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Abstract

Large-scale distributed and decentralized systems often require access to multiple ser-

vices, leading to the construction of complex workflows that can be difficult to design

manually. This thesis proposes to use Deep Reinforcement Learning (DRL) techniques

to create the optimal workflow without human intervention. The proposed hypothesis

is based on using DRL algorithms combined with various styles of encoding such as

Symbolic Vector Architecture and Knowledge Graph Embeddings, to handle larger

and more complex systems. The approach utilizes both hierarchical and multi-task re-

inforcement learning. The benefit of using DRL in workflow construction is its ability

to adapt to dynamic systems, where services are continuously added or removed, and

systems change in quality. Our proposed approach can learn to adapt to changes in the

system and find suitable alternatives.
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Chapter 1

Introduction

Software has come a long way since its inception. It used to be created to complete

a single task, such as performing basic mathematical calculations, managing a set of

company accounts, hosting an information database or playing a game. Requirements

were relatively static, and development was slow but it was easier to understand what

the system was doing, how it was doing it and the services that it relied upon. Simil-

arly, the people that used these systems had access to a limited set of data and services,

they knew what was available and how it was provided and they had an inherent under-

standing of its trustworthiness and value. If the computer they used wasn’t working or

some part of the supply chain of that information was down they had to wait for repair

or revert to manual or backup solutions.

As technology has advanced, people have access to vast amounts of data stored world-

wide and millions of applications. We can interact with this data and these applications

via a range of devices, from phones and computers down to smart doorbells and ther-

mostats. To find that data or those applications, people use search engines and review

sites to locate these resources and to (attempt to) assess their value and quality.

There is a wide array of choices. If a source for stock data is unavailable or slow we

can use another. If Google Maps has been updated and not reporting traffic correctly,

use Apple Maps. Similarly, the services we use are themselves using other services

to achieve their goals. When you access a shopping site, before you have even seen a

product,the site will have consulted multiple services to determine your location, your
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language, your recent interests and your probable spending power before deciding what

products to show you and what prices to charge for them.

The shopping site example above is a very simple example. In the above case, the

services used can easily be pre-approved and selected from a simple list. In an ever

more complex world we are trying to use technology to answer more and more complex

questions to achieve goals that would have once been infeasible in a rapid or automated

manner (e.g. drive a car, defend against a drone attack, reroute traffic after an accident

to reduce traffic delays, monitor a chat room for inappropriate comments). In examples

such as these we are striving for the best possible result and must be able to cope with

the absence of a given service without a major degradation of output.

These complex systems often involve multiple components, each with their own own-

ers and methods of access and use. These components are constantly changing, and as

a result, the workflows that they are part of also change quickly. This requires a ro-

bust system architecture that is able to adapt to these constantly changing workflows,

without needing human intervention for each change.

Many of these workflows cannot be designed by hand, as they are too complex and con-

stantly evolving. Construction of these workflows can be formulated as a Reinforce-

ment Learning (RL) problem. Reinforcement learning is an area of machine learning

that is specifically designed to work within dynamic environments; it allows an agent

to learn how to make decisions based on the feedback it receives from the environment.

The main principle of RL is that an agent learns to respond to stimuli by maximizing

a cumulative reward signal. This signal represents the long-term value of the agent’s

decisions and actions in the environment. The primary benefits of reinforcement learn-

ing are its ability to learn in complex and uncertain environments - a distributed system

is both complex due to the size and uncertain due to the constant change of services

within those systems. This makes RL the ideal tool for the automated construction of

workflows.

Automated construction of workflows goes hand in hand with automated representation
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of workflows, using representation learning. Representation learning is a technique that

involves automatically learning useful features or representations of data. Rather than

relying on handcrafted features, representation learning algorithms are able to discover

features that are important for a particular task from raw data. This approach has

been shown to be particularly useful for tasks such as image recognition and natural

language processing.

In the context of distributed systems, representation learning can be used to represent

workflows that combine multiple tasks and services across multiple machines. Due to

its ability to capture complex relationships, representation learning enables the devel-

opment of generalisable and scalable models that can handle diverse data types and

variations. Workflows represented using learned representations can provide better in-

sights into the distributed system’s performance and improve the communication and

coordination between services. Additionally, these representations can facilitate the

automation of workflow optimization and orchestration, reducing the need for manual

interventions and reducing the overall operational costs of the system. Therefore, rep-

resentation learning is a promising approach for tackling the challenges of developing

and managing large-scale distributed systems.

Furthermore, representation learning can be combined with reinforcement learning to

improve the efficacy of decision making processes within a distributed system. By

learning representations of the state and action spaces within the system, reinforcement

learning agents can more effectively explore and navigate the system in order to achieve

desired outcomes.

Two main methods of representation explored in this thesis are graph representation

and vector representation. Workflows can be modelled as graphs, with nodes represent-

ing services within a distributed system and edges representing data flow. Geometric

Deep Learning, which takes graphs as inputs, is a quickly developing area of machine

learning that can be combined with Reinforcement Learning in order to develop work-

flows. Additionally, using machine learning graphs can be turned into vector represent-
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ations which are euclidean. These euclidean vector representations can be useful not

only for use in construction of workflows but also later analysis of workflows, such as

for identifying emergent or unexpected behavior and seeking previously unaccounted

for relationships, events, and groups.

We discuss relevant background in section 1.1. This provides key definitions in the

areas of distributed systems, reinforcement learning and representation learning, all of

which are referenced in the rest of the thesis. We then discuss the motivation and the

research aims of the thesis in section 1.2. Finally we go over the thesis structure and

contributions in section 1.3.

1.1 Background

To place the remainder of this thesis into its proper context, it is important to establish a

common understanding of the scope of the major areas discussed in this thesis. First is

a description of distributed systems and workflows, which are the general application

and motivation of this thesis. Next is an introduction of basic Reinforcement Learning

terminology, and then an introduction to representation learning terminology, both of

which are used throughout the rest of the thesis.

1.1.1 Distributed Systems and Workflows

A distributed system can be defined as: ‘a collection of autonomous computing ele-

ments that can appear to its users as a single coherent system’ [121]. Distributed

systems are used for a wide variety of applications, including P2P networks, cluster

computing, large financial systems, and CCTV networks. As these systems are com-

posed of a significant number of individual components, the order of accessing these

separate services, or the workflow, is very important to the efficacy and efficiency of

achieving the desired task. Tracking a specific car through a large CCTV network, for
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example, would be extremely time consuming to do manually. Automated workflow

construction is therefore an important open question in the area of distributed systems.

Consider a system that takes the name of a city as an input, and returns the percentage

of residents that suffer from asthma, along with the nitrogen dioxide levels in each

borough as an output, as shown in table 1.1. This system would have to consult multiple

Input Output

City Borough % asthmatic �g=m3NO2

London

Tower Hamlets 8.9 40

Kensington & Chelsea 11.1 58

Harrow 7.5 38

... ... ...

Table 1.1: A fictitious example of the inputs and resulting outputs of a distributed

system that accesses multiple components.

components, as described in figure 1.1:

Figure 1.1: diagram of workflow for example distributed system



1.1 Background 6

1. A component that returns the names of boroughs given a city name

2. A service to return the number of asthma sufferers in a borough given a borough

name

3. A service to return the total population given a borough name

4. A service that finds the geographical coordinates of the centre of each borough

5. A service that returns the nitrogen dioxide levels given a set of coordinates

Accessing these components in the correct order is vital: using the population com-

ponent without first breaking down the city into its separate boroughs will return the

population for all of London, which would then calculate an incorrect percentage in

each borough. Similarly, accessing the number of asthma sufferers with a set of geo-

graphical coordinates will return no results if the syntax of that component requires a

borough name.

A system of this size can be managed by setting the workflow manually, but what if

a system has hundreds of different components? Or the system has multiple different

goals? What if the syntax and semantics of certain components are not fully clear?

Finding a way to automate the construction of workflows allows for the creation of

much more complex systems, and circumvents the difficulty of using components that

are not perfectly described.

Careful consideration of the examples given so far shows in fact that there are two

basic classes of distributed system.

Distributed Systems Under Common Management

The first case to arise historically is the set of distributed systems under the control

of a single management organization. Very large systems are often built using this

paradigm as it provides for easy scaling to support large numbers of users or workloads,

it enforces a clear task breakdown so that one extremely difficult task becomes many
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easy or moderately difficult tasks, and it allows for greater resilience if multiple copies

of key components are hosted on different sets of physical infrastructure.

These can still be extremely complex but there is an increased possibility of maintain-

ing a set of interoperability rules and inter system contracts that allows the components

to communicate in a standard fashion and allows the managing organization to hand

construct a directory of services. In this case management and documentation of the

workflow is possible but automated tools speed development and deployment and po-

tentially save costs.

Distributed Systems Using Third Party Services

The second case to arise is where some of the distributed components are developed

and managed by a third party. This is the case where an overall solution needs the

services of multiple systems controlled by other organizations. There are examples in

the military where there can be critical interdependencies between allies sharing key

intelligence, surveillance, attack and defense capabilities and where systems need to

be fast, quick to react to changing circumstances, and robust in the case of a loss of

physical facility. A more accessible and still complex area is that of online shopping.

Many small online stores have access to a large number of independently provided

data and services which they can easily combine to provide their overall service. As

indicated a store may use various services to provide it overall product e.g. product

price adjustment could be provided by EcomPricer, foreign exchange conversion could

be from JPMorgan, fulfillment could be from Shopify.

1.1.2 Deep Reinforcement Learning

Reinforcement learning is defined by the following:

A learning agent interacts with its environment by choosing actions that
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affect the state of the environment, and the eventual reward. The agent

seeks to develop a policy that maximises reward by mapping states to the

optimal actions.

This definition has a few basic terms that need to be accurately described.

The learning agent is the problem solver or operator itself, and the environment is

what this agent interacts with. In a game of chess, the player would be the agent, and

the chess board would be the environment. An agent can have complete or incom-

plete control over its environment. For example, in chess the player can move its own

pieces wherever it likes (within the constraints of the game - a bishop can only move

diagonally and the king can only move one square at a time), but it cannot move the

opponent’s pieces, giving the agent incomplete control over the environment.

The actions are exactly that, the actions the agent can make at a given timestep. These

actions affect the state of the environment (positioning of pieces on a chess board).

Actions and states can be either discrete or continuous, depending on the environment;

this project uses the tabular case, where there is a finite set of discrete states and a finite

set of discrete actions. Additionally, as in many reinforcement learning problems, this

project works with a special case where the action space is the same throughout the

state space - in other words, at every state the same set of actions can be performed.

Actions affect the state of the environment as well as the reward, both immediate and

eventual. The reward is a scalar value given at each timestep. In a game of chess, this

could be 0 for each non-terminal move, 1 if the game results in a win, -1 if a loss and 0

for a stalemate. For a solution that requires reaching a goal state in the smallest amount

of timesteps (such as golf), each timestep could provide a reward of -1 until the goal

state is reached. A faster solution would then have a higher cumulative reward at the

terminal state.

Problems that don’t have a terminal state are called continuous cases, and require

slightly different treatment than cases with terminal states. In these cases a balance



1.1 Background 9

between valuing long term and short term reward must be found, and often require

different mathematical treatment than cases with terminating states. Environments that

terminate after a �nite number of timesteps are called episodic cases, and are the type

of cases that will be examined throughout this dissertation.

A policy is a function, either deterministic or stochastic, that maps states to actions

in order to maximise cumulative reward. In tabular cases, the policy can often be

represented as a matrix or dictionary, where each action within each state is given a

probability for its selection. Often this policy is deterministic: the probabilities of all

actions are 0 for a given state except for the action that will bring the most reward,

which would have a probability of 1 - this is called agreedypolicy. Other policies are

stochastic: even the actions considered less valuable have a non-zero chance of being

chosen. These policies are often used because a learning algorithm needs to explore

multiple paths to see if there is a possible reward resulting from an action. This is often

termed `exploration vs exploitation': policies need to balanceexploration, which helps

to determine which actions are best, withexploitation, which is taking the actions that

return the best possible reward. The most common type of stochastic policy is the

"-greedy function. With a probability of1 � " , the"-greedy function acts greedy and

chooses the most valuable action. For the remaining", all actions are chosen from with

equal probability regardless of value.

Different policy types are used in different learning algorithms, often depending on

whether the algorithm is anon-policyor off-policyalgorithm. An on-policy algorithm

has only one policy that it uses to learn and collect reward. An agent learning chess

with an on-policy algorithm might make use of an"-greedy policy, by selecting the best

action most of the time, and with probability" choosing some random action to learn

its value, so these on-policy algorithms can learn and collect reward simultaneously.

An off-policy algorithm has two policies: a behaviour policy and a target policy. The

behaviour policy is the policy used to generate different actions to learn from, which

updates the target policy, which is the policy used to collect reward. An agent using an
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off policy algorithm for chess might use an"-greedy behaviour policy with a large" for

practice games to test new moves, and then use a greedy target policy for competition

games in order to increase chances of winning.

Markov Decision Processes

Markov decision processes (MDPs) are the mathematical framework used to describe

and standardize all reinforcement learning problems. By de�ning a problem using

this framework, algorithms can be applied that are used throughout the reinforcement

learning �eld.

Figure 1.2: graph displaying MDP taken from Sutton book

MDPs frame an RL problem as seen in �gure1.2. At each time stept = 0;1;2;3:::

the agent receives information about the environment's stateSt 2 S, and selects an

actionA t 2 A based on the policy� (A t j St ). At the next timestep, the agent receives

a rewardRt+1 2 R � R and is in a new stateSt+1 . This trajectory then continues:

S0; A0; R1; S1; A1; R2; S2; A2::: until the episode terminates.

The dynamics of a �nite MDP (which has a �nite set of states, actions, and rewards) is
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de�ned as a probability:

p(s0; r j s; a) := P r f St = s0; Rt = r j St � 1 = s; At � 1 = ag (1.1)

wherep : S � R � S � A ! [0; 1]

and
X

s02 S

X

r 2 R

p(s0; r j s; a) = 1 ; for all s 2 S; a 2 A (s)

These probabilities should completely characterise the dynamics of the environment in

an ideal MDP. This means that states within the environment should have theMarkov

property, which means the state must include all of the information needed to determ-

ine the next state and reward given the action selected - the history of all previous

states can be thrown away and all important information must remain in the current

state. An example of this is a toy helicopter. The state must include the current pos-

ition and velocity of the helicopter in order to correctly determine the position of the

helicopter in the next state. If the state included only position, it would either have to

look to the previous state to calculate velocity, and therefore not be Markov (it cannot

use history), or will not have enough information to determine the position of the next

timestep. While useful from a theoretical standpoint to prove convergence of learning

algorithms, in application of reinforcement learning, the Markov property can make

solutions too computationally expensive, as will be discussed later on.

For episodic cases, the returnGt is the sum of all rewards that have been given during

the episode:

Gt
:= Rt+1 + Rt+2 + Rt+3 + ::: + RT (1.2)

In many cases, immediate reward is considered more valuable than potential reward

later on, so we can introduce a discount factor
 2 (0; 1]:

Gt
:= Rt+1 + 
R t+2 + 
 2Rt+3 + ::: + RT =

1X

k=0


 kRt+ k+1 (1.3)

Gt = Rt+1 + 
G t+1 (1.4)
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A uni�ed notation for returns for both episodic and continuing cases is:

Gt
:=

TX

k= t+1


 k� t � 1Rk (1.5)

The expected return starting from a states and following a given policy� is found

using thevalue function:

v� (s) := E� [Gt j St = s] = E�

"
1X

k=0


 kRt+ k+1 j St = s

#

, for all s 2 S (1.6)

and similarly, the expected return starting from a states, choosing an actiona and then

following policy � is found using theaction-value function:

q� (s; a) := E� [Gt j St = s; At = a] = E�

"
1X

k=0


 kRt+ k+1 j St = s; At = a

#

(1.7)

1.1.3 Representation Learning

In the recent years, there has been an exponential increase in data that is being gen-

erated from various sources such as text, images, graphs, and videos. The availability

of such massive data has led to a necessity for �nding accurate representations of data

to perform analysis, classi�cation, and other tasks. Embeddings are the mathematical

representations that help in summarizing and capturing the essential characteristics of

data.

Representation Learning can be de�ned as the process of representing high-dimensional

data in a lower dimensional space while preserving the essential characteristics of the

original data. In other words, it is a mathematical technique that transforms complex

data into a simpler form, normally referred to as an embedding, allowing it to be ana-

lyzed and understood more effectively. Embeddings are usually created using machine

learning algorithms that �nd lower-dimensional coordinates for high-dimensional data.
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There are different types of embeddings that are used for various purposes. some of

these include:

1. Text Embedding: Text embedding techniques are used to represent words or

phrases as a vector of numbers in a lower-dimensional space. Techniques such as

word2vec, GloVe, and Fasttext are commonly used for text embedding [33][89][52].

2. Image Embedding: Image embedding techniques are used to represent images

as a vector of numbers in a lower-dimensional space. Techniques such as convo-

lutional neural networks (CNN) and deep auto-encoders are commonly used for

image embedding.

3. Graph Embedding: Graph embedding techniques are used to represent graphs

as a vector of numbers in a lower-dimensional space. Techniques such as Graph

Convolutional Networks (GCN) and DeepWalk are commonly used for graph

embedding [57][90].

Embedding techniques are widely used in various domains such as natural language

processing, image recognition, recommendation engines, and social network analysis.

These embeddings have a wide array of use cases. Text embedding techniques are

used for sentiment analysis to understand the emotional state of a large number of

people by analyzing social media posts, reviews, and other text data. Image embedding

techniques are used in image recognition applications such as facial recognition, object

detection, and image search. Embedding techniques are also used in recommendation

engines to suggest products, movies, or music based on user preferences.

There are mutliple bene�ts of embeddings. Embedding reduces the dimensionality

of the data, which simpli�es the analysis and reduces the computational complexity.

These embeddings can represent the essential characteristics of the data that help to

improve the accuracy of machine learning models. Embedding also reduces the com-

putational overhead of high-dimensional data, which leads to faster processing and

analysis.
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Embedding is a critical technique used for representing high-dimensional data in a

lower-dimensional space. Text, image, and graph embeddings are commonly used in

different domains for tasks such as sentiment analysis, image recognition, and recom-

mendation engines. The bene�ts of embeddings are reduced dimensionality, improved

accuracy, and faster processing.

1.2 Motivation and Research Questions

We hypothesise thatthe use of reinforcement learning in combination with other deep

learning techniques can be used to construct and represent work�ows. These work-

�ows can be used for applications within large scale distributed systems, and their

representations can be analysed to obtain further useful information.This hypothesis

can be summarised into the following research question:

How can reinforcement learning be used to construct work�ows and represent

them in an ef�cient manner?

This research question can be further broken down into the following questions:

RQ1 What are the best representations for encoding work�ows for later analysis

of distributed systems and to use as a platform for automatically constructing further

work�ows?

The research question of what are the best representations for encoding work�ows is

essential for achieving the broader hypothesis of utilising reinforcement learning and

other deep learning techniques to construct work�ows for distributed systems. The

challenge lies in investigating and identifying the optimal methods of representing

these work�ows accurately, ef�ciently and in a way that is amenable to automation. A

critical aspect of this research question is determining the level of granularity required

to capture the necessary information and the trade-offs between complexity and use-
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fulness in analysing these work�ows later on. The objective of this research question is

to identify and propose new encoding schemes that leverage the inherent properties of

the distributed system and the work�ow, combining it with deep learning techniques,

thereby enabling ef�cient and automated analysis of these representations.

RQ2 How can reinforcement learning be used to produce vector representations of

work�ows?

The primary objective of this research question is to explore the use of reinforcement

learning techniques for constructing and representing work�ows in vector form. Given

that work�ows in large scale distributed systems can be complex and involve numerous

steps, it is imperative to represent them in a compact and ef�cient manner. By utilizing

reinforcement learning algorithms, it is possible to encapsulate the sequential nature

of work�ows and learn to navigate the space of possible actions, adapting as necessary

based on the current state and desired outcomes. The resulting vector representation

can then be used for further analysis and optimization, providing valuable insights into

the inner workings of complex distributed systems. Ultimately, this research ques-

tion aims to establish the feasibility and effectiveness of using reinforcement learning

as a tool for producing vector representations of work�ows in large scale distributed

systems.

RQ3 When represented as vectors, how can reinforcement learning be used to con-

struct work�ows?

Reinforcement learning algorithms rely on the creation of a state space that can be rep-

resented as vectors in order to make decisions based on a reward system. In the case

of constructing work�ows, the potential exists to create a reinforcement learning state

space that incorporates the various steps and decision points within a work�ow. By

representing each step and decision point as a vector within the state space, the rein-

forcement learning algorithm can learn to identify the most ef�cient series of actions
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to achieve a desired outcome. The use of deep learning techniques in conjunction with

reinforcement learning can enable the system to identify patterns and make predictions

about future steps within a work�ow, further increasing the ef�ciency and effectiveness

of the system.

RQ4 When treated as graphs, how can reinforcement learning be used to construct

work�ows?

With this research question, we aim to investigate how reinforcement learning, when

employed in conjunction with geometric deep learning techniques, can aid in the con-

struction of work�ows as graphs. Graphs are a natural representation method for work-

�ows within distributed systems, so by utilizing geometric deep learning techniques,

we can utilise reinforcement learning to generate work�ows that can be used in large

scale distributed systems.

RQ5 What methods can be used to increase learning ef�ciency with less labelled

data?

The proposed research question aims to explore the methods that can be used to in-

crease the ef�ciency of learning with less labelled data. Many areas of machine learn-

ing are highly dependent on labelled data, which can impose signi�cant challenges in

real-world large-scale distributed systems, where well labelled work�ows created by

human experts are minimal. Therefore, it is crucial to investigate ef�cient methods

that could potentially reduce the amount of labelled data required for training these

reinforcement learning algorithms.

1.3 Thesis Structure and Contributions

The remaining chapters, and the contributions therein, are as follows:
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Chapter Two - Literature Review: This chapter introduces the research topic and

provides a background for the study of geometric deep learning, speci�cally in the

area of graph generation. The literature review explores the current academic work

in the areas of graph convolutional networks, reinforcement learning for graphs, and

reinforcement learning for complex environments, highlighting the gaps in the existing

literature.

Chapter Three - Representation Learning for Knowledge Graphs: This chapter

explores the combination of knowledge graphs (KGs) with semantic vector spaces

(SVSs) via knowledge graph embedding (KGE) and reports on the state-of-the-art in

KGE. It describes the operational bene�ts that can be gained from this approach and the

considerations for observational ontologies that describe complex and rapidly-evolving

environments.

C1 This examines the bene�ts of various graph embedding techniques that can be

used to represent work�ows. These embedding techniques can be used with semantic

vector spaces to provide better analysis of work�ows in distributed systems. This an-

swersRQ1.

Chapter Four - Compositional Plan Vectors for Multitask Learning: The third

chapter proposes a novel algorithm for deep reinforcement learning called CPV-TER.

This method uses compositional plan vectors (CPVs) to ef�ciently learn multiple tasks

simultaneously, by representing the subtasks as vectors and sequences of subtasks as

the sum of those vectors. The chapter demonstrates that the approach allows for more

ef�cient learning and outperforms other standard multi-task RL algorithms.

C2 This chapter demonstrates a new method to construct multi-step tasks with re-

inforcement learning. This method produces hierarchical solutions to tasks without

expert demonstrations. This answersRQ3.
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C3 This method also produces embeddings which can be used to represent work�ows

in a vector representation. These vectors can then be used to perform analysis of the

distributed system that contains the work�ows. this answersRQ2.

C4 This chapter also provides a new replay method that allows for more ef�cient

learning with data in reinforcement learning. By using self produced data as expert

demonstration imitation learning techniques can be used on top of reinforcement learn-

ing techniques. This answersRQ5.

C5 In this chapter we also released a benchmark that involves tasks of a sequen-

tial nature and additionally requires minimal compute power in comparison to other

benchmark environments in the MTRL space. This is a new focus area of green AI

and aims to make the academic �eld both greener and more inclusive for academics

with minimal access to additional compute power [109]. This is not a direct result of

one of the main research questions but is nonetheless an important contribution to the

reinforcement learning space.

Chapter Five - Deep Geometric Learning for Directed Acyclic Graphs: This

chapter presents a novel method for generating directed acyclic graphs (DAGs) using

deep reinforcement learning. DAGs with speci�ed structures and highly sparse reward

environments are challenging to generate. This method demonstrates generating DAGs

with node types and topology satisfying criteria.

C6 This chapter demonstrates a new method to construct directed acyclic graphs us-

ing geometric deep learning combined with reinforcement learning. This demonstrates

an ability to produce work�ows with minimal data outside of work�ow application

success. This answersRQ4.
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Chapter Six - Conclusion: In this �nal conclusion chapter we provide a �nal review

of the research questions and how we answered them, and how these answers contrib-

uted to the �elds of reinforcement learning and representation learning. We delineate

potential areas for future work stemming from each of the chapters, and we make our

�nal remarks.
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Chapter 2

Literature Review

2.1 Overview

Applications that run on large distributed systems can require access to multiple mi-

croservices creating complex work�ows. With large scale systems, these work�ows

can become too large to ef�ciently design by hand, particularly when the system is dy-

namic and prone to failure and reorganization. Designing work�ows on large distrib-

uted systems is a highly complex task. Some automation or approximation is needed to

develop policies for previously unseen tasks or redesign policies when the distributed

system's structure has changed signi�cantly.

Machine learning can be applied to handle the complexities inherent in the data by

treating work�ows and schedules on distributed systems as structured graphs. By using

a combination of machine learning and reinforcement learning, new work�ows can be

constructed even on large systems that are dynamic, interpretable, and require minimal

training data.

In this literature review, we take into consideration current academic work, particularly

in the areas of graph convolutional networks, reinforcement learning for graphs, and

multitask reinforcement learning. In doing so, we highlight the existing gaps in the

literature. Considering the aims of the thesis, this literature review will proceed through

�ve major topics: graph neural networks, deep reinforcement learning for graphs and

schedules, reinforcement learning methods for large and complex environments, multi-
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Figure 2.1: Figure reproduced from [129] showing the major areas of graph based

neural networks.

task reinforcement learning, and replay methods for reinforcement learning.

2.2 Graph Neural Networks

Machine Learning, typically known for working with images, text and audio, has re-

cently expanded into working with graph based structures. Geometric deep learning,

a �eld that has expanded rapidly within the last decade, has a wide range of applica-

tions, including drug discovery, link prediction for social networks, and applications

for task scheduling. Geometric deep learning differs signi�cantly from typical machine

learning methods due to the non-euclidean nature of graphs [140].

There have been a number of comprehensive literature reviews in this area. Notably,

[138] discusses a wide range of techniques in the �eld, including supervised techniques
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such as Graph Recurrent Neural Networks (GRNNs), unsupervised methods such as

Graph Auto Encoders (GAEs), and even brie�y touching on graph-based reinforce-

ment learning, a small but growing area of the geometric deep learning �eld. They also

lay out the major open issues in the �eld, as well as suggest some potential future direc-

tions. [140] focuses more speci�cally on supervised learning methods, and categorises

methods by type of training data, propagation step, and even by graph type. They

also discuss frameworks used in the �eld, including MPNN, an important framework

described in section2.2.2. Finally, [129] provides a valuable taxonomy to categorise

graph neural network methods, as well as discussing important benchmarks and men-

tioning valuable open source data within the community. Figure2.1, reproduced from

[129], groups the major components of graph neural networks into 5 distinct, yet over-

lapping areas. In this section of the literature survey we focus on graph convolutional

networks, with a particular attention paid to spatial graph convolutional networks.

2.2.1 Graph Convolutional Networks

Graph convolutional networks (GCNs) are the basis for the majority of graph neural

networks. They are similar to standard convolutional neural networks (CNNs) in that

they convolve over localities: for images this would be a group of neighbouring pixels

[59], for natural language processing this could be nearby words or individual letters

[56]. For graphs, standard CNNs cannot be used, as these methods rely on the strict

euclidean nature of image and sentence structure, which graphs do not have. GCNs

use same underlying principle of convolving over localities, but with different methods

to achieve this. There are two major types of GCNs: spectral and spatial.

Spectral GCNs

The �rst GCNs developed were spectral, as proposed initially by [13]. Here the term

spectral refers to spectral graph theory, which works primarily with graph laplacians,
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L = I � D � 1=2AD � 1=2 (whereI is the identity matrix,D is the degree matrix andA

is the adjacency matrix), which hold most useful properties of graphs in a matrix. By

performing an eigendecompostition on the laplacian, we can then convolve over these

eigenvectors. This method has a strong theoretical basis, however the time complex-

ity of �nding the eigenvectors of the laplacians of graphs is very high (O(N 2)), and

is generally non-scalable [138]. Other spectral methods have lowered this complexity

by using chebyshev polynomials, which in effect are truncations of the laplacian ei-

genvectors, reducing the time complexity signi�cantly [19]. Despite these reductions

in time complexity, they still require high amounts of memory, and generally do not

generalise to graphs with different structures [129]. For this reason we focus mainly

on spatial GCNs.

Spatial GCNs

Spatial GCNs work very similarly to standard CNNs by combining information at each

point from neighbouring areas. For spatial techniques this generally involves using

the graph's adjacency matrix and aggregating information from each node's nearest

neighbours. Depending on how the information is aggregated, how many neighbours

are sampled, and whether or not pooling functions are used, spatial GCNs can encode

a wide variety of features, and perform a number of different tasks at different scales.

In this survey we focus mainly on spatial methods.

2.2.2 MPNN Framework for Spatial GCNs

[32] reformulated multiple important existing spatial models into a single cohesive

framework, allowing for easier descriptions of variations of the basic model. This

framework is called the Message Passing Neural Network (MPNN), and works by

splitting each method into two parts: a `message passing' phase and a `readout' phase.

During each timestept of the message passing phase, the hidden statesht
v at each node
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v are updated based on an update functionU which acts on the current state of the

node, and the states of the neighbouring nodes (thus a message is passed from node to

node). Formally this is written as:

ht+1
v = Ut (ht

v;
X

w2 N (v)

M t (ht
v; ht

w ; evw)) (2.1)

Here the message passing function takes as input the state of the current node, the state

of neighbouring nodes, and the state of connecting edgesevw .

The readout phase takes these hidden states and computes a �nal feature vector to

describe the whole graph, formally written as:

ŷ = R(f hT
v jv 2 Gg) (2.2)

and is effectively a pooling function, often described separately from GCN methods.

By using this message passing framework, we can describe all spatial GCNs with a

message passing function and an update function, and can describe pooling methods

as readout functions.

2.2.3 Major GCN Variants

There is a large number of spatial GCN variants, which take advantage of different

types of features and produce varying outputs. One of the earlier variants, node2vec

[34] outputs a feature representation for each individual node as opposed to the entire

graph. The main message passing function is in effect a concatenation, which is a

standard message passing function. The key feature of node2vec is that its message

passing function only takes information from a subset of a nodes neighbours via a

random walk method. This increases ef�ciency signi�cantly, which is very important

for larger graph structures. This random walk is designed to act somewhere in between

a depth �rst search method and a breadth �rst search method. This allows for a �exible

representation that can account both for variations in substructures and the graph as a

whole.
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