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Abstract

Large-scale distributed and decentralized systems often require access to multiple ser-

vices, leading to the construction of complex workflows that can be difficult to design

manually. This thesis proposes to use Deep Reinforcement Learning (DRL) techniques

to create the optimal workflow without human intervention. The proposed hypothesis

is based on using DRL algorithms combined with various styles of encoding such as

Symbolic Vector Architecture and Knowledge Graph Embeddings, to handle larger

and more complex systems. The approach utilizes both hierarchical and multi-task re-

inforcement learning. The benefit of using DRL in workflow construction is its ability

to adapt to dynamic systems, where services are continuously added or removed, and

systems change in quality. Our proposed approach can learn to adapt to changes in the

system and find suitable alternatives.
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Chapter 1

Introduction

Software has come a long way since its inception. It used to be created to complete

a single task, such as performing basic mathematical calculations, managing a set of

company accounts, hosting an information database or playing a game. Requirements

were relatively static, and development was slow but it was easier to understand what

the system was doing, how it was doing it and the services that it relied upon. Simil-

arly, the people that used these systems had access to a limited set of data and services,

they knew what was available and how it was provided and they had an inherent under-

standing of its trustworthiness and value. If the computer they used wasn’t working or

some part of the supply chain of that information was down they had to wait for repair

or revert to manual or backup solutions.

As technology has advanced, people have access to vast amounts of data stored world-

wide and millions of applications. We can interact with this data and these applications

via a range of devices, from phones and computers down to smart doorbells and ther-

mostats. To find that data or those applications, people use search engines and review

sites to locate these resources and to (attempt to) assess their value and quality.

There is a wide array of choices. If a source for stock data is unavailable or slow we

can use another. If Google Maps has been updated and not reporting traffic correctly,

use Apple Maps. Similarly, the services we use are themselves using other services

to achieve their goals. When you access a shopping site, before you have even seen a

product,the site will have consulted multiple services to determine your location, your
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language, your recent interests and your probable spending power before deciding what

products to show you and what prices to charge for them.

The shopping site example above is a very simple example. In the above case, the

services used can easily be pre-approved and selected from a simple list. In an ever

more complex world we are trying to use technology to answer more and more complex

questions to achieve goals that would have once been infeasible in a rapid or automated

manner (e.g. drive a car, defend against a drone attack, reroute traffic after an accident

to reduce traffic delays, monitor a chat room for inappropriate comments). In examples

such as these we are striving for the best possible result and must be able to cope with

the absence of a given service without a major degradation of output.

These complex systems often involve multiple components, each with their own own-

ers and methods of access and use. These components are constantly changing, and as

a result, the workflows that they are part of also change quickly. This requires a ro-

bust system architecture that is able to adapt to these constantly changing workflows,

without needing human intervention for each change.

Many of these workflows cannot be designed by hand, as they are too complex and con-

stantly evolving. Construction of these workflows can be formulated as a Reinforce-

ment Learning (RL) problem. Reinforcement learning is an area of machine learning

that is specifically designed to work within dynamic environments; it allows an agent

to learn how to make decisions based on the feedback it receives from the environment.

The main principle of RL is that an agent learns to respond to stimuli by maximizing

a cumulative reward signal. This signal represents the long-term value of the agent’s

decisions and actions in the environment. The primary benefits of reinforcement learn-

ing are its ability to learn in complex and uncertain environments - a distributed system

is both complex due to the size and uncertain due to the constant change of services

within those systems. This makes RL the ideal tool for the automated construction of

workflows.

Automated construction of workflows goes hand in hand with automated representation
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of workflows, using representation learning. Representation learning is a technique that

involves automatically learning useful features or representations of data. Rather than

relying on handcrafted features, representation learning algorithms are able to discover

features that are important for a particular task from raw data. This approach has

been shown to be particularly useful for tasks such as image recognition and natural

language processing.

In the context of distributed systems, representation learning can be used to represent

workflows that combine multiple tasks and services across multiple machines. Due to

its ability to capture complex relationships, representation learning enables the devel-

opment of generalisable and scalable models that can handle diverse data types and

variations. Workflows represented using learned representations can provide better in-

sights into the distributed system’s performance and improve the communication and

coordination between services. Additionally, these representations can facilitate the

automation of workflow optimization and orchestration, reducing the need for manual

interventions and reducing the overall operational costs of the system. Therefore, rep-

resentation learning is a promising approach for tackling the challenges of developing

and managing large-scale distributed systems.

Furthermore, representation learning can be combined with reinforcement learning to

improve the efficacy of decision making processes within a distributed system. By

learning representations of the state and action spaces within the system, reinforcement

learning agents can more effectively explore and navigate the system in order to achieve

desired outcomes.

Two main methods of representation explored in this thesis are graph representation

and vector representation. Workflows can be modelled as graphs, with nodes represent-

ing services within a distributed system and edges representing data flow. Geometric

Deep Learning, which takes graphs as inputs, is a quickly developing area of machine

learning that can be combined with Reinforcement Learning in order to develop work-

flows. Additionally, using machine learning graphs can be turned into vector represent-
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ations which are euclidean. These euclidean vector representations can be useful not

only for use in construction of workflows but also later analysis of workflows, such as

for identifying emergent or unexpected behavior and seeking previously unaccounted

for relationships, events, and groups.

We discuss relevant background in section 1.1. This provides key definitions in the

areas of distributed systems, reinforcement learning and representation learning, all of

which are referenced in the rest of the thesis. We then discuss the motivation and the

research aims of the thesis in section 1.2. Finally we go over the thesis structure and

contributions in section 1.3.

1.1 Background

To place the remainder of this thesis into its proper context, it is important to establish a

common understanding of the scope of the major areas discussed in this thesis. First is

a description of distributed systems and workflows, which are the general application

and motivation of this thesis. Next is an introduction of basic Reinforcement Learning

terminology, and then an introduction to representation learning terminology, both of

which are used throughout the rest of the thesis.

1.1.1 Distributed Systems and Workflows

A distributed system can be defined as: ‘a collection of autonomous computing ele-

ments that can appear to its users as a single coherent system’ [121]. Distributed

systems are used for a wide variety of applications, including P2P networks, cluster

computing, large financial systems, and CCTV networks. As these systems are com-

posed of a significant number of individual components, the order of accessing these

separate services, or the workflow, is very important to the efficacy and efficiency of

achieving the desired task. Tracking a specific car through a large CCTV network, for
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example, would be extremely time consuming to do manually. Automated workflow

construction is therefore an important open question in the area of distributed systems.

Consider a system that takes the name of a city as an input, and returns the percentage

of residents that suffer from asthma, along with the nitrogen dioxide levels in each

borough as an output, as shown in table 1.1. This system would have to consult multiple

Input Output

City Borough % asthmatic µg/m3NO2

London

Tower Hamlets 8.9 40

Kensington & Chelsea 11.1 58

Harrow 7.5 38

... ... ...

Table 1.1: A fictitious example of the inputs and resulting outputs of a distributed

system that accesses multiple components.

components, as described in figure 1.1:

Figure 1.1: diagram of workflow for example distributed system
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1. A component that returns the names of boroughs given a city name

2. A service to return the number of asthma sufferers in a borough given a borough

name

3. A service to return the total population given a borough name

4. A service that finds the geographical coordinates of the centre of each borough

5. A service that returns the nitrogen dioxide levels given a set of coordinates

Accessing these components in the correct order is vital: using the population com-

ponent without first breaking down the city into its separate boroughs will return the

population for all of London, which would then calculate an incorrect percentage in

each borough. Similarly, accessing the number of asthma sufferers with a set of geo-

graphical coordinates will return no results if the syntax of that component requires a

borough name.

A system of this size can be managed by setting the workflow manually, but what if

a system has hundreds of different components? Or the system has multiple different

goals? What if the syntax and semantics of certain components are not fully clear?

Finding a way to automate the construction of workflows allows for the creation of

much more complex systems, and circumvents the difficulty of using components that

are not perfectly described.

Careful consideration of the examples given so far shows in fact that there are two

basic classes of distributed system.

Distributed Systems Under Common Management

The first case to arise historically is the set of distributed systems under the control

of a single management organization. Very large systems are often built using this

paradigm as it provides for easy scaling to support large numbers of users or workloads,

it enforces a clear task breakdown so that one extremely difficult task becomes many
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easy or moderately difficult tasks, and it allows for greater resilience if multiple copies

of key components are hosted on different sets of physical infrastructure.

These can still be extremely complex but there is an increased possibility of maintain-

ing a set of interoperability rules and inter system contracts that allows the components

to communicate in a standard fashion and allows the managing organization to hand

construct a directory of services. In this case management and documentation of the

workflow is possible but automated tools speed development and deployment and po-

tentially save costs.

Distributed Systems Using Third Party Services

The second case to arise is where some of the distributed components are developed

and managed by a third party. This is the case where an overall solution needs the

services of multiple systems controlled by other organizations. There are examples in

the military where there can be critical interdependencies between allies sharing key

intelligence, surveillance, attack and defense capabilities and where systems need to

be fast, quick to react to changing circumstances, and robust in the case of a loss of

physical facility. A more accessible and still complex area is that of online shopping.

Many small online stores have access to a large number of independently provided

data and services which they can easily combine to provide their overall service. As

indicated a store may use various services to provide it overall product e.g. product

price adjustment could be provided by EcomPricer, foreign exchange conversion could

be from JPMorgan, fulfillment could be from Shopify.

1.1.2 Deep Reinforcement Learning

Reinforcement learning is defined by the following:

A learning agent interacts with its environment by choosing actions that
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affect the state of the environment, and the eventual reward. The agent

seeks to develop a policy that maximises reward by mapping states to the

optimal actions.

This definition has a few basic terms that need to be accurately described.

The learning agent is the problem solver or operator itself, and the environment is

what this agent interacts with. In a game of chess, the player would be the agent, and

the chess board would be the environment. An agent can have complete or incom-

plete control over its environment. For example, in chess the player can move its own

pieces wherever it likes (within the constraints of the game - a bishop can only move

diagonally and the king can only move one square at a time), but it cannot move the

opponent’s pieces, giving the agent incomplete control over the environment.

The actions are exactly that, the actions the agent can make at a given timestep. These

actions affect the state of the environment (positioning of pieces on a chess board).

Actions and states can be either discrete or continuous, depending on the environment;

this project uses the tabular case, where there is a finite set of discrete states and a finite

set of discrete actions. Additionally, as in many reinforcement learning problems, this

project works with a special case where the action space is the same throughout the

state space - in other words, at every state the same set of actions can be performed.

Actions affect the state of the environment as well as the reward, both immediate and

eventual. The reward is a scalar value given at each timestep. In a game of chess, this

could be 0 for each non-terminal move, 1 if the game results in a win, -1 if a loss and 0

for a stalemate. For a solution that requires reaching a goal state in the smallest amount

of timesteps (such as golf), each timestep could provide a reward of -1 until the goal

state is reached. A faster solution would then have a higher cumulative reward at the

terminal state.

Problems that don’t have a terminal state are called continuous cases, and require

slightly different treatment than cases with terminal states. In these cases a balance
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between valuing long term and short term reward must be found, and often require

different mathematical treatment than cases with terminating states. Environments that

terminate after a finite number of timesteps are called episodic cases, and are the type

of cases that will be examined throughout this dissertation.

A policy is a function, either deterministic or stochastic, that maps states to actions

in order to maximise cumulative reward. In tabular cases, the policy can often be

represented as a matrix or dictionary, where each action within each state is given a

probability for its selection. Often this policy is deterministic: the probabilities of all

actions are 0 for a given state except for the action that will bring the most reward,

which would have a probability of 1 - this is called a greedy policy. Other policies are

stochastic: even the actions considered less valuable have a non-zero chance of being

chosen. These policies are often used because a learning algorithm needs to explore

multiple paths to see if there is a possible reward resulting from an action. This is often

termed ‘exploration vs exploitation’: policies need to balance exploration, which helps

to determine which actions are best, with exploitation, which is taking the actions that

return the best possible reward. The most common type of stochastic policy is the

ε-greedy function. With a probability of 1 − ε, the ε-greedy function acts greedy and

chooses the most valuable action. For the remaining ε, all actions are chosen from with

equal probability regardless of value.

Different policy types are used in different learning algorithms, often depending on

whether the algorithm is an on-policy or off-policy algorithm. An on-policy algorithm

has only one policy that it uses to learn and collect reward. An agent learning chess

with an on-policy algorithm might make use of an ε-greedy policy, by selecting the best

action most of the time, and with probability ε choosing some random action to learn

its value, so these on-policy algorithms can learn and collect reward simultaneously.

An off-policy algorithm has two policies: a behaviour policy and a target policy. The

behaviour policy is the policy used to generate different actions to learn from, which

updates the target policy, which is the policy used to collect reward. An agent using an
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off policy algorithm for chess might use an ε-greedy behaviour policy with a large ε for

practice games to test new moves, and then use a greedy target policy for competition

games in order to increase chances of winning.

Markov Decision Processes

Markov decision processes (MDPs) are the mathematical framework used to describe

and standardize all reinforcement learning problems. By defining a problem using

this framework, algorithms can be applied that are used throughout the reinforcement

learning field.

Figure 1.2: graph displaying MDP taken from Sutton book

MDPs frame an RL problem as seen in figure 1.2. At each time step t = 0,1,2,3...

the agent receives information about the environment’s state St ∈ S, and selects an

action At ∈ A based on the policy π (At | St). At the next timestep, the agent receives

a reward Rt+1 ∈ R ⊂ R and is in a new state St+1. This trajectory then continues:

S0, A0, R1, S1, A1, R2, S2, A2... until the episode terminates.

The dynamics of a finite MDP (which has a finite set of states, actions, and rewards) is
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defined as a probability:

p(s′, r | s, a) .
= Pr {St = s′, Rt = r | St−1 = s, At−1 = a} (1.1)

where p : S ×R× S × A → [0, 1]

and
∑
s′∈S

∑
r∈R

p(s′, r | s, a) = 1, for all s ∈ S, a ∈ A (s)

These probabilities should completely characterise the dynamics of the environment in

an ideal MDP. This means that states within the environment should have the Markov

property, which means the state must include all of the information needed to determ-

ine the next state and reward given the action selected - the history of all previous

states can be thrown away and all important information must remain in the current

state. An example of this is a toy helicopter. The state must include the current pos-

ition and velocity of the helicopter in order to correctly determine the position of the

helicopter in the next state. If the state included only position, it would either have to

look to the previous state to calculate velocity, and therefore not be Markov (it cannot

use history), or will not have enough information to determine the position of the next

timestep. While useful from a theoretical standpoint to prove convergence of learning

algorithms, in application of reinforcement learning, the Markov property can make

solutions too computationally expensive, as will be discussed later on.

For episodic cases, the return Gt is the sum of all rewards that have been given during

the episode:

Gt
.
= Rt+1 +Rt+2 +Rt+3 + ...+RT (1.2)

In many cases, immediate reward is considered more valuable than potential reward

later on, so we can introduce a discount factor γ ∈ (0, 1]:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + ...+RT =

∞∑
k=0

γkRt+k+1 (1.3)

Gt = Rt+1 + γGt+1 (1.4)
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A unified notation for returns for both episodic and continuing cases is:

Gt
.
=

T∑
k=t+1

γk−t−1Rk (1.5)

The expected return starting from a state s and following a given policy π is found

using the value function:

vπ (s)
.
= Eπ [Gt | St = s] = Eπ

[
∞∑
k=0

γkRt+k+1 | St = s

]
, for all s ∈ S (1.6)

and similarly, the expected return starting from a state s, choosing an action a and then

following policy π is found using the action-value function:

qπ (s, a)
.
= Eπ [Gt | St = s, At = a] = Eπ

[
∞∑
k=0

γkRt+k+1 | St = s, At = a

]
(1.7)

1.1.3 Representation Learning

In the recent years, there has been an exponential increase in data that is being gen-

erated from various sources such as text, images, graphs, and videos. The availability

of such massive data has led to a necessity for finding accurate representations of data

to perform analysis, classification, and other tasks. Embeddings are the mathematical

representations that help in summarizing and capturing the essential characteristics of

data.

Representation Learning can be defined as the process of representing high-dimensional

data in a lower dimensional space while preserving the essential characteristics of the

original data. In other words, it is a mathematical technique that transforms complex

data into a simpler form, normally referred to as an embedding, allowing it to be ana-

lyzed and understood more effectively. Embeddings are usually created using machine

learning algorithms that find lower-dimensional coordinates for high-dimensional data.
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There are different types of embeddings that are used for various purposes. some of

these include:

1. Text Embedding: Text embedding techniques are used to represent words or

phrases as a vector of numbers in a lower-dimensional space. Techniques such as

word2vec, GloVe, and Fasttext are commonly used for text embedding [33][89][52].

2. Image Embedding: Image embedding techniques are used to represent images

as a vector of numbers in a lower-dimensional space. Techniques such as convo-

lutional neural networks (CNN) and deep auto-encoders are commonly used for

image embedding.

3. Graph Embedding: Graph embedding techniques are used to represent graphs

as a vector of numbers in a lower-dimensional space. Techniques such as Graph

Convolutional Networks (GCN) and DeepWalk are commonly used for graph

embedding [57][90].

Embedding techniques are widely used in various domains such as natural language

processing, image recognition, recommendation engines, and social network analysis.

These embeddings have a wide array of use cases. Text embedding techniques are

used for sentiment analysis to understand the emotional state of a large number of

people by analyzing social media posts, reviews, and other text data. Image embedding

techniques are used in image recognition applications such as facial recognition, object

detection, and image search. Embedding techniques are also used in recommendation

engines to suggest products, movies, or music based on user preferences.

There are mutliple benefits of embeddings. Embedding reduces the dimensionality

of the data, which simplifies the analysis and reduces the computational complexity.

These embeddings can represent the essential characteristics of the data that help to

improve the accuracy of machine learning models. Embedding also reduces the com-

putational overhead of high-dimensional data, which leads to faster processing and

analysis.



1.2 Motivation and Research Questions 14

Embedding is a critical technique used for representing high-dimensional data in a

lower-dimensional space. Text, image, and graph embeddings are commonly used in

different domains for tasks such as sentiment analysis, image recognition, and recom-

mendation engines. The benefits of embeddings are reduced dimensionality, improved

accuracy, and faster processing.

1.2 Motivation and Research Questions

We hypothesise that the use of reinforcement learning in combination with other deep

learning techniques can be used to construct and represent workflows. These work-

flows can be used for applications within large scale distributed systems, and their

representations can be analysed to obtain further useful information. This hypothesis

can be summarised into the following research question:

How can reinforcement learning be used to construct workflows and represent

them in an efficient manner?

This research question can be further broken down into the following questions:

RQ1 What are the best representations for encoding workflows for later analysis

of distributed systems and to use as a platform for automatically constructing further

workflows?

The research question of what are the best representations for encoding workflows is

essential for achieving the broader hypothesis of utilising reinforcement learning and

other deep learning techniques to construct workflows for distributed systems. The

challenge lies in investigating and identifying the optimal methods of representing

these workflows accurately, efficiently and in a way that is amenable to automation. A

critical aspect of this research question is determining the level of granularity required

to capture the necessary information and the trade-offs between complexity and use-
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fulness in analysing these workflows later on. The objective of this research question is

to identify and propose new encoding schemes that leverage the inherent properties of

the distributed system and the workflow, combining it with deep learning techniques,

thereby enabling efficient and automated analysis of these representations.

RQ2 How can reinforcement learning be used to produce vector representations of

workflows?

The primary objective of this research question is to explore the use of reinforcement

learning techniques for constructing and representing workflows in vector form. Given

that workflows in large scale distributed systems can be complex and involve numerous

steps, it is imperative to represent them in a compact and efficient manner. By utilizing

reinforcement learning algorithms, it is possible to encapsulate the sequential nature

of workflows and learn to navigate the space of possible actions, adapting as necessary

based on the current state and desired outcomes. The resulting vector representation

can then be used for further analysis and optimization, providing valuable insights into

the inner workings of complex distributed systems. Ultimately, this research ques-

tion aims to establish the feasibility and effectiveness of using reinforcement learning

as a tool for producing vector representations of workflows in large scale distributed

systems.

RQ3 When represented as vectors, how can reinforcement learning be used to con-

struct workflows?

Reinforcement learning algorithms rely on the creation of a state space that can be rep-

resented as vectors in order to make decisions based on a reward system. In the case

of constructing workflows, the potential exists to create a reinforcement learning state

space that incorporates the various steps and decision points within a workflow. By

representing each step and decision point as a vector within the state space, the rein-

forcement learning algorithm can learn to identify the most efficient series of actions
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to achieve a desired outcome. The use of deep learning techniques in conjunction with

reinforcement learning can enable the system to identify patterns and make predictions

about future steps within a workflow, further increasing the efficiency and effectiveness

of the system.

RQ4 When treated as graphs, how can reinforcement learning be used to construct

workflows?

With this research question, we aim to investigate how reinforcement learning, when

employed in conjunction with geometric deep learning techniques, can aid in the con-

struction of workflows as graphs. Graphs are a natural representation method for work-

flows within distributed systems, so by utilizing geometric deep learning techniques,

we can utilise reinforcement learning to generate workflows that can be used in large

scale distributed systems.

RQ5 What methods can be used to increase learning efficiency with less labelled

data?

The proposed research question aims to explore the methods that can be used to in-

crease the efficiency of learning with less labelled data. Many areas of machine learn-

ing are highly dependent on labelled data, which can impose significant challenges in

real-world large-scale distributed systems, where well labelled workflows created by

human experts are minimal. Therefore, it is crucial to investigate efficient methods

that could potentially reduce the amount of labelled data required for training these

reinforcement learning algorithms.

1.3 Thesis Structure and Contributions

The remaining chapters, and the contributions therein, are as follows:



1.3 Thesis Structure and Contributions 17

Chapter Two - Literature Review: This chapter introduces the research topic and

provides a background for the study of geometric deep learning, specifically in the

area of graph generation. The literature review explores the current academic work

in the areas of graph convolutional networks, reinforcement learning for graphs, and

reinforcement learning for complex environments, highlighting the gaps in the existing

literature.

Chapter Three - Representation Learning for Knowledge Graphs: This chapter

explores the combination of knowledge graphs (KGs) with semantic vector spaces

(SVSs) via knowledge graph embedding (KGE) and reports on the state-of-the-art in

KGE. It describes the operational benefits that can be gained from this approach and the

considerations for observational ontologies that describe complex and rapidly-evolving

environments.

C1 This examines the benefits of various graph embedding techniques that can be

used to represent workflows. These embedding techniques can be used with semantic

vector spaces to provide better analysis of workflows in distributed systems. This an-

swers RQ1.

Chapter Four - Compositional Plan Vectors for Multitask Learning: The third

chapter proposes a novel algorithm for deep reinforcement learning called CPV-TER.

This method uses compositional plan vectors (CPVs) to efficiently learn multiple tasks

simultaneously, by representing the subtasks as vectors and sequences of subtasks as

the sum of those vectors. The chapter demonstrates that the approach allows for more

efficient learning and outperforms other standard multi-task RL algorithms.

C2 This chapter demonstrates a new method to construct multi-step tasks with re-

inforcement learning. This method produces hierarchical solutions to tasks without

expert demonstrations. This answers RQ3.



1.3 Thesis Structure and Contributions 18

C3 This method also produces embeddings which can be used to represent workflows

in a vector representation. These vectors can then be used to perform analysis of the

distributed system that contains the workflows. this answers RQ2.

C4 This chapter also provides a new replay method that allows for more efficient

learning with data in reinforcement learning. By using self produced data as expert

demonstration imitation learning techniques can be used on top of reinforcement learn-

ing techniques. This answers RQ5.

C5 In this chapter we also released a benchmark that involves tasks of a sequen-

tial nature and additionally requires minimal compute power in comparison to other

benchmark environments in the MTRL space. This is a new focus area of green AI

and aims to make the academic field both greener and more inclusive for academics

with minimal access to additional compute power [109]. This is not a direct result of

one of the main research questions but is nonetheless an important contribution to the

reinforcement learning space.

Chapter Five - Deep Geometric Learning for Directed Acyclic Graphs: This

chapter presents a novel method for generating directed acyclic graphs (DAGs) using

deep reinforcement learning. DAGs with specified structures and highly sparse reward

environments are challenging to generate. This method demonstrates generating DAGs

with node types and topology satisfying criteria.

C6 This chapter demonstrates a new method to construct directed acyclic graphs us-

ing geometric deep learning combined with reinforcement learning. This demonstrates

an ability to produce workflows with minimal data outside of workflow application

success. This answers RQ4.
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Chapter Six - Conclusion: In this final conclusion chapter we provide a final review

of the research questions and how we answered them, and how these answers contrib-

uted to the fields of reinforcement learning and representation learning. We delineate

potential areas for future work stemming from each of the chapters, and we make our

final remarks.
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Chapter 2

Literature Review

2.1 Overview

Applications that run on large distributed systems can require access to multiple mi-

croservices creating complex workflows. With large scale systems, these workflows

can become too large to efficiently design by hand, particularly when the system is dy-

namic and prone to failure and reorganization. Designing workflows on large distrib-

uted systems is a highly complex task. Some automation or approximation is needed to

develop policies for previously unseen tasks or redesign policies when the distributed

system’s structure has changed significantly.

Machine learning can be applied to handle the complexities inherent in the data by

treating workflows and schedules on distributed systems as structured graphs. By using

a combination of machine learning and reinforcement learning, new workflows can be

constructed even on large systems that are dynamic, interpretable, and require minimal

training data.

In this literature review, we take into consideration current academic work, particularly

in the areas of graph convolutional networks, reinforcement learning for graphs, and

multitask reinforcement learning. In doing so, we highlight the existing gaps in the

literature. Considering the aims of the thesis, this literature review will proceed through

five major topics: graph neural networks, deep reinforcement learning for graphs and

schedules, reinforcement learning methods for large and complex environments, multi-
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Fig. 2: Network Embedding v.s. Graph Neural Networks.

networks in this paper.

Our Contributions Our paper makes notable contribu-
tions summarized as follows:

• New taxonomy In light of the increasing number of
studies on deep learning for graph data, we propose
a new taxonomy of graph neural networks (GNNs).
In this taxonomy, GNNs are categorized into five
groups: graph convolution networks, graph atten-
tion networks, graph auto-encoders, graph genera-
tive networks, and graph spatial-temporal networks.
We pinpoint the differences between graph neural
networks and network embedding and draw the
connections between different graph neural network
architectures.

• Comprehensive review This survey provides the
most comprehensive overview of modern deep
learning techniques for graph data. For each type
of graph neural network, we provide detailed de-
scriptions on representative algorithms, and make
a necessary comparison and summarise the corre-
sponding algorithms.

• Abundant resources This survey provides abundant
resources on graph neural networks, which include
state-of-the-art algorithms, benchmark datasets,
open-source codes, and practical applications. This
survey can be used as a hands-on guide for under-
standing, using, and developing different deep learn-
ing approaches for various real-life applications.

• Future directions This survey also highlights the cur-
rent limitations of the existing algorithms, and points
out possible directions in this rapidly developing
field.

Organization of Our Survey The rest of this survey
is organized as follows. Section 2 defines a list of graph-
related concepts. Section 3 clarifies the categorization of
graph neural networks. Section 4 and Section 5 provides
an overview of graph neural network models. Section 6
presents a gallery of applications across various domains.
Section 7 discusses the current challenges and suggests
future directions. Section 8 summarizes the paper.

TABLE 1: Commonly used notations.
Notations Descriptions
| · | The length of a set
� Element-wise product.
AT Transpose of vector/matrix A.
[A,B] Concatenation of A and B.
G A graph
V The set of nodes in a graph
vi A node vi 2 V

N(v) The neighbors of node v

E The set of edges in a graph
eij An edge eij 2 E

X 2 RN⇥D The feature matrix of a graph.
x 2 RN The feature vector of a graph in the case of D = 1.
Xi 2 RD The feature vector of the node vi.
N The number of nodes, N = |V|.
M The number of edges, M = |E|.
D The dimension of a node vector.
T The total number of time steps in time series.

Fig. 3: Categorization of Graph Neural Networks.

2 DEFINITION

In this section, we provide definitions of basic graph con-
cepts. For easy retrieval, we summarize the commonly used
notations in Table 1.

Definition 1 (Graph). A Graph is G = (V,E,A) where V

is the set of nodes, E is the set of edges, and A is the
adjacency matrix. In a graph, let vi 2 V to denote a node
and eij = (vi, vj) 2 E to denote an edge. The adjacency
matrix A is a N ⇥ N matrix with Aij = wij > 0 if
eij 2 E and Aij = 0 if eij /2 E. The degree of a node is
the number of edges connected to it.

A graph can be associated with node attributes X
1,

where X 2 R
N⇥D is a feature matrix with Xi 2 R

D

representing the feature vector of node vi. In the case of
D = 1, we replace x 2 R

N with X to denote the feature
vector of the graph.

Definition 2 (Directed Graph). A directed graph is a graph
with all edges pointing from one node to another. For
a directed graph, Aij 6= Aji. An undirected graph is

1. Such graph is referred to an attributed graph in literature.

Figure 2.1: Figure reproduced from [129] showing the major areas of graph based

neural networks.

task reinforcement learning, and replay methods for reinforcement learning.

2.2 Graph Neural Networks

Machine Learning, typically known for working with images, text and audio, has re-

cently expanded into working with graph based structures. Geometric deep learning,

a field that has expanded rapidly within the last decade, has a wide range of applica-

tions, including drug discovery, link prediction for social networks, and applications

for task scheduling. Geometric deep learning differs significantly from typical machine

learning methods due to the non-euclidean nature of graphs [140].

There have been a number of comprehensive literature reviews in this area. Notably,

[138] discusses a wide range of techniques in the field, including supervised techniques
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such as Graph Recurrent Neural Networks (GRNNs), unsupervised methods such as

Graph Auto Encoders (GAEs), and even briefly touching on graph-based reinforce-

ment learning, a small but growing area of the geometric deep learning field. They also

lay out the major open issues in the field, as well as suggest some potential future direc-

tions. [140] focuses more specifically on supervised learning methods, and categorises

methods by type of training data, propagation step, and even by graph type. They

also discuss frameworks used in the field, including MPNN, an important framework

described in section 2.2.2. Finally, [129] provides a valuable taxonomy to categorise

graph neural network methods, as well as discussing important benchmarks and men-

tioning valuable open source data within the community. Figure 2.1, reproduced from

[129], groups the major components of graph neural networks into 5 distinct, yet over-

lapping areas. In this section of the literature survey we focus on graph convolutional

networks, with a particular attention paid to spatial graph convolutional networks.

2.2.1 Graph Convolutional Networks

Graph convolutional networks (GCNs) are the basis for the majority of graph neural

networks. They are similar to standard convolutional neural networks (CNNs) in that

they convolve over localities: for images this would be a group of neighbouring pixels

[59], for natural language processing this could be nearby words or individual letters

[56]. For graphs, standard CNNs cannot be used, as these methods rely on the strict

euclidean nature of image and sentence structure, which graphs do not have. GCNs

use same underlying principle of convolving over localities, but with different methods

to achieve this. There are two major types of GCNs: spectral and spatial.

Spectral GCNs

The first GCNs developed were spectral, as proposed initially by [13]. Here the term

spectral refers to spectral graph theory, which works primarily with graph laplacians,
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L = I −D−1/2AD−1/2 (where I is the identity matrix, D is the degree matrix and A

is the adjacency matrix), which hold most useful properties of graphs in a matrix. By

performing an eigendecompostition on the laplacian, we can then convolve over these

eigenvectors. This method has a strong theoretical basis, however the time complex-

ity of finding the eigenvectors of the laplacians of graphs is very high (O(N2)), and

is generally non-scalable [138]. Other spectral methods have lowered this complexity

by using chebyshev polynomials, which in effect are truncations of the laplacian ei-

genvectors, reducing the time complexity significantly [19]. Despite these reductions

in time complexity, they still require high amounts of memory, and generally do not

generalise to graphs with different structures [129]. For this reason we focus mainly

on spatial GCNs.

Spatial GCNs

Spatial GCNs work very similarly to standard CNNs by combining information at each

point from neighbouring areas. For spatial techniques this generally involves using

the graph’s adjacency matrix and aggregating information from each node’s nearest

neighbours. Depending on how the information is aggregated, how many neighbours

are sampled, and whether or not pooling functions are used, spatial GCNs can encode

a wide variety of features, and perform a number of different tasks at different scales.

In this survey we focus mainly on spatial methods.

2.2.2 MPNN Framework for Spatial GCNs

[32] reformulated multiple important existing spatial models into a single cohesive

framework, allowing for easier descriptions of variations of the basic model. This

framework is called the Message Passing Neural Network (MPNN), and works by

splitting each method into two parts: a ‘message passing’ phase and a ‘readout’ phase.

During each timestep t of the message passing phase, the hidden states ht
v at each node
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v are updated based on an update function U which acts on the current state of the

node, and the states of the neighbouring nodes (thus a message is passed from node to

node). Formally this is written as:

ht+1
v = Ut(h

t
v,

∑
w∈N(v)

Mt(h
t
v, h

t
w, evw)) (2.1)

Here the message passing function takes as input the state of the current node, the state

of neighbouring nodes, and the state of connecting edges evw.

The readout phase takes these hidden states and computes a final feature vector to

describe the whole graph, formally written as:

ŷ = R({hT
v |v ∈ G}) (2.2)

and is effectively a pooling function, often described separately from GCN methods.

By using this message passing framework, we can describe all spatial GCNs with a

message passing function and an update function, and can describe pooling methods

as readout functions.

2.2.3 Major GCN Variants

There is a large number of spatial GCN variants, which take advantage of different

types of features and produce varying outputs. One of the earlier variants, node2vec

[34] outputs a feature representation for each individual node as opposed to the entire

graph. The main message passing function is in effect a concatenation, which is a

standard message passing function. The key feature of node2vec is that its message

passing function only takes information from a subset of a nodes neighbours via a

random walk method. This increases efficiency significantly, which is very important

for larger graph structures. This random walk is designed to act somewhere in between

a depth first search method and a breadth first search method. This allows for a flexible

representation that can account both for variations in substructures and the graph as a

whole.
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Figure 2.2: Figure reproduced from [37] showing the underlying principle of the

GraphSAGE algorithm.

GraphSAGE [37] provides a feature representation of the whole graph, and uses a

message passing function that involves both aggregation and concatenation. It first

aggregates the current node and all neighbouring nodes, generally by performing an

element-wise mean, and then concatenates this aggregation with the current node state.

This concatenation is then manipulated with a weight function, which is learned over

training.

struc2vec [97] aims to produce node representations that emphasis inherent structural

similarities in nodes, as opposed to location in the node, via a skipgram-style model.

For example, two nodes that have the same degree and have neighbours with the same

degrees should produce similar feature vectors, even if they aren’t near each other

locally.

Most of these methods work primarily with undirected edges with no edge weight-

ings. Recently struc2vec++ [112] was proposed to handle directed and weighted edges,

which is particularly important for workflow applications. In a message passing for-

mulation, the message passing function would be similar to that of struc2vec, however

the neighbouring nodes would be split into two different neighbourhoods: nodes with

incoming edges from the current node, and nodes with outgoing edges to the current

node.

Recently, Facebook published a method to embed vectors for massive scale graphs
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[63]. This is the first embedding method for graphs to scale to billions of nodes and

edges. This works by performing a block decomposition of the adjacency matrix (used

to determine neighbouring nodes) as well as by distributing computation and by per-

forming negative sampling, all of which are techniques which can be implemented

alongside other GCN methods to bring them to scale.

As in the NLP field where self-attention mechanisms, notably Transformer models

[122], have shown significant success, recent approaches have introduced self-attention

mechanisms into GNNs. Graph Transformer Networks (GTN) [135] is a model in-

spired by the work on non-local neural networks. The authors propose a novel localized

self-attention mechanism to capitalize on the locality principle, a common underlying

property of natural graphs. This type of self-attention operation enhances the model’s

capability to capture long-range dependencies in graph-structured data, which can be

critical for many downstream tasks.

Finally, [93] published a method to bring interpretability to graph embeddings, which

is particularly important for applications to distributed workflows, particularly when

the microservices have a set workload or are of a sensitive nature, as is often the case

in military contexts.

2.3 Reinforcement Learning on Graphs

Supervised learning methods generally work best in instances where there is a large

amount of training data available. For generation tasks, this is often not the case.

Supervised learning is often used for generation when the aim is to generate examples

that have similar properties to previously seen examples, in which case GANs can be

used, as in [66]. For workflow construction however, where the task may never have

been performed before, this is clearly not the case.

In these instances, reinforcement learning can be used, as it does not require labelled

examples, but instead only requires a numerical reward depending on whether or not
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the policy produces desired results. While reinforcement learning on the whole is

a very large field, reinforcement learning on graphs is a particularly small and new

area. This is again largely due to the complexity and scalability issues of graphs, as

reinforcement learning typically struggles with the so-called ‘curse of dimensionality’

[115].

Reinforcement learning has already been applied for scheduling problems, namely in

[87]. This paper uses a tabular Q-learning technique. By tabular we mean that each

possible state (in this case, a graph) is calculated separately, and a policy for each action

is calculated individually as if in a table. In a game of chess for example this would

be akin to learning a set of actions for every possible state of play, which is unfeas-

ible for even a relatively small graph. A supervised or unsupervised learning method

to produce vectors to represent states is almost always used in current reinforcement

learning techniques. This allows for states to be approximated, and for policies to be

used even if a specific state hasn’t yet been explored, but a similar state has. There-

fore by applying a GCN to a workflow graph it should decrease the exploration levels

needed significantly.

Reinforcement Learning has been combined with graph embeddings, specifically for

molecule generation as in [133]. In this paper, the learning agent added a single

atom or bond in each timestep, and the reward was based on a GAN determining if

the developed molecule was similar to a base set of known molecules. The states

provided to the learning agents were a graph embedding produced by a GCN. This

method provided a significant increase on chemical property optimization than previ-

ous baselines.

Similar methods have also been implemented for combinatorial optimisation using

graphs, a potential use case to approximate workflows [16]. This paper uses struc-

ture2vec for its embedding, and trains using Q-learning. Notably this method can be

implemented on graphs of up to 1200 nodes, which while still relatively small, is much

larger than standard molecular structures, which is the major focus for current work
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in graph based reinforcement learning. Another recent paper compares multiple graph

embedding schemes for reinforcement learning, including node2vec, GraphWave and

variational graph auto-encoders [73].

2.4 Reinforcement Learning for Complex Environments

As graphs are so complex, particularly at scales as needed for workflows, additional

optimization methods need to be implemented. In order to fully implement graph based

deep reinforcement learning for constructing workflows in distributed systems, a few

different goals need to be achieved.

First, an agent learning to construct workflows in large distributed systems will need to

be able to choose to send information from a wide variety of microservices to another.

This means the agent should be able to learn policies for environments with large action

spaces, and potentially even continuous action spaces. Typical reinforcement learning

generally only deals with relatively small action spaces, such as cardinal directions in a

video game, but for graph construction this action space could potentially scale linearly

with the size of the graph in the worst case. [22] provides a concise overview of the

state of the art methods for continuous control in reinforcement learning, and concludes

that methods such as TRPO and TNPG are optimal algorithms for large action spaces.

Another issue with large graphs is that the region that produces a positive reward be-

comes a significantly smaller part of the total state space as graphs scale. In order to

handle this, intelligent exploration and use of that exploration needs to be implemen-

ted. Rainbow DQN [42] implements all state of the art additions to Deep Q networks,

a very popular deep reinforcement method. The paper also performs an ablation study

to determine which variations are the most important in improving the end result. In

this paper they determine that both prioritized experience replay and multi step reward

calculations most improve the result. prioritized experience replay involves replaying

actions that have already been taken and stored in a memory. The memories chosen to
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replay are prioritized if they produced an unusual reward, either high or low. This al-

lows for a single action to affect the overall policy significantly if it produces a positive

result, even if the probability of reaching that state by chance are low. Multi-step re-

wards bootstrap rewards from the greedy actions from future states as opposed to using

the single state reward. This increases values of states that eventually produce rewards

significantly, particularly in environments where a reward may not be seen until mul-

tiple steps have been achieved, as in a workflow. Another method, Ape-X DQN [45],

implements prioritized replay in a distributed manner, resulting in even faster learning

in a significantly faster wall-clock time.

Another important issue in constructing workflows in large distributed systems is a

method to distribute learning over multiple learning agents. As these systems are by

definition distributed, it is therefore inherent that a distributed solution for construct-

ing workflows is desired. [23] first introduced the concept of multi-agent reinforce-

ment learning. [62] provides a concise overview of how current reinforcement learning

methods can be implemented in a multi-agent fashion. [51] utilizes GCNs to imple-

ment multi-agent learning specifically, and finds that representing agents as nodes in

a graph to plan out cooperation significantly assists in learning speeds. Learning with

Learning Opponent Awareness [31] accounts for interacting in an environment that has

adversarial learning agents - this could be an area to consider when designing work-

flows on systems that struggle with overloading, particularly when the learning agent

does not have ownership over the scheduling decisions. [30] focuses on communica-

tion difficulties, and information sharing protocols when handling multi agent learning

on distributed environments, a particular issue when constructing workflows for sys-

tems on the edge, or when dealing with systems that handle sensitive information.

Finally, hierarchical reinforcement learning can be implemented to learn sub tasks in

workflows, and increase learning in highly complex environments. Certain pooling

operations, such as DiffPool[132], account for substructures in graphs, allowing for

vector embeddings that retain information on these important substructures. Then,
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multilevel hierarchies can be implemented from the reinforcement learning end to

learn particular subtasks that make up a final workflow [65]. This has already been

implemented as a graph based heirarchical reinforcement learning method as in [1].

Hierarchical reinforcment learning is also used in multi-task reinforcement learning,

and is discussed further in section 2.5.1.

2.5 Multi-Task Reinforcement Learning

Workflows by definition complete multiple tasks, making multi-task reinforcement

learning a logical area of focus for workflow construction. Multi-task reinforcement

learning (MTRL) has emerged as a promising approach to enable agents to learn mul-

tiple tasks simultaneously, thereby improving their overall performance and efficiency.

MTRL frameworks and algorithms have been developed to address the challenges of

learning multiple tasks, such as task interference and the need for efficient exploration.

In this literature review, we focus on four key sub-topics of MTRL: methods for MTRL,

application areas, and benchmarks used for performance assessment. We provide an

overview of the state-of-the-art papers in each sub-topic, highlighting their strengths

and limitations. This section of the literature review aims to provide a comprehensive

understanding of the current landscape of MTRL.

2.5.1 Algorithms and Techniques for MTRL

There are several algorithms and methods used for multi-task reinforcement learning,

which can be categorized into different types based on their approach to handling mul-

tiple tasks simultaneously: Meta-Learning, Joint Training Approaches, Hierarchical

RL, and Transfer Learning. Some of these methods overlap with each other and can

be used in conjunction. Overall, these different types of algorithms and methods of-

fer different advantages and disadvantages for multi-task reinforcement learning. Joint
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training is useful when the tasks have a lot of common features, while meta-learning

is useful when the agent needs to quickly adapt to new tasks. Hierarchical approaches

are useful when the tasks have a natural hierarchy, and curriculum learning is useful

for speeding up the learning process by exploiting similarities between tasks.

In the following subsections, we give a cursory overview of these areas while outlining

key papers from the area. While not all of these techniques are utilised in the thesis

it is nonetheless important to demonstrate the different approaches within the MTRL

space.

Meta-Learning

Meta-Learning is at times considered to be a separate domain from MTRL, however

it has considerable overlap so still merits examination here. Meta-learning and multi-

task reinforcement learning are related, as both involve learning across multiple tasks.

However, the key difference is that meta-learning focuses on learning how to learn

across tasks, while multi-task reinforcement learning focuses on learning how to per-

form multiple tasks simultaneously.

Multi-task reinforcement learning involves learning to perform multiple tasks at the

same time, with the goal of improving performance on all tasks. It can be thought

of as a way to transfer knowledge and skills from one task to another, with the idea

that performance on each task can help improve performance on the others. Meta-

learning, on the other hand, focuses on learning how to learn across tasks with the goal

of improving overall learning and adaptation speed. By learning how to learn quickly

and efficiently, meta-learning can help improve performance on a wide range of tasks,

even those that have not been explicitly encountered before.

the most popular method in this space is Model-Agnostic Meta-Learning (MAML)

[28]. The agent performs negative adaptation by explicitly trying to forget the inform-

ation it previously learned on a given task, which helps it to adapt to new tasks more
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effectively. The Reptile agent is an adaptation of MAML that proposes a first-order al-

gorithm for meta-learning that is model-agnostic [84]. The agent uses gradient-based

optimization to learn a better initialization for the learning process, which can be ap-

plied to different tasks.

The POET agent can generate complex and diverse learning environments and their

solutions by using a self-created curriculum approach [124]. The agent uses a co-

evolutionary algorithm to generate increasingly complex environments while simul-

taneously improving the agent’s ability to solve those environments. PEARL proposes

an agent that performs efficient off-policy meta-reinforcement learning using probab-

ilistic context variables [95]. This approach allows the agent to learn from different

policies and apply that knowledge to new tasks, improving the performance of the

agent on new tasks. The DREAM agent can efficiently decouple exploration and ex-

ploitation for meta-reinforcement learning without impacting the agent’s performance

[71]. The agent uses a two-policy approach that helps the agent to balance exploration

and exploitation while still learning effectively.

Meta-Learning is often a key consideration for performance benchmarks for MTRL,

and the environments are created to test both MTRL and Meta-Learning solutions.

These benchmarks are considered further in subsection 2.5.3.

Joint Training

Joint training approaches for multi-task reinforcement learning refer to the process of

simultaneously learning multiple tasks using a single reinforcement learning model.

This approach involves training the model to optimize multiple objectives and achieve

optimal performance across multiple tasks. The goal of joint training is to improve the

efficiency and scalability of the learning process by sharing information and leveraging

the similarities and differences across the learned tasks.

One common approach for joint training in multi-task reinforcement learning is multi-
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objective reinforcement learning, which involves optimizing multiple objectives or

goals simultaneously. This uses a set of reward functions that correspond to different

tasks, and the model learns to optimize the overall reward by balancing the different

task objectives. This approach can be useful when there are tasks that have conflicting

objectives, and the model needs to optimize across all of them.

Overall, joint training approaches for multi-task reinforcement learning can enable

agents to learn efficiently and effectively across multiple tasks by sharing information

and leveraging knowledge from related tasks. These approaches can be particularly

useful in real-world applications, where agents need to learn multiple tasks simultan-

eously in a complex and dynamic environment. Joint training approaches typically

use adapted versions of reinforcement learning agents used for single task RL, such as

Rainbow DQN or APE-X (discussed previously in section 2.4. PPO, TRPO, and SAC

are common MTRL choices and are often used in benchmark demonstrations.

Proximal Policy Optimization (PPO) is a model-free, on-policy algorithm that updates

the policy parameters using a trust region optimization step [108]. It uses a clipped

surrogate objective function to prevent the policy from changing too much between

updates, ensuring stability and reducing the likelihood of catastrophic forgetting. PPO

is especially effective for continuous control problems and has been shown to achieve

state-of-the-art performance on a variety of benchmark tasks. Trust Region Policy Op-

timization (TRPO) is a model-free, on-policy algorithm that updates the policy para-

meters using a trust region optimization step similar to that used in PPO [107]. How-

ever, it uses a natural policy gradient to update the parameter vector, which takes into

account the geometry of the policy parameter space to ensure that updates are well-

behaved. TRPO has been shown to be effective on a variety of tasks, especially those

with high-dimensional state spaces.

Soft Actor-Critic (SAC) is an off-policy, model-free algorithm that uses a maximum

entropy objective function to encourage exploration and robustness to stochastic en-

vironments [36]. It uses a differentiable policy critic network to estimate the value of
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the current policy and regularizes the policy update with an entropy term to prevent

premature convergence. SAC has been shown to achieve state-of-the-art performance

on a variety of continuous control tasks and has been used for multi-task learning in

combination with hierarchical reinforcement learning.

Hierarchical Reinforcement Learning

Hierarchical Reinforcement Learning (HRL) is a subfield of Reinforcement Learning

that is concerned with learning and decision-making in complex environments with

multiple levels of abstraction. In HRL, the learning agent decomposes a complex task

into a series of smaller tasks, which can be solved independently, and then integrates

them to achieve the overall goal of the task. HRL is motivated by the idea that complex

tasks can be more efficiently learned if they are broken down into smaller, simpler tasks

that can be learned independently.

The main advantage of HRL is that it can significantly reduce the learning time and

computational resources required to learn complex tasks. However, HRL also poses

some challenges, such as how to design the hierarchy, how to handle the imperfect

decomposition of tasks, and how to integrate the learning of different levels.

"Learning Multi-Level Hierarchies with Hindsight", proposes a hierarchical RL agent

that uses the hindsight experience replay (HER) technique to improve sample effi-

ciency [64]. The agent consists of multiple levels of controllers, each responsible for a

different timescale of decision-making. At the lowest level, the agent takes individual

actions, while at higher levels, it takes longer-term decisions based on the outputs of the

lower-level controllers. HER is used to augment the agent’s experience with successful

trajectories that may not have been optimal for the original task.

The H-DQN agent integrates both temporal abstraction (i.e., the ability to learn actions

that span multiple time steps) and intrinsic motivation (i.e., the motivation to explore)

in a hierarchical manner [60]. The agent consists of multiple levels of controllers that
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use deep neural networks to learn representations of the state and action spaces. The

higher-level controllers use these representations to guide the lower-level controllers in

their decision-making.

The third paper, "Data-Efficient Hierarchical Reinforcement Learning", proposes a

hierarchical RL agent that uses a tree-structured policy to efficiently learn multiple

tasks [79]. The agent consists of multiple levels of controllers that operate at different

levels of abstraction. The lower-level controllers use tree-structured policies to learn

local behaviors, while the higher-level controllers use them to learn global behaviors.

The agent also uses a novel method for transfer learning, where learning from one task

can be used to speed up learning on another task.

"FeUdal Networks for Hierarchical Reinforcement Learning", proposes an agent that

uses a feudal network architecture to learn hierarchical policies [123]. The agent con-

sists of two networks, a manager network that learns high-level policies and a worker

network that learns low-level policies. The worker network receives goals from the

manager network and generates actions to achieve those goals. The manager network

receives rewards based on the worker’s actions and updates its policies accordingly.

"The Option-Critic Architecture" proposes an agent that uses options to learn hierarch-

ical policies [3]. Options are defined as temporally extended actions that are com-

posed of lower-level actions. The agent consists of two networks, an option network

that learns high-level policies and a critic network that learns to evaluate the options.

The option network receives rewards based on the critic’s evaluations and updates its

policies accordingly.

Transfer Learning

Transfer learning involves using knowledge gained from learning one task to accelerate

learning on another related task. This can be done by reusing parts of a previously

trained agent, such as the hidden layers of a neural network, to initialize the learning of
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a new agent. This approach aims to leverage previously acquired knowledge to reduce

the sample complexity and improve the convergence speed of the learning process.

Some of these approaches can be adapted into a joint training approach, but tend to

work best when treated in a transfer learning manner.

The key feature of DISTRAL is its ability to leverage the shared structure that exists

across multiple tasks [119]. This agent is able to identify common patterns and struc-

tures that are shared between different tasks, and it can use this information to learn

more efficiently. DISTRAL is able to do this through a process called distillation,

which involves compressing the knowledge gained from training on multiple tasks.

DISTRAL consists of two main components: a backbone network and a task-specific

head network. The backbone network is responsible for processing the input data and

extracting important features that are relevant to all the tasks. The task-specific head

network is responsible for processing the output of the backbone network and gener-

ating task-specific outputs. In addition to its ability to learn multiple tasks simultan-

eously, DISTRAL also has the ability to transfer knowledge between tasks. This means

that it can learn a new task more quickly by leveraging the knowledge that it has gained

from training on other tasks.

The IMPALA (Importance-weighted Actor-Learner Architecture) agent is a type of

multi-task reinforcement learning agent that breaks down the reinforcement learning

problem into two separate components: learning a policy and learning a value func-

tion. This approach allows the agent to perform multiple tasks simultaneously while

also scaling well with large state and action spaces [24]. The agent consists of multiple

actors and one central learner. Each actor interacts independently with the environ-

ment, generating episodes of experience. These episodes are then sent to the central

learner, which updates the policy and value function parameters based on the collected

data.

The key innovation of the IMPALA agent is the use of importance weights. Importance

weights adjust the contribution of each actor’s experience in the learning process based
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on the performance of the policy at the time the experience was generated. This allows

the agent to use experience from all tasks to improve the policy and value function, even

if some tasks are experiencing slower progress or have lower rewards. Additionally, the

IMPALA agent uses a prioritized experience replay buffer, which stores and prioritizes

the most useful experiences for learning. This helps to improve learning efficiency and

generalize experience across different tasks.

The PopART agent uses a population of neural networks, which each specialize in

a different task [43]. The networks are trained separately but are allowed to share

information with each other through the use of a shared memory. This allows them

to learn from each other and to transfer knowledge between tasks, which can greatly

improve learning efficiency.

Additionally, the PopART agent uses reward shaping to guide the learning process.

This involves modifying the reward signal given to the agent to incentivize desirable

behavior. The reward shaping function is also learned by the agent, which allows it to

adapt to changing environments and tasks.

The agent proposed in the ICLR 2018 Paper "Learning an Embedding Space for Trans-

ferable Robot Skills" is a multi-task reinforcement learning framework that learns a

shared embedding space for transferring skills across different tasks [40]. The model

comprises of three major components: a policy network, a value network, and an em-

bedding network. The policy network produces a distribution over actions given the

current state of the environment, while the value network predicts the expected cumu-

lative reward obtained from the current state. These two networks are trained using the

standard deep reinforcement learning algorithms like actor-critic, which maximizes the

expected reward of a set of tasks simultaneously.

The embedding network maps the state-action pairs to a lower-dimensional embedding

space, which captures the underlying structure of the tasks and their similarities. This

embedding space facilitates transfer between different tasks as it aligns their repres-

entations. The embedding network is trained by minimizing a contrastive loss, which
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aims to bring together embedding vectors of states that belong to the same task while

pushing apart those that belong to different tasks. Overall, the proposed agent seeks to

learn a shared embedding space that captures the common structure of multiple tasks,

allowing for transfer of skills and knowledge between them. By doing so, it enables

more efficient and effective multi-task reinforcement learning, reducing the amount of

task-specific training required.

Curriculum Learning

Curriculum Learning is a technique used in machine learning and reinforcement learn-

ing that involves gradually increasing the complexity of learning tasks presented to a

model, with the aim of facilitating faster training and improved performance on the

target task. In Curriculum Learning, simpler tasks are presented initially to the model,

which then gradually progress to more complex tasks.

Curriculum Learning is particularly relevant in the context of multi-task reinforcement

learning, where the objective is to learn multiple tasks simultaneously. In multi-task

reinforcement learning, a model is trained to learn multiple tasks at the same time,

which can be more challenging than learning a single task in isolation. Curriculum

Learning can be used to structure the learning process [92], making it easier for the

model to learn multiple tasks simultaneously by presenting simpler tasks first, before

moving on to more complex tasks later. This can also be used to auto-generate goals,

which can go hand in hand with experience replay methods [61][29][94].

Overall, Curriculum Learning is a powerful technique that has the potential to acceler-

ate the learning process and improve the performance of models in a range of settings,

including multi-task reinforcement learning. By providing a structured learning pro-

cess, Curriculum Learning can help models to generalize better and learn more effect-

ively, leading to more robust and adaptable AI systems.
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2.5.2 Applications

In recent years, multi-task RL has been applied to a wide range of domains, includ-

ing robotics and manipulation, multi-task recommendations, and energy and commu-

nication efficiency. In this section, we will review some applications of MTRL, and

examine a few key papers from each application area.

Robotics and Manipulation

Robotics has become an increasingly important application context for the field of

artificial intelligence, particularly in the context of MTRL. The ability to manipulate

objects with dexterity and precision is crucial for many real-world applications, from

manufacturing to healthcare. In recent years, several papers have made significant

contributions to the academic literature on robotics and manipulation. These papers

have advanced our understanding of how robots can learn to manipulate objects in

complex and dynamic environments, and have paved the way for future research in

this exciting and rapidly evolving field.

MT-Opt is a new MTRL technique for robotics proposed by the Google Robotics Lab

[54]. The authors note that while existing deep RL methods are effective at learning

skills, they require considerable on-robot training time and engineering effort for each

task. MT-Opt aims to amortize the cost of learning a large repertoire of behaviors over

multiple related tasks, making the learning process more data-efficient and faster. The

authors demonstrate the effectiveness of MT-Opt on a variety of robotic tasks and show

that it outperforms single-task RL in terms of data efficiency and complexity of tasks

that can be performed.

The paper presents several novel contributions to multi-task RL for robotics. First, the

authors address the challenge of defining rewards for multiple tasks through a scalable,

success-classifier-based approach. Second, they demonstrate how a multi-task system

can acquire new tasks quickly through shared representations and learned policies.
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Finally, they show that learning multiple related tasks simultaneously can increase

data efficiency and enable more complex tasks to be performed. Overall, this paper

demonstrates the potential of multi-task RL for robotics and provides a promising new

approach for developing general-purpose robotic systems with a large repertoire of

skills.

The paper entitled "Learning to Grasp the Ungraspable with Emergent Extrinsic Dex-

terity" has extended the Robotics and Manipulation literature by presenting a system

that addressed the limitations of previous work in an area called extrinsic dexterity

[141]. The system was designed to study the task of "Occluded Grasping", which

is the ability to grasp objects that could not be accessed directly by first moving the

object, e.g., by pushing it against a wall so that it can then become graspable.

The system used a simple gripper and its ability to use the environment to increase that

grippers capabilities was referred to as "extrinsic dexterity". Interestingly, the policy

learned to push the object against the wall to achieve its goal without any additional

reward design to explicitly encourage extrinsic dexterity.

Another significant contribution described in the paper was that the policy trained in

simulation was able to be zero-shot transferred to a physical robot. This robot could

then take advantage of this extrinsic dexterity technique across a range of object sizes

and surface types.

Multi-task Recommendations

Multi-task Recommendations is a crucial aspect of modern-day recommender systems

that aims to provide personalized recommendations to users across multiple tasks.

With the advent of Multi-task Reinforcement Learning, the ability to learn and op-

timize recommendations across multiple tasks has become increasingly important.

Multi-task Learning has seen moderate success in Recommender System applications.

However, previous MTRL-based recommendation models did not account for the inter-
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session patterns and behaviours of user-item interactions, as they were constructed

based on only item-wise datasets. Additionally, balancing multiple objectives has been

a challenge in this field, which was typically avoided through linear estimations.

Some of these issues are addressed in "Multi-Task Recommendations with Reinforce-

ment Learning" [72]. The method’s structure addressed the two aforementioned issues

by constructing environment from session-wise interactions and training a multi-task

actor-critic network structure that is still compatible with prior MTRL-based recom-

mendation models.

The effectiveness of the paper’s agent was demonstrated through experiments on two

real-world public datasets, which showed a higher statistical relevance of recommend-

ations when compared against current state-of-the-art models. Overall, the paper ex-

tended the Multi-task Recommendations literature by proposing a novel RL-enhanced

MTL framework that addressed the issues of disregarding session-wise patterns and

balancing multiple objectives. The proposed framework showed promising results and

could be applied to various RS applications.

Energy and Communication Efficiency

In recent years, multi-task reinforcement learning (RL) has emerged as a promising ap-

proach for solving complex problems that require multiple objectives to be optimized

simultaneously. However, as the number of tasks and agents involved in the learning

process increases, so does the demand for energy and communication resources. This

has led to a growing interest in understanding the tradeoffs between energy and com-

munication efficiency in multi-task RL applications. One recent paper using MTRL for

this application is "On the Energy and Communication Efficiency Tradeoffs in Feder-

ated and Multi-Task Learning" [103]. These papers have shed light on the challenges

and opportunities associated with optimizing energy and communication efficiency in

multi-task RL, and have provided valuable insights for future research in this area.
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The paper explored the energy costs associated with MTRL processes in distributed

wireless networks. The authors noted that the use of Federated Learning (FL) allows

for the development of new strategies for solving multiple learning tasks concurrently

by using cooperation among networked devices. MTRL is one such strategy that lever-

ages relevant similarities across tasks to increase learning efficiency compared with

standard transfer learning approaches.

The method is examined on a clustered multi-task network environment, where autonom-

ous agents learned different but related tasks. The MTRL process was carried out in

two phases: the optimization of the meta-model that is designed to learn new tasks at

speed, and a task-specific model adaptation stage where the learned meta-model was

transferred to agents for each task and optimized further.

The results of the study showed that the Model-Agnostic Meta-Learning (MAML)

method reduces the energy bill by over twice that of previous methods. The findings

suggested that MTRL could significantly reduce energy footprints and improve effi-

ciency in wireless networks, which had important implications for the design of future

wireless systems.

2.5.3 Performance Benchmarks

In the context of reinforcement learning, benchmarks refer to standardized problems

or tasks that are used to evaluate and compare the performance of different learning al-

gorithms or models. These benchmarks may involve simulated environments, games,

robotics tasks, or real-world applications, and they are designed to capture specific as-

pects of the learning problem, such as exploration, exploitation, generalization, transfer

learning, or safety.

Benchmarks play a key role in advancing the field of reinforcement learning, as they

enable researchers to measure progress, identify strengths and weaknesses of differ-

ent approaches, and guide the development of new algorithms and techniques. To be
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effective, benchmarks should be challenging, well-defined, and representative of the

problem domain, and they should be shared openly to enable fair comparisons and

reproducibility of results.

Several widely used benchmarks in reinforcement learning include the Atari games, the

MuJoCo physics simulator, the OpenAI Gym library, and the DeepMind Control Suite

[77][118][12]. These benchmarks have spurred significant progress in the field over

the past decade, leading to breakthroughs in deep reinforcement learning, hierarchical

learning, meta-learning, and other areas.

The OpenAI Gym Benchmark is a widely used platform for developing and testing

reinforcement learning algorithms. It is designed to provide a standard interface for

researchers and developers to evaluate and compare their algorithms in a controlled

environment. The Gym Benchmark consists of a set of virtual environments, each of

which represents a different task or problem that an agent must learn to solve. These

environments range from classic control problems, such as balancing a pole, to more

complex tasks such as playing video games.

The MuJoCo Benchmark for reinforcement learning is a widely used evaluation frame-

work for benchmarking and comparing the performance of reinforcement learning al-

gorithms across a range of robotic control tasks. The benchmark is based on the Mu-

JoCo physics engine, which provides a highly realistic simulation environment for a

variety of robotic systems. The benchmark consists of a set of 20 continuous control

tasks, each of which requires agents to learn to control a robotic system to achieve a de-

sired goal. The tasks vary in complexity, ranging from simple tasks such as balancing

a pendulum to more complex tasks such as navigating a maze or climbing a pole.

The performance of reinforcement learning algorithms on these tasks is measured using

metrics such as the final reward achieved, the number of steps required to achieve the

goal, and the stability of the learned policies. The benchmark is designed to encourage

the development of algorithms that are both sample-efficient and robust to changes

in the environment. Several popular reinforcement learning algorithms, such as deep
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deterministic policy gradients (DDPG) and proximal policy optimization (PPO), have

been evaluated using the MuJoCo Benchmark, and the results of these evaluations have

been used to guide further research and development in the field.

The DexArt benchmark proposed the use of a virtual robot hand to enable better ap-

proximation to human behavior and enable the robot to operate on various objects

[4]. The benchmark defined multiple complex manipulation tasks within each task.

The main focus of the DexArt benchmark is to evaluate the generalizability of learned

policies on what are referred to as articulated objects, which are objects consisting of

multiple structures pinned of otherwise joined together, such as scissors, buckets with

handles, or laptops. This is an extremely challenging given the high degrees of freedom

of both hands and articulated objects. This benchmark allows for further investigation

into how 3D representation learning affects decision making in RL.

The MineRL Benchmark is a comprehensive evaluation framework and dataset for

reinforcement learning agents in Minecraft, which is a popular game often used for

artificial intelligence research [35]. It is designed to provide a rigorous and standard-

ized evaluation protocol for comparing different reinforcement learning methods, and

for measuring progress in the field over time. The MineRL dataset includes over 60

million frames of gameplay, covering a wide range of tasks such as navigation, tool

use, tree chopping, and more. Each frame includes high-resolution visual observations

and a rich array of sensory information such as the player’s inventory, health, and pos-

ition. The dataset is accompanied by a set of challenging benchmark tasks that test the

agent’s ability to perform a variety of Minecraft tasks in different environments, such as

building structures or collecting resources. The MineRL Benchmark is unique in that

it incorporates several important features to ensure a fair and meaningful evaluation of

reinforcement learning agents. For example, the dataset intentionally includes natural

variation in the gameplay environment, such as natural hazards or unpredictable beha-

vior from non-player characters. Additionally, the benchmark tasks are designed to be

complex and difficult, requiring agents to demonstrate flexible and adaptive behavior,



2.5 Multi-Task Reinforcement Learning 45

rather than simply memorizing a set of pre-defined rules.

The ALE Benchmark is a popular platform for evaluating the performance of reinforce-

ment learning algorithms in the domain of video games [7]. The platform consists of a

collection of Atari 2600 games that have been modified to allow for programmatic con-

trol and data collection. Each game in the benchmark is treated as a separate task, and

the performance of a given algorithm is evaluated based on its average score across all

tasks. To evaluate performance, the ALE Benchmark uses a variety of metrics, includ-

ing average score per game, percent of games solved, and median normalized score.

These metrics provide a comprehensive view of an algorithm’s performance and can

help researchers identify its strengths and weaknesses.

One of the major advantages of the ALE Benchmark is its flexibility. Researchers

can easily modify the platform to test their own algorithms or add new games to the

benchmark. Additionally, the platform provides a rich set of tools for data analysis and

visualization, making it easy to compare results across different algorithms and games.

The StarCraft II Benchmark is a standard test suite used to evaluate and assess the

performance of multi-agent reinforcement learning in the real-time strategy game Star-

Craft II [101]. It was developed by researchers at DeepMind and Blizzard Entertain-

ment as part of the StarCraft II AI research environment.

The benchmark consists of a set of 10 mini-games, each with its own specific chal-

lenges and objectives. These mini-games are designed to test different aspects of an

agent’s abilities, such as resource management, unit control, and decision making un-

der uncertainty. In each mini-game, the agent is tasked with achieving a specific goal

or objective, such as collecting resources, building structures, or defeating an oppon-

ent. The agent must learn to navigate the game environment, gather information, make

decisions, and execute actions in a timely and efficient manner.

The StarCraft II Benchmark is considered one of the most challenging and complex en-

vironments for reinforcement learning due to the high dimensional nature of the game
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state, the large action space, and the high level of uncertainty and partial observability.

Therefore, the benchmark provides a rigorous test of an agent’s ability to learn and

adapt in complex and dynamic environments.

The MetaWorld benchmark is a suite of tasks designed to evaluate the performance and

generalization capabilities of reinforcement learning algorithms [134]. It comprises

50 diverse tasks that cover a wide range of scenarios, such as object manipulation,

navigation, tool use, and puzzle solving. The tasks are designed with a meta-learning

framework, which allows for efficient adaptation to unseen tasks by leveraging the

knowledge acquired from solving related tasks.

In addition, the MetaWorld benchmark incorporates a hierarchical representation of

tasks, where the tasks are divided into three levels: skill, navigation, and strategy levels.

The skill level comprises low-level actions that can be combined to complete more

complex tasks. The navigation level involves finding a sequence of skill-level actions

that achieve a more abstract goal. The strategy level involves developing a high-level

plan to solve a task that requires reasoning and decision-making abilities.

2.6 Replay Methods

Experience Replay is a popular technique in Reinforcement Learning that allows the

agent to learn from past experiences stored in a replay buffer. The basic idea behind

Experience Replay is to store the agent’s experiences during interaction with the envir-

onment and sample these experiences mini-batch uniformly at random.

The motivation behind Experience Replay is to break the correlation between sub-

sequent states that are generated during an agent’s interaction with the environment.

Experience Replay methods have been shown to improve convergence, stabilize learn-

ing, and reduce the number of interactions required for an agent to learn a good policy.

Some common Experience Replay methods are:
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Basic Experience Replay: This is the simplest form of experience replay, where the

agent stores all past experiences in a buffer and samples uniformly from them

during learning.

Prioritized Experience Replay (PER): In this method, experiences with high TD er-

ror or prediction error are given a higher priority for sampling [105].

N-Step Experience Replay: Instead of updating the Q-value based on a single-state

transition, this method takes multiple consecutive transitions and updates the

Q-value using Bootstrapped Returns [25].

Hindsight Experience Replay (HER): This allows an agent to learn from failed ex-

periences by adjusting the goal state from the one originally intended to the one

that was achieved during the interaction [2].

Generative Adversarial Imitation Learning (GAIL): GAIL is an Experience Replay

technique that uses a GAN to learn a policy from expert demonstrations [44].

There are some other important, but less popular, replay methods to note. DPER is a

distributed and prioritized version of experience replay (PER) for deep reinforcement

learning agents [45]. This method implements a distributed network of agents that can

learn from past experiences in parallel. The proposed method prioritizes the experi-

ences that are more informative or have a higher impact on performance, allowing for

a more efficient and improved learning process.

ERO aims to improve the computational efficiency of deep reinforcement learning

agents [136]. To achieve this, the authors propose a novel experience replay method

that samples experiences based on their uncertainty. The method uses an uncertainty

estimator that determines how informative each experience is and prioritizes those with

higher uncertainty over others. The result is a more efficient learning process that re-

quires fewer samples and can be applied to large-scale networks.
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S4RL introduces a simple self-supervised replay method that can learn from unan-

notated data [111]. The approach uses a deep generative model that can create and

evaluate synthetic experiences to improve the agent’s policy. The proposed method is

particularly useful in offline reinforcement learning where an agent has a fixed dataset

and cannot obtain new data. MixUp, for continuous control, generates new experiences

by linearly interpolating past ones, creating a continuous transition between them [68].

The authors show that MixUp can improve sample efficiency and help agents learn

better control policies, particularly in challenging continuous control environments.

Lastly, NMER proposes a neighborhood mixup method that aims to achieve improved

sample efficiency in continuous control tasks [102]. The proposed method linearly

interpolates between neighboring samples in the replay buffer to generate new experi-

ences. The approach’s primary benefit is its ability to constrain the generated samples

within local convex regions, which helps the agent generalize better and learn faster.

2.7 Conclusion

In this chapter we have examined the literature relating to geometric deep learning

and reinforcement learning that encompass the contributions made within the thesis.

We first explored geometric deep learning with a focus on its use with reinforcement

learning. The main gap in this research field is mainly in implementing reinforce-

ment learning to generate graphs. Very few reinforcement based graph generation

works have been published, in large part due to the fact that the field as a whole is so

new. In addition, most graph based work deals with instances where there is already a

large amount of data, in which case variational auto encoders tend to be more useful.

For the specific use case where we intend to construct graphs with structures not yet

seen before, however, reinforcement learning is the ideal solution. This motivates our

method for reinforcement learning for graph construction (Contribution C4) in chapter

five. Additionally, of the graph generation works involving reinforcement learning,

most work with the applications for molecules and drug discovery, which tends toward
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graphs of smaller size. There is a gap in the literature for geometric learning for the

application of distributed systems, motivating our analysis of representation methods

for workflows (Contribution C1) in chapter three.

We also examined the field of multi-task reinforcement learning. While there are

MTRL methods that have used task embeddings as a representation [40], they are for

continuous tasks for robotics, not for discrete tasks which better represent workflows,

and additionally these embeddings are not composable in nature. This motivates our

method presented in chapter 4 which produces plan vector representations (Contribu-

tion C2) that can then be used for production of workflows (Contribution C3). We also

investigated benchmarks in the reinforcement learning field, noting a lack of bench-

marks with sequential tasks and low computational cost, motivating our production of

a benchmark (Contribution C6).

Finally, we examine the use of Replay methods in Reinforcement learning, where we

find a gap in using full trajectories to increase the efficiency of learning on produced

data (Contribution C5).
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Chapter 3

Representation Learning for

Knowledge Graphs

3.1 Overview

Knowledge graphs (KGs) capture complex information about a specific domain using

rich logical semantics to encode relationships between entities and allow detailed and

specific data querying. Semantic vector spaces (SVSs) encode the relative meanings of

terms based on their co-occurrence in data and support useful operations for computing

the relationships between these terms.

In this chapter, we report on contemporary methods for SVS representation of KGs,

otherwise known as knowledge graph embedding (KGE), particularly as it relates to

graph databases based on observational ontologies. These embeddings enable addi-

tional analysis tasks to leverage learned semantic vectors to gain additional insights.

These techniques learn this representation directly from the graph topology and may

be used alternatively—or complementary—to traditional KG queries and natural lan-

guage processing (NLP) of any associated text corpus.

The aim of this chapter is to survey the general techniques for KGE and its downstream

applications, as well as to perform experimental analyses using the Distributed Analyt-

ics and Information Sciences (DAIS) International Technology Alliance (ITA) Science

Library (SL) co-authorship database to examine how we might produce embeddings
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more usefully representative of phenomenological databases [11].

In Section 3.2, we survey methods for knowledge graph embedding, outline the dif-

ferences between the key approaches and highlight cases where particular approaches

may be preferable. In Section 3.3, we outline our experiments using DAIS-ITA SL

data, before concluding the chapter in Section 3.4.

3.2 Knowledge graph embedding methods

The formal definition of a knowledge graph is a directed heterogeneous multigraph

whose node (entity) and edge (relation) types have domain-specific semantics (often

conveyed through an ontology). Knowledge graph embedding (KGE) represents the

entities and relations in a continuous vector space. This embedding is a distributional

representation, meaning that all properties of a single entity or relation are learned

together and the resultant description is spread across every dimension in the vector

space, such that no dimension corresponds to a specific attribute. A well-designed em-

bedding method should ensure that the resulting space captures the semantic properties

of the data, such that similar entities and relations are grouped together in the space and

unrelated concepts are orthogonal to each other (see Section 3.3.1 for more on vector

similarity). These embeddings allow additional analysis and machine learning tech-

niques to be applied, such as entity classification, fuzzy matching, link prediction and

recommendation systems.

Other research has combined a natural language SVS with queries on knowledge bases

(KBs), to leverage analogical reasoning [113]. This is achieved by book-ending the

query with semantic expansion. This has been shown to improve KB responses with

greater coverage using approximate knowledge, i.e., by querying the KB with the ori-

ginal and analogous tasks, using closely-related examples drawn from the SVS. This

enables assessment of the confidence of correctness in the query response.

There are numerous approaches to graph embedding and the field is expanding rapidly.
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In this chapter, we mainly consider two different types of framework for learning em-

beddings of entities: energy-based methods and random-walk-based methods. In the

interest of focus and brevity, we don’t specifically report on Bayesian clustering and

matrix (tensor) factorisation techniques (e.g., DistMult, HolE, ComplEx) [39, 85, 86,

110].

3.2.1 Energy-Based Embedding

In much of the literature, so-called energy-based methods are the only type of mod-

els directly surveyed or included in KGE libraries [17, 139, 38]. Essentially, these

frameworks learn embeddings by associating pairs of entities with some scalar scor-

ing function or “energy” metric [10, 50, 8]. This is generally also a function of the

relationship, such that there is some energy associated with every triple of source node

(head h), edge (relation r) and target node (tail t). All existing triples in the graph form

a set S. A selection of such models and the corresponding scoring functions is shown

in Table 3.1.

Model Scoring function

SE ∥Mrhh−Mrtt∥1
Unstructured ∥h− t∥21,2
LFM −hTMrt

TransE ∥h+ r − t∥21,2
TransH ∥h⊥ + r − t⊥∥21,2
TransR ∥Mrh+ r −Mrt∥21,2

Table 3.1: A selection of energy-based models and their corresponding scoring

functions.

The terms in table 3.1 can be explained as follows:

• h, t, r: Entity embeddings in a vector space, where h is the head entity, t is the

tail entity, and r is the relationship (edge) embedding.



3.2 Knowledge graph embedding methods 53

• Mrh, Mrt, Mr: Transformation matrices or projection matrices specific to rela-

tionships (r).

• ∥·∥1,2: Mixed norm or a combination of L1 and L2 norms.

• ∥·∥1: L1 norm (Manhattan distance) of a vector.

• ∥·∥2: L2 norm (Euclidean distance) of a vector.

• h⊥, t⊥: Entities projected onto hyperplanes specific to TransH model.

• Mrh, Mrt: Projection of entity embeddings onto relationship-specific spaces

using TransR model’s projection matrices (Mr).

The energy of each triple s = (h, r, t) ∈ S is equal to f(s) for some scoring function

f . For every genuine triple in the graph, we generate a collection of corrupted triples

where either the head or tail entity (but not both) has been replaced by another random

entity s′ = (h′, r, t′) ∈ S ′.

The embeddings are then learned using a triplet loss function,

L =
∑
s

∑
s′

max (0, γ + f(s)− f(s′)) , (3.1)

where γ > 0 is the margin between positive (triple) and negative (corrupted triple)

energies. The optimization is performed using stochastic gradient descent.

A simple geometrically intuitive implementation is TransE (translational energy). In

this model each entity is learned as a single embedding in the same k-dimensional

vector space. The energy of each triple s = (h, r, t) ∈ S is equal to the similarity

measure ∥h + r − t∥21,2 (either the L1 or L2-norm). For every triple in the graph, we

sample from the set of corrupted triples. The intention of this is to encourage h+r ≈ t

when (h, r, t) is a genuine triple and for h′ + r to be far from t when it is not. Results

show that this model outperforms the previous energy-based approaches (RESCAL,

SE, SME, LFM) at link prediction for hits@10 and mean rank [9, 10, 50, 8].
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A simple extension of this uses a composite model of TransE and a textual-context

model for relationship prediction [128]. It is shown to perform better than either model

in isolation. SENSE also creates single node embeddings by jointly learning graph

structure and the textual information associated with each node [96]. This method is

shown to be very effective when each node can be associated with a rich text corpus.

TransH extends TransE by projecting h and t onto a hyperplane for each relationship,

which allows entities to participate differently in different relationships [125]. Thus, it

better encodes 1-to-N and N -to-1 relationships.

Another extension of TransE is TransR [70]. In this model, entities are embedded in

different vector spaces for each relationship, as opposed to TransE and TransH where

they share the same space. A projection matrix is learned for each relationship that pro-

jects the head and tail entities into the appropriate relationship space before computing

the distance. This approach enforces Mrh + r ≈ Mrt for positive triples, where Mr

is a projection matrix between the entity and relationship vector spaces. This is shown

to achieve a higher accuracy on a binary relation classification task than either TransE,

TransH, or other pre-existing energy-based methods.

There are several open-source packages that enable one to apply energy-based struc-

tural approaches to learn Knowledge Graph Embedding. Two that we have identified

are DGL-KE and OpenKE [17, 139]. Both of these packages broadly implement the

same range of energy-based triplet-loss models—TransE, TransE (L1), TransE (L2),

TransR, RESCAL, DistMult, ComplEx, RotatE. Each package also incorporates a

number of efficiency improvements for parallel computing and optimization in multi-

CPU and multi-GPU environments.

3.2.2 Random-Walk-Based Embedding

Another approach to learning node embeddings is to use a random-walk in combination

with a skip-gram model, which was introduced for Word2Vec [76, 75, 33]. In this
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natural language processing context, each word in a sentence is used to predict the

words in a surrounding window to learn word embeddings. The efficiency of the skip-

gram model is vastly improved by using negative sampling to approximate the full

softmax function.

DeepWalk is designed to leverage this skip-gram model in a graph context. A node in

the graph is randomly selected, and then a random step is repeatedly taken to a neigh-

boring node building up a sequence of such nodes with some maximum length. This

effectively forms a “sentence” of node “words”. This process is repeated to construct

a corpus of node sequences that can then be used as input to the skip-gram model to

build up node embeddings.

LINE extends DeepWalk by using an objective function that incorporates both the first

and second-order proximity of connected nodes—DeepWalk accounts for only second-

order proximity [117]. It combines this with an optimized edge sampling approach

to maintain efficiency. Note that first-order proximity is only applicable to undirected

graphs. It has been shown to outperform DeepWalk on a number of applicable datasets.

Node2Vec extends DeepWalk by introducing a biased random walk that provides some

control over the random steps taken [34]. It does this by introducing two weight para-

meters, p and q. Parameter p determines the probability of revisiting a previously

visited node, while q influences how far from the source node the walk will go. This

provides a lever between breadth-first sampling (targeting structural equivalence) and

depth-first sampling (targeting homophily). Setting p = q = 1 recovers the DeepWalk

model. Node2Vec has been shown to outperform DeepWalk and LINE in multilabel

classification and link prediction tasks. However, it is still limited to homogeneous

networks with singular types of entities and relationships.

Subgraph2vec learns embeddings for rooted subgraphs in large graphs, rather than

individual node embeddings [80]. Its foundation is based on graph kernels. These

are kernel functions that calculate the inner products of graphs. They measure the

similarity of pairs of graphs by breaking them down into their atomic substructures.
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Subgraph2vec extends Deep Graph Kernel to the learning of subgraphs of different

degrees occurring in the same local neighborhoods via a skip-gram adapted to allow

variable-length radial contexts [131]. Graph2Vec extends this principle to large com-

plete graphs [81].

MetaPath2Vec extends random-walk embeddings to heterogeneous networks [21]. These

graphs are defined by G = (V,E, ϕ) where each vertex v ∈ V and edge e ∈ E is

mapped to its respective type by ϕ(v) : V → TV and ϕ(e) : E → TE . This is

achieved using meta-path-based random walks, were the probability of a step between

nodes is conditioned on the type of the adjoining relationship. These are then used

in a heterogeneous skip-gram optimization functions to learn word embeddings. All

entities, regardless of type, are embedded in the same low-dimensional vector space.

MetaPath2Vec++ additionally employs heterogeneous negative sampling, in which the

softmax function is normalized with respect to the context node type. This model have

been shown to outperform Node2Vec and LINE in multiclassification, node clustering,

similarity search, and visualization tasks on a heterogeneous scholar network.

Heterogenous graphs are also addressed in MetaGraph2Vec [137]. MetaGraph2Vec

purports to learn more formative embeddings of sparse graphs than MetaPath2Vec

by providing richer structural contexts to measure semantic similarity between dis-

tant nodes. It achieves this by proposing a new meta-path guided random walk using

meta-graphs, which comprise unions of multiple meta-paths. When generating ran-

dom walks, this can provide a superset of the random walks generated by individual

meta-paths, i.e., it permits more varied walks between any two nodes. This has been

shown to outperform MetaPath2Vec at node classification and clustering tasks on given

datasets.

Continuous-time dynamic networks graphs are defined by G = (V,ET , T ), where ET

is the set of temporal edges that are mapped to a corresponding timestamp T : ET →

R+. Nguyen et al. propose a random-walk generalization designed to accommodate

such graphs [83]. A temporal walk is one that respects the flow time, such that nodes
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at earlier time stamps cannot follow those at later ones. I.e., for subsequent edges

ei, ei+1 we require ti ⩽ ti+1. Nguyen et al. also propose methods for biased selection

of initial temporal edge selection and subsequent edges in the walk. The resultant time-

preserving embeddings have been shown to be effective at temporal link prediction,

achieving gains over non-temporal models on a number of datasets. This suggests that

temporal random walks can model time dependency in networks to learn appropriate

and meaningful representations.

GraphSAGE differs from the other approaches listed here because it is an inductive

approach [37]. All other models discussed so far can only learn embeddings on fixed

graphs: they are transductive. They do not generalize to nodes that were not seen dur-

ing training and the full graph must be known at training time. However, GraphSAGE

can generate node embeddings for new nodes or input graphs “on-the-fly”, so long as

they have the same ontology as the original training data. This means that the semantic

representation can adapt as the graph dynamically evolves over time with the addition

or removal of entities and relationships. It achieves this by selecting a single node (the

centre of a sub-graph) and then a number of neighboring nodes in each layer. It then

aggregates the node embeddings in each layer and passes their embeddings to a neural

network that aims to predict the central node. Four different aggregation methods have

been proposed: mean node aggregation, GCN aggregation, LSTM aggregation, and

pooling aggregation. This model could be used effectively for learning node embed-

dings for knowledge graphs where new information is added frequently, such as is

expected with ontology-based graphs.

PyTorch Geometric (PyG) is a library based on PyTorch for deep learning on graphs

and similar structures [27]. It provides a highly optimized framework for Graph Neural

Networks (GNNs) with support for multi-CPU and GPU environments. Included are

multiple methods random-walk-based embedding learning methods, including Node2Vec

and Metapath2Vec. For our experiments, we chose to implement the random-walk-

based approaches using this library.
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GraphVite is a comprehensive, high-level package that implements both random-walk

node-embedding (DeepWalk, LINE, Node2Vec) and energy-based knowledge-graph

embeddings (TransE, RotatE) with a focus on high-speed implementation [142]. As a

high-level package it may be useful for rapid comparison of multiple models on a given

dataset, as well as data visualization; however, its complexity may hinder extension.

3.3 Analysis

In the previous section, we have outlined a wide range of models that can be used

to create node and relationship embeddings based on different algorithms. For the

purposes of our analysis and demonstration, we have selected a subset to demonstrate

the overall utility of graph embeddings and to examine the strengths and weaknesses

of different methods.

The models we have selected are TransE (L2) and TransR (using the DGL-KE package—

which are examples of energy-based methods), and Node2Vec (using the PyTorch-

Geometric library). We have chosen to highlight TransE (L2) and TransR as the liter-

ature would suggest that these are, in general, the best performing energy-based tech-

niques in a range of downstream tasks. Node2Vec has been selected as the archetypal

example of the random-walk-based methods. We train the models for 30 epochs us-

ing a 100-dimensional embedding space. It is probable that different models operating

on different datasets would yield better results using appropriately-tuned embedding

sizes—in addition to all other relevant hyperparameters. The decision not to explore

additional dimensions was primarily guided by the scope and intent of this prelim-

inary investigation. The choice of a fixed 100-dimensional space aimed to establish

a baseline comparison across the selected models rather than exhaustively exploring

various embedding dimensions. Given the breadth of parameters and hyperparameters

affecting model performance, such as embedding size, learning rates, and architec-

tural nuances, our emphasis was on demonstrating the utility of graph embeddings and
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comparing specific methodologies. Exploring a broader spectrum of dimensions would

indeed offer a more comprehensive comparison; however, due to resource constraints

and the primary focus on methodological comparison within this confined environ-

ment, the investigation was delimited to this specific dimensionality.

These experiments were conducted for the purpose of proof-of-concept exploration on

a private phenomenological dataset for which the DAIS-ITA Science Library (SL) is

a publicly-available—yet limited—proxy; the results should be treated as preliminary

and purely for the purpose of illustration.

The selection of the DAIS-ITA Science Library (SL) as the basis for experimenta-

tion within this study was a strategic decision driven by multiple factors crucial to the

research’s integrity and feasibility. The DAIS-ITA SL stands as a repository of invalu-

able scientific literature, encompassing a spectrum of subdisciplines pertinent to our

investigative domain. Its composition includes scholarly articles, research papers, and

datasets spanning several decades, providing a collection of interconnected informa-

tion that mirrors the complexities inherent in real-world data.

Moreover, the unique characteristics of the DAIS-ITA SL offer a testbed that replic-

ates the challenges encountered in handling proprietary or sensitive datasets frequently

encountered in scientific research. While publicly accessible, the SL operates under

controlled constraints, simulating the limitations one might face when working with

restricted data sources due to privacy concerns or proprietary restrictions. This qual-

ity positions it as an ideal proxy for preliminary investigations and proof-of-concept

endeavors, allowing for methodological trials and algorithmic assessments within a

confined yet representative environment.

The decision to leverage the DAIS-ITA SL aligns with the ethos of this research en-

deavor, aiming not only to evaluate graph embedding techniques but also to address

the practical constraints often encountered when dealing with real-world, confiden-

tial datasets. By utilizing this publicly-available yet restricted repository, the study

endeavors to simulate scenarios where data accessibility is limited, urging the develop-
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Figure 3.1: A diagram showing the DAIS-ITA SL ontology and the corresponding

counts at time of analysis.

ment and assessment of methods that demonstrate robustness and efficacy even under

such stringent conditions. As such, the outcomes of these experiments are presen-

ted not as definitive conclusions but rather as indicative insights into the adaptability

and performance of these graph embedding techniques under controlled constraints,

serving as a springboard for further exploration and validation in future studies. The

official website for the DAIS-ITA SL may be found at http://sl.dais-ita.org/

science-library. A diagram illustrating the underlying ontology is shown in Fig-

ure 3.1.

3.3.1 Vector Similarity and Concept Matching

The similarity of any two nodes, x and y, can be evaluated using the cosine similarity

of their real-valued vector embeddings, x and y,

similarity = cos θ =
x · y

∥x∥∥y∥
. (3.2)

http://sl.dais-ita.org/science-library
http://sl.dais-ita.org/science-library
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Note that in binary vector spaces, the Hamming distance may be used instead. This

provides the capability of assessing the similarity of nodes or clusters in a KG via

semantic matching, i.e., via a distributed representation of all attributes rather than

selecting specific, limited attributes to compare.

This capacity for finding semantically similar nodes or clusters of nodes—representing

events in an observational ontology—is a key feature of interest in the application of

semantic vector spaces to knowledge graphs. However, this is difficult to evaluate

directly as it requires a subset of labelled data—likely provided by a human subject

matter expert—that identifies similar entities or events and provides a metric for an

embedding to be measured against.

Thus, whilst the semantic vector space itself is trained unsupervised—the model is not

told what features are important or which examples of nodes are considered similar—

any similarity assessment requires labelled data. I.e., evaluation of embedding quality

is necessarily supervised. This knowledge is required in order to quantitatively analyse

the success of the embedding and this, in turn, is used during model selection and

validation.

Even without this data, quantitative metrics for estimating embedding quality are avail-

able. The preliminary results of analyses using a selection of these metrics are presen-

ted for the DAIS-ITA SL dataset in the remainder of Section 3.3. However, it should be

noted that these are not the most direct metric for the desired feature, which presently

can only be provided by human expertise via labelled assessment data.

3.3.2 Energy-Based Link Prediction

For energy-based models, we can determine the mean or hits@10 link prediction—

without training a downstream classifier model as we do below. hits@10 link predic-

tion is the count of how many positive triples are ranked in the top 10 positions when

tested in the model alongside a set of synthetic negatives.
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First, the full dataset of triples is split into a training set and test set, whilst ensuring that

the two resultant graphs remain connected. Every entity in the test set must be present

in the training set; these techniques only have embeddings for previously seen data.

We then train the embeddings on the dataset for the relevant model (see Section 3.2.1

for a list of methods).

Next, for each test triple, the tail is replaced by every other known entity in the dataset

to create corrupted triplets. The energies of each of these corrupted triplets is then

determined according the particular model, and they are sorted in ascending order.

For hits@10, if the correct tail entity is within the top ten lowest energies, then the

prediction is considered successful. We can also calculate the mean rank.

While this metric may be indicative of a particular energy-model’s improvement over

another, it is not useful as a metric across different model types, e.g., random-walk-

based models. Therefore, we do not make use of it in this analysis. It is described here

for clarification when consulting other literature.

3.3.3 Node Multiclassification

The primary evaluation metric we will use to assess the quality of the embeddings is

node classification. Here we evaluate the performance of the embeddings in a down-

stream (post-training) task aimed at classifying the type of node, given the node’s em-

bedded vector as input.

For classifier training, we are careful not to bias the result by selecting 20 vector ex-

amples for each class, as the number of nodes for each class is not regular. For example,

there are many more nodes corresponding to authors than venues (see Figure 3.1). We

then train a limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) logistic re-

gression model, with the node’s class as the target variable. We then test on 1000 of

the remaining entities and assess the performance using the F1-score. In the case of

the Science Library, there are nine possible types of node, including author, venue,
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organization etc. Preliminary results are shown in Table 3.2.

Dataset TransE TransR Node2Vec (p = 1, q = 1)

DAIS-ITA SL 0.999 0.492 0.610

Table 3.2: The results of node-multiclassification on the science library dataset

We can see from the results that TransE performs significantly better than the other

two models at this task, with an F1-score of 0.999. This is explained by the fact that

the TransE model is inherently sensitive to graph heterogeneity; the type of the edge is

embedded in the vector space by the model, as explained in Section 3.2.1.

TransR is also sensitive to heterogeneity, however, it performs more poorly, with an F1-

score of 0.492. This may be due to the increased size of the parameter space, as each

relation has its own vector space. The size of the Science Library dataset is relatively

small, potentially leading to undertraining at the embedding stage.

Node2Vec does not perform as well as TransE, but, with an F1-score of 0.610, performs

better than TransR. Basic Node2Vec is insensitive to heterogeneity but can leverage

homophily and structural similarity in a way that energy-based methods cannot. Thus,

while it is not directly aware of different node types, the relatively high F1-score sug-

gests that it can leverage this to infer the class of the node from the graph topology.

3.3.4 Data Visualization

The typical embedding space that we used for our models is 100-dimensional. In order

to visualize this in two dimensions, we use a technique called t-distributed stochastic

neighbor embedding (t-SNE) [120]. This is a non-linear dimensionality reduction tech-

nique. I.e., it can separate data that cannot be partitioned by a straight line. It does this

using the local relationships between points to learn a low-dimensional mapping.

As an overview, t-SNE constructs a Gaussian probability distribution over pairs of

objects in the full high-dimensional space using their Euclidean distance as a simil-
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(a) Node2Vec (p = 1, q = 1) (b) TransE (L2).

Figure 3.2: Two-dimensional visualization of the DAIS-ITA Science Library (SL)

dataset embedded with Node2Vec and TransE, respectively, in 100-dimensions

and reduced using t-SNE. Different colors represent different SL node types.

arity metric. It then uses the t-distribution to recreate this probability in the lower-

dimensional space. This technique overcomes the crowding of points—where points

in high-dimensional space tend to overlap when projected to a lower dimension. It uses

gradient descent with a convex loss function to learn this mapping.

While there is no way to truly capture the subtleties of node embedding separation

in the high-dimensional space, it does act as a heuristic metric that serves to show the

emergence of structure, which indicates that the embeddings are learning to distinguish

underlying features in the graph.

Figure 3.2 shows visualizations of the embeddings of science library nodes trained

using the Node2Vec (Figure 3.2a) and TransE (L2) models (Figure 3.2b). Note that the

clusters do not correlate with entity type (distinguished by color). This indicates that

the clusters in two-dimensions capture features of the latent space. It can be observed

that the TransE (L2) model appears to better separate the data into distinct clusters

than Node2Vec. This is consistent with the results of the node multiclassification task
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above.

3.3.5 Potential Limitations

Despite the promising outcomes and performance insights gained from the application

of various graph embedding techniques to the DAIS-ITA Science Library dataset, it’s

imperative to acknowledge the limitations and potential negative aspects inherent in

this endeavor.

One of the primary limitations lies in the dataset size and its representativeness. The

Science Library dataset, while serving as a valuable resource, might be relatively small

in comparison to more extensive and diverse datasets available in other domains. The

size constraint can lead to potential underfitting issues, limiting the ability of complex

models to generalize effectively. This constraint becomes more pronounced in the con-

text of energy-based models like TransR, where the increased parameter space might

exacerbate undertraining concerns, as observed in the multiclassification task.

Furthermore, the evaluation metrics utilized, such as node multiclassification and energy-

based link prediction, while informative, possess inherent limitations. For instance,

node multiclassification, while demonstrating the strengths of models like TransE in

capturing graph heterogeneity, might not fully encapsulate the nuances of real-world

knowledge graphs due to the dataset’s limited representation of node types. Addition-

ally, energy-based link prediction, although informative for specific model comparis-

ons, might not be universally applicable across different model types, limiting its scope

in comprehensive model evaluation.

Moreover, the use of t-SNE for data visualization, while providing valuable heuristic

insights into the learned embedding spaces, inherently suffers from the curse of dimen-

sionality. The reduction of high-dimensional embeddings into two dimensions might

oversimplify or distort the true distribution of embeddings, potentially masking crucial

information in the visualization process.
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In the pursuit of evaluating embedding quality and model performance, the reliance

on human-labeled data to assess semantic similarity remains a significant challenge.

While various quantitative metrics and downstream tasks serve as proxies for evalu-

ation, the absence of explicit human expert validation might limit the holistic assess-

ment of semantic representation in the embedding space.

Another aspect worth considering pertains to the intrinsic biases or limitations of the

chosen embedding techniques. Each method, while showcasing distinctive strengths,

might also exhibit biases or limitations concerning specific graph structures or types of

relationships, which could impact the overall generalizability and applicability of the

learned embeddings to broader knowledge domains.

Overall, these limitations and potential negative aspects underscore the necessity for

a nuanced interpretation of the obtained results and emphasize the need for future re-

search to address these constraints, potentially through larger and more diverse data-

sets, enhanced evaluation methodologies, and exploration of robustness across various

graph structures and domains. Some of these issues are addressed in section 6.2.

3.4 Summary

In this chapter we have provided a broad overview of relatively recent knowledge graph

embedding methods. Many of these techniques are in active development and have

found broad applicability in a wide range of industries. We have highlighted a selec-

tion of landmark models and discussed their advantages and disadvantages, particularly

with regards to heterogeneous, observational knowledge graphs describing dynamic

environments. We have presented some illustrative analysis using a co-authorship

graph database and outlined several metrics used to evaluate the quality of semantic

embeddings.

This chapter addresses the first research question:
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RQ1 What are the best representations for encoding workflows for later analysis

of distributed systems and to use as a platform for automatically constructing further

workflows?

We do this by examining energy based and random walk based embedding methods

for graphs and performing experimental analysis using the DAIS-ITA co-authorship

database as an example dataset, resulting in the first contribution:

C1 This examines the benefits of various graph embedding techniques that can be

used to represent workflows. These embedding techniques can be used with semantic

vector spaces to provide better analysis of workflows in distributed systems. This an-

swers RQ1.
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Chapter 4

Compositional Plan Vectors for

Multitask Learning

4.1 Overview

Multi-task reinforcement learning has demonstrated success in domains like Atari

World and in robotic control benchmarks such as MT-10. However, these benchmarks

are lacking in their applicability to real world problems. The Atari suite, for example,

could be considered too diverse between individual game types, with no similarity in

the tasks being learned. MT-10, a benchmark based on the MuJoCo sawyer arm [134],

does have similarity within tasks (while not being too narrow for sufficient evaluation),

however, the domain lacks compositionality, in which individual tasks could be com-

bined together in a particular sequence to achieve a larger goal.

Most real-world tasks are compositional in nature whereby they can be divided into a

sequence of subtasks where each subtask has clear semantics. For example, the task

of making a cup of tea can be divided into a sequence of subtasks which begins with

the subtask of boiling water. These tasks and subtasks also have semantic similarity,

for example making instant coffee would be more similar to making tea than baking

bread. Both of these properties can be leveraged in vector representations, such as in

Mikolov et al. [76], which produced compositional representations in a language model

with arithmetic properties, such as “king”− “man” + “woman” = “queen”. Current
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state-of-the-art multi-task algorithms do not account for the semantic and composi-

tional nature of most real-world tasks. This precludes efficient generalization to wider

domains, while simultaneously losing the ability to represent these tasks in a manner

that can be useful for representation learning.

Devin et al. [20] proposed compositional plan vectors (CPV) to produce semantic and

composable representations for sequential tasks when provided with expert examples

under an imitation learning schema. We posit that a multi-task reinforcement learn-

ing method that leverages this representation technique will train faster than standard

methods that do not account for latent structure.

A well known limitation of imitation learning is the need for expert demonstrations for

each task learned. We aim to move the CPV approach into a reinforcement learning

paradigm that forgoes this requirement. However, one of the loss functions introduced

with the CPV method explicitly depends on the presence of these demonstrations. To

solve this, we propose trajectory experience replay (TER), a replay method that allows

for the re-use of prior experiences as expert demonstrations, even within environments

where successful episodes are highly sparse. By using TER alongside the task repres-

entation methods, we produce a reinforcement learning agent that can learn efficiently

in compositional environments, in a method we call CPV-TER.

The contributions of our work are two-fold. First, the transfer of compositional plan

vectors from an imitation learning paradigm into a multi-task reinforcement learning

schema. Secondly, we contribute the TER method, which not only enhances the CPV

representation learning, but also provides an effective replay method for multi-task RL

on its own. We evaluate CPV-TER on a discrete-action environment in line with prior

research, with ablation studies to understand the contributions of each component and

performance studies on different environment variants.
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4.2 Background

This work is a combination of three separate paradigms: compositional plan vectors,

multi-task reinforcement learning, and replay methods for reinforcement learning. In

this section we aim to both introduce the formalism used throughout the rest of the

chapter and give an overview of each area to show how they can be combined to pro-

duce the CPV-TER method.

4.2.1 Compositional Plan Vectors with Imitation Learning

Imitation learning is used to efficiently learn a desired set of behaviors for an agent

interacting within an environment. Imitation learning develops these behaviors, or

policies π by imitating an expert’s behavior. While most popularly used in self-driving

cars [14], it has also been used for robotics [74], and in video games [98]. Although

training is largely much faster and more efficient than reinforcement learning, these

methods require labelled data in the form of trajectories, where reinforcement learning

does not. Additionally, imitation learning can be particularly brittle, in that once an

agent experiences behavior out of distribution, it significantly struggles to recover and

return to useful behavior within a trajectory [46].

Behavioral cloning, a type of imitation learning, relies on an agent producing a policy

that can reproduce the same behaviors as an expert demonstration when placed in the

same environment. It takes the form of a log loss, which aims to adjust the parameters

θ of a policy π, which produces an action at given an observation ot at timestep t:

LIL(D, θ) =
N∑
i=0

Hi∑
t=0

− log(πi
θ(a

i
t|oi

t)), (4.1)

using dataset,

D =
{(

Orefi
[0,T i],O

i
[0:Hi],A

i
[0:Hi−1]

)}N

i=1
,

Where:
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• D is the dataset containing N trajectories, each denoted by (Orefi
[0,T i],O

i
[0:Hi],A

i
[0:Hi−1]).

• T i represents the length of the ith reference trajectory.

• H i is the length of the ith demonstration trajectory, indicating the number of

observation-action pairs in that trajectory.

• The dataset D comprises expert reference trajectories, observations O, and cor-

responding actions A. Each trajectory (Orefi
[0,T i],O

i
[0:Hi],A

i
[0:Hi−1]) is indexed

by i, containing the observed states O and actions A along the trajectory.

The loss function quantifies the dissimilarity between the actions produced by the

policy and the expert actions at each timestep across all trajectories in the dataset.

Compositional plan vector representations for sequential tasks are introduced in [20].

This method produces a plan vector gϕ(ok,ol), parameterized by ϕ, where ok and ol

are initial and final observations of a trajectory, respectively. The plan vector g is

trained to be used as an embedded representation of the entire set of actions required

to complete a given task.

These vectors are produced in an imitation learning paradigm alongside two key struc-

tural constraints. With these two loss functions, the produced representations are com-

posable; a second plan vector gϕ(ol,oj) can be summed with gϕ(ok,ol), to produce a

plan vector gϕ(ok,oj) that can perform both tasks effectively without ever having seen

that scenario before. The representations are also semantic: a plan vector gϕ(oa,ob)

will be more similar to a plan vector gϕ(oc,od) that represents similar tasks, than it

will be to gϕ(ox,oz), a plan vector that represents tasks that are highly dissimilar.

Both loss functions take the form of triplet margin losses as introduced in [106],

ltri(a, p, n) = max{∥a− p∥2 − ∥a− n∥2 + 1.0, 0}. (4.2)

This form enforces the similarity between a and p and the differences between a and

n, where a, p, and n are vectors produced by the embedding network.
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The Homomorphic Loss Function

The first constraint introduced in [20] is the homomorphic loss function, which en-

forces compositionality of plan vectors. LHom increases similarity between the rep-

resentations of the sum of two parts of a trajectory and the representation of the full

trajectory,

LHom(D, ϕ) =
N∑
i=0

Hi∑
t=0

ltri(gϕ(o
i
0,o

i
t) + gϕ(o

i
t,o

i
T ),

gϕ(o
i
0,o

i
T ), gϕ(o

j
0,o

j
T )).

(4.3)

Compositionality may be defined as the notion that complex structures can be under-

stood through the characteristics of their simpler constituents and the rules used to

combine them.

Within the context of reinforcement learning (RL) and plan vectors, compositionality

implies that a plan vector encoding the entire sequence of tasks required to achieve

a larger task can be "composed" of the plan vectors for each smaller sub-task. This

would mean that the plan vector representing a sequence of tasks A -> B -> C could be

reconstructed by summing the plan vectors for subtasks A -> B and B -> C.

Therefore, stating it formally, given tasks A -> B (represented by plan vector gϕ(ok,ol)),

and B -> C (represented by plan vector gϕ(ol,om)), the composite task A -> B -> C is

represented by the sum of the two preceding plan vectors, i.e.,

gϕ(ok,om) = gϕ(ok,ol) + gϕ(ol,om).

This induces a property where vectors that encode similar tasks will be closer together

in the embedding space, thereby simplifying the reinforcement learning process.

The homomorphic loss function explicitly enforces this compositional property. It aims

to reduce the difference between the plan vector representing the whole task and the

sum of the plan vectors representing the sub-tasks. Stated as an objective function, it

forms a so-called triplet loss:
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Lhom = max {∥gϕ(ok,ol) + gϕ(ol,om)− gϕ(ok,om)∥2 − ∥gϕ(ok,oj)∥2 + 1, 0}.

The first term inside the maximum function, ∥gϕ(ok,ol)+gϕ(ol,om)−gϕ(ok,om)∥2,

computes the Euclidean distance (or L2 norm) between the sum of plan vectors for

individual tasks and the plan vector for the composite task.

The second term, ∥gϕ(ok,oj)∥2, measures the Euclidean distance to a non-relevant

reference vector. This ensures that the optimization balances the similarity of relev-

ant vectors against the distance to irrelevant vectors, thus fostering the semantic and

compositional properties of plan vectors.

By minimizing this maximized distance, the learning algorithm effectively seeks to

ensure that the summed plan vectors (representing subtasks) align as closely as possible

with the plan vector of the whole task, thereby reinforcing the compositional property

of plan vectors.

The Pairwise Loss Function

The second constraint, called the pairwise loss LPair is first introduced in James et

al. [49]. This loss function regularizes the embeddings to improve their semantic sim-

ilarity,

LPair(D, ϕ) =
N∑
i=0

Hi∑
t=0

ltri(gϕ(o
i
0,o

i
T ), gϕ(o

refi
0,o

refi
T ),

gϕ(o
refj

0,o
refj

T )),

(4.4)

for any j ̸= i.

Encouraging semantic similarity among plan vectors is of utmost importance in rein-

forcement learning (RL), especially when working with environments that have com-

positional or sequential tasks. What we mean by semantic similarity here is that plan

vectors representing similar tasks should be similar, while plan vectors of dissimilar

tasks should markedly differ. For instance, the plan vectors representing making tea

and making coffee should bear more resemblance to each other than making tea and,
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say, baking bread. This semantic similarity in plan vectors arises from the fact that the

subtasks involved in making tea and coffee have a significant overlap, such as boiling

water or adding a beverage base.

The rationale behind fostering semantic similarity within plan vectors has both prac-

tical and theoretical implications. From a practical standpoint, this allows for meaning-

ful transfer learning, which is a cornerstone of multi-task RL. Agents can effectively

leverage experiences from related tasks rather than learning each task in isolation. In

the process, the agent harnesses shared sub-tasks across different tasks, leading to bet-

ter performance and optimized learning.

From a theoretical standpoint, semantic similarity in plan vectors establishes relevance

within a latent task space. This modeled task space, described by the plan vectors, in

turn encapsulates the underlying structure of the task domain. As a result, an RL agent

learns to recognize and associate specific tasks with corresponding parts of the task

space, leading to enhanced structure learning.

The pairwise loss regularizes the embedding space by comparing the "distance" between

plan vectors representing similar tasks and those representing dissimilar tasks. The

function attempts to minimize the difference between similar tasks while maximizing

the dissimilarity of unrelated tasks.

The pairwise loss function, as defined in Eq. 4.4, is a form of the ‘Triplet Loss’,

initially introduced in deep metric learning for training embeddings [106]. Here, the

input usually involves three instances: an anchor point, a positive point (similar to the

anchor), and a negative point (dissimilar from the anchor). The loss is then computed

by ensuring that anchor and positive points remain close, while the anchor and the

negative point are separated by a certain margin in the embedding space [106].

For CPV-TER, the anchor point is the current trajectory’s plan vector, and the similar

point is a reference trajectory’s plan vector. The dissimilar point is another random

reference trajectory. By minimizing this loss, we ensure that plan vectors represent-
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ing similar tasks are closer together (semantic), while dissimilar tasks diverge in the

embedding space. This way, the pairwise loss function achieves regularization and

encouraging semantic similarity in plan vectors.

These two loss functions, combined with the imitation learning architecture presented

in the Devin et al. paper, can learn task sequences that involve twice as many skills

as the trajectories seen during training. While LHom is self-supervised, LPair, and the

standard imitation learning loss function used in the paper, require reference trajector-

ies. Although learning with reference trajectories is faster and can be more effective

than other methods, reference trajectories are often not available in real-world scen-

arios, or there are not enough to produce effective policies. We posit that this method

can be extended to a reinforcement learning space when combined with an additional

trajectory storage method.

4.2.2 Multi-Task Reinforcement Learning

Reinforcement learning, like imitation learning, is used to develop policies π for agents

to interact within a particular environment. Unlike imitation learning, however, it does

not rely on expert demonstrations. Instead, the agent explores the environment by per-

forming different actions and observing the resulting environment state, and receives

numerical rewards from the environment itself. This reward is then used to better in-

form the policy to allow the agent to make better decisions.

For the purposes of this chapter, we have focused on the rainbow method [42], which

is a variant of the value-based Q-learning algorithm [127]. Q-learning algorithms train

a policy network to select an action that will bring the most future value for the agent,

or the highest Q-value. The Q-value is updated after each timestep,

Q(st, at) = r(st, at) + γmax
a′

Q(st+1, a
′), (4.5)

where γ ∈ [0, 1] is a discount for long term rewards.
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Multi-task RL is a new development in the reinforcement learning space, with the first

OpenAI environments released in 2018 [91]. Agents in these environments must learn

policies that determine value from both the observation o and goal g, as first presented

in [104]. Note goal g is separate from the function that produces goal vectors gϕ. The

reward in the environment is then dependent on the goal specified, i.e., r(s, a, g).

There are multiple methods to develop these policies that have been explored within the

literature. Many of these methods focus on policy distillation of task-specific agents

into a single model that can perform all tasks, such as DISTRAL [100, 119]. Others,

including PopArt, learn multiple tasks in parallel with asynchronous actors [43, 88].

Methods including UNREAL [48] focus on off-policy learning on a single course of

experiences, as opposed to acting in parallel. We focus on this latter type of multi-task

methods, and aim to develop an agent that can learn a policy by interacting with all

tasks simultaneously.

4.2.3 Replay Methods for Reinforcement Learning

Experience replay methods are used in conjunction with reinforcement learning and

are found in nearly all of the current state-of-the-art RL methods [42, 126, 67]. There

is a wide array of experience replay methods, but here we focus on two in particular:

prioritized experience replay (PER) and hindsight experience replay (HER).

Prioritized experience replay, first introduced for DQN [105], is possibly the most well

known replay method. In prior methods, experiences were uniformly sampled from

a memory buffer to be used in training. PER introduces a criterion to assess how

important each timestep stored in the memory is for training, and samples transitions

with an emphasis on more important transitions. For Q-learning methods, this criterion

is the TD-error δi produced with the most recent model (as opposed to the model used

to produce the transition),

δi = rt + γmax
a∈A

Qθ− (st+1, a)−Qθ (st, at) , (4.6)
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where Qθ− is a target network. Transitions with the largest δi are replayed more of-

ten, thereby increasing training frequency in areas that produce the largest differential

between expected and actual reward.

Hindsight experience replay, initially used for deep deterministic policy gradients (DDPG),

is of particular use to multi-task reinforcement learning [2]. When rewards are depend-

ent on a specific goal, as described Section 4.2.2, reward spaces can become highly

sparse. To increase sample efficiency, HER introduced the concept of sampling the

entire set of goals available within the environment for storing transitions. Although

a particular transition may not have achieved the goal provided to the agent, and thus

earn zero or negative rewards, that transition may have been considered successful if

working towards another task. By storing the transition as a successful transition for

another goal, we greatly increase the exploration efficiency of an agent.

4.3 Sequential Multi-Task Environments

Although multi-task RL has become an increasingly popular area of research over re-

cent years, there are still few standardized multi-task environments. Many papers have

used adapted versions of robotic arm environments developed with the MuJoCo phys-

ics engine [41]. While a popular choice, this is a continuous domain as opposed to

discrete, and the goals have only a small sequential range, which makes this domain

less than ideal for testing our method. The current standard benchmark for multi-task

and meta-RL is meta-world, a series of MuJoCo-based tasks of varying difficulty. The

most tested benchmark within this is MT-10, which evaluates ten tasks: reach, push,

pick and place, open door, open drawer, close drawer, press button top-down, insert peg

side, open window, and open box. These tasks have fixed object and goal locations.

Although this is a well developed benchmark, the tasks don’t have a sequential nature,

which is where our method is expected to perform significantly better than other multi-

task methods. For testing of the CPV-TER method we require an environment with a
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sequential structure for the various tasks.

For the purposes of this chapter we opted to use the crafting-world environment first

presented in the original Compositional Plan Vector paper [20], but adapted it into

a standardized OpenAI Gym API structure [12]. Its adaptation into the standardized

OpenAI Gym API structure further reinforces its compatibility with contemporary RL

research methodologies, positioning it as an accessible and widely accepted bench-

marking environment. This is the standard structure for nearly all current RL papers.

By using this environment, we could more directly test the efficacy of our RL method

(although by design it will not work as fast as the original imitation learning method

since we will not provide the system any expert examples). Additionally, by bringing

it in to the standard gym API structure, we could make some changes to the represent-

ations of the environment, while keeping the mechanics of the grid world true to the

original paper. Our environment is packaged for general use at:

pypi.org/project/gym-craftingworld/.

Unlike prevalent benchmarks like MuJoCo-based tasks or Meta-World’s MT-10, the

crafting-world environment caters explicitly to sequential task complexities, aligning

closely with the inherent nature of our proposed RL methodology. Within this environ-

ment, tasks exhibit a connected, step-by-step nature, requiring agents to execute actions

in a coherent sequence, thereby fostering an ideal setting for assessing the efficacy of

our proposed CPV-TER method within a sequential context.

This environment can then be used as a benchmark environment for other multi-task

and meta-learning agents, particularly for those aiming to solve tasks of a sequential

nature. Additionally, the lightweight nature of the environment, as opposed to more

intensive environments such as MuJoCo, Starcraft, Atari and MineRL, allow for testing

of agents while using less computational power, which is a particular focus of green AI

[109]. This attribute not only expedites experimentation but also democratizes access

for researchers with varying computational resources, facilitating broader engagement

and benchmarking opportunities within the RL community.

pypi.org/project/gym-craftingworld/
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Moreover, the availability of the crafting-world environment as a packaged and stand-

ardized API via the PyPI repository (pypi.org/project/gym-craftingworld/) con-

tributes to its utility as a benchmarking tool. Its integration into the OpenAI Gym

framework fosters ease of adoption and allows for potential modifications in envir-

onment representations while preserving the fundamental grid-world mechanics, em-

powering researchers to explore diverse experimental paradigms within a familiar and

adaptable framework.

In summary, the crafting-world environment’s selection stems from its alignment with

our research objectives, catering specifically to sequential task structures, offering

computational efficiency, and providing a standardized and accessible platform for

evaluating and advancing multi-task and meta-learning agents within the RL domain.

We discuss the more pertinent mechanics of the environment in Section 4.3.1, but a

more detailed description of the environment can be explored in the documentation at

https://gym-craftingworld.readthedocs.io/.

4.3.1 Crafting Environment

The crafting environment has three general task types, with increasing difficulty:

1. Locating. This task type requires the agent to locate a specified item and move to

that location. Two specific tasks that fall under this category are EatBread and

GoToHouse. While these can be straightforward in most scenarios, there are

certain environment states that require additional planning, such as if the bread

or the house need to be constructed, or if there are rocks in the way that either

need to be navigated around or destroyed.

2. Moving. These tasks, including MoveHammer and MoveSticks, involve loc-

ating the item required, and using the pickup and drop actions in the correct

order. Perhaps more involved is when the agent is explicitly not provided this

task: if the agent uses one of these items for an additional task, the agent needs

pypi.org/project/gym-craftingworld/
https://gym-craftingworld.readthedocs.io/
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(a) (b)

Figure 4.1: Two timesteps from the craftingworld environment shown side-

by-side—the agent moves over the bread, and the achieved goal ag and reward

are updated.

to learn to return the item to the original location at the end of the episode to

achieve the highest reward.

3. Manipulating. This task type requires locating the appropriate tool and navigat-

ing to the correct item in order to turn it into a final specified item. For example,

MakeHouse requires the agent to navigate to the hammer, pick it up, and nav-

igate to the sticks in order to achieve the specified goal. Many of these tasks can

build up on each other in a specified order; e.g., in an environment without sticks

available, the agent can perform the ChopTree task first to gain the materials

required.

States: The state of the environment contains all the information about the current

contents of the grid world, including the location of the agent and what items it may

or may not be holding. The gym environment can provide this to the agent in two
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formats: RBG and one-hot. RGB is the standard method used in reinforcement learn-

ing applications, such as those used to solve various Atari games [77]. For the basic

craftingworld-v2, which is an eight-by-eight grid world, the observation is an

RGB image of the screen, with an array of shape (32, 32, 3). Each area of the environ-

ment is represented by a 4x4 pixel square resulting in the 8 ∗ 4 = 32 length for the x

and y dimensions. The observation has a z dimension of 3 to hold each of the 3 RGB

values. The environment can also return the state as a one-hot encoding of the grid

world contents, i.e., the observation is an array of shape (8, 8, 12)—the z dimension

is a 12 length vector which contains a slot representing each of the 8 possible objects

present at that location, one for the agent, and one for each of the three items that the

agent can pick up—the axe, the hammer, and the stick.

Actions: The actions space for the crafting environment consists of six discrete ac-

tions. Four of these actions are for movement across the grid world—the agent can

move one space per timestep in any of the four cardinal directions. If the agent at-

tempts to move off the grid (e.g., by selecting Up when already at the top of the grid),

no action is performed for the timestep. The agent can move over spaces that contain

items, with the exception of spaces that contain Tree or Rock items. In this instance,

the item presents as an obstacle the agent must navigate around, unless an agent is

holding an Axe or Hammer item, respectively. If the agent is holding the appropriate

tool, the Tree is converted to Sticks, the Rock item is destroyed, and the agent can

successfully navigate to that space in the grid. The other two actions are PickUp and

Drop, which must occur when the agent is on the same space as the item. The agent

can pick up and hold only one item at a time.

Goals: Standard multi-goal reinforcement learning environments represent the goal

as an exact representation in a similar format to the observation. In Atari methods,

for example this could be an exact image of the screen, for robotic tasks this could

be an exact location of the object the robot needs to move. For our purposes we are
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attempting to have the method not only learn plan vectors, but how to generalize the

goals themselves. This means instead of giving an RGB image of the stick item moved

two spaces, we want to provide the agent with a more general MoveStick goal. To

do this we represent the list of all possible tasks as a one hot encoded vector, as shown

in Fig. 4.1.

Rewards: Within this environment the rewards structure is a binary and sparse re-

ward scenario, where the reward is one if the achieved goals vector is the same as the

desired goals vector, and 0 otherwise,

r(s, gd) =

1 if gd − ga = 0

0 otherwise
(4.7)

where the goal achieved ga is calculated in the environment and depends on the state.

State-goal distributions: For all tasks the initial number of items, and positions in

the grid-world are fixed, as are items within the MT-10 benchmark. For later experi-

ments, we aim to randomize the positions of the objects to determine if the policy can

effectively learn to adapt to these scenarios.

4.4 Methodology and Implementation

The CPV-TER is a value-based method adapted from DQN, with variations in three key

areas: the network structure, the optimization step, and the experience replay structure.

Pseudocode for the CPV-TER method is shown in Alg. 4.2.

The CPV-TER framework is based on two main components: the Compositional Plan

Vectors (CPV) and Reinforcement Learning theory. Both have a strong theoretical

foundation in the literature.
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Figure 4.2: Pseudocode for CPV-TER

The reinforcement learning component of CPV-TER is heavily dependent on the funda-

mentals of Q-learning [127]. Q-learning is a method for estimating the value of taking

different actions from a state in a Markov Decision Process (MDP), within the broader

realm of Temporal Difference (TD) Learning. The theoretical grounding of Q-learning

and TD Learning is provided by the concept of MDPs and Bellman’s Equation. An

MDP is defined by the tuple (S,A, P,R) [115], where S denotes the state space, A the

action space, P the transition probabilities of reaching state s′ when action a is taken

in state s, and R is the reward function.

The evolution of Q-learning from a single-agent algorithm to a multi-task algorithm
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used an extension of the reward function beyond single task contexts to that catered to

multiple tasks [104]. As a result, the reward function, originally denoted by r(s, a) in

the single task context, evolved to a multi-task context, as denoted by r(s, a, g) in the

multi-task context.

Compositional Plan Vectors (CPV) have their theoretical grounding in imitation learn-

ing. Imitation learning, first introduced by [116], is a learning framework whereby an

agent learns by observing demonstrations by an expert, and then learning a policy that

mimics these expert behaviors. In [20], Devin et. al presented the CPV method which

builds on the imitation learning schema by encapsulating the characteristics of the tasks

using a feature vector, serving as a compact representation of the entire set of action

sequences needed to accomplish a task/subtask. CPVs are semantic and composable,

meaning that they can represent a combination of subtasks even if the model has never

seen this combination during training. The essence of plan vectors is drawn from the

word embedding field [76], where words that represent similar meanings are closer in

the embedded space, allowing for operations like vector addition and subtraction to

result in semantically meaningful outcomes.

As for the Trajectory Experience Replay (TER), its theoretical grounding is rooted in

the methodology of Experience Replay [69] which was designed to alleviate problems

in RL such as data inefficiency and harmful correlations between successive samples

in learning. The TER method, introduced as part of the CPV-TER, improves on this

by focusing on successful trajectories rather than solely focused on individual experi-

ences.

While our approach is a novel combination of existing methods, each part’s theoretical

grounding is individually robust due to an extensive history of research and application.

In combining these theories, we have established a strong foundation that ensures the

effectiveness of CPV-TER across various applications.

It is often challenging to provide mathematical proofs in reinforcement learning due

to the empirical nature of these methods. Instead, effectiveness is typically demon-
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strated through rigorous empirical evaluation, such as performance studies on different

environment variants. Future work on CPV-TER can involve theoretical analysis on its

convergence properties inspired by convergence proofs in traditional Q Learning [47]

or the theoretical validation for performance improvement by experience replay [26].

Such theoretical analysis, however, is out of the scope of this thesis.

4.4.1 Network Architecture

2 CNN layers

Flatten

3 FC layers

Plan-vector
network

Flatten

3 FC layers2 CNN layers

3 FC layers

Observational
network

Action-value
network

Figure 4.3: Policy network architecture of the CPV-TER method, consisting of

an Observation, Plan Vector, and Action Value subnetwork. The green network

produces plan vectors from the concatenation of two images, and the red policy

network takes the plan vector and the convolution of the current observation to

return a six unit vector representing the values of each action. The agent selects

the highest value action under a greedy policy.

The neural network used to produce behavioral policies in CPV-TER consists of three

networks working in conjunction. The network illustrated in blue in Fig. 4.6, which
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Figure 4.4: Observation network architecture of the CPV-TER method. The net-

work takes in the observation of the current timestep ot, in the form of an image.

The output is a vector representation of the observation. The network is composed

of 2 convolutional layers, a flattening layer, and 3 fully connected layers.

Figure 4.5: Plan vector network architecture of the CPV-TER method. The net-

work takes in the observations of two timesteps oti and otf , each in the form of

images, that are concatenated together. The output is a vector representation of

the ‘plan’ needed to go from oti to otf . oti is typically the current timestep in the

environment and otf is the goal state. The network is composed of 2 convolutional

layers, a flattening layer, and 3 fully connected layers, identical to the observation

network.

we will refer to as the ‘observation network’ is a CNN that takes the observation of the

current state ot, represented as an RGB image as described in Section 4.3.1. This CNN

contains two convolutional layers, two pooling layers, and three fully connected layers
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Figure 4.6: Action value network architecture of the CPV-TER method. This net-

work takes in the outputs of the plan vector network and the observation network,

the plan vector gϕ(ot, oT ) and the vector representation of the current timestep’s

observation ot, respectively. These two vectors are concatenated into a single vec-

tor and then used as an input into the action value network. The output is a vector

representing the potential reward values for each of the possible actions, which is

a standard output for policy based RL models. The network is composed of 3 fully

connected layers.

with 64 hidden units and ReLU activations. Instead of returning an output of a six unit

vector to represent each action-value, this sub-network instead outputs a representation

of the state in the form of a 256 length feature vector, to be used as an input for the

action-value network.

The output network, which we will refer to as the ‘action-value network’, is illustrated

in red in Fig. 4.6. This is an MLP network that contains three fully connected layers

with ReLU activations, which outputs the six unit vector to represent the value of

the six possible actions. This action-value network is the most similar to standard

policy networks that operate on Q-values. A standard network would take the current

state observation as input and produce the six action values within a single network.

Here, our network instead takes the processed 256-length feature vector produced with
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the observation network, concatenated with another 256-length vector called the plan

vector gϕ(ot,oT ).

The plan vectors, gϕ(oa,ob), represent the sequence of subtasks required to get from

observation oa to observation ob. These plan vectors are semantic and composable, as

described previously in Section 4.2.1. The plan vector network, displayed in green in

the figure, has the same structure as the observation network, with two convolutional

layers, two pooling layers, and three fully connected layers with 64 hidden units and

ReLU activations. Instead of taking in a single image as an input as in the observation

network, the plan vector network takes two images concatenated together. To pro-

duce the plan vector gϕ(ot,oT ), it takes the current timestep image ot, and an image

oT ‘imagined’ by the environment to represent the desired goal state gd. These are

concatenated together as ot · oT . This produces the plan vector gϕ(ot,oT ), which is

concatenated with the feature vector from the observation network and used as an input

for the action-value network.

In addition to the plan vector gϕ(ot,oT ), also called the ‘forward’ vector, the plan vec-

tor network is also used to produce two additional vectors. The first is the ‘backwards’

vector, gϕ(o0,ot), which represents the task sequence required to get from the initial

state to the current state. This is made when the initial and current observations o0 · ot

are provided to the plan network. The second vector is the ‘full’ vector, gϕ(o0,oT ),

which represents the plan to get from the initial state to the desired goal state. These

are not sent to the action-value network, instead they are used in the optimization stage,

to ensure composability: when the network is fully optimized, the addition of the for-

ward and backward plan vectors should produce the full plan vector.

4.4.2 Optimization

The CPV-TER method leverages the Markov Decision Process (MDP) structure, which

is defined as a tuple (S,A,P , R, γ, ρ) where S is the state space, A is the action space,



4.4 Methodology and Implementation 89

P is the transition probability distribution, R : S×A×S → R is the reward function,

γ ∈ [0, 1] is the discount factor, and ρ : S → [0, 1] is the initial state distribution.

The performance of an RL agent in an MDP is evaluated by the expected cumulative

reward, and the agent’s goal is to find an optimal policy π∗ : S → A that maximizes

this quantity.

Multitask learning is fundamentally motivated by the observation that humans leverage

their knowledge acquired from one task while learning another related one [99]. The

key idea in MTL is that with appropriate task design, the learner can utilize the common

structures among tasks to improve the generalization performance [6].

Taking these principles into account, at the optimization stage, the CPV-TER method

uses two additional loss functions alongside the standard Q-value loss function. The

homomorphic triplet loss as stated in Eq. 4.3 aims to minimise the difference between

the full plan vector gϕ(oi
0,o

i
T ) and the sum of the forward and backward plan vectors

gϕ(o
i
0,o

i
t)+gϕ(o

i
t,o

i
T ). These vectors can be split at any timestep during the episode to

create subvectors, however by splitting at a timestep when a subtask has been achieved

(as described by the reward and tasks completed vectors) they can be split into subtasks.

This homomorphic triplet loss function reinforces the composability of the plan vectors

that prime the policy network, which improves planning ability for the agent when the

subtasks are hierarchical. This loss function does not require reference trajectories, so

can be used directly alongside the Q-value loss function after each timestep, as in line

22 of Alg. 4.2.

The pairwise loss function, shown in Eq. 4.4, enforces the semantic properties of the

plan vectors, i.e., vectors that represent similar tasks are close together in the embed-

ding space. In the imitation learning space in [20], this is implemented by using this

loss function with a reference trajectory that is produced by an expert, and compar-

ing it to the trajectory and embedding produced by the policy itself. In reinforcement

learning, however, there are by design no expert demonstrations to reference from.

Instead of utilizing expert demonstrations, we instead store prior episodes in our tra-
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jectory experience replay (TER) storage buffer as described in Section 4.4.3. With this

buffer we can obtain reference images orefi0 and orefiT to produce a reference plan vec-

tor gϕ(orefi0 ,orefiT ). The pairwise loss function then aims to minimise the difference

between this plan vector and the full plan vector from the current episode, in order to

to enforce the semantic similarity of plans that represent similar tasks. When a prior

episode with the same goal is present in the TER buffer, the network is optimised with

Lpair, as in line 24 of Algo. 4.2.

4.4.3 Experience Replay

Another significant principle CPV-TER leverages is Experience Replay (ER) [78]. ER

is a data-efficient learning method that stores past experiences and randomly samples

mini-batches from these memories to update the learning model. This random sampling

breaks the correlations in the observation sequence and stabilises learning, reducing

the amount of data we waste. Theoretically, ER manifests the Dyna architecture [114],

which interleaves direct RL updates with model learning and planning steps.

PER [105], an ER variant, is another key concept in CPV-TER. PER is an RL approach

which stochastically samples experiences from the replay buffer based on their priority

value. Transition priorities can be defined by different metrics such as the absolute

TD-error, and experiences with high priority (large TD-error) have a higher chance of

being sampled for learning. PER is inspired by the idea that experiences may not be

equally useful for learning; therefore, prioritizing the replay can speed up the learning

process and increase performance of RL algorithms.

In order to obtain reference trajectories without pre-provided expert demonstrations,

we utilise a specialized replay storage method, which we denote trajectory experience

replay (TER).

In addition to a standard buffer prioritized by TD-error, TER has a secondary buffer

set that is sorted by the desired goal gd for each transition. This is sorted with the one-
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hot encoding of the goal as opposed to the image representation of the goal—as there

are nine possible tasks within the crafting environment this requires 29 = 512 inner

buffers. As we want to simulate expert trajectories, we aim to store only transitions

where the agent has been successful in achieving the desired goal, or the transitions

that lead to success for multi-step reward storage. Storing these transitions only for the

successful steps in a sparse environment would mean the buffers would only contain

minimal examples. To increase the data to these buffers, we adapt the technique used in

hindsight experience replay (HER) [2]. To do this, we also recalculate the rewards for

a given transition t for an imagined goal gd′ which is equal to the current achieved goal

gat . This drastically increases the number of successful trajectories within the sorted

buffers. To calculate the pairwise loss, the inner buffer with the same desired goal gd

can then be sampled for a reference.

An added advantage of the TER method is it can easily be adapted to store entire

trajectories as opposed to singular transitions, as in the CURIOUS method [15]. We

can then use these full trajectories as self-produced expert trajectories with behavior

replicating loss functions to create a hybrid reinforcement-imitation learning model.

4.5 Results

In this section we analyse the main experimental results. First we show that CPV-

TER method performs better than standard reinforcement learning methods for multi-

task learning by performing an ablation study of its components. Then we study the

performance of the CPV-TER agent on different environments with varying numbers of

tasks. Training takes place over 500 to 5× 103 episodes, depending on the environment

being tested. Each episode has an upper limit of 100 timesteps for the agent to achieve

the provided goal. If the desired goal is reached the episode is terminated early. The

performance of each agent is measured by the score the agent achieves per episode.

The score S = 100 − ∆t is the upper limit of timesteps subtracted by the amount of
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Figure 4.7: Average number of steps required to complete an episode, with a

maximum episode length of 100, over a training time of 500 episodes, comparing

a typical ϵ-greedy method using linear layers (blue) and a softmax action explora-

tion method using a boltzmann temperature gradient (grey). while softmax can be

a useful exploration alternative, it requires extensive tuning and may stuggle with

changing objectives as required for multitask learning. This method is a strong

avenue for future work.

timesteps taken to achieve the goal (capped at 100). A score of 90 means the agent

required ten steps to complete the goal. While the theoretical maximum score is 100,

this would mean the agent completed the goal in zero timesteps. The true maximum

score of a goal can be anywhere from 99 to 30 depending on the number of subtasks

provided and the location of the items required. We compare our methods against

two types of baselines. The first is a DQN agent provided with the same network

architecture so it can process both the current observation and the goal observation, as

opposed to a flat network architecture that would only process one image. This baseline

does not use the compositional or semantic architectures, and does not make use of the

TER memory, however it does have a replay buffer with n-step rewards and utilizes

hindsight experience replay. The second baseline we compare against is a true random

agent, that uniformly randomly selects an action at each timestep. This agent is used

to provide an insight into the sparsity of the environment and its reward structure.
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Figure 4.8: Ablation study. Score achieved by an agent per episode, ±1 standard

deviation, with a maximum score of 100, over a training time of 500 episodes,

averaged over three runs. Performance is compared between goal-adapted DQN,

DQN with CPV losses, and CPV-TER.

Ablation study. In order to fully assess the CPV-TER contribution to the multi-task

reinforcement learning space, we performed experiments on the two-task environment

with different components of the method removed. We also compared to a baseline

DQN approach, which contains none of the additional components from this paper.

Fig. 4.8 shows the result of this study. Each agent was trained over 500 episodes,

each with a maximum number of 100 steps, resulting in training with an upper limit of

5× 104 frames.

We can see from Fig. 4.8 that the CPV-TER method has a significantly better perform-

ance than any ablation method or standard DQN, with the time taken to achieve the

specified goal brought to under ten steps on average per episode by the end of the

training run. This results in a performance score that is more than triple the score

achieved by DQN with a goal-conditioned network. We can also see from the figure
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that while DQN with CPVs does perform better than the baseline DQN, the imple-

mentation of trajectory experience replay drastically increases the performance. This

is because while the pairwise loss function can still be implemented without TER, the

range of ‘expert trajectories’ is limited to the same episode in training. This prevents

the pairwise loss function from being adequately used to reinforce semantic similarity

between similar plan vectors.
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Figure 4.9: Three-task environment. Score achieved by an agent per episode,

with a maximum score of 100, with three possible tasks provided as a goal, over

a training period of 2.5× 103 episodes. CPV-TER is compared to standard goal-

adapted DQN and a random agent.

Performance Study. The CPV-TER agent was tested on the crafting environment

with different numbers of possible tasks provided to them. Fig. 4.9 shows the perform-
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Figure 4.10: Four-task environment. Fig. 4.10a displays the score achieved by

an agent per episode, with a maximum score of 100, with four tasks provided as

a goal, over a training time of 500 episodes. CPV-TER is compared to a ran-

dom agent. Fig. 4.10b shows the ϵ-value over the training period for the CPV-

TER agent, which decays over time leading from random (exploratory) policies

to greedy policies.

ance of CPV-TER in an environment with three possible tasks, one of each general task

type as described in Section 4.3.1. This took longer to train, with 2.5× 103 episodes

(up to 2.5× 105 training steps, but this is a much smaller training time when com-

pared to other baselines within reinforcement learning, which can often use millions of

transition images [42]).

Fig. 4.10b shows the shape of the ϵ-value used for ϵ-greedy exploration in all agents.

With an exploration heavy start, this provided a wider range of transitions images for

storage in the transition experience replay buffers. This means that none of the agents

show any learning within the first 15% of episodes, as ϵ is set to 1. The ϵ parameter

only reaches 0.5 after approximately 55% of training is complete, which is where the

performance of each agent begins to diverge.

Fig. 4.11 shows the performance of the CPV-TER method on an environment with

five possible tasks. We can see that the agent can perform well even in as little as
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Figure 4.11: Five-task environment. Score archived with five possible tasks

provided as a goal, over a training period of 5× 103 episodes.

1× 103 episodes, reducing the task completion time by approximately 25%. The cur-

rent benchmark for multi-task learning is MT-10, which consists of ten tasks for an

agent to complete. While this is only five tasks, we believe the sequential nature of the

tasks in the crafting environment adds to the complexity enough to consider them to be

similar benchmarks.

4.5.1 Potential Limitations

Despite the promising outcomes and contributions highlighted in the experimentation,

the multi-task reinforcement learning methodology also exhibits certain limitations and

potential challenges that warrant consideration.

One primary limitation is the sensitivity of the proposed CPV-TER method to the envir-

onment structure and complexity. While the approach demonstrates notable efficiency

in handling sequential tasks within the crafting-world environment, its performance
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might vary significantly in environments with different characteristics or varying levels

of task interdependency. The observed success in crafting-world tasks might not gen-

eralize seamlessly to more diverse and complex environments, which could limit the

broader applicability of the proposed method.

Furthermore, the reliance on a specific formulation of task compositionality might in-

troduce biases or limitations in addressing tasks that deviate significantly from the

assumed structure. The method’s efficacy heavily relies on the availability of struc-

tured and hierarchical tasks, potentially restricting its adaptability to more chaotic or

less organized task landscapes.

Another noteworthy limitation pertains to the trade-off between exploration and ex-

ploitation in the reinforcement learning process. The utilization of an epsilon-greedy

policy for exploration introduces a delicate balance that could influence the agent’s

ability to explore the state space thoroughly versus exploiting known information. The

exploration policy’s efficacy might vary across different environments, impacting the

agent’s learning efficiency and generalization.

Additionally, the method’s reliance on trajectory experience replay for storing and

reusing prior experiences as self-produced expert demonstrations could lead to chal-

lenges related to sample efficiency. While this approach allows for leveraging previ-

ously encountered trajectories, it might not efficiently generalize to novel or unseen

trajectories, potentially hindering the agent’s ability to adapt to new tasks or environ-

ments effectively.

Moreover, the computational overhead or resource requirements for implementing CPV-

TER, albeit lower compared to some existing benchmarks, might still pose challenges

for adoption in resource-constrained settings or less equipped academic environments.

Lastly, while the crafting-world environment provides a valuable benchmark for se-

quential tasks in the multi-task reinforcement learning space, its suitability as a com-

prehensive and representative benchmark for all sequential task scenarios across dif-
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ferent domains remains a subject of consideration. The environment’s characteristics

might not encapsulate the diverse range of complexities and dynamics present in real-

world sequential task settings, limiting its representativeness.

These limitations underscore the need for further exploration, potential modifications,

and robustness evaluations of the CPV-TER method across diverse environments and

task structures. Addressing these limitations could enhance the method’s adaptability,

generalization capabilities, and applicability across a broader spectrum of multi-task

learning scenarios. These issues are addressed in section 6.2.

4.6 Summary

Most environments have some level of inherent structure to them, where subtasks can

be completed in a certain order to complete a larger goal. We showed that if we harness

the underlying structure of an environment by optimizing for compositionality, then

we can improve the training time of multi-task reinforcement learning. We did this by

producing a methodology that utilises compositional plan vectors in a DQN style agent

to achieve multiple tasks in sequence in one environment.

This addresses the third research question:

RQ3 When represented as vectors, how can reinforcement learning be used to con-

struct workflows?

This results in the second contribution:

C2 This chapter demonstrates a new method to construct multi-step tasks with re-

inforcement learning. This method produces hierarchical solutions to tasks without

expert demonstrations. This answers RQ3.
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The multi-task reinforcement learning methodology presented in this work introduces

a novel algorithm for efficient multi-task learning using a composable inductive bias.

This bias is distinct from other types previously considered, such as the hierarchical

inductive bias used in hierarchical reinforcement learning. We believe this particular

approach has the potential to develop into an active subfield of reinforcement learning

research, in much the same way that hierarchical reinforcement learning has. We did

this by creating a DQN-styled agent with a neural network that produces compositional

plan vectors using a plan-vector sub-network.

This addresses the second research question:

RQ2 How can reinforcement learning be used to produce vector representations of

workflows?

resulting in the third contribution:

C3 This method also produces embeddings which can be used to represent workflows

in a vector representation. These vectors can then be used to perform analysis of the

distributed system that contains the workflows. this answers RQ2.

We further demonstrated that if we store prior experiences in a manner that allows

for reuse as self-produced expert demonstrations, then we can optimize for semantic

similarity of tasks, further improving efficiency of training. We did this by producing

a replay buffer that stores entire trajectories allowing for the use of imitation learning

loss functions in addition to standard reinforcement learning losses.

This addresses the fifth research question:

RQ5 What methods can be used to increase learning efficiency with less labelled

data?

This results in our fourth contribution:
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C4 This chapter also provides a new replay method that allows for more efficient

learning with data in reinforcement learning. By using self produced data as expert

demonstration imitation learning techniques can be used on top of reinforcement learn-

ing techniques. This answers RQ5.

Additionally, we released our adaptation of the crafting world environment in an Open-

AI gym format that allows for use of this environment as a performance benchmark for

sequential tasks. This environment also requires less compute power than robotics or

gaming benchmarks, which encompass the majority of benchmarks for RL.

C5 In this chapter we also released a benchmark that involves tasks of a sequen-

tial nature and additionally requires minimal compute power in comparison to other

benchmark environments in the MTRL space. This is a new focus area of green AI

and aims to make the academic field both greener and more inclusive for academics

with minimal access to additional compute power [109]. This is not a direct result of

one of the main research questions but is nonetheless an important contribution to the

reinforcement learning space.
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Chapter 5

Deep Geometric Learning for Directed

Acyclic Graphs

5.1 Overview

Graph generation is a quickly growing area of study with applications in a wide range

of problem domains, such as drug discovery and task scheduling problems [133, 87].

Most existing graph generation methods use some form of supervised or semi-supervised

learning requiring large amounts of training data. For example, [18] use a data set of

133,885 molecules as a prior distribution for graph generation. However, in certain

application fields, such as distributed systems composition, prior examples are either

sparse or nonexistent. We aim to create a method that can generate graphs with no

prior data.

A few recent works have used reinforcement learning to generate undirected graphs

where these methods require less training data or supervision. These works employ

generative adversarial networks alongside proximate policy optimization [133]. Q-

learning has also been implemented for graph construction, however it has been imple-

mented with tabular methods and is therefore unusable at scale due to the exponential

size of the state space that needs to be explored[87].

We propose a novel deep Q-learning approach to construct directed acyclic graphs

(DAGs). Deep Q-learning is a model-free reinforcement learning algorithm that is
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known to perform well with large action and state spaces that require function approx-

imation. In this implementation, we combine Q-learning with a feed-forward graph

convolutional neural network where actions correspond to the addition of a set of nodes

and edges. This method can account for large scale directed DAGs, with multiple node

types, and potentially continuously valued node features.

The rest of this chapter is organized as follows. In section 5.2, we discuss various

properties of workflows in distributed systems, and the benefits of representing those

workflows in Directed Acyclic Graphs. In section 5.3, we discuss the benefits of us-

ing Q-learning as an RL approach for DAG construction. In Section 5.4, we provide

an overview of the DAG generation environment and the characteristics of the DAGs

relevant to the rest of this chapter. Section 5.5 describes the architecture of the graph

neural network that is used to map state action pairs to Q-values. Section 5.6 describes

how the Q-learning algorithm is applied. Section 5.7 provides preliminary results, be-

fore the conclusion in Section 5.8.

5.2 Workflows Represented as Directed Acyclic Graphs

In this section we discuss various properties of workflows in distributed systems, and

the benefits of representing those workflows in Directed Acyclic Graphs (DAGs).

A Directed Acyclic Graph (DAG) is a pair G = (V,E), where V is the set of vertices

(sometimes referred to as nodes) and E is the set of edges connecting those vertices.

The set of edges E consist of ordered pairs to account for directionality, e.g. the pair

(X,Y ) denotes an edge from node X to node Y , which is distinct from (Y,X), which

is an edge from node Y to node X . A graph is acyclic when it contains no cycles,

which is a path from a node back to itself. For example, a graph G = (V,E), where

V = {A,B,C,D} and E = {(A,B), (A,D), (B,C), (C,A)} is not acyclic, as it

contains the path A −→ B −→ C −→ A [82]. These sets of edges can be considered

partially ordered sets. DAGs are commonly employed to depict workflows in distrib-
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uted systems. They establish node connections that help define intricate systems and

illustrate a sequence of events, their likelihoods, and interactions among them. The dir-

ection within these connections signifies the flow of data, dependencies between data

elements, or simply the order in which tasks should be executed.

In multiprocessor systems, tasks are divided into several subtasks for parallel execu-

tion. DAGs are used to represent data dependencies and communication time between

tasks. Proper representation of tasks is necessary for the efficient execution of schedul-

ing algorithms.

DAGs can also be used to represent code in compiler design, describing the inputs and

outputs of each arithmetic operation performed within the code. This representation

allows the compiler to perform common subexpression elimination efficiently.

Directed Acyclic Graphs (DAGs) are a powerful tool for representing causal relation-

ships and encoding assumptions about the relationships between variables. The first

advantage of DAGs over cyclic graphs is that they simplify task scheduling. In cyc-

lic graphs, a task may depend on itself or its downstream tasks, making it difficult to

determine the proper order of task execution. This problem is particularly challenging

in parallel computing environments, where multiple threads or processes can execute

tasks concurrently. In contrast, DAGs guarantee that each task is executed only once

and in the correct order, simplifying the scheduling process.

The second advantage of DAGs is that they enable efficient parallelization. In DAGs,

tasks with no dependencies can be executed concurrently, enabling efficient use of

computing resources. In contrast, cyclic graphs may require the execution of tasks in a

specific order, limiting the amount of parallelism that can be achieved.

The third advantage of DAGs is that they support incremental execution and fault tol-

erance. DAGs enable the re-execution of individual tasks that fail or need to be re-

computed due to changes in input data. By preserving the partial results of executed

tasks, DAGs support incremental execution, reducing the time required to complete
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workflows. Additionally, DAGs can tolerate failures of individual tasks or computing

resources by re-executing failed tasks or switching to alternative computing resources.

Overall, using DAGs to represent distributed system workflows can help improve reli-

ability and predict anomalous behaviors in complicated distributed systems.

5.3 Q-Learning as a Method for DAG Construction

One of the key advantages of Q-learning is its ability to handle the exploration-exploitation

tradeoff. Exploration refers to the agent’s ability to try out new actions and observe

their outcomes, which is critical for finding optimal policies. Exploitation refers to the

agent’s ability to choose actions that have produced promising outcomes in the past,

which is critical for maximizing rewards. Q-learning achieves this balance by using an

ϵ-greedy policy, where the agent takes the action with the highest Q-value with prob-

ability (1− ϵ) and a random action with probability ϵ. This approach allows the agent

to explore new actions while also exploiting its current knowledge.

Another benefit of Q-learning is its ability to handle non-linear and non-differentiable

reward functions. RL tasks often involve complex and non-linear reward functions,

such as in the game of Atari. Q-learning does not require any assumptions about the

reward function and can handle both continuous and discrete state and action spaces.

Moreover, Q-learning does not require any gradient computations, making it a suitable

method for non-differentiable reward functions.

Q-learning is also computationally efficient and scales well to large scale RL problems.

The update rule in Q-learning is simple and can be easily implemented in parallel.

This makes it suitable for online learning scenarios where data is collected iteratively.

In addition, Q-learning can be extended to deep RL, where the Q-value function is

approximated using deep neural networks. This approach, known as deep Q-learning,

has achieved state-of-the-art performance in a range of tasks, including Atari games

and robotic control.
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Q-learning strikes a balance between exploration and exploitation, can handle non-

linear and non-differentiable reward functions, and is computationally efficient. Its

versatility has made it a popular method for a wide range of RL tasks, and its extensions

to deep RL have pushed the boundaries of what is possible in this field.

5.4 Problem Definition

In this section we formulate the problem of DAG construction as a reinforcement learn-

ing problem. The goal of our learning agent is to construct a directed graph G = (V,E),

where each node is one of b node types. The reinforcement learning problem is posed

as an agent environment structure, where an agent interacts with an environment and

receives numerical rewards. Representation of states, actions and rewards are defined

in matrices.

5.4.1 Matrix Representation of DAGs

There are two main data structures for DAGs in computer science, adjacency lists and

adjacency matrices. For the purposes of this method, adjacency matrices are the repres-

entation of choice, the reasons for which are explained in this section. First we define

both representations, then explain the benefits and drawbacks of each.

Adjacency Lists

An adjacency list is a list of all nodes and lists containing the nodes each node is

connected to. Each vertex of the graph is represented by a node of the list, and the

edges are represented as links between the nodes. An example DAG and adjacency list

is shown below:
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graph = {‘A’: [‘B’, ‘C’, ‘E’], ‘B’: [‘C’, ‘E’], ‘C’: [‘D’],

‘D’: [], ‘E’: [‘F’], ‘F’: []}

Adjacency lists use less memory than adjacency matrices. Space complexity of an

adjacency list: O(|V |+|E|). They are also more efficient than adjacency matrices when

adding or deleting edges, taking O(1) time for these operations. However, finding

the weight of an edge in an adjacency list takes O(d) time, where d is the degree

of the vertex. Traversing an adjacency list to visit all the vertices of the graph takes

O(|V |+ |E|) time.

Adjacency Matrices
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graph =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 0 1 0

0 0 1 0 1 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
An adjacency matrix represents a graph as a 2D array of size |V | × |V |. If there is an

outgoing edge between vertices i and j, then the value at cell (i, j) is 1, else it is 0.

The space complexity of an adjacency matrix is O(|V |2). It excels in finding the weight

of an edge (O(1) time) and traversing all vertices (O(|V |2) time). However, adjacency

matrices use more memory than adjacency lists and are unsuitable for sparse graphs.

Pros and Cons

Both adjacency lists and adjacency matrices have their advantages and disadvantages.

The key points for this methodology are as follows:

Adjacency Lists

• Use less memory (O(|V |+ |E|) space complexity).
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• Efficient for adding or deleting edges (O(1) time).

• Suitable for sparse graphs.

• Inefficient in finding edge weights (O(d) time) and traversing all vertices (O(|V |+

|E|) time).

Adjacency Matrices

• Higher memory usage (O(|V |2) space complexity).

• Efficient in finding edge weights (O(1) time) and traversing all vertices (O(|V |2)

time).

• Unsuitable for sparse graphs.

• Easier to pass to a neural network due to fixed dimensions

The choice of data structure depends on the specific requirements of the application.

If memory is a concern, or the graph is sparse, an adjacency list is a better choice.

If the graph is dense or finding edge weights is a frequent operation, an adjacency

matrix is more suitable. In this case, while memory is always an important concern,

the graphs for this method are not sparse, so an adjacency matrix is a better choice for

DAG generation.

5.4.2 State

The state of the environment at time t in a given episode corresponds to a DAG and

is denoted Gt. The topology of Gt is represented using a binary adjacency matrix A

where A [i, j] = 1 indicates that a directed edge exists from the node i to the node j.

Note that a 1 at the location [i, j] in A⊤ indicates that a directed edge exists from the

node j to the node i.
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Figure 5.1: An example of a single action in the DAG generation environment,

along with the state descriptions before and after the action is taken. Here, the 4th

node is added, of type 3, with incoming edges from nodes 1 and 2. This action is

described further in Section 5.4.3.

Individual node types are represented using a feature matrix F ∈ {0, 1}n×b containing

a one hot encoding of the node types for each node, where b is the number of possible

node types and n is the number of nodes in Gt. The initial state for each episode is the

null graph, which corresponds to no services being called within a distributed system,

i.e. the workflow has not yet begun.

5.4.3 Action

In this environment, each action consists of two parts: adding a new node, and adding

the set of incoming edges to that node. The new node nt can be any of the b node types

within the environment. This node type is added to the matrix of node features F by

appending the one hot encoding of this feature as an additional row. In Figure 5.1, a

node of type 3 (represented as a green node) is added to the DAG, so a row of [0, 0, 1]

is added to the feature matrix of the DAG Gt.

Next, the set of incoming edges N in
k for the new node is added. For example, in

Figure 5.1, the 4th node has incoming edges from nodes 1 and 2. By only allowing for
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the addition of incoming edges, we create a topologically sorted graph. Topological

sorting for DAGs is a linear ordering of nodes such that for every directed edge A B,

node A comes before node B in the ordering. Topological sorting is only possible

if the graph has no directed cycles. This ensures that all graphs created are acyclic

- if outgoing edges were added, this would allow for the edges to be added from the

current node to preceding nodes, potentially creating a closed path making the graph

cyclic. This is in effect the reverse of Khan’s algorithm, which is a topological sorting

method for DAGs. Khan’s algorithm is based on the observation that any DAG must

have at least one node that has no incoming edges. This is because if there were no

such nodes, then every node in the DAG would be part of a cycle. The algorithm works

by repeatedly finding nodes with no incoming edges, adding them to the sorted list, and

removing them from the graph along with their outgoing edges. This process continues

until all nodes have been added to the sorted list. [53]

In order to select the set of incoming edges, all feasible extensions are encoded as a

binary vector, where 1 on the nth position of the vector represents an incoming edge

from the nth node to the newly created node. In Figure 5.1, the possible vectors would

range between 001, connecting only the 3rd and 4th nodes, and 111, connecting all

previous nodes to the 4th node. These vectors can then be converted from their binary

format to an integer i ∈ [1, 2n−1]. This allows for enumeration of all feasible extensions

when required to determine the action with the maximum Q-value. This also allows

for selection of a random extension where performing exploration (as necessary in

ϵ-greedy Q-learning).

In Figure 5.1, the 4th node is added, so the possible set of edges is in the range i ∈ [1, 7].

In the figure, i = 6, which converted to binary format is 110, so edges are added from

the first and second nodes. This binary number is appended to the adjacency matrix

of G as a new column. Note that the null set of edges is excluded as a possible choice

here: this is in order to prevent floating nodes, although this doesn’t affect the theory

of the method significantly.
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This method of adding a new node and multiple edges in a single action is in contrast

to many graph generation methods which add a single node or edge per action [133].

This new method has the disadvantage of creating a much larger action space of b ×

(2n−1−1) possible actions, as opposed to b+n− 1 possible actions with a single node

or edge addition. However, this method reaches a final DAG in fewer timesteps and

accounts for symmetries in edge additions: when adding edges one at a time, a policy

could develop which favours a particular order of adding edges to the set. As order of

edge additions does not affect the final structure of the DAG, this asymmetrical policy

is prevented, which is why adding an entire set of edges is preferable overall (see figure

5.3).

5.4.4 Reward

Reward design is an important feature in reinforcement learning. in this section we dis-

cuss the principles of reward design in reinforcement learning and then discuss reward

structure and reasoning behind the choices made.

Reward Design for Reinforcement Learning

Reward design for implementation of this method depends largely on the application’s

problem domain. For scheduling problems, for instance, the reward could be a nu-

merical value based on the speed and quality of service of the resulting task schedule.

These rewards can consist of both intermediate rewards and a singular reward once a

generation episode terminates.

Reward Structure for DAG generation

For the purposes of evaluating the proposed graph generation method, in this work we

performed simulations in which a positive reward was returned if the agent produced a
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DAG isomorphic to a ground truth DAG, and a reward of 0 otherwise. This is clearly

an extreme case, as even for a 10 node graph with only 1 node type, there would

be 1.018e+13 possible final states, of which approximately 1-5 produce a non-zero

reward. However, in order to prove the generality of this method the isomorphic reward

case was used for the results in this chapter, and tested on smaller graphs. Potential

work for extension to larger graphs is discussed in Section 6.2.

5.4.5 Environment Description and Justification

The environment employed in this chapter serves as a platform for investigating the

generation of Directed Acyclic Graphs (DAGs) through reinforcement learning paradigms.

Each episode within this environment unfolds as the agent sequentially constructs a

DAG, denoted as Gt, by iteratively adding nodes and their respective incoming edges.

The state representation of Gt is encapsulated by a binary adjacency matrix A, en-

coding the directed edges between nodes. Complementing this, a feature matrix F ∈

0, 1n×b captures individual node types via one-hot encoding, facilitating a comprehens-

ive depiction of the evolving DAG’s topology.

The environment’s action space is characterized by a dual-step action: first, the addition

of a new node along with its associated node type encoded in the feature matrix F, and

subsequently, the inclusion of incoming edges to the newly added node. By structuring

actions in this manner, the environment ensures the creation of topologically sorted

graphs, adhering to Directed Acyclic Graph constraints. This action design aligns

with the essence of topological sorting algorithms, preventing cyclic structures and

fostering the creation of acyclic graphs essential for various real-world applications,

such as workflow scheduling and dependency modeling.

The choice of this environment over conventional graph generation paradigms stems

from its unique action space design, which enables simultaneous addition of nodes and

multiple edges in a single action. This departure from the norm in graph generation
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methods allows for expedited convergence towards the final DAG within fewer time

steps. Despite enlarging the action space substantially, this approach mitigates biases

inherent in sequential addition methods, effectively nullifying asymmetrical policies

favoring specific edge addition sequences, thus enhancing the model’s generality and

efficiency.

Moreover, the reward structure adopted for evaluating this environment emphasizes the

production of a DAG isomorphic to a predefined ground truth DAG. This deliberate

choice of reward, while resulting in a vast state space, serves as a rigorous evaluation

metric, accentuating the method’s ability to generate precise graph structures. The ex-

tremity of this reward scenario, where only a fraction of possible states yields positive

rewards, challenges the model to optimize its decisions towards the exact replication

of the target DAG, thereby showcasing the robustness and adaptability of the proposed

method.

The selection of this environment is justified by its unique attributes aligning with our

research focus on generating precise DAG structures through RL. Its distinct action

space design, coupled with the reward structure emphasizing isomorphism to a target

DAG, provides a rigorous platform to test and validate the efficacy of our proposed

approach. The environment’s alignment with real-world scenarios requiring acyclic

graph structures and its capacity to challenge the model in reproducing specific graph

patterns reinforce its significance in advancing graph generation methodologies within

the realm of reinforcement learning.

5.5 Model

The Q function is a mapping from a state action pair to a real value indicating the

predicted future reward for the pair in question. We learn this mapping using a policy

network, which takes the state of the environment and outputs a single scalar value

which can be treated as the Q-value. Our policy network is in effect a feed-forward
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graph convolutional network, similar to graphSAGE [37]. A major difference here is

this network accounts for direction of the edges, in a manner similar to that of the

struc2vec++ method [112].

The network will take the adjacency matrix and one hot encoded features of a given

state Gt as the input. The feed-forward architecture consists of two convolutional lay-

ers, followed by a non-linearity, then a pooling layer. The network propagates this

one hot representation through two graph convolutional layers, each consisting of two

steps. The first step is a concatenation of the feature representation of that node, the

sum of features of outgoing neighbours of that node, and the sum of features of incom-

ing neighbours of that node. Incoming and outgoing neighbour feature sums are found

by performing matrix multiplication with the one hot feature representation and the ad-

jacency matrix containing in-degrees, and the adjacency matrix containing out-degrees

(which is simply the transpose here), respectively. The second step of the convolutional

layer is to pass the concatenation through a simple non-linearity.

After the two convolutional layers, the representation is passed through a linear layer

and is then passed to a pooling layer, which aggregates the individual node represent-

ations into a graph representation using a sum function. A sum aggregator is chosen

here as opposed to a mean or max aggregator as it preserves both the ratio of node

types, unlike the max aggregator, as well as differentiating between different scales of

graphs, unlike the mean aggregator [130]. This representation is then passed through

a final linear layer and ReLU unit, and then a fully connected linear layer, producing

a single scalar which is used as the Q-value for the input state, as discussed further in

section 5.6.

Formally, this network is described as follows. Given a DAG G = (V,E) with adja-

cency matrix A containing in degrees and A⊤ containing out degrees. Each node v

is initially represented by a vector h0
v which is a one hot encoding of the node type.

Node v has a set of neighbouring nodes N in
k connected with incoming edges, and a set

of neighbouring nodes N out
k connected with outgoing edges. In every convolutional
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layer l the representations of the current node, and sums of incoming and outgoing

neighbour node representations hl
v, hl

w, hl
u are horizontally concatenated:

Hl+1 = CONCAT(Hl,AHl,A⊤Hl) (5.1)

This concatenated representation is then passed through a non-linearity (eq. 5.2) where

W and B are trainable matrices.

Hl+1 = ReLU(H lWl +Bl) (5.2)

After two convolutions with this method, the node representations are pooled as in

eq. 5.3, resulting in a scalar value.

Hl+1 = SUM(H lWl +Bl) (5.3)

This value is passed through a final non-linearity and then a fully connected linear layer

to produce the final result.

5.6 Learning and Inference

This method generates training data for the policy network using an ϵ-greedy imple-

mentation of the DQN method. With probability ϵ a random action is selected from

the range of possible actions, otherwise the approximate Qmax value is selected. This

Qmax value is found using a sample based method - instead of evaluating each possible

action, only a fixed number of random actions are evaluated, and the action from these

with the highest value is chosen. This is because the action space is in the order of

b× 2n−1, so evaluating each possible action would be too costly. After performing this

action, the current Q-value for the state is evaluated using the policy network. Addi-

tionally, the Q-value is calculated by adding the reward to the Q-value of following the

optimal policy thereafter, as shown in eq. 5.4.

Qπ(St, At) = r + γmax
a

Q(St+1, a) (5.4)
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Note that maxa Q(St+1, a) in eq. 5.4 is calculated using a separate target network,

which is not trained every step, but instead has network weights from the policy net-

work copied over after a fixed number of episodes.

Taking the difference of these Q-values produces our training error δ = Q(St, At) −

Qπ(St, At), and the loss function is then simply the L2 norm L = ||δ||. This is back-

propagated through the network, and the Q-values produced by the network for each

state are then closer to the true Q-values. This update occurs online, or after every time

step, as opposed to in batches. While producing noisier results, this tends to result in

a higher convergence rate [55]. After training is complete, a greedy method is used

to generate the DAGs, whereby the action with the largest Q-value is selected at each

step.

A second learning agent utilizing prioritized experience replay [105] was also imple-

mented; this agent updated on the current timestep and additionally on 30 timesteps

that have previously been selected that are held in a memory buffer. The actions re-

played are selected at random, with a higher probability for selection for actions with

high rewards, and actions more recently added to the memory buffer.

5.7 Results

Figure 5.2 shows selected results of an implementation of this method. All data is

averaged over 20 runs and training takes place over 10,000 episodes. For each run,

a new “ground truth" DAG is created for the given graph size and number of types,

chosen at random. This is in order to prevent any bias from the selection of the graph.

Figure 5.3 shows that a binary action selection results in a faster convergence rate,

because it accounts for symmetries in the addition of edges.

Changes in total accumulated reward due to increasing the scale and node types of the

DAGs is shown in Table 5.1 — this decrease in accumulated reward is to be expected

due to the exponentially-increasing size of the action space. For a DAG of only 6
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Figure 5.2: The average success rate of the greedy policy over time, for DAGs of

different sizes and different numbers of node types. For each graph type, a learn-

ing agent trains using an ϵ-greedy policy over 10,000 episodes. The agent then

runs an episode on the greedy policy after each ϵ-greedy episode. Each learning

agent is reset and trained 20 times, and the success rate of the greedy policy is the

average of these 20 runs. For readability, the moving average over 50 episodes is

plotted. Two types of agents are displayed: the standard DQN, and DQN with

prioritized experience replay (DQN+PER).

nodes with only a single node type, there are 9,765 possible terminating states, of

which approximately 5 are isomorphic to the ‘true’ DAG that the agent is attempting

to learn. Only these 5 states provide any non-zero reward, creating a highly sparse

reward environment. For a DAG with 7 nodes, there are 615,195 possible graphs,

again with the same amount of true graphs that provide any reward. It is clear then that

learning over a span of 10,000 episodes is unlikely to learn anything, as it is highly

unlikely any of these episodes will return any positive reward. The exploding nature of
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Table 5.1: A comparison of average total reward for DAGs of varying size and

number of unique node types, with basic DQN, DQN with prioritised experience

replay, and an agent that selects actions at random. The rewards are totaled over

10,000 attempts, and averaged over 20 runs.

DAG ISOMORPHISMS

DAG SIZES 4 NODES 5 NODES 6 NODES

NODE TYPES 1 1 2 3 1

RANDOM 882 75 6 2 0

DQN 9524 5242 2083 1374 955

DQN+PER 9902 7380 5169 796 2802

the method shows a preliminary result that the method can work for overall structures,

i.e. each node could be used to represent a substructure. However, the data shows that

this method could not be used as is for a reward structure this minimal for methods

much larger. However, given a proper example scenario one would most likely have

a broader reward scheme than pure isomorphism, allowing for larger values. This is

a good avenue for further research and is elaborated on further in the discussion and

future work sections.

Contrast this to the work of [18], who were able to generate molecular structures of up

to 9 nodes with 5 node types. however, these results are not directly comparable, as

their method involves using a dataset of 133,885 compounds in order to produce a prior

distribution. Our method is exploring graph generation under the context that there is

little to no previous examples or data to use. Additionally, our method has a highly

sparse reward space that relies entirely on achieving an exact isomorphic reproduction

of the ground truth. [18] instead designs reward on chemical properties which creates

a more populated reward space.

In assessing the practical applications of deep reinforcement learning for DAG gen-

eration, it is instructive to look at areas where directed graphs are commonly used.
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Figure 5.3: A comparison of learning rate for the standard DQN with a binary

action selection, and an action selection that involves adding only a single node or

edge per timestep.

Figure 5.4: An example DAG with 5 nodes of 3 types. For the DAG to be con-

sidered isomorphic the nodes of each type need to be connected in the same man-

ner. For this DAG there are 25,515 possible terminating states, of which only 3

return a non-zero reward.
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Some sectors that could benefit from this approach include telecommunication net-

works, power grid networks, and supply chain networks [58]. For example, in a tele-

communications network, the nodes could be stations, while the edges across stations

could represent potential communication links. The objective of graph generation in

this context might be to design a network topology that optimizes for cost efficiency,

coverage, and robustness. A deep Q-learning based approach can use this criterion

as a reward function, learn from historical topologies, and explore new topologies to

improve network design.

Deep reinforcement learning is poised to have significant impacts in these sectors,

among others, mainly because of the advantages it offers over other methods used in

graph generation. GraphRNN and GraphAF, for example, are deep generative models

for graph generation. GraphRNN uses a hierarchical method to generate graphs se-

quentially, while GraphAF uses an autoregressive flow-based model. Both these meth-

ods have demonstrated effectiveness in generating diverse and complex graph struc-

tures. However, unlike deep reinforcement learning and specifically Q-learning, they

heavily rely on large-scale training data to sufficiently capture graph structures and lack

the ability to explore novel graphs independent of prior data. Thus, the advantages of

our approach over these models lie in their capacity to explore and exploit the space of

possible graphs even with no prior data, making it particularly suitable for tasks where

data is scarce or non-existent.

Evolutionary algorithms and Bayesian optimization are popular choices in hyperpara-

meter tuning and optimization problems, including graph generation. These meth-

ods perform a sequential exploration-exploitation tradeoff strategy and can handle

large search spaces and non-convexity. However, both methods usually require time-

consuming process and large computational resources, especially when the dimension

of the search space is large. Moreover, they do not readily provide a way to incorporate

prior knowledge into the search process, unlike deep Q-learning methods that naturally

integrate this through the Q-value function.
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5.7.1 Potential Limitations

One of the primary limitations of the introduced method is associated with the scalabil-

ity and computational complexity stemming from the exponential growth of the action

space. As the size of the DAGs increases, the number of possible configurations es-

calates exponentially, resulting in a vastly expanded action space. This exponential

explosion considerably challenges the ability of reinforcement learning algorithms to

efficiently explore and learn optimal policies, leading to diminished learning rates and

increased sparsity in reward signals.

Moreover, the sparsity of the reward space poses a significant challenge in the learning

process. The reward function primarily relies on achieving an exact isomorphic repro-

duction of the ‘ground truth’ DAG, resulting in an extremely sparse reward landscape.

In scenarios with larger DAGs or increased node types, the probability of encountering

rewarding states decreases substantially. This sparsity can impede the learning process,

causing difficulties in convergence and hindering the agent’s ability to generalize well

to unseen or larger DAGs.

The method’s dependency on a ‘ground truth’ DAG for each run introduces potential

bias due to the randomness in generating these ground truth graphs. Variability in the

ground truth graphs across different runs might impact the learning process, causing

variations in performance and affecting the generalizability of the trained model.

Additionally, the comparison to existing methods such as MolGAN, which leverages

prior distributions from a dataset of compounds, highlights a key limitation. While

MolGAN demonstrates success in generating molecular structures, it does so using a

dataset, providing a richer reward landscape based on chemical properties. In contrast,

the proposed method operates in a scenario with little to no prior examples or data,

resulting in a highly sparse and specific reward space focused solely on isomorphic

reproduction.

The limitation of not exploring larger DAGs due to computational constraints also
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restricts the method’s practical applicability to scenarios demanding complex or larger-

scale DAG generation. Real-world applications often involve workflows or systems

represented by considerably larger graphs, rendering the current method impractical

for such scenarios due to computational limitations.

Furthermore, the reliance on a simple graph convolutional network based on spatial

approaches might limit the model’s expressiveness and capacity to capture complex

graph structures. More sophisticated graph neural network architectures might be re-

quired to effectively capture intricate relationships and patterns within larger and more

diverse DAGs.

These limitations underscore the need for further exploration into scalable approaches,

enhanced reward structures, and more sophisticated neural network architectures to

address the challenges of scalability, sparsity in rewards, and model expressiveness.

Overcoming these limitations could potentially broaden the method’s applicability and

efficacy in generating directed acyclic graphs across diverse domains and larger scales.

These issues are discussed further in section 6.2.

5.8 Summary

This chapter introduced a deep Q-learning method for directed acyclic graph gener-

ation. By using a simple graph convolutional network based on spatial approaches,

we can produce Q-values for various DAG states, with the transpose of the adjacency

matrix used to account for edge directions. Only smaller graphs were tested in this im-

plementation, due to the exponential size of the action space and the increased sparsity

of the rewards.

This chapter addresses the fourth research question:
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RQ4 When treated as graphs, how can reinforcement learning be used to construct

workflows?

C6 This chapter demonstrates a new method to construct directed acyclic graphs us-

ing geometric deep learning combined with reinforcement learning. This demonstrates

an ability to produce workflows with minimal data outside of workflow application

success. This answers RQ4.
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Chapter 6

Conclusion

This chapter encompasses an overview of the contributions made in each previous

chapter and their relevance to the research questions initially presented in Chapter One.

Additionally, we explore the questions that have emerged from the analysis conducted

in Chapters Three, Four, and Five, acknowledging them as potential future research av-

enues with corresponding insights. Our final task is to present our overall observations

in order to bring the thesis to a close.

6.1 Research Questions and Contributions

In chapter One we presented our hypothesis: the use of reinforcement learning in com-

bination with other deep learning techniques can be used to construct and representing

workflows. These workflows can be used for applications within large scale distributed

systems, and their representations can be analysed to obtain further useful information.

This hypothesis motivated our investigation of reinforcement learning and representa-

tion learning methods for the construction of workflows. It is useful to recall the five

research questions (RQ1-RQ5) originally introduced in chapter One, presented as a

basis for exploration:

RQ1 What are the best representations for encoding workflows for later analysis

of distributed systems and to use as a platform for automatically constructing further
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workflows?

RQ2 How can reinforcement learning be used to produce vector representations of

workflows?

RQ3 When represented as vectors, how can reinforcement learning be used to con-

struct workflows?

RQ4 When treated as graphs, how can reinforcement learning be used to construct

workflows?

RQ5 What methods can be used to increase learning efficiency with less labelled

data?

This section examines our approach for answering RQ1 - RQ5, while outlining the

degree to which they were accomplished. Additionally, we draw attention to the note-

worthy findings in every chapter and specify any contributions that they provide.

RQ1 is addressed first in chapter Three, where we examine different methods of em-

bedding techniques for knowledge graphs. We analysed two key methods types for

graph representation, energy-based methods (Section 3.2.1) and random-walk meth-

ods (Section 3.2.2). Energy-based embedding methods aim to minimize an energy

function that maps the graph vertices into a low-dimensional space while preserving

pairwise distances. Random-walk-based embedding methods generate a random walk

on the graph and use the resultant probability distribution to represent the graph struc-

ture in a low-dimensional space. Energy-based methods focus on pairwise distances

between vertices, while random-walk-based methods focus on global graph structure

captured by the random walk distribution. We ran our experimental analysis by produ-

cing 100-dimensional embeddings of the DAIS-ITA Science Library dataset. We pro-

duced these embeddings using Trans E and Trans R, which are energy based methods,
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and Node2Vec, which is a random-walk method. We then compare selected vectors

from each embedding with a logistic regression model of the dataset. The F1 score

allows us to statistically compare the node classification abilities of each method when

given an embedding vector as input.

We found that the Trans-E method had the best classification ability with this dataset,

Trans-R the worst, and Node2Vec functioning in between these two methods. We also

examined Trans E and Node2Vec by visualising the embeddings using a t-distributed

neighbour embedding technique. These allowed us to determine that while certain

energy-based embedding methods allowed for the most accurate classification, random

walk methods can still classify to a moderate degree while also leveraging homophily

and structural similarity. As a result of this examination, chapter three provides insight

into the benefits of various graph embedding techniques that can be used to represent

workflows. These embedding techniques can be used with semantic vector spaces to

provide better analysis of workflows in distributed systems. This supports research

question RQ1 and represents contribution C1.

In Chapter Four, we produce a method that uses reinforcement learning to transform

a range of workflows into a vector space RQ2 in the style of compositional plan vec-

tors (Section 4.2.1). The policy network architecture of the CPV method contains a

sub-network called the Plan-vector network, which intakes concatenations of the ini-

tial state of the environment and the goal state of then environment, as well as a con-

catenation of the initial state and the current state of the environment, and produces

256-dimensional vector embeddings called ‘plan vectors’. These vectors can represent

workflows of tasks within a given system, and are inherently composable; the vectors

can be added to each other to create new workflows that describe completing the tasks

described by both individual plan vectors.

This method simultaneously uses the vector representations to construct further work-

flows within the space of the distributed system RQ3. The plan vectors are used as in-

puts for a Deep Q-Network which produces values for each possible subsequent action,
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which informs a learning agent to perform subsequent tasks within a desired workflow.

By priming the network with these plan vectors, the learning agent can learn similar

tasks (and thus workflows) with increasing speed and accuracy.

Further, we produced a replay method (RQ5) that assists in efficiently reusing the

produced data to create a more efficient learning method. Most replay methods for re-

inforcement learning take singular successful timesteps and replay them to the learning

agent to increase the amount of useful data in the system. We store full trajectories and

treat them as expert trajectories, as is done in imitation learning. These trajectories can

be used with behavioral cloning loss functions to increase the learning rate.

Chapter Four contains four main contributions:

C2: A new method to construct multi-step tasks with reinforcement learning. This

method produces hierarchical solutions to tasks without expert demonstrations.

C3: This method also produces embeddings which can be used to represent work-

flows in a vector representation. These vectors can then be used to perform analysis of

the distributed system that contains the workflows.

C4: Provides a new replay method that allows for more efficient learning with data in

reinforcement learning. By using self produced data as expert demonstration imitation

learning techniques can be used on top of reinforcement learning techniques.

C5: We also released a benchmark that involves tasks of a sequential nature and

additionally requires minimal compute power in comparison to other benchmark en-

vironments in the MTRL space.

Chapter Five uses a graph representation to produce workflows with reinforcement

learning (RQ4). In chapter Five, we treat workflows within a system as directed acyc-

lic graphs, and produce these graphs using a deep Q network. By adding all incoming
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edges to a node in one action, represented as a binary action, we find we can de-

crease the size of the action space, thus increasing the learning efficiency. This chapter

provides the final contribution of the thesis:

C6: This chapter demonstrates a new method to construct directed acyclic graphs us-

ing geometric deep learning combined with reinforcement learning. This demonstrates

an ability to produce workflows with minimal data outside of workflow application

success.

6.2 Future Work

In this section we discuss possible future research that has been motivated by work

conducted over the course of this thesis.

Future Direction 1 - Analysis of representation methods with labelled data sets.

First-and-foremost, in order to provide a truly representative and quantitative evalu-

ation of similarity matching, it is necessary to have labelled data of nodes/events/fragments

that are deemed similar by a human subject-matter expert. While semantic vector em-

bedding itself is unsupervised, its evaluation requires labelled data. In the absence of

this, however, we can proceed with proxy evaluations such as node classification and

link prediction as described in Section 3.3.

An avenue for future work is to incorporate work by Summers-Stay et al. on natural

language semantic vector spaces to enrich knowledge base queries and responses [113].

This would require ground truth in the form of example queries and expected responses

for the ontology of interest.

Another important step would be to carry out a thorough fine-tuned analysis of all

available models on a rich knowledge graph dataset, ideally a well known example
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knowledge graph, but with consideration of data preprocessing to determine if different

graph structures yield better performance with different approaches. As a separate—

but related—task these could be wrapped in the experimental user interface that we

built to rapidly explore different models and graphs in our experimental work so far.

For knowledge graphs that are comprised of disconnected fragments (e.g., a series of

disconnected events or reports) it is likely that kernel methods such as Subgraph2Vec

and Graph2Vec may be more appropriate than the individual node/edge-based ap-

proaches that have been highlighted in this chapter. A further study based on just

these methods could be conducted with a suitable knowledge graph.

Another promising direction is to explore time-respecting random walks for specific

phenomenological ontologies. This would require the knowledge graph to have edges

mapped to timestamps to create a continuous-time dynamic network on which the per-

formance of temporal link prediction could be assessed.

The capability for online learning may be very valuable with regards to graphs based

on observational ontologies, as these are constantly and dynamically updated in real-

time. Therefore, an inductive approach—such as GraphSAGE—could be highly ad-

vantageous. This technique learns embeddings that generalize to previously unseen

nodes. Research to explore heterogeneous extensions to these models that better cap-

ture ontology-specific semantics is highly recommended.

Finally, it could be useful to incorporate a notion of trust into graph databases based

on observational data. This would make use of DAIS-ITA research by Barclay et al.

on decentralized identifiers (DIDs) and verifiable credentials (VCs) to ratify claims

and qualities [5]. Potentially nodes and edges from observers and organizations could

be mapped to some scalar-level of trust derived from cryptographically signed VCs

and knowledge of DIDs of a group or network of trusted peers, in a similar way to

continuous-time models (see Section 3.2.2). This would mean that when an event is

observed and ratified by an increasing number of trusted observers, or by observers

who are deemed to be more trustworthy, it accumulates a higher trust level. Random-
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walk-based methods that act on such a graph could be biased towards edges with a

higher-level of trust, causing embedded representations of the graph to be give prefer-

ence to more highly trusted observations.

Future Direction 2 - Test the CPV-TER method with an enterprise framework for

increased testing. Testing of this method using an enterprise RL framework will in-

crease testing speed and ability. While RLLib and others were examined, the minimal

customisation ability in the trajectory rollout functions of these frameworks makes im-

plementation difficult.

Future Direction 3 - Investigate methods to expand this method for different graph

features including edge weightings and node features. Additionally further optimiza-

tion of the RL agent can increase learning efficiency.

For future work, a graph network that accounts for edge weights and continuous node

features needs to be developed.

A method that utilizes hierarchical reinforcement learning could significantly increase

the convergence rate for DAGs at scale by learning structures of subgraphs found in

generated graphs.

Further improvements to the base DQN could also be implemented, in particular multi-

step return calculations and dueling Q-networks as discussed in [42].

Finally an application to a specific problem domain would allow for a more detailed

reward design, and a more accurate test of this method.

6.3 Final Remarks

The motivation behind this thesis was to explore the use of machine learning tech-

niques, particularly reinforcement learning, for the construction and representation of
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workflows in large-scale distributed systems. As technology continues to advance, the

complexity and evolution of these workflows are increasing every day. We need auto-

mated and adaptable solutions to keep up with these changes and maintain optimal

performance, while also reducing operational costs.

Through a series of experiments and research, this thesis has demonstrated the effic-

acy of reinforcement learning for automating the construction of workflows. The use

of graph and vector-based representation learning techniques has also been explored,

resulting in better analysis of workflows within distributed systems. Additionally, new

replay methods for efficient learning with data and novel methods for constructing

directed acyclic graphs using geometric deep learning combined with reinforcement

learning have been proposed.

The contributions of this thesis provide valuable insights into the benefits of using re-

inforcement learning and representation learning for constructing and analyzing work-

flows in distributed systems. The use of these techniques has the potential to greatly

improve system performance and reduce operational costs by automating decision-

making processes, optimizing workflows, and reducing the need for manual interven-

tions.

The primary contributions of this thesis lie in the successful exploration and applica-

tion of reinforcement learning techniques to automate the construction of workflows

in distributed systems. Specifically, the investigation into graph and vector-based rep-

resentation learning has illuminated a path toward enhanced workflow analysis within

complex distributed environments. By devising novel methods like the Compositional

Plan Vectors (CPV) approach and employing reinforcement learning for constructing

directed acyclic graphs (DAGs), this thesis establishes a framework for efficient work-

flow automation and representation. These advancements represent not only technolo-

gical breakthroughs but also practical solutions that could significantly impact indus-

tries relying on efficient workflow management.

However, this thesis does acknowledge certain limitations that offer avenues for future
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exploration. One notable limitation pertains to the scalability of the developed methods

when handling vast and diverse datasets commonly encountered in real-world scen-

arios. Extending the research to address challenges related to large-scale distributed

systems and handling complex workflows in such environments represents a critical

next step. Additionally, while the introduced methods show promise, further refine-

ment is needed to account for intricate graph features, edge weightings, and continu-

ous node attributes in the construction and representation of workflows. Furthermore,

exploring hierarchical reinforcement learning techniques and enhancing the base Deep

Q-Network (DQN) models could substantially improve convergence rates and learning

efficiency for directed acyclic graphs (DAGs) at scale.

Among the most significant achievements of this thesis is the successful demonstration

of reinforcement learning’s potential in automating workflow construction, offering

a glimpse into the future of optimized decision-making in distributed systems. The

proposed methods for graph representation and vector embedding have showcased the

transformative impact on workflow analysis, setting the stage for streamlined opera-

tions and cost reduction in industrial settings. Notably, the innovative CPV approach

and the utilization of geometric deep learning combined with reinforcement learning to

construct DAGs stand out as pioneering methodologies with far-reaching implications

for workflow automation. These achievements underscore the potential for machine

learning to revolutionize workflow management in complex distributed systems.

In conclusion, this thesis has made significant contributions to the field of machine

learning for distributed systems. It has demonstrated the potential of using reinforce-

ment learning and representation learning for the construction and analysis of work-

flows, and provided new methods for achieving these goals. There is still much work

to be done in this area, but the findings of this thesis provide a solid foundation for

future research and development.
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