Typically, the sequence is initiated with Fy = B, which yields
that 71 = A, F» = A"B!, F5 = (A"B')" A and so on (figure 1). This sequence has the property that
each word is the combination of m and I versions of the previous two

‘7'-;1+1:~7:11U"'U‘7:nu~7:n—1U"'Uj:n—l- (2-2)

m times I times

Examples of periodic mass-spring systems with unit cells given by the golden mean Fibonacci
tilings (m =1=1) F, 73, F4 and Fs are depicted in figure 4. The total number of elements in 7, is
given by the nth generalised Fibonacci number F,;, which are defined according to the recurrence
relation

F,=mF,_1 +IF,_». (2.3)

The limit of the ratio F,,11/F, as n — oo is given by

2
om,)i= lim Tt MV +4l

, 2.4
—oo Fy 2 ( )

and the tilings inherit their names from this limiting ratio. For example, since o(1,1)= (1 +
\/5) /2~1.618.. ., this case is often known as the golden mean Fibonacci tiling. Similarly, o(2,1) =
1+ +/2~2414... is the silver mean and o(3,1) = (3 + v/13)/2~3.303... is the bronze mean.
Likewise, 0 (1,2) and o (1, 3) have assumed the names copper mean and nickel mean, respectively.

We will study wave propagation in systems that have two degrees of freedom, in the sense
that their behaviour can be described fully by a two-element state vector u; € R?, where j is an
index denoting the spatial position. We suppose that wave propagation in these systems can be
described by a unimodular transfer matrix T(w) with real-valued entries. That is, for any indices i
and j and any frequency o, there is some matrix T(w) € R%%2 such that det(T) =1 and u; = T(w)u;.
We will explore three different examples of such systems in §4.
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Figure 4. Periodic mass-spring systems with unit cells given by the golden mean Fibonacci tilings 7, to Fs. Both the masses
and the spring constants can be modulated between the two phases (labelled A and B).

We let T, be the transfer matrix associated with the structure F;,. As a result of the property
(2.2), the substitution rule (2.1) means that this sequence of transfer matrices satisfies

Tpp1 =T, | T (2.5)

We are interested in studying structures formed by repeating F;, periodically. We can relate the
state vector at either ends of the unit cell F, by

ug, = Tu(@)u. (2.6)

Then, to understand the transmission properties of the periodic material, we can apply the
Floquet-Bloch theorem. If L, is the length of the unit cell 7, then we substitute ur, = uge Kb
into equation (2.6), giving that det(T},(w) — eKln) = 0. Using the fact that det(T};) = 1, this reduces
to the simple dispersion relation

cos(KL;) = %tr(T,,(a))). (2.7)

This has a real solution for K if and only if |tr(T(w))| <2. If @ is such that K is complex, then
we do not have Floquet-Bloch modes so  is said to lie in a band gap of the periodic material.
Examples of the dispersion diagrams obtained by solving (2.7) for periodic materials with unit
cells given by the Fibonacci tilings 7> and F5 are shown on the left in figure 2. This is for the case
of axial waves in structured rods, which will be studied in detail in §4b. The shaded regions that
lie between the dispersion curves are the band gaps. On the right in figure 2, we show the band
gaps (without the associated dispersion curves) for the first 10 Fibonacci tilings 77 to Fig.

Characterizing the band gaps of the material reduces to finding w such that |tr(T,(w))| > 2.
Given the importance of the transfer matrix trace, we define the quantity

Xn(@) = tr(T(w)). (2.8)

Understanding how the sequence {x,(w):1n=0,1,2,...} evolves for different materials and at
different frequencies w will be the main theoretical challenge tackled in this work. In particular,
we will define a super band gap to be the set Sy of all @ € R which are in band gaps of F;, for all
n>N:

Definition 2.1. Given a sequence of periodic materials indexed by n=0,1,2,... which have
associated transfer matrices Ty (w) € R?*2, a super band gap Sy C R is defined as

Sy :={w e R:|tr(Ty(w))| > 2 for all n > N}.

In this work, we will characterise super band gaps in Fibonacci tiling by deriving ‘growth
conditions’ that guarantee a frequency being in a super band gap. These results say that if  is
such that there exists some N € N for which |xy(w)| > 2 and the following terms |xxn1(w)| and
|xN42(w)| grow sufficiently quickly (in a sense that will depend on the choice of tiling parameters
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I and m), then w is guaranteed to be in the super band gap Sy. This analysis will rest upon the
helpful observation that the traces corresponding to generalised Fibonacci tilings satisfy recursive
relations [25,26]. To state these recursion relations, we must first introduce the quantity
tn(@) = tr(Ty—2(@)Ty-1(w)). (2.9)
We will also need the sequence of polynomials di(x), defined recursively by
do(x)=0, di(x)=1 and di(x) =xdi_1(x) —dy_o(x) fork=>2. (2.10)

We have that dy(x) =x, d3(x)=x% —1, dy(x) =x3 — 2x, d5(x) =x* —3x2 +1 and so on. These
polynomials are rescaled Chebyshev polynomials of the second kind. Understanding the
properties of these polynomials (in §3¢) will be one of the key insights that will allow us to prove
spectral properties of generalised Fibonacci tilings for large values of m or I. Finally, we have the
following recursion relation describing the evolution of x, and t,, which was shown in [27]

X1 = A () [ (-1t 1 — di—1(xn—1)%n]
= dy—1(en)d111 (xn—1) — dj—1(xn-1)]
and tnt1 = A1 (cn—1)[d1(xn—2)tn — d1—1(xp—2)xn-1]
= Ay (Xn—1)d111(xn—2) — dj—1(xn—2)]-

The name ‘super band gap’ was introduced in [23], who observed their existence in generalised
Fibonacci structures (corresponding to the golden and silver means). They succeed in predicting
the approximate locations of these super band gaps using the function H;, : R — [0, oo) defined by

2.11)

Hy(w) = [tr(Ty(@))tr(Tni1(w))]- (2.12)

They observed numerically that if w € R is such that Hy(w) >> 2, then it is likely to be in a super
band gap. Other approximate approaches for predicting the locations of super band gaps also
exist, such as considering an ‘effective lattice’ that is the superposition of two periodic lattices,
with periods differing by a ratio equal to the golden mean [16]. This work builds on these previous
results by developing the first rigorous justification for the occurrence of super band gaps in
materials generated by generalised Fibonacci tilings.

3. Theory of super band gaps

In this section, we will develop the main theory characterizing super band gaps in materials
generated by generalised Fibonacci tilings. These results will take the form of growth conditions,
which will need to be modified to suit different values of m and I. We will apply this theory to
specific physical examples in §4 and use it to predict the transmission coefficient of large but
finite-sized samples in §5.

(@) Golden mean Fibonacci

This is the classical Fibonacci tiling, where m =1 and [ =1 in (2.1). It is referred to as the golden
mean Fibonacci tiling because the limiting ratio is o(1,1) = (1 + +/5)/2 2 1.618, the famous golden
mean that appears in nature. In the golden mean Fibonacci tiling, the recursion relation (2.11) can
be simplified to a much simpler form, given by

Xpt+1 =XnXp—1 — Xp—2, N=2. (3.1)

This was discovered in [28] and has been the basis of many subsequent studies of Fibonacci
materials.

The main result we will use to characterise super band gaps is the following theorem. This
shows that if a frequency is such that the sequence of traces is outside of [-2,2] and has three
subsequent terms that are growing, then that frequency is in a super band gap of the golden mean
Fibonacci tiling. This result is a modification of the lemma 3.3 in [29], where it was proved for the
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special case where successive terms are double the previous term (giving exponential growth of
the sequence). Here, we have improved the tightness of the bound and shown that any growth
rate bigger than 1 is sufficient for a super band gap to exist.

Theorem 3.1. Let w € R and consider x,(w) satisfying the golden mean recursion relation (3.1).
Suppose that there exists some N € N such that

lxn| > 2, lxng1l = 1an] and  |xng2| = lxngl

Then |xp41] > |xy| for all n > N. Consequently, |x,| > 2 for all n > N, meaning that w is in the super band
gap Sn.

Proof. We will show that |xn43| > |xN42], from which the result will follow by induction. We
have that

lengal = N2l lengt ] = lxen] = lxengallxn] = x| = [eng2 (x| — 1) + (Ixng2l = D). (3.2)

By hypothesis, we have that [xy| — 1 > 1 and |xny2| > |xn/, so it holds that [xn43] > [xn42]. |

(b) Silver mean Fibonacci

The case where m=2 and [ =1 in (2.1) is known as the silver mean Fibonacci, again inheriting
its name from the limit 0(2,1) =1 + +/2 ~2.414. After some rearrangement, the corresponding
recursion rule is given by

Xpp1 = Xnbpt1 — Xn—1
(3.3)
and fnt1 = XnXp—1 — tn,

for n>2. While this is more complicated than in the case of the golden mean, it turns out that
super band gaps can be characterised using the same condition (although the proof of this is
slightly less straightforward than the single-line argument of theorem 3.1).

Theorem 3.2. Let w € R and consider x,(w) satisfying the silver mean recursion relation (3.3). Suppose
that there exists some N € N such that

lxn| > 2, leng1l = 1xn] and  |xng2| = Nyl

Then |xy41] > |xu| for all n > N. Consequently, |x,| > 2 for all n > N, meaning that  is in the super band
gap Sn.

Proof. As for the golden mean Fibonacci tiling, the strategy will be to proceed by induction. We
begin with the second equation of the recursion relation (3.3), with a view to deriving a lower
bound on |ty 43|. Observe, first, that thanks to elementary properties of unimodular matrices

1 1
tw = tr(Ty2Ty1) < 5 (T )+ t0(Th_p)) = 5055 +331) =2, (34)

for any . In particular, since |xn| > 2 and |xn41] > 2, the right-hand side of (3.4) is positive when
n =N + 2, so we have that

nial = 5+ ) ~2 =y — 2 (35)
Then, the second equation of (3.3) gives
N3l = vzl lana | = gl = 25 — gy +2=2. (3.6)
Finally, turning to the first equation of (3.3), we see that
IxN3l = XNl lENal = v ] = 20an42] = [l = [xvgal- (B.7)

Then, by induction, it follows that |x,11| > |x;| for all n > N. |
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Figure 5. The first few Chebyshev polynomials d(x), defined recursively in (2.10). These functions play a crucial role in
determining the behaviour of generalised Fibonacci tilings.

(c) Properties of the Chebyshev polynomials

Before proceeding to study super band gaps in more exotic generalised Fibonacci tilings, we must
first prove some properties of the polynomials dy(x) defined in (2.10). The first few dy(x) are plotted
in figure 5, for reference. Using standard techniques (as in e.g. §2.3 of [30]), we can derive an
explicit formula for di(x), which is given by
k k
1 (x+ x2—4> 1 (x—\/x2—4>
x

d =
k) 2 _4 2 2 _ 4 2

(3.8)

for k € ZZ9 and x € (0, 00) \ {2}. To check the value of the solution at x =2, we have the following
lemma:

Lemma 3.3. dy(2) =k for all k> 0.

Proof. This is true, by definition, for k=0 and k =1. If we suppose that it holds for arbitrary
k — 1 and k then we have that

dx1(2) = 2dy(2) —dx1(2) =2k = (k=) =k +1, (3.9)
so the result follows by induction on k. ]

The definition 2.10, alongside the formula (3.8), can be used to study the properties of the
sequence of polynomials. For example, it will be helpful to understand the parity of dy.

Lemma 3.4. For k> 1, if k is even then di(x) contains only odd powers of x, whereas if k is odd then
dy(x) contains only even powers of x.

Proof. We can immediately check the first few terms: dq(x) =1, da(x) =x, d3(x) = x%2 — 1. Then,
we suppose that the statement holds true for some k and k — 1, where k is even. In which case
xdy(x) contains only odd powers of x, meaning that di1(x) = xdi(x) — dx_1(x) contains only odd
powers. A similar argument holds for odd k. The result follows by induction. |

A consequence of lemma 3.4 is that d is an even function when k is odd and is an odd function
when k is even. This means it is sufficient to study its properties when x > 0. We have the following
results, which will allow us to derive bounds on these polynomials when |x| > 2 (which is the
domain of interest).

Lemma 3.5. di(x) > 0 and d}(x) > 0 for all k > 0 and all x > 2, with equality holding only if k =0.
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Proof. This is trivial for k =0, so we consider k > 1. From lemma 3.3, we have that di(2) =k > 0

for all k> 1. For x > 2, it holds that x + v/x2 — 4 > x — v/x2 — 4 > 0. Thus, since x — x* is strictly
increasing for x > 0, it follows that

<x + Va2 — 4>k — (x —Vx? - 4)k > 0. (3.10)

So, using the formula (3.8), we find that dy(x) > 0 for k> 1 and x > 2.
To handle the derivative, we note that di(x) is the determinant of the k x k tridiagonal matrix
My (x) given by
x ifi=j,
My(x)ij =11 ifi—j=41, (3.11)
0 otherwise.
Since di(x) > 0 for k > 1 and x > 2, M (x) must be invertible. Hence, we can use Jacobi’s formula to

see that

d

)= L det(My(x) = detMy(x) tr(Mk(xr1 iMk(x)) — RO M@, (312)
X dx dx

where we have used the fact that the derivative of M(x) with respect to x is the identity matrix.

To deal with tr(My(x)~1), we will show that Mi(x) has strictly positive eigenvalues whenever
k>1 and x> 2. For x> 2, this follows immediately from the Gershgorin circle theorem [31,
Theorem 6.1.1]. When x =2, Gershgorin circle theorem permits eigenvalues to vanish, but this
is forbidden by the invertibility of My (x). Thus, if k > 1 and x > 2, then M(x) has strictly positive
eigenvalues 11(x), ..., Ax(x). Finally, using the fact that M (x) is symmetric and positive definite,
we can compute that

k
tr(M(x) ™) =) 1)~ >0. (3.13)
i=1

Combining this with the fact that di(x) > 0, (3.12) tells us that d;(x) >0 forallk>Tand x>2. W
Corollary 3.6. |dx(x)| > 2 for all k> 2 and all |x| > 2.

Proof. This follows by combining lemma 3.5 with lemma 3.3, for x > 2. Then, the result for
x < —2 follows by parity. |

Lemma 3.7. dj1(x) > dy(x) for all k> 0 and all x > 2.
Proof. This is true for k =0, from the definition. Then, supposing that dj(x) > di_1(x),
A1 () = xedi(x) — d—1(x) = 2dje(x) — die—1(x) = die(x) + (di(x) — dg—1(x)) = di(x), (3.14)

where the first inequality relies on the fact that di(x) > 0 from lemma 3.5. Finally, the result follows
by induction on k. u

Using the odd/even parity of the polynomials di, we have the following corollary:
Corollary 3.8. |dy1(x)| > |di(x)| for all k > 0 and all |x| > 2.
The final property of the polynomials di(x) that we will need is the following inequality:

Lemma 3.9. |dj41(X)| < [xdk(x)| < 2|dk41(x)| for any |x| > 2 and any k> 1.
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Proof. Thanks to the parity of di, we can consider x > 2 without loss of generality, in which case
dr(x) > 0 for all k. For the first inequality, we have that

0 < di—1(x) = xedk(x) — die41 (%), (3.15)
50 di41(x) < xdi(x). To see the second inequality, we must use the formula (3.8). It holds that

k k
1 x4+ x2—4<x+ x2—4) 1 x—\/x2—4(x—\/x2—4>
X

d =
k1 () 24 2 2 2_4 2 2

(3.16)

We have that x ++vx2 —4>x and — (x —x? = 4) > —x, from which we see that dj,q(x)>
(1/2)xd(x). |

(d) Generalised precious mean Fibonacci

Generalised Fibonacci tilings with /=1 and arbitrary m are known as precious mean Fibonacci
tilings (generalizing the notions of golden and silver means for m =1 and m = 2, respectively). In
this case, the recursion relation (2.11) reads

Xn41 = dm(Xn)tng1 — dm—1(Xn)xn-1
(3.17)
and tu1 = dps1 (n—)tn — dm(Xn—1)xn—2

for n>2. In order to develop a precise theory for super band gaps when m > 2, we will need
to assume that the sequence of traces has at least polynomial growth, with order m — 1. This
is consistent with the rule that was established for the silver mean in theorem 3.2. In fact, we
will need that terms grow such that |x,11] > |d;;—1(x,)xx|. This is made precise by the following
theorem.

Theorem 3.10. Let w € R and consider x,(w) satisfying the generalised precious mean recursion
relation (3.17) for some m > 2. Suppose that there exists some N € N such that

lxn| > 2, [xny1l = | dm—1(xen)an| and  |xny2| = 1dm—1 (v 1)xN+1]-

Then |xp41| > |dm—1(xn)xy| for all n > N. Consequently, |x,| > 2 for all n > N, meaning that w is in the
super band gap SN

Proof. The special case m = 2 is exactly the result that was proved in theorem 3.2, since d1(x) = 1.
We will consider m > 3. We begin by rewriting the recursion relation (3.17) in this case. From the
first equation of (3.17), we have that

Am(xn—1)tn = Xn + dip—1(Xp-1)Xn—2- (3.18)
Turning to the second equation of (3.17), using the definition of dy and substituting (3.18) gives
tu1 = Xp—1%n + dy—2(Xn—1)%p—2 — diy—1(Xp—1)tn. (3.19)

An important observation is that, thanks to corollary 3.6, the hypotheses of this theorem imply
that |xn2| > [xn+1] = |xn| > 2. This is important as @ could not be in the super band gap Sy
otherwise. It also allows us to use the inequality (3.4) to see that

ltng2l < 2%4q — 2. (3.20)
Then, from (3.19), we have that
ltn+3] = IxN+1xN+2] = [dm—2(xn+1)xXN] = ldm—1(xNn41)EN+2]
> [anp1xN+2] = ldm—2(in1)XN] + 2ldm—1 Cen)] = Xy dm—1 Convg)]
> —|dm—2(xN+1)xN]| + 2ldm—1(xNn+1)], (3.21)

where the last inequality follows by hypothesis.
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To deal with (3.21), we must turn to lemma 3.9. Since |xN|>2, |d;—1(xn)| > |d2(xn)| >
d>(2) =2. As a result, the assumption that [xy41] > [xndy—1(xN)| implies that [xn41] > 2|xn]| > 4.
Consequently, we have that

2N 1)1 = 3 -2 )] = b1 (o) (322)
Using this inequality, (3.21) gives us that
tN+3] = [dm—1(xN41)| = do(4) = 4. (3.23)
We can now turn to the first equation of (3.17), which gives us that
N3] = ldm (iN+2)EN+3] = ldm—1(ON2)XN+1 | = 4ldm(tN42)] — dm—1 (XN2)XN+1]- (3.24)
Using lemma 3.9 again, we have that
[xN3] = 20dm—1(xN4+2)XN+2] = ldm—1(XN+2)XN41 | = ldm—1(XN42)XN+21, (3.25)

where the second inequality follows from the fact that |xn42| > |xn41]|. Proceeding by induction
gives us that |x,41] > |d;;—1(xn)x,| for all n > N. Thanks to corollary 3.6, we see also that |x;| >
|xn| > 2 foralln>N. |

(e) Generalised metal mean Fibonacci

Suppose now that m=1 and [ is arbitrary. This case is sometimes known as the metal mean
generalised Fibonacci. In particular, [ =2 is known as the copper mean and [ =3 as the nickel mean
[6,32]. In this case, we are able to eliminate ¢, from the recursion relation (2.11), giving the simpler
recursion relation

X1 = d1(00n—1)[XnXn—1 — dip1 (¥n—2) + dj—1(xp—2)] — Xndj—1(xp—1) (3.26)
for n > 2. Note how this reduces to the golden mean recursion relation (3.1) in the case that I =1.
Theorem 3.11. Let w € R and consider x,(w) satisfying the generalised metal mean recursion relation
(3.26) for some I > 1. Suppose that there exists some N € N such that
5
N> 2, lxnal 2 5 and - Jxngel = max{P-al, e )l
Consequently, |x,| > 2 for all n > N, meaning that w is in the super band gap S
Proof. The special case [ =1 was proved in theorem 3.1. For | > 2, we have from (3.26) that
N3l = Ixnran2di(an)] = [di(en) A (on) — di—a en)ll = langadi— Gengn) . (3.27)

We know that |dj;1(xn)| > |d)—1(xn)| and they must both have the same sign since they have
the same parity and do not vanish on |xy| > 2. As a result, we have that

ldpp1(en) — di—1(en) | = ldpr (ov)] = 11 ()] < i (en)] < 12l (3.28)
where the final inequality follows by hypothesis. Substituting this into (3.27) gives
IXN+3| = [eNp1XN+241(0N41)] = [N (en)] — XNt 2di-1(xn41)]
= (len1] = 2)lxN241(XN41)]- (3.29)

Since |xn+1]| < [¥n+2|, we can use lemma 3.9 to see that |xni2dj(Xn+1) > |XN+1d1(XN+1)] >
|d141(xN+1)]. Since [xn41| — 2 > 0, we conclude that

N3l > ldr (N1l (3.30)

We also need to check that |xn3| > [xn42]. This follows from (3.29) since |dj(xn4+1)| > d;(2) =1> 2
and |xn41| —2>1/2.

Finally, we can proceed by induction to see that |x,12| > max{|x,41], |dj+1(x,)|} for all n > N.
Since |x,41| > 5/2 for all n > N, it follows that |x,| > 2 for all, so it must hold that w € Sy. |
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(f) Discussion

We have established a new theory for super band gaps, which characterises when the sequence of
traces x;(w) is guaranteed to grow indefinitely. A natural question to ask of the results proved in
this section is whether the growth conditions are optimal. In the case of theorems 3.1 and 3.2, the
results for the golden and silver mean tilings respectively, it is a reasonable hypothesis that the
simple growth condition could be the strongest possible condition that guarantees the existence
of a super band gap. However, we suspect that the growth conditions for the other generalised
Fibonacci tilings are not the tightest possible growth bounds. For example, in the result for
generalised metal mean Fibonacci tilings from theorem 3.11, the requirement that |xy41]| > 5/2
is almost certainly not optimal. We used this assumption to derive one of the bounds needed for
the inductive hypothesis; however, it is likely that this assumption could be relaxed by future
work. Nevertheless, the numerical evidence we will present in §4 suggests that even this sub-
optimal result gives a precise prediction of the super band gaps (we will present numerical
results for the copper mean tiling for each physical system). The reason for this is that within
these super band gaps (particularly away from the edges) the sequence of traces x;,(w) typically
grows very quickly, so the sub-optimality of the growth condition has little effect. This very rapid
growth in the middle of super band gaps is also the reason that the estimator H(w), defined in
(2.12) and introduced by [23], performed relatively well at predicting their approximate locations.
The present theory builds on this by developing an approach that is grounded in first-principles
mathematical analysis.

4. Super band gaps in specific one-dimensional systems

The general theory from the previous section can be applied to study the spectral properties of
generalised Fibonacci tilings in various one-dimensional systems. We will consider three different
examples: a discrete mass-spring system, a structured rod and a continuous beam with modulated
distances between the supports, as depicted in figure 3.

(a) Compressional waves in discrete mass-spring systems

As a first example, we consider a periodic discrete mass-spring system. The fundamental cells are
designed according to the generalised Fibonacci substitution rule (2.1), where the two elements
A and B correspond to different masses m4 and mp and linear springs with stiffness k4 and kg,
respectively (see figure 3a). In order to study the dispersive properties of harmonic compressional
waves in this system, we study the horizontal displacement of each mass u;(t) = u]-ei“’t and
the harmonic force acting on that mass f;(t) = fjei"’t, where the index j indicates the relevant
mass. Thus, we introduce the state vector in the frequency domain u; = [u;, f]-]T. The relationship
between u; and the state vector of the preceding element u; 1 is given in [33]:

1 __
u; 2 Ui_q

uj= - X ) ! =TX(w, mx, kx)uj_q, 4.1)
f]’ 2 1— mxw f}_l

mxaw
X kX

where X € {A, B} and TX (w, mx, kx) is the transfer matrix of a single element A or B, corresponding
to the product of the respective transfer matrices associated with the mass myx and the spring of
stiffness kx [34].

Given a generalised Fibonacci unit cell F,, the state vector ur, at the right-hand boundary
of the unit cell (corresponding to j = F;, where F;, is the previously defined generalised Fibonacci
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number) can then be expressed in terms of the state vector at the left-hand boundary, ug, according
to

uf, = Ty(w)up, (4.2)

where Tn(a)):H;LlTX(w, mx, kx) is the transfer matrix of the fundamental cell of order n.

Applying the Floquet-Bloch theorem to the unit cell, we substitute ur, = upe'Klr into equation
(4.2), and due to the fact that T);(w) is endowed with the unimodularity and recursive properties
illustrated in §2, the dispersion relation takes the form

cos(KL;,) = %tr(Tn(a))) = KL, =arccos < (4.3)

tr(Ty(w))
).

where L, is the length of the unit cell.

The pattern of pass and stop bands for this discrete mass-spring system is shown in figure 6
for various generalised Fibonacci tiling. In each case, the upper plot shows the band gaps of
successive tilings F,, characterised as o such that |tr(T;(»))| <2. We can see how the spectrum
becomes increasingly complex for increasing n. The middle plots of figure 6 show the super band
gaps Sy, which are computed by checking if tr(Tn(w)) satisfies the growth condition from the
theorems in §3. We see that the super band gaps agree with the pattern of spectral gaps observed
in the top plot. By looking at the super band gaps Sy for larger N, our theory is able to reveal
some of the complex structure that emerges for ¥, with large n and shows that many of the
smaller band gaps that are created are, in fact, super band gaps.

The lower plots in figure 6 show the super band gap estimator function Hy(w)=
[tr(T2(w))tr(T3(w))| from [23]. We can see that the local maxima of H, successfully predict the
locations of the main few super band gaps, but that this approach is unable to reveal the complex
pattern of super band gaps that emerges for higher-order Fibonacci tilings. This is one of the
advantages of the new theory developed here, that higher resolution descriptions can be obtained
by computing super band gaps Sy for larger N, where required. We have not only developed
a rigorously grounded theory for detecting for super band gaps, but our approach has greater
resolution than was previously possible.

One notable feature of figure 6 is the occurrence of high-frequency super band gaps. That is,
there appears to exist some w* such that any w > * is in a super band gap. The origin for this
phenomenon can be seen by inspecting the transfer matrices T4 and T?, defined in (4.1). We have
that

mXa)2

kx ’

tr(T* (o, mx, kx)) =2 — (4.4)

so it is easy to see that if w > 2,/kx/mx then tr(TX) < —2 so w is in a band gap of the material
with label X. As a result, we have that if w > max{2,/ka/ma,2/kp/mp} then w is in band gaps of
both Fy and F;, for any generalised Fibonacci tiling. However, this is not generally enough to
guarantee that w is in a super band gap. For the discrete mass-spring system, the super band gap
occurs due to the structure of the associated transfer matrices, which take a specific form when o
is sufficiently large. This is made precise with the following result.

Theorem 4.1. Consider a discrete mass-spring system with behaviour governed by the equation (4.1)
and fundamental cells designed according to a generalised Fibonacci substitution rule (2.1) with arbitrary
m, 1> 1. There exists some w* such that if w > w* then w is in the super band gap Sy.

Proof. Suppose that w — co while all the other parameters are kept constant. In this case, we
have that

TX = myw” <|:(1) l?_l:| + O(w2)) as w — 0o. (4.5)
X
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Figure 6. The band gaps and super band gaps of a discrete mass-spring system with spring constants varied according to
generalised Fibonacd tilings . For each tiling, the top plot shows the band gaps for each successive Fibonacdi tiling 7,
the middle shows the super band gaps S, as characterised by the corresponding theorem, and the bottom shows the super
hand gap estimator H,, as used in previous works and defined in (2.12). We use the parameter values k4 = 2ks = 200N m ™
and suppose that my = mg. The normalised frequency /m4c is shown on the horizontal axes and the value of the estimated
threshold e from (4.8) is highlighted above. (a) Golden mean Fibonacci (m =1,/ =1), (b) silver mean Fibonacci (m = 2,
I'=1), (c) bronze mean Fibonacci (m = 3,/ = 1), (d) copper mean Fibonacci (m =1,/ = 2).

Then, some straightforward algebra reveals that the transfer matrix of the generalised Fibonacci
tiling F, satisfies

0 0
n2

Ty = (m4)"™ 2 (mp)Fr1 2 +02)) asw— oo, (4.6)
where 17 and 77 are non-zero constants and the generalised Fibonacci numbers F;, were defined
in (2.3). Crucially, it holds that |n;| > max{k4, kg}~Fr, so we can see that

[tr(T,)| >

. F,
(m0)"Fr2 (mB)an—l o> (mm{mA,mB} 2) @7

max{ka, kg}F» max{ky, kp}
As a result, we can see that if w is sufficiently large, then |tr(T};)| > 2 for all n, implying that  is in
the super band gap Sp. ]

While the bounds used to prove theorem 4.1 are quite loose in general, it is able to give some
quantitative information on the high-frequency super band gap S;. In particular, from (4.7), it
is clear that min{ma, mp}w > 2max{ka, kg} is sufficient to guarantee that |tr(T,)| > 2 for all n. For
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the parameter values considered in figure 6, this gives an upper estimate wj for the normalised
frequency of

Vmawy =+/800~ 28.28. (4.8)

This value is indicated above the upper two plots in figure 6, where it can be seen to provide an
accurate estimate for the lower limit of the super band gap Sj. To characterise the lower limit of
subsequent super band gaps, which can be observed to occur at successively lower frequencies,
it is necessary to check the growth conditions derived in this work.

(b) Axial waves in structured rods

The dispersive properties of two-phase quasi-periodic structured rods with unit cells generated
by one-dimensional generalised Fibonacci sequences have been studied previously in [23],
including experimentally in [20]. The lengths of the two segments A and B are indicated with
I4 and I, respectively, while Ax, Ex and px denote the cross-sectional area, Young’s modulus
and mass density per unit volume of the two adopted materials, respectively. This is sketched in
figure 3b. For both elements, we define the displacement function and the axial force along the
rod as u(z) and N(z) = EAu/(z), respectively, where z is the coordinate describing the longitudinal
axis (as depicted in figure 3). The governing equation of harmonic axial waves in each section is
given by
d?u 5

—(2) + Qxou(z) =0, (4.9)
dz2

where Qx = px/Ex corresponds to the reciprocal of the square of the speed of propagation of
longitudinal waves in material X. The general solution of (4.9) is given by

uz) = CX sin( waz> +cf cos< waz>, (4.10)

where C{( and C§ are integration constants, to be determined by the boundary conditions.

In order to obtain the dispersion diagram of the quasi-periodic rod, we express the state vector
ur, = [ur,, N, 1T at the end of the Fibonacci unit cell as a function of the same vector ug = [, Ng]T
on the left-hand side

ur, = Ty (w)uo, (4.11)

where T () is a transfer matrix of the cell F;,. This matrix is the result of the product T, (w) =
17;11 TX(w), where TX(w) (X € {A, B}) is the transfer matrix that relates quantities across a single
element, given by

sin (\/@wlx)

ExAxyQxw | 4.12)

—EXAXw\/@ sin (\/@a)lx) cos (@wlx)

Once again, the matrices Tj,(w) possess the important properties introduced in §2. As a
consequence, if we impose the Floquet-Bloch condition u, =we!kl", then the corresponding
dispersion relation assumes a form identical to (4.3).

The pattern of pass and stop bands for this continuous system of structured rods is shown
in figure 7 for several generalised Fibonacci tilings. As for the mass-spring system, we show
the pattern of band gaps for successive tilings 7, in the top subplot. Beneath this, we show the
frequencies that are guaranteed to lie within super band gaps, thanks to the theorems from §3.
We see good agreement between the super band gaps Sy and the band gaps of F,;. Once again,
we see that whereas the estimator H> is only able to predict the locations of the largest few super
band gaps, our theory reveals a more intricate pattern of super band gaps.

One notable feature of the spectra in figure 7 is that they are symmetric and periodic. This
is a consequence of the specific set-up we have chosen for these simulations, which has all the
material parameters identical between A and B (i.e. E4 = Ep, pa = pp and [4 =Ip) and only the

cos (@wlx)

TX(w) =
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Figure 7. The band gaps and super band gaps of a system of structured rods with thickness varied according to generalised
Fibonacci tilings . For each tiling, the top plot shows the band gaps for each successive Fibonacci tiling -, the middle shows
the super band gaps S, as characterised by the corresponding theorem, and the bottom shows the super band gap estimator
H,, as used in previous works and defined in (2.12). We use the parameter values £4, = £z = 3.3 GPa, py = pg = 1140 kg m~,
Uy =Ag =1.963 x 10> m~2, [y = [y = 0.07 m. We plot the normalised frequency +/Qyc on the horizontal axes, noting
that Q4 = Qg in this case. (a) Golden mean Fibonacci (m =1,/ =1), (b) silver mean Fibonacci (m = 2,/ =1), (c) bronze mean
Fibonacci (m =3,/ =1), (d) copper mean Fibonacci (m =1,/ = 2).

cross-sectional area modulated. As a result, the first three terms of the sequence of traces are
given by

xo(w) = x1(w) =2 cos (@wlA> and xp(w)=2cos’ (@wlA) <—+—> sin (@wlA).

(4.13)

It is easy to see that these functions are all periodic functions of w. This spectral symmetry and
periodicity was explored through the symmetries of a coordinate transformation in [20], where
they referred to this set-up as the ‘canonical configuration’.

(c) Flexural waves in continuous beams with modulated supports

As a third prototype of one-dimensional Fibonacci-generated dynamical systems, we investigate
the dispersive properties of flexural vibrations in a quasi-periodic multi-supported beam. In
this case, we modulate the distances between the positions of the supports along the axis of
the beam (figure 3c), choosing the lengths according to generalised Fibonacci tilings. The beam
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is homogeneous, with bending stiffness denoted by EI, and the equation governing harmonic
vibrations of the transverse displacement v(z) is
d%v 2
EI@ — pwv=0. (4.14)

The solution of (4.14) can be expressed as v(z) = C exp ikz, yielding the characteristic equation
(kr)* — Pw?* =0, (4.15)

where 7 is the radius of inertia of the cross section and P = pr*/EIL Equation (4.15) admits four

solutions, namely
1 1
k2 () = i;\/ ovVP and k3 4(w) = i;\/ —wV/P, (4.16)

where the first index corresponds to the sign "+’

We can now obtain the dispersion diagrams following the same procedure shown in
the previous subsection for axial waves in structured rods. To do so, it is important to emphasise
that the state of the multi-supported beam is determined by the rotation ¢(z) and its derivative
¢'(z) (or bending moment) at each supported point. This is because we assume that the beam
is constrained to the support and there is no displacement there. This means that the fourth-
order differential system (4.15) only has 2 d.f. This setting is well established and widely studied,
see also [19]. The state vector on the right-hand side of the Fibonacci unit cell is then given by
vr, = [¢r,, d)’F”]T, and it is related to vy = [¢y, ¢(’)]T through the relationship

vy = Tp(w)vy, (4.17)

where, similarly to the previous cases, T, (w) = H;;l TX(w) is the transfer matrix of the unit cell

Fu. For this system, the transfer matrices TX(w) (X € {A, B}) associated with each constituent unit
are given in [19]

lpb)g(w) lI/bX(w) - M
Vi@ V()
TX(w) = , (4.18)
1 lI/a)[f(w)
(@) (@)
where K1 (@) otk (@)lx) — ka(w) cot(ks(@)lx)
X _1a)co 1(w)lx) — K3(w) COUK3 (W)l x X _ X
Vi (w) = R(o) — B ;P (0) =~ () (4.19)
and
WX () = k1 (w) csclky (w)lx) — k3(w) csc(kg(w)lx), 0 X(w) = —wX(), (4.20)

k(@) = K(@)

and Iy (X € {A, B}) is the length of the simply supported beam A or B, representing the single
element of our cells.

It is important to note that ¥ (w) and ll/;b((a)) both take only real values. This is because,
although k3(w) is always an imaginary number, each of k2, k3 cot(klx) and ks csc(kslx) are real.
This means TX always has real-valued entries. Further, we can algebraically check that T, (w)
satisfies the unimodularity condition and follows the recursive rule previously introduced. As
a consequence, using the Floquet-Bloch condition v, = v;e!kl" into equation (4.17), we derive a
dispersion relation similar to (4.3).

The pattern of pass and stop bands for this continuous system of multi-supported beams
is shown in figure 8 for several generalised Fibonacci tilings. As with the previous examples,
a complex pattern of band gaps emerges and the super band gap theory is able to accurately
characterise this complex behaviour. In this case, the super band gap estimator H», that was
developed in previous works (and is shown in the lower subplots), particularly struggles to reveal
useful information about the detailed structure of the spectrum, demonstrating the value of our
new theory.

€990£707 081 ¥ 205 -4 204g edsyjeuinof/iobuysiigndiaposiefos H



(@) \/ﬁ)g l.a_and gaps of 7, ®) ﬁ)g band gaps of 7,

b4
x
3
8
0 50 100 150 200
super band gap estimator H, super band gap estimator H,
s ‘|\‘n| [ 1] | | A _ | |‘ | [ A
5| | 'w'* BIEIERvA £ “| W | Y
~ \ P ~ | | I\
= b wd U Uy = 11T e R AV
0 50 100 150 200 0 50 100 150 200
normalised frequency VP normalised frequency VP
(0) (d)
10\/{’7% band gaps of 7, 10\/}’7)5 band gaps of 7,
5 s S
=] e — e — =]
g —_——— = - — g
0 50 100 150 200
=z
=
o
— k=]
- g 1
0 50 100 150 200 0 50 100 150 200
super band gap estimator H, super band gap estimator H,
’ | ‘H \ ‘ | | | [ ]
g s H ‘||' | '“'h g |I'\ |‘ IRy
= Ui Ui' | m“ d \“.. ‘ ” H".\v.‘”l,‘ ‘.;"
100 150 200 100 150 200
normallsed frequency VP normallsed frequency VP

Figure 8. The band gaps and super band gaps of a continuous beam with supports modulated according to generalised
Fibonacci tilings . For each tiling, the top plot shows the band gaps for each successive Fibonacdi tiling 7, the middle
shows the super band gaps S, as characterised by the corresponding theorem, and the bottom shows the super band gap
estimator Hj, as used in previous works and defined in (2.12). We use the distances 4/; = [g = 0.1m between the supports
and assume that all the material parameters are constant. In particular, we take r = 0.05 m and plot the normalised frequency
+/Pw on the horizontal axes. (a) Golden mean Fibonacci (m =1,/ = 1), (b) silver mean Fibonacci (m = 2,/ =1), (c) bronze
mean Fibonacci (m = 3,/ =1), (d) copper mean Fibonacci (m =1,/ = 2).

A notable feature of the spectra in figure 8 is the occurrence of low-frequency super band
gaps. As was the case for the high-frequency super band gaps that occurred in the mass-spring
system, this can be understood by looking at the structure of the transfer matrices. We recall the
function sgn: R — {—1,0, 1} given by sgn(x) = x/|x| (and sgn(0) = 0). Then, we introduce the sets
of unimodular matrices ¥ and ¥_ given by

={MeR>?: det(M) =1, sgn(Mi1) =sgn(Mpp) =1 and sgn(My2) =sgn(Mp1) =—1}  (4.21)
and

={MeR>?:-Me x,}. (4.22)
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Lemma 4.2. Let TX(w) be the transfer matrix of the multi-supported beam, as defined in (4.18). There
exists some o™X > 0 such that TX(w) € _ for all 0 < w < w™X. Further, it holds that

-2 Ix/2
T™w)=| 6 _, | t0@), asw—0.
Ix

Proof. Suppose that w — oo while all the other parameters are kept constant. Recalling (4.16),
we see that k; = O(w!/2) and, using the Taylor series for cot and csc,

K21 K21
ky (@) cot(ky ()lx) :ll - 17’( + 0@ and k() csclky(w)ly) = ll - 17’( +0(@?), (4.23)
X X
as w — 0. Substituting these expressions into (4.19) and (4.20) gives us that
! I
wX = gx +0() and ¥¥= ZX 1+ O(w), (4.24)

as w — 0. Substituting this into the expression (4.18), we obtain the leading-order expression for
TX. Since the leading-order matrix is in ¥_, TX will be in ¥_ provided w is sufficiently small. B

Lemma 4.3. Suppose that 0 < < min{w**, w*B} and let T, be the transfer matrix associated with
a multi-supported beam with fundamental cell designed according to a generalised Fibonacci substitution
rule (2.1) with arbitrary m,1 > 1. T, € ¥_ if F; is odd and T, € ¥ if F;, is even.

Proof. From lemma 4.2, we have that both TAex_and TBe ¥_.1tis straightforward to verify
that

Y @Y. =Y,®Y,=%, and ¥ ®¥,=X,@¥_=3_. (4.25)

Then, if F;, is even, T, is the product of an even number of matrices from X_, meaning it is the
product of F,,/2 matrices from ¥, so T;, € ¥_. Conversely, if F,, is odd, then T), may be written
as the product of F;, — 1 matrices in ¥_ and another matrix in ¥_. Since F, — 1 is even, the first
of these two terms is in ¥, meaning T, e ¥4 @ ¥_ =X _. [ |

We are now in a position to prove an analogous result to theorem 4.1, which demonstrates the
existence of low-frequency super band gaps for the multi-supported beam (based on the structure
of the transfer matrices and without needing to check the growth conditions). From lemma 4.2,
we can see that w will be in a band gap of both Fy and F; if it is sufficiently small. However,
as was the case for the discrete system, we must take advantage of the specific structure of the
transfer matrices in this regime to prove a result.

Theorem 4.4. Consider a multi-supported beam with behaviour governed by the equation (4.17) and
fundamental cells designed according to a generalised Fibonacci substitution rule (2.1) with arbitrary m,l >
1. There exists some ™ > 0 such that if 0 < w < w* then w is in the super band gap S.

Proof. The key to our argument is proving that
(Tw)11l =25 and  [(Tu)zal = 27 (4.26)

We first consider the golden mean Fibonacci case, where m =1=1, and proceed by induction.
From lemma 4.2, we can see that (4.26) holds for both Ty = T? and T; = T4. Then, for an arbitrary
n>1, it holds for the golden mean Fibonacci tiling that

(Tuy11 = (Tu—)11(T)11 + (Tu1)12(Tw)21 (4.27)
and

(Thy1)22 = (Tu—1)22(Tn)22 + (T—1)21(Tn)12- (4.28)

Lemma 4.3 implies that T,_;, Ty € Xy UX_, hence it holds that sgn((Ty—1)11(Tn)11)=
§¢1((Ty,-1)12(Tn)21) and similarly sgn((T;—1)22(Tn)22) = sg1((Tu-1)21(Tu)12)- As a result, we find
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that
I(Tus1)11] > [(Tue1)11(Tu)1a| = 2Fm1HEn = ol (4.29)

and

I(Tus1)22] > [(Tu—1)22(Tn)2p| = 2Fn1FFn = pFntL, (4.30)

Then, we can proceed by induction to conclude that (4.26) holds for all #, for the golden mean
Fibonacci case. For arbitrary m,]>1, we can use a similar argument, where the key step is to
realise that the terms in the equivalent expansions to (4.27) and (4.28) all have the same sign. As a
result, we have the desired bounds

(Tus1)11] > [(Tpe1)yg (T | = 2MFn-rtmEn — pFn+l (4.31)
and
(Tui1)22] > [(Tne1)hy(Tn)y| = 2/Fn-1tmEn — o+l (4.32)

meaning (4.26) holds for any generalised Fibonacci tiling.
Finally, thanks to lemma 4.3, we know that (T;;)11 and (T};)22 must have the same sign. Hence,
it follows from (4.26) that |tr(T},)| = 2f#*1 > 2, so @ must be in a band gap for all n. |

Theorem 4.4 shows that the multi-supported beam system necessarily inherits the low-
frequency band gap from its constituent elements (in the form of a super band gap). It can be used
to provide a crude estimate of the upper limit o (analogous to (4.8) for the mass-spring system).
In this case, however, the less straightforward form of the transfer matrices makes an explicit and
tight bound difficult to come by. One simple approach is to notice that the arguments in theorem
4.4 rely on the property that the transfer matrices TA and T8 necessarily belong to either ¥ or
X _ when the frequency is sufficiently low. As a result, a simple numerical estimate for »* can be
calculated by finding the smallest frequency  for which at least one of T4 or T? does not belong
to ¥, U ¥_. This value is shown in figure 8 (above the two upper plots), where it is clear that it
provides only a very loose bound on the low-frequency super band gap. This demonstrates the
value of the growth condition approach for identifying super band gaps, which provides a much
tighter bound for this example and does not rely on decoding the specific properties of the system
(and its associated transfer matrices).

5. Periodic approximants

The aim of this final section is use our theory of super band gaps to predict the dynamical
properties of finite-sized sections of quasicrystalline structures, as would be realised in
experiments and applications. To this end, we take a piece of a one-dimensional Fibonacci
quasicrystal and compare its transmission coefficient with the stop and pass band diagrams
obtained by applying the Floquet-Bloch theory to the infinitely periodic systems generated by
consecutive Fibonacci cells F;;,. We will present results for the case of a structured rod, as studied
in §4b, but it is reasonable to expect similar behaviour for the other physical systems also.

The Fibonacci quasicrystal we take, as a demonstrative example, is a finite rod formed by
joining together golden mean cells Fy, F7 all the way up to Fs. This gives a structure composed
of 32 different phases A and B, as depicted in figure 9. The self-similar nature of the Fibonacci-
generated pattern (as illustrated by the annotations in figure 1, for example) means that this
system will contain many (non-periodic) repetitions of the smaller unit cells 7, = AB, 73 = ABA,
Fy =ABAAB and so on. As a result, it is reasonable to expect that its transmission properties can
be well approximated by the super band gaps arising from these smaller unit cells. Considering
axial vibrations propagating in this system, the global transfer matrix is defined as Tg(w)=
Hslen(w), where Tj(w) are the matrices associated with the cells F;, that were introduced in
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Figure 9. Our results show that the main spectral gaps of a finite-sized piece of a Fibonacci quasicrystal can be faithfully
predicted by periodic approximants. We compare the transmission coefficient of a quasi-periodic structured rod of finite length
(shown in the top row) with the Bloch spectra of periodic approximants (periodic approximants with unit cells 73, F4 and Fs
are shown in the bottom row). The numerical results are shown in figures 10 and 11.
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Figure 10. Transmission coefficient for a finite-sized piece quasicrystalline rod composed of golden mean cells Fy to F
(red line) compared with the super band gaps of infinite structures generated according to 7, 73, F4 and Fs (grey
shaded areas). We use the parameter values £, = £3 = 3.3 GPa, o, = pp = 1140 kg m=3, 44, = Ap =1.963 x 1073 m?,
Iy = 2lp = 0.07 m. The frequency range is shown on the vertical axis and the logarithm of the transmission coefficient log T,
is plotted on the horizontal axis.

€990£707 081 ¥ 205 -4 204g edsyjeuinof/iobuysiigndiaposiefos



250 &

200 F

150 -

o (kg sh

100 .

50°F

250

200 £

150 f

€990£707 081 ¥ 205 -4 204g edsyjeuinof/iobuysiigndiaposiefos

o (kq s

100 &

50 °F

Figure 11. Transmission coefficients for a finite-sized piece of a quasicrystalline rod composed of golden mean cells Fy to F
(red line) and for a finite-sized pieces of periodic samples consisting of seven repetitions of the unit cells 7,, 73, F4 and
Fs (black dashed lines). We use the parameter values £, = £3 = 3.3 GPa, oy = pp = 1140 kg m=3, 44, = Ay = 1.963 x
1073 m?, I; = 2/ = 0.07 m. The frequency range is shown on the vertical axis and the logarithm of the transmission coefficient
log T is plotted on the horizontal axis.

§4b. According to the method adopted in [20], it can be shown that the transmission coefficient
for a finite quasicrystalline sample is given by

u 1
Te(w) = -

u Ten() G1)

where Ty is the lower-right entry of the 2 x 2 square matrix T¢.

In figure 10, the transmission coefficient T;(w) for the finite quasicrystalline rod is plotted using
a logarithmic scale. In each of the four plots, this is compared with the super band gaps exhibited
by F», F3,F4 and Fs (i.e. the sets Sp, S3, Sy and Ss, to use the notation from §3). For these
numerical computations we adopted a set-up that leads to a periodic and symmetric spectrum,
as mentioned in §4b and referred to as the ‘canonical configuration” in [20]. Therefore, the results
reported for one period describe the dispersion properties for the whole range of real frequencies.
We observe that, as the order of the Fibonacci unit cells increases, the super band gaps given by
the periodic rods (denoted by the grey shaded areas) closely match the frequency intervals where




the transmission coefficient is small. For the unit cell F5, the drops in the transmission coefficient
and the super band gaps are almost indistinguishable by eye (for this reason, there is no value in
considering the super band gaps for any larger unit cells). This shows that, for this example, the
super band gaps corresponding to a periodic infinite rod with a relatively small fundamental cell
provide a good approximation for the spectrum of finite non-periodic quasicrystalline structures.

In figure 11, the same transmission coefficient T (w) is plotted, but this time, we compare it with
the transmission spectrum of a periodic approximant. In this case, the transmission coefficient for
a finite-sized piece of periodic material is shown with a dotted line, again for the simple golden
mean Fibonacci tilings. The finite pieces of periodic material are composed of A/ elementary cells
Fa, F3,Fy and Fs. The global transfer matrix for these finite periodic rods is then defined as
Tg(w) = TnN (w). The results reported in figure 11 are obtained assuming A" =7, meaning that the
number of elements within each of the periodic samples is E, =7F,, where F,, is the Fibonacci
golden number corresponding to the phases contained in F; (i.e. for F; finite rod, F, =2 and
F» =14). The choice N'=7 is made so that the decay of the solution within the band gaps is
sufficiently clear. The transmission coefficient would drop more if a larger number of unit cells
was used (although the nature of exponential decay means that this effect diminishes with larger
N =7). Even when the periodic approximant has a small unit cell (so the approximation is
relatively crude), such as for example in the case of F3 (F3 =3 and By = 21), the main spectral
gaps are accurately predicted. This is naturally explained by our theory for super band gaps,
which provides sufficient conditions for intervals of frequency to always be in spectral gaps, for
any sufficiently large unit cell drawn from the sequence generated by the generalised Fibonacci
tiling rules.

6. Conclusion

We have developed a novel mathematical theory for characterizing super band gaps in periodic
structures generated by generalised Fibonacci tilings. This illuminates the mechanism through
which structural self similarity creates identifiable features in the otherwise complex spectra
of quasi-periodic systems. Our results provide some justification for the use of periodic
approximants (supercells) to predict the spectra of generalised Fibonacci tilings, as we have
proved that the properties of a given element in this sequence of tilings can be used to predict
spectral characteristics (in particular, some of the main band gaps) of all subsequent elements
in the sequence. We have examined this by considering a large quasicrystalline material, which
is made from several different Fibonacci tiles, and shown that the frequency ranges where its
transmission coefficient drops are in close correspondence with the super band gaps predicted by
periodic approximants (even with relatively small unit cells).

This work provides a concise and computationally efficient way to detect the main spectral
features of quasicrystalline materials generated by generalised Fibonacci tilings. This is crucial if
such materials are to be used in wave control applications, which has been the subject of several
recent studies. For example, Fibonacci tilings have been used as the basis for designing symmetry-
induced waveguides [29] and laminar materials that exhibit negative refraction [35]. Similar
studies have also been conducted for other quasicrystals, such as variants of the Harper model
[36-38] and arbitrary cut-and-project quasicrystals [39] (of which Fibonacci tilings are a subset).
Understanding a material’s spectral gaps is essential for the design of any such device, and the
results in this work (which could be generalised to other quasicrystalline materials generated by
tiling rules [40,41]) provide a first step for doing so.
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