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Abstract
The development of mathematical models for studying newly emerging and re-
emerging infectious diseases has gained momentum due to global events. The
gyrodactylid-fish system, like many host-parasite systems, serves as a valuable
resource for ecological, evolutionary, and epidemiological investigations owing to its
ease of experimental manipulation and long-term monitoring. Although this system
has an existing individual-based model, it falls short in capturing information about
species-specific microhabitat preferences and other biological details for different
Gyrodactylus strains across diverse fish populations. This current study introduces
a new individual-based stochastic simulation model that uses a hybrid τ -leaping
algorithm to incorporate this essential data, enhancing our understanding of the
complexity of the gyrodactylid-fish system. We compare the infection dynamics of
three gyrodactylid strains across three host populations. A modified sequential-type
approximate Bayesian computation (ABC) method, based on sequential Monte Carlo
and sequential importance sampling, is developed. Additionally, we establish two
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penalised local-linear regression methods (based on L1 and L2 regularisations) for
ABC post-processing analysis to fit our model using existing empirical data. With
the support of experimental data and the fitted mathematical model, we address open
biological questions for the first time and propose directions for future studies on
the gyrodactylid-fish system. The adaptability of the mathematical model extends
beyond the gyrodactylid-fish system to other host-parasite systems. Furthermore, the
modified ABC methodologies provide efficient calibration for other multi-parameter
models characterised by a large set of correlated or independent summary statistics.

Keywords Individual-based model · Approximate Bayesian computation ·
Tau-leaping simulation · Host-parasite modelling · Gyrodactylus

1 Introduction

1.1 Background of the Study

Mathematical modelling and simulation play an increasingly crucial role in theoreti-
cal and applied ecology (Berec 2002). Applied mathematical models for host-parasite
systems have evolved in response to the growing understanding of complex biological
processes and the need for a more quantitative comprehension of such systems (Berec
2002; Grimm and Railsback 2005; Kaazempur-Mofrad et al. 2003; Twumasi et al.
2019). The use of individual-based modelling in population dynamics is a popular
approach within contemporary theoretical ecology (Berec 2002), albeit its applica-
tion in parasitological studies has been limited thus far (Gaba et al. 2006; Louie
et al. 2007). This study builds upon our previous work (Twumasi et al. 2022), which
focused on modelling a gyrodactylid-fish system to explore the spatial and temporal
dynamics of two distinct co-infecting gyrodactylids (Gyrodactylus turnbulli and G.
bullatarudis). Through re-analysing empirical data, our earlier study addressed three
open biological questions related to this host-parasite system:microhabitat preferences
of parasites, host survival, and parasite virulence over time. Twumasi et al. (2022)
identified strain-specific microhabitat preferences, determined key factors influenc-
ing host survival, and quantified host-specific parasite virulence as a function of host
mortality and recovery. However, the previous study did not incorporate spatial infor-
mation and other relevant factors such as parasite fecundity, age group (young or old
parasites), parasite mortality, parasite mobility, and host immune response. While a
previous parasitological study developed an individual-based model (IBM) for this
system (Oosterhout et al. 2008), their model lacks a comprehensive consideration
of species-specific microhabitat preferences and other biological details for various
Gyrodactylus strains across diverse fish populations (as discovered in Twumasi et al.
(2022)). This highlights the need for amore robust and reproducible (individual-based)
stochastic simulation model to address these gaps and enhance our understanding of
the complex gyrodactylid-fish system.

In this current study, we present a new individual-based stochastic simulationmodel
to explore the infrapopulation dynamics of a biological system over a standard 17-
day experimental period. The model is designed to leverage the relative advantages
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of both IBMs and population-based models (PBMs). The infection dynamics of three
different parasite strains are compared across three distinct fish populations over time.
Based on a multi-dimensional continuous-timeMarkov chain (CTMC), our stochastic
model employs a hybrid τ -leaping simulation algorithm to enhance computational
speed. Developed for the gyrodactylid-fish system, this simulation model aims to
provide a relatively realistic representation of the biological system. Its goal is to
facilitate the understanding of specific infection outcomes and address challenging
experimental scenarios. The foundation of our simulator also rests on the mathemati-
cal and biological insights gained from our previously published study (Twumasi et al.
2022). A significant contribution of this current study is the provision of model-based
statistical inferences for this system. For the first time, our study focuses on mathe-
matically investigating: (i) gyrodactylids’ birth rates (for young and old parasites), (ii)
species-specific death rates (in the presence or absence of an immune response), sex-
specific mortality rates, (iii) host-specific immune response rates, (iv) species-specific
movement rates, and (v) the effective parasite population carrying-capacity per fish
host.

Approximate Bayesian computation (ABC) stands out as a widely-used likelihood-
free estimation method, particularly in biological sciences and various fields, to fit
complex models in simulation studies (Toni et al. 2009; Aryal and Jones 2020;
Cisewski-Kehe et al. 2019; Corander et al. 2017; Christopher et al. 2021; Csilléry
et al. 2012; McKinley et al. 2009; Wilkinson and Tavaré 2009). ABC methods find
their application in modelling scenarios where the likelihood function of a model (Cox
2006) is either mathematically intractable or computationally expensive to evaluate.
This approach approximates the true posterior distribution by summarising the data,
often high-dimensional, using low-dimensional summary statistics. This simplifies the
comparison between simulated and observed data, facilitated by a discrepancy distance
measure (Li and Fearnhead 2018). The effectiveness of ABC hinges on the careful
selection of summary statistics, a suitable distance metric, and the implementation
of a Monte Carlo sampler (Li and Fearnhead 2018). Balancing the dimensionality of
summary statistics is crucial; too many may distort the posterior approximation due to
a low acceptance rate, while too few may result in a loss of data information (Prangle
2015). The quality of the posterior approximation is intricately tied to these choices.
Beyond the basic ABC rejection algorithm (Pritchard et al. 1999), several improved
versions have emerged, incorporating techniques like sequential Monte Carlo (SMC),
Markov chain Monte Carlo (MCMC), sequential importance sampling (SIS), and
regression-adjusted ABC samplers for posterior correction. These advancements aim
to enhance computational efficiency, sample particles from regions of high posterior
probability, ensure convergence to the true posterior, and broaden the applicability of
ABC (Beaumont et al. 2002; Toni et al. 2009; Prangle 2015; Filippi et al. 2013). A
substantial body of literature exists on ABC samplers, covering theoretical aspects
of the resulting posterior distribution and its convergence (Twumasi 2022; Toni et al.
2009; Sisson et al. 2018; Filippi et al. 2013).

The current study introduces a modified ABC-SMC algorithm (dubbed weighted-
iterative ABC), adapted from Filippi et al. (2013), and two penalised local-linear
regression methods, utilising L1 and L2 regularisations. These additions aim to
enhance the fitting of our model to high-dimensional empirical data. The penalised
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regression methods serve as robust extensions to the standard local-linear regres-
sion (proposed by Beaumont et al. (2002)) for ABC post-processing analysis. They
address the imperfect match between simulated and observed data following ABC
calibration, accommodating dependent or independent sets of summary statistics. For
example, Beaumont et al.’s Beaumont et al. (2002) ABC posterior correction method
faces implementation challenges due to matrix singularity issues arising from multi-
collinearity among simulated summaries in the neighbourhood of observed summaries
or supercollinearity (when the number of ABC regression predictors exceeds the num-
ber of accepted ABC particles) (see Twumasi (2022), pp. 167–170). In this study, we
also justify the necessity of our ABC regression-adjusted methods for other mod-
elling problems by comparing high-dimensional simulated data using the unadjusted
posterior (from themodified ABC-SMC sampler) and the corresponding adjusted pos-
terior samples (based on our proposed penalised ABC correction methods) relative
to the observed data within a reduced dimensional space. Finally, adopting a recently
developing Bayesian hypothesis testing framework where the decision rule integrates
estimated credible intervals and a region of practical equivalence, we address other
open research questions of biological relevance based on the best-adjusted posterior
samples following model identifiability and posterior predictive checks.

1.2 Paper Structure, Research Questions and Study’s Limitations

This study is organised into four main sections. Section1 summarises the study’s
background, paper structure and research questions. In Sect. 2, we first describe the
empirical data used in the study and then present our stochastic simulationmodel along
with the proposed ABC methodologies. Under Sect. 3, we present the results of the
ABCmodel fitting for our proposed simulation model based on both pseudo-observed
(from our model) and observed experimental data (described in Sect. 2.1), respec-
tively. Additionally, we include results from multivariate posterior predictive checks,
employing Principal Component Analysis (PCA) and Principal Coordinate Analysis
(PCoA), respectively. Bayesian hypothesis test results are also detailed. Finally, the
concluding Sect. 4 presents discussions of main findings, conclusions, limitations, and
recommendations for future works.

The study attempts to provide answers to the following five major research ques-
tions:

1. Are the birth rates (for young and old parasites) and death rates (with or without
immune response) ofGyrodactylus parasites significantly different across the three
parasite strains?

2. Is the adaptive immune response from gyrodactylid infection progression, host sex
and host stock dependent?

3. Is the mortality rate of male fish with gyrodactylid infection significantly higher
than female fish?

4. Are the microhabitat preferences of Gyrodactylus turnbulli and G. bullatarudis
parasite species driven by their rate of movement on their fish host?

5. What is the effective population carrying capacity ofGyrodactylus parasites at the
major body regions of their fish host?
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2 Methods

2.1 Description of the Empirical Data

The observed parasite data utilised in the current study for model fitting were derived
from the experimental investigation conducted by Cable and Oosterhout (2007). This
dataset formed the basis for the IBMpresented inOosterhout et al. (2008) and the recent
study on spatial-temporal parasite dynamics by Twumasi et al. (2022). To provide
a brief overview, the experimental design involved 157 guppies in a full factorial
design with nine distinct host-parasite combinations, comprising 13 − 22 replicates
per combination. Three different parasite strains were used to infect three different fish
stocks: Ornamental Stock (OS), Lower Aripo River fish (LA), and Upper Aripo River
fish (UA). However, five of the 157 guppies died before the observation or infection
period, resulting in 152 guppy fish considered in the current study for model fitting,
each with at least post-baseline data. The Gyrodactylus parasites included two strains
of Gyrodactylus turnbulli: a laboratory-bred strain (Gt3) and a wild turnbulli strain
(Gt). The second species was a wild-type strain ofG. bullatarudis (Gb). Guppies were
individually isolated, maintained under constant environmental conditions, and bred
in a parasite-free environment, with tanks and containers arranged in a randomised
block design. The total numbers of male and female guppy fish were 65 and 87,
respectively. Each fish was initially infected with two parasites of the same strain,
and parasite counts were recorded every two days (starting from day 1 after baseline
infection) over a standard 17-day experimental period. The total number of parasites
was recorded across eight distinct body regions (tail fin, lower body, upper body,
anal fin, dorsal fin, pelvic fins, pectoral fins, and head) for each fish host. Additional
laboratory experiments collected data on the surface area of each of the eight body
regions of some selected guppy populations (and recorded across fish sex and fish
stock).

2.2 Proposed Stochastic SimulationModel

2.2.1 Introduction

Before formally defining our new stochastic simulation model for the gyrodactylid-
fish system, we present a rationale for adopting a continuous-time Markov Chain
(CTMC) and outline additional biological motivations influencing modelling consid-
erations. Now, CTMCs are commonly used for modelling biological systems with
low population counts and high uncertainty in state transitions (Banks et al. 2012).
While gyrodactylid mean intensities are generally low in guppy populations; infec-
tion dynamics vary across parasite strains and fish populations (Twumasi et al. 2022).
Therefore, a CTMC simulation model for the gyrodactylid-fish system can capture its
stochastic nature and incorporate complexities given the empirical data.

Due to the hyperviviparous nature ofGyrodactylus parasites, they give birth to fully
grown and pregnant young parasites. This reproductive process can rapidly increase
the population or induce infections in their host within a short period (Bakke et al.
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Fig. 1 Transition diagram across the four major body regions of fish used as states for the CTMC model
for a single parasite

2007). Consequently, in the current study, we differentiate between young and old
parasites in our simulation model, considering a mother as old and a newly born
parasite as young before conception. In addition, as parasite numbers increase at the
body region of a host, an immune response can be produced as the infection progresses,
with non-response for some fish hosts. Hence, immune response is also considered
as another realistic event in our simulation model (which may or may not occur for
some fish). The formal mathematical definition of the new simulation model for the
gyrodactylid-fish system is presented in Sect. 2.2.2.

2.2.2 Model Framework

The model simulates the movement of parasites, conditioned on relevant information
such as fish sex, fish size, fish stock, and parasite strain, for two age groups (young and
old parasites) over the external surfaces (i.e., fourmajor body regions as recommended
byTwumasi et al. (2022)) of afish throughout a 17-day infectionperiod.Thepopulation
carrying capacity depends on the host size and the area of body regions. Figure1
illustrates the four major body locations: tail, lower region (comprising the lower
body, anal fin, pelvic fins, and dorsal fin), upper region (composed of the upper body
and pectoral fins), and the head for a single host in the stochastic model.

The model is parameterised by the birth, death, and movement rates of young and
older parasites, considering the presence or absence of the host’s immune response.
Host death is assumed to occur at a rate proportional to the total number of parasites
on the fish. Additionally, the stochastic model incorporates parasite body preference,
which depends on the parasite strain (microhabitat preference).Model parameters also
include the preference for parasites tomove back and forth on the host and the effective
carrying capacity (total parasites that can occupy a body location). It is essential to
acknowledge that the omission of any time index t in a time-dependent quantity in
certain instances (in the subsequent model description framework) is motivated by
the desire for simplicity, notwithstanding that we assume the process exhibits time
homogeneity. However, it is crucial to emphasise that, despite this simplification, the
system maintains its dynamic and time-dependent nature (where applicable).

Now, suppose individual gyrodactylid parasite on a fish can transition between the
four discrete states or major body locations: tail (state 1), lower region (state 2), upper
region (state 3) and head (state 4) as represented by the transition diagram (Fig. 1). For
a single fish, let {A j,k(t); t ≥ 0} be 4× 2 matrix denoting the number of gyrodactylid
parasites at body location j ( j = 1, 2, 3, 4) per parasite age group k (k = 1, 2) at any
time t ; where k = 1 represent young parasites (daughter yet to reproduce) and k = 2
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denote old parasite (mother). Let {X j (t); t ≥ 0} be the total number of young and old
gyrodactylid parasites at any time t at the j th body location of a fish from any parasite-
fish group (i.e., Gt3-OS, Gt3-LA, Gt3-UA, Gt-OS, Gt-LA, Gt-UA, Gb-OS, Gb-LA

or Gb-UA); such that X j (t) =
2∑

k=1
A j,k(t) for t ∈ [tu−1, tu) (where u = 1, 2, · · · , 9

are observed time indices). For simplicity, let X j (t) = X j ; then for each fish, we
have observations X j = {

X j0, X j1, · · · , X j9
}
at times t0 = 0, t1 = 1, t2 = 3, · · · ,

t9 = 17.
Let zh = {zh1, zh2, zh3} be the respective realised values of the covariates: fish sex,

fish size and fish stock, for fish h; where h = 1, 2, · · · , nl with nl denoting the total
number of parasites in the lth parasite-fish group (with 1 ≤ l ≤ 9). Let also assume that
I j (t) = I j → {0, 1} is an (unobserved) indicator function representing the immune
state of the j th body region of a host at time t ; such that 0 indicates the absence of
immune response, while 1 implies the presence of immune response. To generalise
for all fish, let suppose that {A(h)

j,k(t); t ≥ 0} is a multidimensional time-homogeneous

Markov chain, and S(h)(t) = S(h)
t denotes its state vector at time t for the hth fish.

Assuming K parasite age groups (a total of 2), J body regions (a total of 4), I immune
states (a total of 2), and W host mortality states (a total of 2), then the state space S(h)

t
is defined as a multidimensional vector with J × K × I × W components, denoted

as S(h)
t =

(
s(h)
t, j,k,i,w

)
for 1 ≤ j ≤ J , 1 ≤ k ≤ K , 1 ≤ i ≤ I , 1 ≤ w ≤ W ; where

s(h)
t, j,k,i,w represents the number of parasites per age group k at body region j with
immune state i and host mortality state w for fish h.

For an individual fish h at any time t , we therefore assume that A(h)
j,k(t) = A(h)

j,k
satisfies the stochastic scheme defined by Table1; where bgk(I j ) is the birth rate for
the gth parasite strain (for 1 ≤ g ≤ 3) aged 1 ≤ k ≤ 2 (which depends on the
immune state I j at body region j), dgi is the death rate for gth strain at immune state
0 ≤ i ≤ 1, m(I j ) is a parasite’s movement rate (which depends on I j ), εg is the
movement rate adjustment for the gth strain, r(zh1, zh3) is the immune response rate
by a single parasite (which depends the fish sex zh1 and fish stock zh3), s(zh1, zh2) is
the fish mortality rate caused by a single parasite (which depends on the fish sex zh1
and fish size zh2), ξ( f j , zh2, κ) is the population carrying capacity (which depends on
the area of body region f j , fish size zh2 and the effective carrying capacity per unit
area of each body region, κ). The main model parameters of underlying the stochastic
simulation to be estimated are described in Table2.
The probability that a single parasite will move between the four major body regions
of fish within the simulation model (Jtransition) is assumed to be constant over time (as
shown in Fig. 1), and it is given as

Jtransition =

⎛

⎜
⎜
⎝

Tail Lower region Upper region Head

Tail 0 1 0 0
Lower region 1

2 0 1
2 0

Upper region 0 1
2 0 1

2
Head 0 0 1 0

⎞

⎟
⎟
⎠.
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Table 2 Main model parameters of the CTMC stochastic simulation

Parameters Description

Base simulation parameters

b11 Birth rate for young Gt3 parasites

b12 Birth rate for old Gt3 parasites

b21 Birth rate for young Gt parasites

b22 Birth rate for old Gt parasites

b31 Birth rate for young Gb parasites

b32 Birth rate for old Gb parasites

d11 Death rate for Gt3 parasites without host
immune response

d12 Death rate for Gt3 parasites with host
immune response

d21 Death rate for Gt parasites without host
immune response

d22 Death rate for Gt parasites with host immune
response

d31 Death rate for Gb parasites without host
immune response

d32 Death rate for Gb parasites with host
immune response

m Movement rate for a single parasite

r Immune response rate caused by a single
parasite

s Host mortality rate caused by a single
parasite

κ Effective carrying capacity per each body
region

Additional simulation parameters

ε1 Movement rate adjustment for Gt3 parasites

ε2 Movement rate adjustment for Gt parasites

ε3 Movement rate adjustment for Gb parasites

r1 Immune response rate adjustment for LA
fish (ref: UA fish)

r2 Immune response rate adjustment for OS fish
(ref: UA fish)
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Table 2 continued

Parameters Description

r3 Immune response rate adjustment for male
fish (ref: female)

s1 Host mortality rate adjustment for male fish
(ref: female)

The specific underlying assumptions of the CTMC simulation model are as follows:

1. The birth rate of young parasites are greater than the old parasites’ birth rate.
2. The death rate of young and old parasites are assumed to be equal but higher in

the presence of host immune response.
3. The birth rate per age as well as the death rate with or without host immune

response depend on the parasite strain.
4. Host mortality occurs at a rate proportional to the total number of parasites on the

body of the fish, fish sex and fish size.
5. The rate of movement of each parasite depends its age, strain and host immune

response.
6. Localised host immune response at each body region occurs at a rate proportional

to the effective population carrying capacity per unit area, fish sex and fish stock.
The localised immune response can also occur at any time within the observed
infection period.

7. The fish size is measured by its standard length, and the unit area of the host’s
body regions depends on its size and sex.

8. The population carrying capacity depends on the unit area of the host’s body
regions, fish size and the effective carrying capacity (maximumnumber of parasites
per unit area of body regions).

9. The transition or event rates are time-homogeneous and dependent on the current
state of the process (independent of past states) within any infinitesimal amount
of time or time step of the τ -leaping simulation.

2.3 Hybrid �-Leaping Algorithm for theMultidimensional CTMC SimulationModel

The CTMC stochastic simulation model is developed using a hybrid τ -leaping algo-
rithm whose leap size, τleap, is given by Eq.1 (adapted from Twumasi (2022), pp.
129–146); such that

τleap = min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε(b̄ + d̄)

|(b̄ − d̄)|max(b̄, d̄)
,

ε2(b̄ + d̄)2

[
4∑

j=1

2∑

k=1
A(h)
j,k

]

(b̄ + d̄)max(b̄2, d̄2)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (1)
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where b̄ is the average birth rate of young and old parasites, d̄ is the average death
rate of parasites in the presence or absence of host immune response, and ε is the
error bound of the τ -leaping algorithm (set at ε = 0.002; see Supplementary S2 in
Additional supplementary material). The leap condition is determined by 1

10a0
(
A(h)
j,k

)

where a0
(
A(h)
j,k

)
is the total event rate (which depends on state A(h)

j,k) for fish h as

specified in (Twumasi (2022), p. 134). Thus, the hybrid τ -leaping is set up such that if
the leap size τleap (given byEq.1)> 1

10a0
(
A(h
j,k

) , the τ -leaping algorithm is implemented

for a single fish, whereas we forego τ -leaping and use the exact stochastic simulation
algorithm (SSA) when the leap condition is not met. The hybrid τ -leaping simulation
at an error bound of 0 (ε = 0) result in exact SSA only since at ε = 0 (Gillespie
2001; Gillespie and Petzold 2003), the leap size τleap = 0 for any state value and
birth-death parameter values > 0. The pseudo-codes for the exact SSA and the hybrid
τ -leaping simulation algorithm are presented under Supplementary S1 in Additional
supplementary material.

2.4 Weighted-Iterative ABC

2.4.1 Introduction

As briefly highlighted in Sect. 1, ABC typically reduce high-dimensional data to
low-dimensional user-chosen summary statistics and accept samples of the model
parameter θ ∈ R

n when the simulated summaries ssim = S(ysim) are close to the
observed summaries sobs = S(yobs) such that ρ (ssim, sobs) ≤ ε for sufficiently small
pre-defined tolerance level ε > 0; where S(·) ∈ R

m is the summary statistics of the
data (possibly m-dimensional), ysim ∼ f (· | θ), and ρ(·) is a discrepancy measure
(e.g., Euclidean distance). Jung and Marjoram (2011) demonstrated that assigning
higher weights to more informative summaries, as part of a well-chosen tolerance in
ABC analysis, tremendously enhances performance compared to unweighted analy-
sis. Additionally, in the literature, sequentialMonte Carlo ABC (ABC-SMC) samplers
have been proposed to address certain shortcomings linked with rejection-based ABC
and ABC-MCMC samplers (such as particle degeneration and sampling from regions
with lower posterior probability).

The ABC algorithm developed in the current study is a modification of the ABC-
SMC sampler described in Filippi et al. (2013). In our modified ABC-SMC algorithm,
we introduce a weighting scheme for the set of summary statistics per host to extract
relevant information from high-dimensional parasite population data. For a single
simulation run, our stochastic model generates high-dimensional data or a set of M
sample paths over time and space (across the host’s body regions), corresponding
to the entire observed fish with a population size of M = 152. The set of carefully
chosen summary statistics computed for a given host data includes: (i) log count
of parasites across observed times (9 summaries), (ii) Wasserstein 1 − D distance
between parasite distributions at host’s body regions (4 summaries), (iii) the time
before death (1 summary), and (iv) parameter estimates of the birth-death process
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with catastrophic extinction (B-D-C process) based on all simulated sample paths (3
summaries). The concept and detailed theoretical works on the B-D-C process and
its parameter estimation can be found in work by Twumasi (2022, pp. 95–126). The
motivation for refining the ABC summaries using the B-D-C parameter estimates
is that this process simplifies our complex simulation model as a linear birth-death
process where the process is subjected to catastrophes (e.g., host mortality) that result
in parasite population extinction-an important phenomenonobservable in the empirical
data.

In a single simulation run, a matrix with a dimension of 152×17 summary statistics
is obtained for comparing the discrepancy between the simulated and observed data
during the ABC fitting of our stochastic model. The discrepancymetric is considered a
weighted sumof squares distancemetricρ, extending the standardweighted Euclidean
distance. An optimised linear regression function is developed (and presented under
Supplementary S3 in Additional supplementary material) to aid in computing the
summary statistics during ABC fitting after premature host mortality by projecting
the infrapopulation of parasites till the end of the infection period.

2.4.2 Description of the Modified ABC Algorithm

Algorithm1 is the pseudo-code for the weighted-iterative ABC algorithm. The main
modifications in Algorithm1 with respect to the previous ABC-SMC Algorithm
defined in Filippi et al. (2013) are: (i) adaptively integrating importance weights for
importance proposal sampling and summary statistics weights (based on accepted
simulations by computing the harmonic mean between previous and current summary
statistics weights at time t ≥ 1) to improve ABC posterior approximations, (ii) inclu-
sion of a weighted distance metric for comparing between multidimensional data of
an entire population (in the case where summary statistics has bi-dimensional space),
(iii) adaptation of a computationally efficient multivariate normal perturbation ker-
nel with bandwidth matrix optimally determined, and (iv) an independent post-hoc
step which entails a robust correction method to adjust the resulting ABC posterior
approximation using a penalised heteroscedastic local-linear regression. The steps of
the modified ABC algorithm can briefly be explained as follows:

• Suppose we have a decreasing sequence of tolerances ε1 > ε2 > · · · > εT (T
being the final time step), the prior distribution π(·), a simulation model given by
f (· | θ), and a observed summary statistics sobs (possibly multidimensional).

• At time t = 1, the weighted-iterative ABC algorithm draws proposals θ
(1)
i ∼ π(θ)

(for 1 ≤ i ≤ N ) from the prior distribution π(θ) with equal importance weight of
W (1)

i = 1
N ; the accepted particles at the largest tolerance (ε1 ≤ 1) is indicated as

pε1(θ | sobs) (or pε1 for simplicity), and considered as the first intermediate prior
distribution. The initial distribution of π(θ) was determined for θ in the current
study based on flat non-informative uniform priors (on a logarithmic scale) at
t = 1. Instead of commencing the rejection sampling with a smaller tolerance (as
in the case of the standard rejection-based samplers), at t = 1, the algorithm is
similar to the standard rejection ABC (but with a larger tolerance comparatively).
The discrepancy between simulated and observed summary statistics, given θ

(t)
i at
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time t ≥ 1, is computed using the scaled weighted sum of squares distance metric
such that

ρ (ssim, sobs) =

√
√
√
√
√

1

M

M∑

k=1

m∑

j=1

w(t)
j

(
ssimk, j − sobsk, j

)2
, 1 ≤ t ≤ T . (2)

where M is the total population size, m is the summary statistics length per
simulation sample path or host (m = 17 in our case), w(t) is a vector of the
summary statistics weights at time t , and our summary statistics is assumed to
have a bi-dimensional space (for a one-dimensional summary statistics, the stan-
dardweighted Euclidean distance can be used as the discrepancymeasure instead).
Prior to computing the weighted sum of squares distance metric ρ (·), the sum-
mary statistics weight w(t) at time t ≥ 1, is computed based on the harmonic
mean of the current weight w

(t)
j ′ = 1/σ 2

j ′ (based on accepted particles, where σ j ′

is the standard deviation of the j ′th summary statistic) for 1 ≤ j, j ′ ≤ m and the
previous weight w(t−1); such that

w
(t)
j = 2

1
w

(t−1)
j

+ 1
w

(t)
j ′

.

According to Prangle (2017), there is no assurance that the summary statistics
weights w(t) (meant to normalise the summary statistics at time step t ≥ 1 for
iterativeABC such asABC-SMC)would actually normalise the summary statistics
at subsequent iterations since particles or proposals are not sampled directly from
the prior π(θ), but instead, from different proposal distributions gt (θ) over time
t ≥ 1.Hence, themainmotivations for adopting the harmonicmean of the previous
and current summary statistics weights (based on the multiplicative inverse of the
variance of the j th summary statistic of accepted particles) in this study (instead
of strictly using the conventional approaches defined in Prangle (2017)) are to
(i) minimise the degree of variability in the high-dimensional summary statistics
weights at time t ≥ 1 (based on averages across the entire host population as
observed in the current study), and (ii) control the potential highdisparities between
the summary statistics weights at the current ABC time step t and the previous
time t − 1 as well as improve normalisation of summary statistics weights due to
direct particle sampling from different proposal distributions (at ABC time steps
t − 1 and t) instead of the (initial) prior.

• At t ≥ 2, the algorithm works in steps (with εt < εt−1): instead of directly
sampling from π(θ), we randomly draw weighted particles θ∗ ∼ pεt−1 (for N
different times) from the current intermediate prior pεt−1 with a probability equal

to their corresponding normalised importance weightW (t)
i (estimated from Eq.5).

Following Filippi et al. (2013), we then perturb particles θ
(t)
i ∼ KH (t) (· | θ∗)

at iterations t ≥ 2 using a multivariate normal (MVN) perturbation kernel KH (t)

centred at or near θ∗, such that
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KH (t)

(
θ(t) | θ∗) = 1

√
(2π)n

(
det H (t)

)

exp

{

−1

2

(
θ(t) − θ∗)	 (

H (t)
)−1 (

θ(t) − θ∗)
}

, (3)

with an optimal bandwidth matrix

H (t) =
N∑

i=1

Nεt−1∑

k=1

W (t−1)
i W̃k

(
θ̃k − θ

(t−1)
i

) (
θ̃k − θ

(t−1)
i

)	 ; (4)

where the quantity
{
θ̃k

}

1≤k≤Nεt−1

denote the set of accepted particles
{
θ

(t−1)
i s.t. ρ(ssim, sobs) ≤ εt , 1 ≤ i ≤ N

}
, with their corresponding impor-

tance weight
{
W̃k

}

1≤k≤Nεt−1

normalised over all 1 ≤ k ≤ Nεt−1 . Filippi et al.

(2013) have shown that this choice of kernel bandwidth has good theoretical prop-
erties. We then simulate data ysim ∼ f (· | θ

(t)
i ) for 1 ≤ i ≤ N , obtain Nεt

accepted samples pεt (θ | sobs) accordingly, and repeat the process until we reach
the final or target posterior pεT (θ | sobs) at the final time step t = T (where
N ≥ Nε1 > Nε2 > · · · > NεT ). Here,

W (t)
i =

π
(
θ

(t)
i

)

N∑

l=1
W (t−1)

l KH (t)

(
θ

(t)
i | θ

(t−1)
l

) , 2 ≤ t ≤ T and W (1)
i = 1

N
. (5)

• At time t = 1, the initial prior density π(θ) ∝ g1(θ) is considered as the first
importance or proposal density g1(θ); whereas at t ≥ 2, the importance or proposal
density gt (θ) is derived from Eq.6 such that

gt (θ) =
N∑

i=1

W (t−1)
i KH (t)

(
θ | θ

(t−1)
i

)
/

N∑

i=1

W (t−1)
i . (6)

Finally, we adjust the approximate posterior distribution, denoted as pεT (θ | sobs) at
time t = T , obtained from the weighted-iterative ABC method. This adjustment is
accomplished using a robust regression method with L1 and L2 regularisations, as
proposed inSect. 2.5. It isworth noting that the original local-linear regressionmethods
by Beaumont et al. (2002) are non-implementable in multicollinear scenarios due to
matrix singularity issues. It can be inferred from Prangle (2017) theoretical work on
ABC-SMC convergence that as t → ∞ and εt → 0, Algorithm1 draws approximate
samples from the ABC posterior with density

pεt (θ | sobs) =
∫ [

f (ssim | θ)π(θ)1Aεt ,sobs
/

∫

Rn×Rm
f (ssim | θ)π(θ)1Aεt ,sobs

dθdssim

]

dssim,
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where θ ∼ gt (θ) and 1Aεt ,sobs
(·) → {0, 1} is an indicator function of the Lebesgue-

measurable set Aεt ,sobs = {ssim | ρ(ssim, sobs) ≤ εt }; whereas ρ(·) and W (t) ∝ π(θ)
gt (θ)

are defined by Eqs. 2 and 5, respectively. Our modified ABC algorithm is set-up to
have a fixed number of iterations or time steps (i.e., a total of 10 time steps), and a
set of monotonically decreasing tolerances (εt , t = 1, 2, · · · , 10) at each ABC time
step t is carefully pre-specified such that: εt = 0.5, 0.43, 0.4, 0.35, 0.3, 0.2, 0.1, 0.08,
0.06, 0.02.

2.5 Weighted Ridge and Lasso Regressions for Posterior Adjustment

This section describes our two penalised regression adjustment methods: weighted
ridge regression (WRR) and weighted lasso regression (WLR). The work of Arkin and
Montgomery (1980) inspired these penalised regression approaches, who originally
developed WRR for general regression problems unrelated to ABC. In our proposed
regression-adjusted methods, the dependent variables represent the posterior sam-
ples or approximate posterior distribution of the model parameters (on a logarithmic
scale) obtained from the modified ABC-SMC algorithm. The predictors are the cor-
responding simulated summary statistics in the vicinity of the observed summaries.
To streamline the regression adjustment, we transform the two-dimensional simulated
summary statistics (ssim) across all 152 fish into a one-dimensional format within the
neighbourhood of sobs before applying regression. After fitting our simulation model,
the primary objective of regression adjustments is to enhance the resulting posterior
samples.

2.5.1 Proposed ABC Posterior Mean Adjustment

Given a set of η unadjusted posterior samples from the weighted-iterative ABC
algorithm (described by Algorithm1), let θ

(r)
i be the i th posterior sample (for

i = 1, 2, · · · , η) for the r th model parameter (for r = 1, 2, · · · , n). Suppose ssim,i are
the accepted simulated summary statistics (with dimension M ×m) corresponding to
the i th posterior sample; where theM ≥ 1 corresponds to a population size, andm ≥ 1
the number of summary statistics for each individual in the population model (to be
simulated). The regression model in the vicinity of the observed summary statistics
sobs (with dimension M × m) is given as

θ
(r)
i = α(r) + S̄	

i β(r) + ς
(r)
i , 1 ≤ i ≤ η and 1 ≤ r ≤ n (7)

where S̄i = 1
M

M∑

k=1

[
ssim(k,m),i − sobs(k,m)

]
is an m-dimensional vector of mean differ-

ences between ssim,i and sobs across all M individuals for the i th posterior sample; α(r)

is the intercept (whose estimate represent the required adjusted posterior mean), β(r) is
a vector of regression coefficients corresponding to them predictors (in the neighbour-
hood of sobs), and ς

(r)
i are the regression error terms with mean 0 and heteroscedastic

variance, corresponding to the r th model parameter. If M = 1, S̄i = ssim,i − sobs as in
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Algorithm 1: Pseudo-code of the weighted-iterative ABC
Input: Initialise the sequence of decreasing tolerances ε1 > ε2 > · · · > εT ;

compute initial summary statistics weight w(0) = (w1, w2, · · · , wm);
specify prior distribution π(θ); set number of proposal draws N > 0.

Output: Final unadjusted posterior pεT (θ | sobs) = p (θ | ρ(ssim, sobs) < εT ),
and its adjusted posterior.

1 for all 1 ≤ t ≤ T do
2 for i = 1, 2, · · · , N do
3 if t = 1 then
4 Draw particle θ

(1)
i ∼ π(θ)

5 else
6 Randomly draw a particle θ∗ ∼ pεt−1(θ | sobs) with a probability equal

to their corresponding importance weight W (t−1)
i , and further perturb

θ
(t)
i from a MVN perturbation kernel KH (t) (· | θ∗) (with optimal

bandwidth matrix H (t) defined by equation4) by sampling θ
(t)
i such

that
θ

(t)
i ∼ KH (t)

(
θ(t) | θ∗)

to obtain a new proposal θ(t)
i so that π

(
θ

(t)
i

)
> 0

7 end

8 Simulate data ysim ∼ f
(
· | θ

(t)
i

)

9 Compute simulated and observed summary statistics such that
ssim = S(ysim) and sobs = S(yobs)

10 Calculate weighted distance d(t)
i = ρ (ssim, sobs) and accept θ

(t)
i if

d(t)
i < εt to obtain accepted particles pεt (θ | sobs)

11 Calculate the j ′th summary statistics weight w(t)
j ′ = 1/σ 2

j ′ based on the
Nεt ≤ N accepted particles; and update summary weight such that

w
(t)
j = 2

1

w
(t−1)
j

+ 1

w
(t)
j ′

(where σ 2
j ′ is the variance of the j ′th summary

statistics at time t), and normalise w
(t)
j over all 1 ≤ j, j ′ ≤ m

12 end
13 if t = 1 then
14 Set importance weight W (1)

i = 1
N for all 1 ≤ i ≤ N

15 else
16 Re-weight the importance weights at t �= 1 for all 1 ≤ i ≤ N by setting

W (t)
i = π

(
θ

(t)
i

)
/

N∑

l=1

W (t−1)
l KH (t)

(
θ

(t)
i | θ

(t−1)
l

)
,

and normalise W (t)
i over all 1 ≤ i ≤ N .

17 end
18 end
19 Adjust the target posterior pεT (θ | sobs) as a final independent step using the

modified regression adjustments proposed in section2.5.
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the case of Beaumont et al. (2002) regression adjustment methods (where ssim,i and
sobs are assumed to a one-dimensional array or vector of length m, respectively).
Given Eq.7, the robust weighted ridge regression estimates of

(
α(r), β(r)

)
can be

derived by minimising the loss functionL(r)
ridge for each r th model parameter such that

L(r)
ridge =

η∑

i=1

⎧
⎨

⎩
θ

(r)
i − α(r) −

m∑

j=1

S̄i, jβ(r)
j

⎫
⎬

⎭

2

Kδ(
∥
∥ssim,i − sobs

∥
∥) + λ

∥
∥
∥β(r)

∥
∥
∥
2

2
; (8)

where Kδ(·) is a Gaussian kernel with bandwidth or scale parameter δ given as

Kδ(
∥
∥ssim,i − sobs

∥
∥) = ωi = 1√

2πδ
e

−1
2δ2

‖ssim,i−sobs‖2

, (9)

and
∥
∥ssim,i − sobs

∥
∥ = ρ(ssim,i , sobs) is the weighted distance (computed using Eq.2)

between ssim,i and sobs; and the penalty term λ
∥
∥β(r)

∥
∥2
2 = λ

m∑

j=1
β

(r)2
j is the L2 regu-

larisation element, with λ representing the biasing or penalty parameter.
Similarly, the loss function for the weighted lasso regression L(r)

lasso is defined such
that

L(r)
lasso =

η∑

i=1

⎧
⎨

⎩
θ

(r)
i − α(r) −

m∑

j=1

S̄i, jβ(r)
j

⎫
⎬

⎭

2

Kδ(
∥
∥ssim,i − sobs

∥
∥) + λ

m∑

j=1

∣
∣β

(r)
j

∣
∣.

(10)

To minimise the loss functions (given by Eqs. 8 and 10) respectively, the variables in
these equations are updated using the transformed variables defined in Eq.11. The
estimates of β(r) and α(r) are then obtained separately (by initially ignoring the inter-
cept α(r) in Eq.7 prior to fitting the regression model) since the predictors and the
dependent variables are respectively mean centred and re-scaled using

√
ωi to obtain

a set of variables with similar scaling (where the latter is motivated byMidi and Zahari
(2008)); such that for 1 ≤ i ≤ η and 1 ≤ j ≤ m:

θ
(r)∗
i = √

ωi

(
θ

(r)
i − θ̄ (r)

)
and S̄∗

i j = √
ωi

(
S̄i j − ¯̄S j

)
, (11)

where θ̄ (r) is the weighted mean of θ
(r)
i , and ¯̄S j is the weighted mean of the j th

predictor. The reason for the use of the re-scaled variables is that since these penalised
regression methods regularise the linear regression by imposing a penalty based on the
size or magnitude of the regression coefficients, they require the variables (predictors
and posterior samples) to have similar measurement scales in order to assess their
contributions to the penalised terms fairly, while maintaining the information content
of the variables after re-scaling. Hence, Eqs. 8 and 10 are transformed (without the
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intercept) such that

L(r)∗
ridge =

η∑

i=1

⎧
⎨

⎩
θ

(r)∗
i −

m∑

j=1

S̄∗
i, jβ

(r)∗
j

⎫
⎬

⎭

2

ωi + λ

m∑

j=1

β
(r)∗2
j , (12)

and

L(r)∗
lasso =

η∑

i=1

⎧
⎨

⎩
θ

(r)∗
i −

m∑

j=1

S̄∗
i, jβ

(r)∗
j

⎫
⎬

⎭

2

ωi + λ

m∑

j=1

∣
∣β(r)∗

j

∣
∣, (13)

where β
(r)∗
j are the regression coefficient corresponding to the scaled predictors. For

the WRR, the estimate of β
(r)∗
j can be obtained analytically (Arkin and Montgomery

1980) (by minimising Eq.12) such that

β̂
(r)∗
m×1 = (X	

m×ηWη×ηXη×m + λIm×m)−1X	
m×ηWη×ηθ

(r)∗
η×1 1 ≤ r ≤ n; (14)

where Im×m is an m × m identity matrix, W is a diagonal weighting matrix with the
i th diagonal element given by

ωi = Wii = Kδ(
∥
∥ssim,i − sobs

∥
∥), 1 ≤ i ≤ η,

X =
⎡

⎢
⎣

S̄∗
1,1 S̄∗

1,2 · · · S̄∗
1,m

...
...

. . .
...

S̄∗
η,1 S̄∗

η,2 · · · S̄∗
η,m

⎤

⎥
⎦ , θ(r)∗ =

⎡

⎢
⎣

θ
(r)∗
1
...

θ
(r)∗
η

⎤

⎥
⎦ ,

θ̄ (r) =

η∑

i=1
ωiθ

(r)
i

η∑

i=1
ωi

, and ¯̄S j =

η∑

i=1
ωi S̄i j

η∑

i=1
ωi

.

However, forWLR, we obtain estimates of β(r)∗ by numerically minimising Eq.13 for
all β(r)∗ ∈ R

m (with the help of the glmnet R package Hastie and Qian 2014) since the
exact form can be determined analytically. To obtain an expression for the intercept
α(r) in Eq.7 per standard practice in regression (based on either WRR or WLR), it is
not difficult to check that the exact estimate of the intercept term (after reverse variable
transformation of Eq.11 into their respective original scales after model fitting) is

α̂(r) = θ̄ (r) −
m∑

j=1

β̂
(r)∗
j X̄ j , (15)
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where X̄ j =
η∑

i=1
ωi Xi j

η∑

i=1
ωi

, θ̄ (r) is the weighted mean of θ(r) and β̂
(r)∗
j is the estimate of

the regression coefficient corresponding to the j th transformed predictor. α̂(r) is a
quantity denoting the adjusted posterior means on a logarithmic scale in the current
study (since our unadjusted posterior samples were on a logarithmic scale). Hence,
the required posterior mean adjustment of the r th model parameter is estimated by
taking inverse of its logarithmic form (given by Eq.15) such that

α̂
(r)
adjust = eα̂(r)

, r = 1, 2, · · · , n. (16)

It is imperative to note that the exponential transform of the estimate of α̂(r) in Eq.16
holds since the current study assumes the unadjusted posterior samples were obtained
on a logarithmic scale. An exponential transformation is unnecessary for other studies
where the unadjusted posterior samples were obtained based on their original scales.
In addition, the adjusted posterior distribution θ

(r)
adjust (on logarithmic scale) for the r th

model parameter is derived from Eq.17 such that

θ
(r)
adjust,i = θ

(r)
i −

m∑

j=1

β̂
(r)∗
j S̄i j , i = 1, 2, · · · , η. (17)

The glmnet package in R (Hastie and Qian 2014) is used to obtain the optimal value
of the penalty parameter λ via cross-validation, achieving the least predictive error
before posterior adjustments. Also, the optimal value of the bandwidth or smoothing
parameter δ of theGaussian kernel Kδ(·) (givenbyEq.9) is adaptively estimated (based
on the weighted distances between the simulated and observed summary statistics)
via a cross-validation procedure (which minimises the asymptotic mean integrated
squared error) using the kedd package in R (Guidoum 2020). In this study, 95%
credible intervals of posterior mean estimates are estimated based on the Equal-Tailed
Interval (ETI) of posterior distributions using the bayestestR package in R (Makowski
et al. 2019).

3 Results

3.1 Introduction

The results of a numerical experiment based on our stochastic simulation model under
predefined parameter settings and calibrated by the proposed ABCmethods (compris-
ing the weighted-iterative ABC and the proposed regression adjustments for posterior
correction) are presented in Sect. 3.2. The goal is to evaluate the effectiveness of our
modified ABC-SMC sampler and investigate the identifiability of the stochastic model
for the gyrodactylid-fish system using pseudo-observed data. In Sect. 3.3, our stochas-
tic simulation model is then fitted to the observed empirical data. Following additional
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posterior predictive checks (as outlined in Sect. 3.3), the best-adjusted posterior sam-
ples are utilised for Bayesian hypothesis testing to address the main research questions
(denoted as 1–4) in Sect. 3.5.

3.2 Results of the Numerical Experiment at Predefined Parameter Values

A detailed description of the numerical experiment and its results are summarised
under Supplementary S4 in Additional supplementary material.We generated pseudo-
observed data by simulating our stochastic model at predefined parameter values on a
logarithmic scale. Subsequently, our weighted-iterative ABC was employed to fit the
model to the pseudo-observed data. The quantiles of ABC distances, which quantify
the discrepancy between pseudo-observed and simulated data, decreased monoton-
ically across the ABC time steps. This suggested the improved performance and
convergence of our modified ABC-SMC algorithm, resulting in an iteratively bet-
ter approximation of the true posterior distribution. Following posterior correction
using our proposed ridge-adjusted and lasso-adjusted regression methods (defined
in Sect. 2.5), we observed that the unadjusted and ridge-adjusted posterior estimates
resulted in relatively lower biases (with their model parameter estimates close to
predefined true parameter values) and lower mean squared error (MSE) than the lasso-
adjusted posterior estimates.

Using the vegan R package (Oksanen et al. 2019), a principal coordinate analysis
(PCoA)was performed to visualise similarities or dissimilarities amongABCposterior
samples in a lower-dimensional space. We found a similarity between the unadjusted
posterior and the ridge-adjusted posterior samples, in contrast to the lasso-adjusted
posterior. However, a multivariate homogeneity test showed statistically insignificant
variability among the three ABC posterior approximation methods. We employed
principal component analysis (PCA) to examine further the distribution of simula-
tions derived from the unadjusted and adjusted posteriors, and to identify potential
patterns that may exist between the datasets within reduced dimensional space. Sim-
ulations derived from the unadjusted posterior exhibit spatial concentration within
the pseudo-observed data. In contrast, the pseudo-observed data aligns more closely
with simulations based on the ridge-adjusted posterior, and the latter set is contained
within simulations derived from the lasso-adjusted posterior (see Fig. 2). We observed
no statistical difference between the distribution of the pseudo-observed data and the
simulated data derived from the ridge-adjusted posterior across the observation time
points compared to that of the unadjusted and lasso-adjusted posteriors (see Fig. 3).
Hence, the ridge-adjusted posterior correction method demonstrated a superior model
fit compared to the lasso adjustment method, thereby improving upon the unadjusted
posterior. This finding may or may not consistently align with the actual empirical
data during the ABC fitting process.

3.3 ABC Fitting of the Stochastic Model Given the Empirical Data

The stochastic model, characterised by multiple parameters as detailed in Table2, was
also fitted using the proposed weighted-iterative ABC method, as outlined in Algo-
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Fig. 2 PCA plot describing the variability and hierarchical relationship between the pseudo-observed and
simulated data (based on the unadjusted and regression-adjusted posterior estimates) within a lower dimen-
sional space

rithm1, atMonte Carlo sample sizes of N = 500, N = 1000, and N = 1500, based on
the empirical data (described in Sect. 2.1). The findings of Twumasi (Twumasi (2022),
pp. 186–203) also influenced the choice of N in this study, where a simple numerical
experiment was conducted based on a toy model with a multivariate normal likelihood
and a known analytical posterior distribution. The experiment demonstrated that the
resulting posterior is consistently compatible and independent of N for values ranging
fromat least 500 to 5000.However, the computational time forABC increased quadrat-
ically with higher values of N . In this study, we considered a Monte Carlo sample size
range of 500 ≤ N ≤ 1500 during the ABC fitting of our stochastic simulation model,
aiming to identify the minimum value of N at which the ABC posterior converges to
similar estimates. Figure4 shows that at values of N = 1000 and 1500, the posterior
estimates are consistent with quadratically increasing computational times. The ABC
marginal density plots of the unadjusted posteriors at these Monte Carlo samples are
presented as Supplementary Figures in Additional supplementary material. Thus, the
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Fig. 3 Comparative distribution plot of the pseudo-observed data and the different simulated datasets (where
nsp-value non-significant; ∗ p< 0.05; ∗∗ p< 0.01; ∗∗∗ p< 0.001; ∗∗∗∗ p< 0.0001)

Monte Carlo sample size of N = 1500 is sufficient to fit our stochastic model based
on the weighted-iterative ABC, as also revealed in the numerical experiment in Sup-
plementary S4 in Additional supplementary material. The resulting posterior samples
at N = 1500 were considered for further ABC post-processing analysis with the two
penalised regression adjustment methods.

Table3 summarises the unadjusted and adjusted posterior mean estimates of the
underlying model parameters along with their respective 95% credible intervals.
Due to high multicollinearity among certain regression predictors, as evidenced by
Fig. 5 (for instance), the standard Beaumont et al. (2002) local-linear regression (with
heteroscedastic errors) could not be implemented. This limitation arose due to the non-
invertible matrices in its estimator in the presence of multicollinearity. The marginal
density plots for the unadjusted and adjusted posterior distributions of the 23 parame-
ters against sequentially improving priors are shown in Figs. 6, 7, 8 and 9. As observed
in the numerical experiment (under Sect. 3.2), PCoA revealed that the unadjusted and
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Fig. 4 Comparative plot of the unadjusted posterior mean estimates with their respective 95% credible
intervals (on logarithmic scale) at different values of 500 ≤ N ≤ 1500 with a plot of their respective
computational times (top-right)

ridge-adjusted posterior samples were similar, in contrast to the lasso-adjusted poste-
rior. However, there was no statistically significant difference in the variability among
these posterior samples, as depicted in Fig. 10.

3.4 Additional Posterior Predictive Analysis Using PCA and Estimated Coverage
Probabilities

PCA was employed to assess the distributions of simulations derived from the
unadjusted posterior and two regression-adjusted posteriors compared to the study’s
empirical data. The aim was to explore patterns among them in a lower-dimensional
space. As illustrated in Fig. 11, the observed data are spatially distributed within the
simulated data derived from the lasso-adjusted posterior. In contrast, simulations from
the unadjusted and ridge-adjusted posteriors overlap with the observed data. This
implies that the observed data exhibit similar patterns or distributions to the simulated
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Fig. 5 Correlationmatrix plot indicating highmulticollinearity between someof the 17 regression predictors
(denoted by Si , 1 ≤ i ≤ 17 in the neighbourhood of the observed summary statistics) in the modified
regression-adjusted ABC (with L2 regularisation)

data derived from the lasso-adjusted posterior in the reduced-dimensional space, more
so than the simulated data obtained from the unadjusted and ridge-adjusted posteriors.

Figure12 reveals no significant differences in the distribution of observed data and
simulated data derived from the lasso-adjusted posterior at observation time points
from days 1 to 11. However, discrepancies emerge on days 13 to 17, indicating sig-
nificant differences in distributions between the observed data and the three distinct
simulated datasets (based on the unadjusted and the adjusted posteriors). This finding
contrasts with the results of the numerical experiment (summarised under Sect. 3.2),
where the ridge regression adjustment was observed to produce simulated data statis-
tically similar to the empirical data. Consequently, we can infer varying performance
of the ridge and lasso regression adjustment methods in correcting the unadjusted pos-
terior and minimising dissimilarity between the observed and simulated data. Their
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Fig. 6 Marginal density plots of the unadjusted (in black) and adjusted (in green) posterior distributions of
model parameters: b11, b12, b21, b22, b31, and b32 against the sequentially improving prior distributions
(x-axis on a logarithmic scale) (Color figure online)

performance thus depends on the specific experimental data considered during the
ABC fitting of the stochastic model.

We further computed coverage probabilities to assess the proportion of occurrences
where the true empirical data fall within a 95% Bayesian prediction interval derived
from simulations produced from the unadjusted and the two regression-adjusted pos-
teriors, each replicated over 100 times (Fig. 13). As shown in Fig. 13, the estimated
coverage probability (CP) closely approximates the nominal level of 95% for the
95% Bayesian prediction intervals generated from simulated data based on the two
regression-adjusted posteriors. Additionally, the corresponding 95% credible intervals
of the pooled CP (based on the regression-adjusted posteriors) contain the 95% nom-
inal level, indicating well-calibrated prediction intervals that offer robust estimates of
uncertainty about the empirical data. Notably, the lasso-adjusted posterior resulted in
a relatively narrower credible interval width than the ridge-posterior regarding their
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Fig. 7 Marginal density plots of the unadjusted (in black) and adjusted (in green) posterior distributions of
model parameters: d11, d12, d21, d22, d31, and d32 against the sequentially improving prior distributions
(x-axis on a logarithmic scale) (Color figure online)

pooled coverage probability estimates. Conversely, the simulated data derived from
the unadjusted ABC posterior exhibited under-coverage, as evidenced by the corre-
sponding 95% credible intervals of the pooled CP failing to encompass the nominal
level of 95%. Given the observed empirical data, the lasso-adjusted regression method
demonstrated a more substantial improvement in the resulting ABC posterior com-
pared to the ridge-adjusted regression method (based on results from the PCA and
estimated coverage probabilities). Therefore, the lasso-adjusted posterior is further
considered for subsequent Bayesian hypothesis testing to evaluate various research
hypotheses (under Sect. 3.5).
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Fig. 8 Marginal density plots of the unadjusted (in black) and adjusted (in green) posterior distributions of
model parameters: m, r , r1, r2, r3, and s against the sequentially improving prior distributions (x-axis on a
logarithmic scale) (Color figure online)

3.5 Bayesian Hypothesis Testing Based on the Lasso-Adjusted Posterior Samples

3.5.1 Introduction

Classical null hypothesis significance testing (NHST) often employs a dichotomous
decision rule to make conclusions regarding a parameter value of interest (i.e., the null
value). This decision is based on either the p-value of a test statistic or an estimated
confidence interval of the underlying parameter. In the lattermethod,which is favoured
over the criticised p-value-dependent NHST decision (Lee 2016), we reject the null
hypothesis if the parameter value falls outside a confidence interval. However, confi-
dence intervals often fail to capture parameter uncertainty accurately and may suffer
from coverage probability issues (Wilcox and Serang 2017). Some studies attempt to
extend a similar logic to Bayesian posterior distributions, rejecting a parameter value
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Fig. 9 Marginal density plots of the unadjusted (in black) and adjusted (in green) posterior distributions of
model parameters: s1, ε1, ε2, ε3, and κ against the sequentially improving prior distributions (x-axis on a
logarithmic scale) (Color figure online)

if it falls outside a credible posterior interval (Kruschke and Liddell 2018). According
to Kruschke and Liddell (2018), this standard decision rule raises two statistical issues.
First, it can only reject and never accept a parameter value. Second, even if a null value
is true, the decision process will eventually reject it with large posterior samples of
the underlying parameter.

Other studies propose a more accurate decision rule, akin to frequentist equiva-
lence testing (Rogers et al. 1993; Westlake 1981). This Bayesian approach involves
integrating a region of practical equivalence (ROPE) around the null value and an
estimated 100(1 − α)% highest density interval (HDI) (Kruschke and Liddell 2018).
Consequently, it is recommended that if an HDI is used to assess null values as part
of a decision rule, the decision should also consider a ROPE around the null value
(Kruschke 2014; McElreath 2020). In other words, a null value should not be rejected
solely because it falls outside an HDI, as observed in previous studies (Kruschke
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Fig. 10 PCoA plot of the similarities between posterior samples under a lower-dimensional space (Part A)
and the distribution of the average distances of the posterior samples to their posterior centriod (Part B)
between the unadjusted ABC and the two penalised regression-adjusted ABC methods (based on ridge and
lasso regularisations)

2011). The suggestion is to reject the null only when the HDI strictly falls outside the
ROPE, indicating that the parameter’s most credible values are not practically equiv-
alent to the null value. Acceptance of the null is warranted if the HDI lies entirely
within the ROPE, and indecision prevails if there is an overlap (Kruschke and Liddell
2018; Schwaferts and Augustin 2020). For an extensive range of Bayesian decisions
using ROPE, including more technical reports, refer to the work by Schwaferts and
Augustin (2020).

In the current study, we simultaneously used the ROPE and HDI (which is dubbed
in the literature as ROPE+HDI) to test relevant hypotheses concerning differences
between some underlying parameters of our stochastic simulation model with the help
of the adjusted posterior samples and the bayestestR package in R (Makowski et al.
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Fig. 11 PCA plot describing the variability and relationship between the observed empirical and simulated
data (based on the unadjusted and regression-adjusted posterior estimates) within a lower dimensional space

2019). McElreath (2020) and Kruschke (2014) have recommended an 89% HDI to be
an ideal choice compared to the usual 95% HDI for Bayesian hypothesis testing with
ROPE. According to Kruschke (2014) the 95%HDImight not be the most appropriate
for Bayesian posterior distributions due to potentially lacking stability if not enough
posterior samples are drawn (as observed in the current study). Hence, an appropriate
ROPE and an 89% HDI are considered for testing sets of hypotheses. Results from
the Bayesian hypothesis test will aid in providing answers to research questions 1–
4. Now, let us suppose a null hypothesis H0 : θ1 = θ2 (or d = θ1 − θ2 = 0),
where θg ∈ R denotes model parameters corresponding to some independent groups
g = 1, 2 (possibly identically distributed). The alternative hypothesis is defined as
H1 : θ1 �= θ2 (or d = θ1 − θ2 �= 0). Let AI = {[a, b] | a, b ∈ �, a < b}
represent the action space w.r.t the HDI of the posterior distribution of d = θ1 − θ2,
and let AR = [−0.5σd , 0.5σd ] denote the ROPE range (recommended by Norman
et al. (2003)), where σd is the standard deviation of the posterior samples of d. Let
also suppose γ = P(AI ⊆ AR | d) denote the ROPE coverage probability (or the
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Fig. 12 Comparative distribution plot of the empirical data and the simulated datasets (where nsp-value
non-significant; ∗ p< 0.05; ∗∗ p< 0.01; ∗∗∗ p< 0.001; ∗∗∗∗ p< 0.0001)

probability that elements of AI fall within AR given the posterior samples of d).
Following Kruschke and Liddell (2018), we also reject or accept H0 according to the
following HDI+ROPE decision rule:

ROPE equivalence decision =
⎧
⎨

⎩

reject H0, γ = 0
indecisive, 0 < γ < 1
accept H0, γ = 1.

The null hypothesis and the ROPE+HDI test described above can be modified to com-
pare differences between model parameters corresponding to more than two groups
similarly (as performed in the subsequent sections).
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Fig. 13 Distribution of estimated coverage probabilities based on simulated data from the unadjusted and
regression-adjusted posteriors, with their corresponding estimated pooled CP and 95% credible intervals

3.5.2 Assessing Differences Between the Birth Rate Model Parameters

Wefirst tested threemajor hypotheses in relation to the birth rate parameters of thefitted
stochastic model based on ROPE+HDI Bayesian tests (Table4). The null hypotheses
tested are as follows:

H01: bi1 − b j1 = 0, for i �= j and 1 ≤ i, j,≤ 3.
H02: bi2 − b j2 = 0, for i �= j and 1 ≤ i, j,≤ 3.
H03: bi1 − b j2 = 0, for i = j and 1 ≤ i, j,≤ 3.

For the first null hypothesis (H01), there is sufficient evidence to conclude that the
birth rate of young Gb parasites (yet to reproduce) is significantly greater than the
birth rates of youngG. turnbulli strains (i.e.,Gt3 andGt young parasites). Conversely,
for the second null hypothesis (H02), the birth rates of old G. turnbulli strains are
found to be significantly greater than those of old G. bullatarudis parasites. However,
based on the Bayesian test results, we arrive at an indecisive conclusion between Gt3
andGt parasites regarding the birth rates of both young and old parasites, respectively.
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Concerning the third hypothesis (H03), our findings indicate that the birth rates of old
parasites are significantly lower than those of their young counterparts across all three
parasite strains. These findings show that the population growth of gyrodactylids is
predominantly driven by young parasites, owing to their high birth rate. The heightened
likelihood of reproduction in young Gb parasites compared to the two G. turnbulli
strains may explain the observed high parasite abundance or mean intensities over
time after analysing the empirical data by Twumasi et al. (2022). Past experimental
investigations have demonstrated that gyrodactylids can undergo reproduction up to
four times. However, given that the initial birth occurs before the parasite reaches
two days of age, the population can persist with just two births (Denholm et al. 2013).
Additionally, Denholm et al. (2013) revealed that the parasite’s first birth is the primary
determinant of the overall population growth. This findingmay explainwhy the present
study observed a significantly greater birth rate in young gyrodactylids (who are yet
to reproduce) than their older counterparts (with a birth history) across all strains.

3.5.3 Assessing Differences Between the Death Rate Model Parameters

Also, we test three major hypotheses concerning the death rate model parameters
(Table5). The null hypotheses tested are as follows:

H04: di1 − d j1 = 0, for i �= j and 1 ≤ i, j,≤ 3.
H05: di2 − d j2 = 0, for i �= j and 1 ≤ i, j,≤ 3.
H06: di1 − d j2 = 0, for i = j and 1 ≤ i, j,≤ 3.

In the absence of host immune response, a notable discrepancy exists in the mortality
rates among the three parasite strains, with the death rate of the wildG. turnbulli being
significantly higher than that of the other two parasite strains (with that of Gb > Gt3).
However, when a host response is present (potentially attributed to rapid infrapopu-
lation growth, high parasite virulence, or intense competition for resources), the wild
Gb parasite attains the highest mortality rate, surpassing that of Gt3 (> Gt). For Gt3
andGb parasite strains, the death rate in the absence of a host response is significantly
lower than the mortality rate in the presence of an immune response. Conversely, a
contrasting observation is noted for the Gt parasite strain, with the immune-induced
death rate being significantly lower in comparison. The observed variation in the gyro-
dactylid death rate, contingent on the adaptive immunocompetency of the host, likely
signifies a trade-off between effective parasite exploitation and the localised immune
response of the host. This implies that the higher mortality rates observed in the Gt3
andGb parasite strains compared to theGt strain, as revealed in themulti-stateMarkov
modelling based on empirical data from the previous study by Twumasi et al. (2022),
may be attributed to the host immune response, particularly as the infection intensifies,
especially during the peak time of infection. While the temperature range effectively
regulates the population dynamics of gyrodactylids, studies on Gyrodactylus have
demonstrated that adaptive host immunity, which develops in most fish populations,
can also contribute to the extinction of gyrodactylid populations on a fish host (Rubio-
Godoy et al. 2012).
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3.5.4 Assessing Differences Between the Movement Rate Adjustment Parameters

We further test differences between movement rate adjustment parameters across
the three parasite strains (Table6). The strain-specific movement rate adjustment
parameters are expected to account for the unique caudal-rostral preferences of the
gyrodactylid strains in the simulation model (as confirmed in Twumasi et al. (2022)).
Here, the null hypotheses are defined as follows:
H07: εi − ε j = 0, for i �= j and 1 ≤ i, j,≤ 3.
Table6 illustrates that themovement rate adjustment of the laboratory-bredG. turnbulli
strain (Gt3) is significantly lower compared to both the wild G. turnbulli (Gt) and
the wild G. bullatarudis (Gb) strains, whereas the movement rate of the Gt strain is
relatively higher than that of theGb strain. This observation suggests that the stochastic
model is able to differentiate between the distinct microhabitat preferences ofGt3 and
Gb strains, as previously justified by Twumasi et al. (2022), particularly after the initial
infection at the caudal region of the host. As supported by the previous work Twumasi
et al. (2022), the Gb worms are initially placed at the caudal region of their fish host,
which is not their most preferred microhabitat compared to the host’s rostral region.
Consequently, themovement rate of theGb parasites is expected to be relatively higher
than that of Gt3 to facilitate its rapid transition towards the rostral or head regions of
their fish host over time, as discovered in the spatial-temporal analysis of the parasites’
microhabitat preference. Twumasi et al. (2022) also noted that the wild G. turnbulli
strain changes its microhabitat preference over time, transitioning from the tail to
the rostral region of the host based on empirical data. This finding confirms why the
movement rate of theGt strain is significantly higher than that of theGt3 strain, which
rather prefers the caudal region of its fish host over time following the initial infection
at the host’s caudal region.

3.5.5 Assessing Differences Between the Immune Response Rate Adjustment
Parameters as Well as the Sex-Specific Host Mortality Parameter

Finally, we test two different hypotheses in relation to the immune response rate
adjustment parameters and the sex-specific host mortality parameter, respectively.
The null hypotheses of these tests are defined as:

H08: ri − r j = 0, for i �= j and 1 ≤ i, j,≤ 3.
H09: s1 = 0.

Table7 summarises the findings regarding H08 and H09. The analysis reveals sig-
nificant differences in the immune response rate adjustment parameters and the
significance of the model parameter s1 from zero (representing the host mortality
rate adjustment for male fish relative to female fish). These outcomes contribute valu-
able insights into whether the adaptive host immune response exhibits sex and host
dependency and whether the mortality rate of male fish surpasses that of female fish,
as indicated by the fitted stochastic model and evidence derived from empirical data
during the multi-state Markov modelling in our earlier study (Twumasi et al. 2022).
The Bayesian test results suggest a higher likelihood of mortality in male fish than
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female fish (with the latter as the reference category in the simulation model). Further-
more, it is inferred that the immune response rate of LA fish is significantly greater
than that of OS stock, where the immune response rate of OS fish exceeds that of UA
fish. The relatively high response in the LA and OS fish stocks may explain why their
risks of death were lower than those of the UA fish (Twumasi et al. 2022). The current
study found the LA fish’s immune response rate to be lower than that of male stocks in
general. This observation aligns with the findings from the multi-state Markov model
(Twumasi et al. 2022), which predicted a shorter duration of infection for male fish
compared to infected female fish across all parasite strains, fish stocks, and host sizes,
possibly attributed to the greater immune response in male fish relative to female fish.

4 Discussion and Conclusions

4.1 Biological Implications of the Study

This study contributes mathematically and biologically to the gyrodactylid-fish sys-
tem, offering insights thatmay apply tomodelling other biological systems. Expanding
our recent study into spatial-temporal parasite dynamics of this system (Twumasi
et al. 2022), we have added to our understanding of this system by developing a
novel individual-based stochastic simulation model to address, for the first time, other
open biological questions through model-based Bayesian analysis. The birth rates for
both young and old gyrodactylid parasites, as well as the death rates with and with-
out immune response, were observed to differ significantly among the three parasite
strains. We verified that the adaptive immune response to the progression of infection
is dependent on host sex and host stock, with male fish being more susceptible to
mortality from gyrodactylid infection. Additionally, the total number ofGyrodactylus
parasites capable of occupying a host’s major body region ranged between 75 and 145,
with an average value of over 100 parasites.

Our individual-based stochastic model, designed to enhance gyrodactylid simu-
lations compared to an existing computer-based IBM, relies on model assumptions
incorporating biological realism specific to the gyrodactylid-fish system. Empirical
data and the biology of the system inform these assumptions. The current IBM for this
system serves as a valuable tool for predicting gyrodactylid infection development
on single hosts and forecasting optimal life history strategies of parasites (Oosterhout
et al. 2008). However, in a realistic context, the time to host immune response may
vary after infection, and localised immune response could be influenced by host and
parasite genotype, surface area of body locations, and host sex.

In the examination of infrapopulation dynamics of gyrodactylids on their fish hosts,
the existing IBM did not distinguish between different body regions of the host (tail
fin, lower body, upper body, anal fin, dorsal fin, pelvic fins, pectoral fins, and head),
including their respective surface areas. Additionally, it did not differentiate between
young and old parasites and imposed restrictions on the maximum linear distance that
parasites can move over time. In practice, there are unique microhabitat preferences
specific to different gyrodactylid strains across diverse host populations over time
(Twumasi et al. 2022). This spatial information needed incorporation for simulating
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the species-specific infrapopulation dynamics. Furthermore, the specific structure of
the existing IBM software, along with its pseudo-codes, has yet to be explicitly and
mathematically defined in the previous study (Oosterhout et al. 2008). This lack of
clarity presents challenges in terms of implementation, result replication, and valida-
tion of their proposed model. It is noteworthy that the existing spatially explicit IBM
software for this biological system is inaccessible, making it difficult to compare with
the current study’s simulationmodel (seeOosterhout et al. (2008)). This limitation also
underscored the necessity for a more robust simulationmodel for the gyrodactylid-fish
system, as developed in the current study.

4.2 Mathematical Implications of the Study

Sequential Monte Carlo samplers (ABC-SMC) are effective when coupled with
sequential importance sampling (SIS) to generate particles in high posterior regions
and mitigate issues of particle degeneration that often occur in other ABC samplers
(Beaumont et al. 2009). In other studies, ABC summary statistics weighting, where
very informative summaries are assigned higher weights, has also improved ABC pos-
terior convergence compared to unweighted ABC analysis (Jung andMarjoram 2011).
Thus, the present study capitalised on the relative importance of weighting summary
statistics and ABC-SMCwith SIS to improve ABC calibration in multi-parameter set-
tings. This improvement is notable even with small Monte Carlo sample sizes during
ABC implementation, particularly when dealing with high-dimensional summaries
that capture data information, whether dependent or independent.

However, ABC-SMC samplers can also suffer from dimensionality issues, espe-
cially if many parameters must be estimated (Khazeiynasab and Qi 2021). To address
this, Blum et al. (2013) suggested that the resulting ABC posterior can be adjusted
based on either ridge or lasso regularisation procedures via regression adjustment,
especially in the case of complex model fitting to minimise the dissimilarity between
simulated and observed data. By extending Beaumont et al.’s Beaumont et al. (2002)
local-linear regression adjustment method (to include L1 and L2 penalties, respec-
tively), we have demonstrated in this study that our proposed penalised regression
methods can improve the resulting ABC posterior distribution of ABC-SMC sampler
based on findings from a numerical experiment as well as ABC fitting of our stochas-
tic simulation model to an empirical data. Nonetheless, we found a data-dependent
varying performance between our ridge and lasso regression adjustment methods in
correcting the unadjusted posterior andminimising dissimilarity between the observed
and simulated data. Thus, their relative performance will vary depending on the spe-
cific experimental data considered during the ABC fitting of a model.

4.3 Limitation of the Study

The current study had a few limitations. First, our individual-based stochastic sim-
ulation model, designed for the standard 17-day experimental period, is specifically
developed to explore the infrapopulation infection dynamics of gyrodactylids on a
single fish. This limitation arises from the study design, and consequently, the model
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would need to be modified to examine infection transmission between hosts in a
scenario where fish can interact. Also, the current study only investigated the infec-
tion dynamics of the gyrodactylid parasites within the standard 17-day experimental
period. Hence, this study did not consider the interpopulation (or mixed-gyrodactylid)
within-host infection dynamics, between-host transmission or intrapopulation infec-
tion dynamics (using a social network model), or long-term predictions beyond the
standard 17-day infection period across the different host populations by adapting our
stochastic simulation model.

4.4 Future Research Directions

The current study can be extended in severalways. Specifically, the following are future
works concerning the stochastic simulation model, the modified sequential Monte
Carlo ABC with adaptive importance sampling and the gyrodactylid-fish system:

• Within the stochastic simulation model, we assumed that the rate of localised
host immune response (which occurs temporally as a function of the number of
parasites at anyof the host body locations) also depends onfish sex (with two levels)
and type of fish (with three levels). Thus, the current study only considered the
additive impact of the covariates (fish sex and fish stock) on the immune response
rate without considering interaction effects. Future studies should consider the
multiplicative or interaction effects of these covariates on the rate of localised
immune response and compare the modified model with the current version with
additive immune response rates.

• In the modified ABC-SMC sampler, we predetermined and fixed the decreasing
tolerance thresholds and the final ABC stopping time, employing ten ABC time
steps and associated tolerances. Subsequent research could propose adaptive toler-
ance strategies and a stopping rule, allowing the ABC algorithm to terminate upon
achieving posterior convergence. Additionally, exploring the impact of various
optimal perturbation kernels and employing other regularisation methods, such as
elastic net regularisation (combining L1 and L2 penalties), could be valuable.

• Future investigations might focus on identifying low-dimensional and informa-
tive summary statistics for ABC fitting. This effort aims to refine ABC posterior
approximations further, mitigating instances of model under- or over-fitting across
different parasite-fish groups (especially towards the end of the infection period).

• Furthermore, the simulation time axis of the stochastic simulation model, or the
observed time points, can be extended to enable predictions beyond the standard
17-day experimental period. This extension would facilitate assessing how infec-
tions are sustained over the long term across various host populations. Thus, an
extended model should be developed and fitted using the proposed ABC method-
ologies with the help of experimental data.

• Future studies can further conduct in silico experiments that are challenging to
explore experimentally because of similarities between gyrodactylids and other
unfavourable experimental conditions that may prevail. This exploration involves
modifying our stochastic simulation model to investigate mixed gyrodactylid par-
asite populations. Specifically, co-infections on a single or fish population can be
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examined based on existing knowledge about these gyrodactylid species, such as
G. turnbulli and G. bullatarudis parasites. In addition, relevant ecological ques-
tions can be investigated regarding how the differentGyrodactylus species interact
or compete and which one temporally wins at the individual host and population
levels.

• Finally, future studies can develop a social network model coupled with our
stochastic simulation model to describe the infection dynamics of a fish popu-
lation and their interactions. The social network model should capture the parasite
load for each fish over time but must not necessarily give the exact spatial loca-
tions of parasites on an individual host. The model should be calibrated using the
appropriate ABC for network models.

Supplementary S1: Pseudo-codes of exact simulation and τ -leaping for the CTMC
simulation model. Here, we present the pseudo-codes for both the exact Stochastic
Simulation Algorithm (SSA) and the hybrid τ -leaping algorithm, designed for our
multidimensional CTMC stochastic simulation model.
Supplementary S2: Determining an error bound for the Hybrid tau-leaping simula-
tion model. Here, a reasonable choice of the error bound ε (0 < ε �1) for the hybrid
tau-leaping simulation model was investigated by exploring the trade-off between
simulation accuracy and computational speed at some predefined parameter values
based on 100 different simulation realisations or repetitions; where each simulation
realisation corresponded to the nine observed parasite-fish groups (given fish sex, fish
size, fish stock and parasite strain).
Supplementary S3: Projection of parasite numbers after fish mortality. Here, an
optimised linear regression function is developed to aid in computing the summary
statistics during ABC fitting of our sophisticated simulation model after premature
host mortality (which also includes a proposed theorem and its mathematical proof).
Supplementary S4: Assessing the weighted-iterative ABC and regression adjust-
ments using a numerical experiment. Here, we present the results of a numerical
experiment conducted with our stochastic simulation model at pre-defined parameter
values. The aim is to evaluate the performance of ourmodifiedABC-SMC sampler and
investigate model identifiability. Supplementary Figures:Marginal density plots of the
unadjusted ABC posterior at N = 500, 1000 and 1500 given the observed empirical
data.
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