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Abstract—This paper presents a method for multi-object
tracking which provides estimates of the dynamic state of the
objects along with class identities. The estimated identities provide
information about the objects’ behaviour, improving high level
reasoning tasks. However, jointly estimating class assignments,
dynamic states and data associations results in a computationally
intractable problem. This paper proposes a probabilistic model
for the multi-object tracking and classification problem, and an
inference procedure that renders the problem tractable through a
variational approximation. Our framework integrates the efficient
Kalman filtering and smoothing recursions into a system that
considers the dynamics of the environment to leverage both track-
ing and classification. The method is evaluated and compared to
state-of-the-art techniques using stereo-vision data collected from
a moving platform in urban scenarios.

I. INTRODUCTION

Situational Awareness (SA) is a vital component for mobile
systems expected to work in dynamic environments [1]. SA
systems are typically designed using three levels of infor-
mation: perception, comprehension and projection [9]. The
perception level builds a ‘picture’ of the environment, the
comprehension level provides a ‘meaning’ to the different
elements and the projection level predicts their states in the
near future. For this paper, we focus on the first two. The
applications that we target are Autonomous Robots (AR) and
Advanced Driving Assistance Systems (ADAS). In the context
of these applications, Multi-Target Tracking (MTT) is the
procedure that, at a low level, provides information about
what objects of interest there are in the environment and their
behavioural characteristics [14].

Most of the approaches to tracking and classification de-
couple state estimation from identity assignment [3], [25], [11].
Hence, they neglect the natural correlations between object
dynamics and its categories. This paper presents a probabilistic
framework that provides joint inference of objects’ class and
states with unknown data association. Furthermore, this is done
by employing classic and efficient statistical estimation tech-
niques such as the Kalman filtering and smoothing recursions
[23].

A. Dynamic scene understanding

We decompose the dynamic scene understanding task as
follows. Firstly, the dynamics of specific object categories is
summarised by linear motion models. Secondly, estimates of
the objects’ kinematic states and their assignment probabil-
ities to the different motion patterns are obtained. Casting
dynamic scene understanding under this perspective has several

(a) Frame 6. Objects T4 and T2 are correctly classified as
car.

(b) Frame 10. T4 is lost due to occlusion and T5 is initialised.

(c) Frame 14. Our method recovers T4 by exploiting its
consistent dynamics before and after the occlusion.

(d) Class assignment probabilities for object T4 across time.
The top probability consistently corresponds to the class car.

Fig. 1: A car tracked and classified through an occlusion. Sub-
figures (b) and (c) show the estimated trajectories next to the
left stereo-image. Dots, asterisks and solid lines represent ob-
servations, per-class state hypothesis and estimated trajectories
respectively.



advantages, including the fact that it can boost state-of-the-
art appearance-based object classification methods [12], [26],
by exploiting motion information and temporal correlations in
the data. In addition, it provides a mechanism to exploit prior
knowledge about the objects’ dynamics.

In this paper, we represent motion patterns using Linear
Dynamical Systems (LDS). In our implementations, LDS are
learnt from labelled trajectories. Our method simultaneously
estimates the kinematic state and the class identity probabilities
of a set of test tracks (Fig. 1). Our system outputs state esti-
mates for all of the objects in the scene and soft assignments
of each target to the motion categories or classes.

We validate our approach with a publicly available dataset.
The data consists of a sequence of stereo images, collected
with a camera mounted on top of a car [13]. We present
a complete theoretical analysis of our approach, and the
steps to apply it to simultaneous multiple-target tracking and
classification. The specific contributions of this paper are:

• a model for dynamic scenes and a variational proce-
dure to perform approximate inference on this model;

• the Expectation-Association (EA) algorithm: a method
for performing data association, state estimation and
class identity assignment in a joint probabilistic fash-
ion. It addresses both the offline and online schemes;

• solving the data association problem by fusing appear-
ance features with dynamic information in a unified
probabilistic framework;

• validation of the theoretical approach with real data
collected in an urban environment.

The paper is organised as follows. Section II presents a
review of related work. Section III describes our probabilistic
model for describing dynamic scenes. In Section IV we present
our variational approximation with an extension to the online
case. Finally, experimental results are presented in Section V
followed by conclusions in Section VI.

II. RELATED WORK

Multi-target tracking is a well-known problem in the
robotics community and many publications on the matter have
been produced [10], [20], [21], [7]. In general, they estimate
the target’s states and data associations without an explicit as-
signment to categories. Complete tracks obtained from an inde-
pendent tracking system are classified using either similarity-
based clustering techniques [16] or Hidden Markov Models
[3], [11]. Some exceptions to this trend of separating tracking
and classification are [24], [22], [1]. The work proposed here
is similar in spirit to these later papers. Namely, [24] applies
a method for joint decision and estimation to the problem of
tracking and classification in a hypothesis testing framework,
but assumes known data association. Conversely, our approach
seamlessly infers data association with the objects states.

In [22], an approach that performs sampling-based infer-
ence on Segmental Switching Linear Dynamic System (S-
SLDS) models was presented. Sampling methods can be
computationally demanding and thus prohibitively slow [5].

Therefore, we have opted for a variational method, where ana-
lytical approximations of the posterior of interest are obtained1.

From a theoretical perspective, the work presented in this
paper is similar to that of [15], where a variational method
for multi-target tracking with unknown data association is
presented. A key difference, however, is that [15] only consid-
ers a single model, common to all the targets. Our approach
utilises a bank of models learnt from data. In other words, our
framework produces soft assignments of objects to a set of
predefined patterns. Additionally, the results presented in [15]
were obtained from synthetic data only, whereas we exten-
sively evaluate our method using stereo images from an urban
scenario. The work presented in [8] presents an offline tracker
that uses dynamics to create object trajectories by associating
small sub-tracks when no appearance information is available.
Similarly, our work creates object tracks by enforcing smooth
trajectories across time. Our method also works online and
provides a theoretical method to integrate appearance and
dynamic information for solving both the classification and
data association problem.

Other approaches to multi-object tracking are based on
Random Finite Set (RFS) to represent the objects state. A
tracking framework based on the Gaussian Mixture imple-
mentation of the Cardinalised Probability Hypothesis Density
(GMCPHD) filter [19] was presented in [17]. This work uses
appearance to classify tracks. In contrast our framework allows
to incorporate dynamic information as well as appearance.

III. MODEL OVERVIEW

Within our framework, estimating the state of multiple
objects boils down to solving three interleaved problems,
namely class identity assignment, state estimation and data
association.

We propose the generative graphical model presented in
Fig. 2. In this model, Θ represents the model parameters,
which are learnt from data; Each node Sk is a categorical
random variable used for indexing 1 of Ns models representing
different motion patterns. Xk

t is a continuous random variable
representing the state of target k at time t, and Zt are the
observations at time t. Finally, At is a set of Nz,t categorical
variables modelling the association between observations and
tracked targets. We further define the following sets of random
variables:

S =
[
S1...SNx

]
; X =

[
X1

1:T1
...XNx

1:TNx

]
;

A = [A1...AT ] ; Z =
[
Z1
1:Nz,1

...ZT
1:Nz,T

] (1)

where Nz,t is the number of detections at time t; Tk is the
size of track k and T the size of the entire tracking sequence.

IV. THE EXPECTATION-ASSOCIATION ALGORITHM

The joint probability distribution for our model (Fig. 2) can
be written as:

p (S,X,A,Z) =

p(S)

T∏
t=1

p (Xt|Xt−1, S)

T∏
t=1

p(Zt|Xt, At, S)

T∏
t=1

p(At), (2)

1Please note that a comparison against sampling methods for approximate
inference is not within the scope of this paper.



Fig. 2: Two time slices of our Graphical Model. Squared and
circular nodes represent categorical and continuous random
variables respectively. Unfilled nodes indicate hidden variables,
while filled nodes are observed

in which the factors are, from left to right, the prior class as-
signment probabilities, the state transition and the observation
distributions and the prior association probabilities.

We would like to estimate the posterior p(S,X,A|Z) over
classes, targets states and associations by maximising the
likelihood of the data. The log likelihood of the data is obtained
by marginalising out the set of hidden variables (S,X,A) given
a model (Θ) and a set of data (Z):

ln p(Z) = ln
∑
S,A

∫
p (S,X,A,Z) dX (3)

Unfortunately, this integral is both analytically and computa-
tionally intractable due to the coupling between variables.

To get a better insight into this issue, let q(S,X,A) be
a probability density function that approximates the exact
posterior p(S,X,A|Z). By expressing ln p(Z) as

ln
∑
S,A

∫
q (S,X,A)

p (S,X,A,Z)

q (S,X,A)
dX (4)

and applying Jensen’s inequality [5] we arrive at a lower bound

ln p(Z) ≥
∑
S,A

∫
q (S,X,A) ln

p (S,X,A,Z)

q (S,X,A)
dX = L [q]

(5)
on the marginal log-likelihood (Eq. (3)) of the target observa-
tions under our model. This inequality holds for any choice
of q. In particular, if q(S,X,A) equals the true posterior
p(S,X,A|Z), then Eq. (5) becomes an equality. By using the
d-separation criterion [5] it can be seen that, although multi-
target’s states and associations are marginally independent,
they become conditionally dependent given the observation
sequence. As a result of these dependencies, the posterior
is a mixture distribution where the number of components
increases combinatorially with the number of targets and
exponentially with time.

Since the exact posterior is computationally intractable, we
propose approximating it with a probability density function
q that separates classes and states from data associations.
Therefore it factorises as follows:

q (S,X,A) = q(S,X)q(A). (6)

This factorisation does not imply that we are ignoring the
interactions between states/classes and associations. It rather
means that our approximation does not capture any ambiguities
that remain once the entire sequence of data has been observed.
In the context of our application, object trajectories tend to be
temporally coherent, so that, given the data in a reasonably
big estimation window, the estates and class identity of the
objects can be estimated independently of the data association
(See Fig. 3).

Fig. 3: An intuitive explanation of our variational approxima-
tion. We assume that, once entire trajectories are observed,
there are no ambiguities about the association between object
states and observations.

Unlike the exact posterior, our approximate solution in Eq.
(6) is computationally tractable. We derive the expressions for
the factors in Eq. (6) by maximising Eq. (5). As shown in [5],
the log of the optimal solution for factor qj is obtained by
considering the log of the joint distribution over all variables
and then taking the expectation with respect to all of the other
factors qi for i 6= j.

Factors q(S,X) and q(A) are updated as explained in Sub-
sections IV-A and IV-B respectively, cycling through them un-
til convergence. We call this iterative process the Expectation-
Association (EA) algorithm and introduce its batch version
with the pseudo-code in Algorithm 1. Eqs. (9)-(11) make
clear the intuition behind our approximation: Once a complete
track k has been observed, its state, class assignment and
associations to observations can be estimated independently.

A. The Expectation Step (E-step)

The first factor of our variational factorisation is q(S,X).
By maximising the lower bound (Eq. (5)) we obtain an
expression for the q factor that relates motion patterns to
target states. From Eq. (9) and Eq. (10) one can see that the
optimal q(S,X) is a Gaussian mixture distribution, with one
component for each motion pattern.

Since the distribution in Eq. (9) has a quadratic form, it
is efficiently calculated using the Kalman filter (KF) and the
Rauch-Tung-Striebel (RTS) smoother [23]. In this expression,
the term Z

k

t , given by



Algorithm 1 The batch EA algorithm
1: Models← Fit LDSs to training trajectories indicative of motion

patterns in the environment.
2: q(A)← Initialise observation-to-target association probabilities.
3: procedure E-STEP(Models, q(A))
4: Z

k
t ← Calculate per-target average observation.

5: R
k,j−1

t ← Calculate per-target/per-model observation noise
covariance.

6:
∑Tk

t=2 l
k,j
t ← Perform filtering and obtain innovation log-

likelihoods.
7: q(X|S) ← Run RTS smoother and obtain per-model poste-

rior over targets states.
8: q(S)← Calculate marginal over class assignments.
9: end procedure

10: procedure A-STEP(Models,q(S,X))
11: q(A)← Update the association probabilities.
12: end procedure
13: Repeat until convergence.

Z
k

t =

∑Nz

l=1 q
(
al,kt

)
Zl
t∑Nz

l=1 q
(
al,kt

) , (7)

is a weighted average of the observations with weights pro-
portional to the posterior association probabilities of all the
observations and target k. Additionally, Eq. (9) can be seen as
an LDS parametrised by Xj

0 , Cov(Xj
0), F j , Qj , Hj and the

average observation noise covariance matrix

R
k,j−1

t =

Nz∑
l=1

q
(
al,kt

)
Rj−1

. (8)

Note that the marginal over the assignment variables in Eq.
(10) is obtained by updating the prior over class assignments
with the marginal log-likelihood of the data under the model
j. This log-likelihood can be obtained as a by-product of the
E-step. It is equal to the sum of the innovation log-likelihoods
lk,jt computed during each correction or update step by the
Kalman filter on the jth LDS.

Accumulating these innovation log-likelihoods, after per-
forming filtering with each of the models, allows us to infer the

assignment of targets to motion patterns. Furthermore, since
Kalman filtering provides these innovation log-likelihoods
each time an observation is processed, evidence about class
assignments can be sequentially updated. This is fundamental
for applying our framework to online tracking.

B. The Association Step (A-step)

The second factor of our variational factorisation is q(A).
The initial factorisation in Eq. (6) results in other factorisations
across time and within observations. Note that these are
induced factorisations, i.e., they do not concede additional
accuracy and are exact given the initial assumption in Eq. (6).
Therefore, the natural logarithm of q(A) can be expressed as:

ln q(A) =

T∑
t=1

Nz∑
l=1

ln q
(
alt
)
, (12)

where alt is a categorical random variable over the associations
of detection l to the tracked objects at time t. We obtain each
of the sub-factors in Eq. (12) by maximising Eq. (5) with
respect to q(alt) as explained at the beginning of Section IV.
In these factors, given by Eq. (11), X̂k,j

t is the smoothed state
of the targets. Note that q(A) depends on the square of the
error between expected and actual observations. Moreover the
log-likelihood of assigning target k to observation l at time
t decreases when the uncertainty about the state of target k
(state covariance) increases.

Another advantage of our formulation is that it allows us
to integrate appearance and dynamics when calculating the
association between observations and targets. In most cases,
there are several sources of information about the association
between targets and observations. The prior over associations
q(alt) can be calculated, for example, based on appearance
features; the inference algorithm then computes the posterior
by seamless fusing this prior with evidence from the target’s
dynamics.

C. Innovations Accumulation: The Online EA Algorithm

Although our model reasons on entire trajectories, the form
of the factors in our approximation lend themselves to an

ln q
(
Xk

1:T |Sk = j
)
∝− 1

2

( Tk∑
t=1

(
Xk

t − F jXk
t−1

)T
Qj−1

(
Xk

t − F jXk
t−1

)
+
(
skt −HjXk

t

)T Nz∑
l=1

q(al,j
t )Rj−1

(
Z

k
t −HjXk

t

)) (9)

ln q(Sk,j) ∝ ln p(Sk,j) +

Tk∑
t=2

lk,jt (10)

ln q
(
al,k
t

)
∝ ln p

(
al,k
t

)
− 1

2

( Ns∑
j=1

q
(
Sk,j

)((
Zl

t −HjX̂k,j
t

)T
Rj−1

(
Zl

t −HjX̂k,j
t

)
+ Tr

(
HjT Rj−1

HjCov
(
X̂k,j

t

)))) (11)



online estimation algorithm. As shown in Eq. (10), the assign-
ment probabilities are obtained by accumulating the innovation
likelihoods of the targets under each of the models. Therefore,
when applying our method online, we simply filter each track
using each of the models and accumulate their innovation
likelihoods so that the class assignment probabilities can be
recalculated at each time step.

Regarding the A-step, the association factors are updated
using entire smoothed trajectories. Nevertheless, we use the
filtered states as in [15], but also perform fixed-lag smoothing.
Even though we are maximising a local version of the lower
bound (from time 1 to t), i.e., with respect to a subset of
all of the random variables of the batch case, the algorithm
still converges. The entire tracking process is summarised in
Algorithm 2.

Algorithm 2 The online EA algorithm
1: Models← Fit LDSs to training trajectories indicative of motion

patterns in the environment
2: for t← 1, T do
3: q(At)←Initialise association probabilities
4: Z

k
t ← Calculate per-target average observation.

5: R
k,j−1

t ← Calculate per-target/per-model observation noise
covariance

6: procedure E-STEP(Models,q(At),Z
k
t ,R

k,j−1

t )
7: q(Xt|St)← Perform filtering
8:

∑
lk,j1:t ← Accumulate innovation log-likelihoods.

9: q(St)← Calculate class assignment probabilities
10: end procedure
11: procedure A-STEP(Models,q(S,Xt))
12: q(At)← Update the association factors using the filtered

states.
13: end procedure
14: Perform E-step with the updated associations.
15: Perform Fixed-lag Smoothing.
16: end for

V. EXPERIMENTAL RESULTS

We applied the online version of the proposed EA al-
gorithm to stereo vision-based tracking and evaluated its
performance on the public KITTI dataset [13]. The dataset,
which is conformed by a total of 20 sequences, contains
a significant number of pedestrians and cars interacting in
the field of view of a moving platform. The position of the
ego-vehicle and labels with ground-truth detections (bounding
boxes) of the objects in the scene are provided. Detections
also convey ground-truth information about the object class
and data association across time. We selected a set of 15
trajectories per object category from sequences S02−S09 for
training. These sequences have an average size of 300 frames.
Sequences S11 and S19 were utilised for testing purposes,
each of which are 372 and 1059 frames long respectively.

Subsection V-A explains the process by which the dictio-
nary of motion models is obtained. Then, for the quantitative
evaluation, we calculate the Multiple Object Tracking Accuracy
(MOTA) [4] and Mostly-Tracked (MT) / Mostly-Lost (ML)
trajectories [18] metrics, which are evaluation metrics com-
monly used by the target tracking community. In the KITTI
benchmark [13] these same metrics were reported for some

state-of-the-art approaches to MTT. Finally, we report on the
classification and capabilities of the method.

A. Training

Object classes for the training were chosen to be Car,
Cyclist and Pedestrian which, are a subset of all the object
categories contained in the KITTI dataset (eight in total). Each
training instance consists of a sequence of temporally ordered
features extracted from the segmented point cloud of an object
in the scene at every time step (See Fig. 4).

Firstly, a point cloud of the entire scene is obtained by
stereo processing the left and right images at time t. Secondly,
segments of 3D points are extracted from the windows defined
by the bounding boxes that accompany the detections. Seg-
ments are further filtered by organizing them into an Octree
and deleting points that fall into bins with a depth of 1. We
found that this procedure cleans sparse and disconnected sets
of points that in a segment usually correspond to noise. Using
the association and object category ground truth provided with
the dataset, point clouds are organised into feature trajectories.
Fig. 4 illustrates the process just explained and shows a se-
quence of point cloud segments corresponding to one training
sequence.

(a) Stereo pair with detections annotated on left image

(b) Depth image from the stereo processing and individual
object segmentations

(c) Sequence of filtered point clouds and image patches

Fig. 4: Features extraction and a training instance.

After extracting all of the training trajectories, a set of
LDS models per object category are fitted by means of the
EM algorithm. From those models, the matrices F and Q that
parametrise the state transition probabilities and the prior over
initial states (X0) are learnt. In this application, the model
parameters H and R are shared by all of the motion models
due to the fact that only one sensor is used and the model
between states and observation features is known.

B. Object detection

During tracking, object detections are obtained at every
time step. At time t, the entire scene is segmented into coarse
semantic categories following [6]. One of these categories


