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EHRHART POLYNOMIALS OF PARTIAL PERMUTOHEDRA

ROGER E. BEHREND

Abstract. For positive integers m and n, the partial permutohedron P(m,n) is a certain

integral polytope in Rm, which can be defined as the convex hull of the vectors from {0, 1, . . . , n}m
whose nonzero entries are distinct. For n = m−1, P(m,m−1) is (after translation by (1, . . . , 1))

the polytope Pm of parking functions of length m, and for n ≥ m, P(m,n) is combinatorially

equivalent to an m-stellohedron. The main result of this paper is an explicit expression for the

Ehrhart polynomial of P(m,n) for any m and n with n ≥ m − 1. The result confirms the

validity of a conjecture for this Ehrhart polynomial in arXiv:2207.14253 [5], and the n = m− 1

case also answers a question of Stanley regarding the number of integer points in Pm. The proof

of the result involves transforming P(m,n) to a unimodularly equivalent polytope in Rm+1,

obtaining a decomposition of this lifted version of P(m,n) with n ≥ m− 1 as a Minkowski sum

of dilated coordinate simplices, applying a result of Postnikov for the number of integer points in

generalized permutohedra of this form, observing that this gives an expression for the Ehrhart

polynomial of P(m,n) with n ≥ m − 1 as an edge-weighted sum over graphs (with loops and

multiple edges permitted) on m labelled vertices in which each connected component contains

at most one cycle, and then applying standard techniques for the enumeration of such graphs.

1. Introduction

For positive integers m and n, the partial permutohedron P(m,n) can be defined as the convex

hull of the vectors from {0, 1, . . . , n}m whose nonzero entries are distinct. This class of integral

polytopes in Rm was introduced and studied by Heuer and Striker [10, 11], and has been studied

further by Behrend, Castillo, Chavez, Diaz-Lopez, Escobar, Harris and Insko [5, 6], Black and

Sanyal [7] (in the context of monotone path polytopes of polymatroids), and Hanada, Lentfer

and Vindas-Meléndez [9] (in the context of generalized parking function polytopes).

As examples of partial permutohedra, P(3, n) can be depicted as

P(3, 1) : , P(3, 2) : , P(3, n) for n ≥ 3 : ,

where (as will be discussed in (viii) in Section 2) all cases with n ≥ 3 are combinatorially

equivalent.

The main aim of this paper is to prove the following result, which was conjectured in [5,

Conj. 6.5].
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Theorem 1. For any positive integers m and n with n ≥ m − 1, the Ehrhart polynomial

EhrP(m,n)(t) of P(m,n) is explicitly

EhrP(m,n)(t)
∣∣
n≥m−1

=
1

2m

⌊m/2⌋∑

i=0

m∑

j=2i

(−1)i+1

(
m

m− j, j − 2i, i, i

)
i! (2j − 4i− 3)!! tj−i (2nt+ t+ 2)m−j. (1)

In (1), standard notation is used for multinomial coefficients and double factorials, i.e.,(
m

m−j, j−2i, i, i

)
= m!/

(
(m − j)! (j − 2i)! (i!)2

)
and (2j − 4i − 3)!! = −∏j−2i

k=1 (2k − 3). For gen-

eral information regarding Ehrhart polynomials of integral polytopes, see for example [4, Ch. 3]

or [18, Sec. 4.6.2].

The proof of Theorem 1 will involve transforming P(m,n) to a unimodularly equivalent gen-

eralized permutohedron P̃(m,n) in Rm+1 (see (5)), obtaining a decomposition of P̃(m,n)|n≥m−1

as a Minkowski sum of dilated coordinate simplices (see (6)), applying a result of Postnikov [14,

Thm. 11.3] for the number of integer points in certain generalized permutohedra, observing that

this gives an expression for EhrP(m,n)(t)|n≥m−1 as an edge-weighted sum over graphs (with loops

and multiple edges permitted) on m labelled vertices in which each connected component con-

tains at most one cycle (see (18)), and finally applying standard techniques for the enumeration of

such graphs to obtain generating function expressions (see (28) and (30)) for EhrP(m,n)(t)|n≥m−1,

from which (1) follows easily by evaluating power series coefficients.

An outline of the remaining sections of this paper is as follows. In Section 2, a review is

provided of key properties of P(m,n), including characterizations of its vertices, facets and

other faces. In Section 3, a review is provided of connections between P(m,n) and certain other

polytopes. In Section 4, the proof of Theorem 1 is given, where the first step of the proof uses

the connection between P(m,n) and generalized permutohedra described in (i) of Section 3.

In Section 5, various implications of Theorem 1 are discussed, including some related to the

connections between P(m,n) and polytopes described in Section 3.

2. Properties of P(m,n)

Some known properties of P(m,n) are as follows.

(i) It is noted in [11, Rem. 5.5] that P(m,n) has dimension m.

(ii) It is shown in [5, Prop. 3.5] that P(m,n) is a simple polytope.

(iii) It is shown in [11, Prop. 5.7] that P(m,n) has
∑min(m,n)

i=0
m!

(m−i)!
vertices, given explicitly as

the vectors in Rm with entries of zero in any m − i positions, and with the other i entries

being n, n− 1, . . . , n− i+ 1 in any order, for i = 0, . . . ,min(m,n).

(iv) It is shown in [11, Thms. 5.10 & 5.11] that P(m,n) can be expressed a bounded intersection

of affine halfspaces as

P(m,n) =





x ∈ Rm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xi ≥ 0, for i = 1, . . . , m,

∑

i∈S

xi ≤
n∑

i=n−|S|+1

i, for all ∅ ( S ( {1, . . . , m}
with |S| ≤ min(m,n)− 1,

m∑

i=1

xi ≤
n∑

i=max(1,n−m+1)

i





. (2)
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Furthermore, if any single inequality in the set on the RHS of (2) is changed to an equality,

then the set is a facet of P(m,n), and all facets arise uniquely in this way, from which it

follows that P(m,n) has m+
∑min(m,n)−1

i=0

(
m
i

)
facets.

(v) It is noted in [5, Eq. (4.12)] that for n ≥ m− 1, P(m,n) has the Minkowski sum decompo-

sition

P(m,n)
∣∣
n≥m−1

= (n−m+ 1)

m∑

i=1

conv{0, ei}+
∑

1≤i<j≤m

conv{0, ei, ej}, (3)

where conv denotes the convex hull, and ei denotes the ith standard unit vector in Rm.

Note that the term
∑m

i=1 conv{0, ei} in (3) is simply the unit hypercube [0, 1]m.

(vi) It is shown in [5, Thm. 3.6] and [7, Thm. 7.5] that there is a simple bijection between the

i-dimensional faces of P(m,n) and certain chains of subsets of {1, . . . , m} with i so-called

missing ranks. The m = n case of this result was obtained in [11, Thm. 5.24], and the

general case was conjectured in [11, Conj. 5.25].

(vii) It is shown in [5, Thm. 3.19] that the f -polynomial fP(m,n)(t) of P(m,n) (i.e., the polynomial

in t whose coefficient of ti is the number of i-dimensional faces of P(m,n)) is given by

fP(m,n)(t) = 1 +

n−1∑

i=0

(
m

i

)
Ai(t + 1)

m−i∑

j=1

(t+ 1)j ,

where Ai(t) is the Eulerian polynomial (defined for i ≥ 1 as the polynomial in t whose

coefficient of tj is the number of permutations of {1, . . . , i} with exactly j descents, and for

i = 0 as A0(t) = 1).

(viii) It is shown in [5, Cor. 3.11 & Cor. 3.20] that, for fixed m, all P(m,n) with n ≥ m are

combinatorially equivalent, with f -polynomial given by

fP(m,n)(t)
∣∣
n≥m−1

= 1 + (t+ 1)

m∑

i=1

(
m

i

)
Ai(t+ 1).

(ix) It is shown in [5, Thm. 4.5] and [9, Cor. 3.28] that for n ≥ m− 1, the volume volP(m,n)

of P(m,n) is explicitly

volP(m,n)
∣∣
n≥m−1

= − 1

2m

m∑

i=0

(
m

i

)
(2i− 3)!! (2n+ 1)m−i. (4)

Related results are obtained for n = m− 1 in [1, Sec. 4] and [20, Part (d)].

(x) Explicit expressions are obtained for the Ehrhart polynomial of P(m,n) with arbitrary m

and fixed n ≤ 3 in [5, p. 28, Thm. 5.11 & Thm. 5.12], and for the volume of P(m, 4) with

arbitrary m in [5, Thm. 5.13]. Explicit expressions are obtained for the Ehrhart polynomial

of P(m,n) with fixed m ≤ 4 and arbitrary n ≥ m−1 in [5, Eq. (6.1), Eq. (6.2), Thm. 6.1 &

Thm. 6.2], and these expressions can now be obtained alternatively using (1) with m ≤ 4.

3. Connections between P(m,n) and other polytopes

Some connections between partial permutohedra and certain other polytopes are as follows.

(i) Generalized permutohedra. Let P̃(m,n) be the polytope which is obtained by lifting P(m,n)

from Rm into the hyperplane {x ∈ Rm+1 | ∑m+1
i=1 xi =

∑n
i=max(1,n−m+1) i} in Rm+1 according

to

P̃(m,n) =
{(

x1, . . . , xm,
∑n

i=max(1,n−m+1) i−
∑m

i=1 xi

) ∣∣∣ x ∈ P(m,n)
}
. (5)
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It follows that P̃(m,n) is unimodularly equivalent to P(m,n), and hence that it has the

same Ehrhart polynomial as P(m,n).

It is noted in [5, Sec. 4.3] that P̃(m,n) is a case of a generalized permutohedron, as

defined by Postnikov [14, Def. 6.1]. Furthermore, as noted in [5, Eq. (4.14)], it follows

from (3) and (5) that for n ≥ m− 1, P̃(m,n) has the Minkowski sum decomposition

P̃(m,n)
∣∣
n≥m−1

= (n−m+ 1)

m∑

i=1

conv{ẽi, ẽm+1}+
∑

1≤i<j≤m

conv{ẽi, ẽj , ẽm+1}, (6)

where ẽi denotes the ith standard unit vector in Rm+1. It can be seen from (6) that for

n ≥ m− 1, P̃(m,n) is a type-Y generalized permutohedron, i.e., it has the form P y
n ({yI}),

as defined in [14, p. 1042].

(ii) Antiblocking permutohedra. For z1, . . . , zm ∈ R, the standard permutohedron Π(z1, . . . , zm)

is defined as the convex hull of all vectors whose entries are permutations of z1, . . . , zm, i.e.,

Π(z1, . . . , zm) = conv{(zσ(1), . . . , zσ(m)) | σ ∈ Sm},
and for nonnegative z1, . . . , zm, the antiblocking permutohedron Π̂(z1, . . . , zm) is defined

in [5, Def. 5.3] as

Π̂(z1, . . . , zm)

=
{
x ∈ Rm

∣∣ there exists y ∈ Π(z1, . . . , zm) with 0 ≤ xi ≤ yi for i = 1, . . . , m
}
.

As noted in [5, Eqs. 5.4 & 5.5], Π̂(z1, . . . , zm) can also be expressed as

Π̂(z1, . . . , zm) =
{
(x1y1, . . . , xmym)

∣∣ x ∈ [0, 1]m, y ∈ Π(z1, . . . , zm)
}
,

= conv
{
(a1zσ(1), . . . , amzσ(m))

∣∣ a ∈ {0, 1}m, σ ∈ Sm

}
.

It is shown in [5, Cor. 5.8] that P(m,n) is an antiblocking permutohedron, given by

P(m,n) =





Π̂(n, n− 1, n− 2, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
m−n

), for n ≤ m− 2,

Π̂(n, n− 1, n− 2, . . . , n−m+ 1), for n ≥ m− 1.

(7)

Note that the permutohedron Π(n, n− 1, n− 2, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
m−n

) for n ≤ m− 2, or Π(n, n−

1, n − 2, . . . , n − m + 1) for n ≥ m − 1, is a facet of P(m,n), as given by the set on the

RHS of (2) with its last inequality changed to an equality.

(iii) Parking function polytopes. A parking function of length m is an m-vector of positive

integers whose nondecreasing rearrangement r1 ≤ r2 ≤ . . . ≤ rm satisfies ri ≤ i for i =

1, . . . , m, and the parking function polytope Pm, as defined in [19], is the convex hull of all

parking functions of length m. The vertices and facets of Pm are characterized in [1, Sec. 1]

and [20, Parts (a) & (b)], and by comparing these with the vertices or facets of P(m,m−1),

it follows that Pm with m ≥ 2 is simply P(m,m− 1) translated by (1, . . . , 1), i.e.,

P(m,m− 1) =
{
(x1 − 1, . . . , xm − 1) | x ∈ Pm

}
. (8)

A generalization of Pm is defined in [9] as follows. For positive integers a, b and m, an

(a, b)-parking function of length m is an m-vector of positive integers whose nondecreasing

rearrangement r1 ≤ r2 ≤ . . . ≤ rm satisfies ri ≤ a + (i − 1)b for i = 1, . . . , m, and the

(a, b)-parking function polytope Xm(a, b) is defined as the convex hull of all (a, b)-parking
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functions of length m. It follows that Pm = Xm(1, 1), and it is shown in [9, Prop. 3.16] that

for n ≥ m− 1, Xm(n−m+ 2, 1) is P(m,n) translated by (1, . . . , 1), i.e.,

P(m,n)
∣∣
n≥m−1

=
{
(x1 − 1, . . . , xm − 1) | x ∈ Xm(n−m+ 2, 1)

}
. (9)

(iv) Win vector polytopes. For a graph G with vertices 1, . . . , m, a partial orientation O of G is

an assignment of a direction to some edges of G, and the win vector of O is the indegree

sequence of O, i.e., for i = 1 . . . , m, the ith entry of the win vector is the number of edges

incident to i which are directed towards i by O. The win vector polytope W (G) of G, as

defined in [3], is then the convex hull of the win vectors of all partial orientations of G. For

the complete graph Km with m ≥ 2,

P(m,m− 1) = W (Km), (10)

where this can be shown using a characterization of the vertices of win vector polytopes

given in [3, Prop. 3.4]. (although note that the description of the win vectors of Km given

in [3, Ex. 3] seems to contain errors).

(v) Stellohedra. For a graph G with vertex set 1, . . . , N , the graph associahedron Assoc(G)

of G is defined as Assoc(G) =
∑

S conv{ei | i ∈ S}, where this is a Minkowski sum over all

nonempty and nonsingleton subsets S of {1, . . . , N} such that the subgraph of G induced by

S is connected, and ei denotes the ith standard unit vector in RN . The m-stellohedron, as

defined in [15, Sec. 10.4], is then the graph associahedron of the star graph K1,m, consisting

of a central vertex m+ 1 connected to m vertices 1, . . . , m, which gives

Assoc(K1,m) =
∑

∅(S⊆{1,...,m}

conv
(
{ẽi | i ∈ S} ∪ {ẽm+1}

)
,

where ẽi denotes the ith standard unit vector in Rm+1. It is noted in [10, Thm. 5.17]

that P(m,m) is combinatorially equivalent to the m-stellohedron. Hence, due to the com-

binatorial equivalence discussed in (viii) in Section 2, all P(m,n) with n ≥ m are combi-

natorially equivalent to the m-stellohedron, i.e.,

P(m,n)
∣∣
n≥m

∼= Assoc(K1,m), (11)

where ∼= denotes combinatorial equivalence. For further information, see for example [5,

Rem. 3.12].

(vi) Monotone path polytopes of polymatroids. As shown in [7, Thm. 7.3], P(m,n) is also

connected to certain so-called monotone path polytopes of polymatroids. As noted in [7,

Cor.7.4], this provides a generalization to all m and n of the combinatorial equivalence

of (11), specifically

P(m,n) ∼=
∑

S⊆[m]
|S|≥max(1,m−n+1)

conv
(
{ẽi | i ∈ S} ∪ {ẽm+1}

)
.

For further information, see also [5, Rem. 3.13].

4. Proof of Theorem 1

A proof of Theorem 1 is provided in this section. The proof is subdivided into three parts,

and an outline of these is as follows.
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• In Subsection 4.1, a certain finite set A(m) of nonnegative integer sequences is defined first.

A theorem of Postnikov [14, Thm. 11.3] for the number of integer points in any type-Y
generalized permutohedron is then applied to the Minkowski sum decomposition (6) of the

lifted version P̃(m,n) of P(m,n) with n ≥ m − 1, and this leads to an expression (see (15))

for EhrP(m,n)(t)|n≥m−1 as a sum over A(m).

• In Subsection 4.2, properties of connected graphs with at most one cycle are considered first,

and a set G(m) is then defined as the set of all graphs with vertices labelled 1, . . . , m, such

that loops and multiple edges are permitted, and each connected component contains at most

one cycle. The set A(m) is then found to be in simple bijection with G(m), and applying

this bijection to the previous expression (15) for EhrP(m,n)(t)|n≥m−1 gives a further expression

(see (18)) for EhrP(m,n)(t)|n≥m−1 as a certain edge-weighted sum over the graphs of G(m).

• In Subsection 4.3, an exponential generating function for EhrP(m,n)(t)|n≥m−1 is introduced

(see (19)), and using the expression (18) for EhrP(m,n)(t)|n≥m−1 then enables this generat-

ing function to be expressed in terms of exponential generating functions for certain graphs

(see (20)-(22)). The required expression (1) for EhrP(m,n)(t)|n≥m−1 follows by applying stan-

dard techniques for obtaining explicit expressions for such graph-related generating functions.

4.1. Application of Postnikov’s theorem. Let E(m) be the set of all subsets of {1, . . . , m}
of size 1 or 2, i.e.,

E(m) =
{
{i}

∣∣ i = 1, . . . , m
}
∪
{
{i, j}

∣∣ 1 ≤ i < j ≤ m
}
,

and let A(m) be the set of all nonnegative integer sequences a = (aS)S∈E(m) which satisfy

∑

S∈E

aS ≤
∣∣∣
⋃

S∈E

S
∣∣∣ for all ∅ ( E ⊆ E(m). (12)

As examples of the condition in (12), by taking E =
{
{i}

}
for i = 1, . . . , m, E =

{
{i, j}

}
for

1 ≤ i < j ≤ m, and E = E(m) in (12), it follows that any a ∈ A(m) satisfies

a{i} ∈ {0, 1} for i = 1, . . . , m, a{i,j} ∈ {0, 1, 2} for 1 ≤ i < j ≤ m, and
∑

S∈E(m)

aS ≤ m.

As an example of a set A(m), if m = 2, then

A(2) =
{
(0, 0, 0), (0, 0, 1), (0, 0, 2), (1, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)

}
, (13)

where each a ∈ A(2) is written as (a{1}, a{2}, a{1,2}).

The condition (12) can also be interpreted in terms of systems of distinct representatives, as

follows. For a nonnegative integer sequence a = (aS)S∈E(m), let Φ(a) be the family (or multiset)

of
∑

S∈E(m) aS elements of E(m) in which S appears exactly aS times for each S ∈ E(m). It then

follows, by applying Hall’s marriage theorem to Φ(a), that

Φ(a) has a system of distinct representatives if and only if a satisfies (12). (14)

Note that if aS = 0 for each S ∈ E(m), then Φ(a) is the empty family, which is considered to

have a system of distinct representatives.

It will now be shown, using Postnikov’s theorem [14, Thm. 11.3], that

EhrP(m,n)(t)
∣∣
n≥m−1

=
∑

a∈A(m)

m∏

i=1

(
(n−m+ 1)t+ a{i} − 1

a{i}

) ∏

1≤i<j≤m

(
t+ a{i,j} − 1

a{i,j}

)
, (15)
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where this expression is also given in [5, Eq. (6.5)], and the details of its derivation (which are

omitted in [5]) are as follows. For n ≥ m − 1, let Q = conv{ẽ1, . . . , ẽm+1} + t P̃(m,n), using

the same notation as in (6). Then the trimmed version (as defined in [14, Def. 11.2]) of Q
is Q− = t P̃(m,n). Applying [14, Thm. 11.3] to Q−, decomposing P̃(m,n) according to (6),

using the fact that EhrP̃(m,n)(t) is the number of integer points in t P̃(m,n) for any nonnegative

integer t, and recalling (as indicated after (5)) that P(m,n) and P̃(m,n) have the same Ehrhart

polynomial, then gives

EhrP(m,n)(t)
∣∣
n≥m−1

=
∑

b∈A′(m)

m∏

i=1

(
(n−m+ 1)t+ b{i} − 1

b{i}

) ∏

1≤i<j≤m

(
t+ b{i,j} − 1

b{i,j}

)
, (16)

where a trivial factor
( b{1,...,m+1}

b{1,...,m+1}

)
= 1 initially appears in the sum on the RHS, and where (due

to [14, Def. 9.2]) A′(m) is the set of all nonnegative integer sequences b = (bS)S∈E ′(m) such that
∑

S∈E ′(m)

bS = m, and
∑

S∈E

bS ≤
∣∣∣
⋃

S∈E

S
∣∣∣− 1 for all ∅ ( E ( E ′(m),

with

E ′(m) =
{
{1, . . . , m+ 1}

}
∪
{
{i,m+ 1}

∣∣ i = 1, . . . , m
}
∪
{
{i, j,m+ 1}

∣∣ 1 ≤ i < j ≤ m
}
.

It can be checked straightforwardly that there is a bijection from A′(m) to A(m), in which

b ∈ A′(m) is mapped to a sequence in A(m) by simply omitting the entry b{1,...,m+1}. Hence, the

sum over A′(m) in (16) can be replaced by a sum over A(m), thereby giving (15).

As an aside (and as also discussed in [5, Sec. 6.2)]), note that certain properties of EhrP(m,n)(t)

follow immediately from (15). For example, it can be seen that, for fixed m and t, EhrP(m,n)(t)

is a polynomial in (n−m+1)t, that all coefficients of this polynomial are positive integers if t is

a positive integer, and that this polynomial has degree m (since A(m) contains the sequence a

with entries a{i} = 1 for i = 1, . . . , m and a{i,j} = 0 for 1 ≤ i < j ≤ m). It can also be

seen that, for fixed m and n, EhrP(m,n)(t) is a polynomial in t of degree m, where this also

follows from general Ehrhart theory, and that all coefficients of this polynomial are positive,

where this also follows from the general property that the Ehrhart polynomial of any integral

type-Y generalized permutohedron has positive coefficients (see [13, Cor. 3.1.5]). For example,

for m = 2, (13) and (15) give

EhrP(2,n)(t) = 1 +
(
t
1

)
+
(
t+1
2

)
+
(
(n−1)t

1

)
+
(
(n−1)t

1

)
+
(
(n−1)t

1

)2
+
(
(n−1)t

1

)(
t
1

)
+
(
(n−1)t

1

)(
t
1

)

= (n2 − 1/2) t2 + (2n− 1/2) t+ 1,

which, for this simple case, could also easily be obtained directly (or by using Pick’s theorem)

by observing that P(2, n) is the pentagon conv{(0, 0), (n, 0), (n, n− 1), (n− 1, n), (0, n)}.

4.2. Introduction of graphs. In this subsection and Subsection 4.3, undirected graphs with

loops and multiple edges permitted are considered. For such graphs, the following conventions

are used. A cycle of length 1 corresponds to a vertex with a loop attached, a cycle of length 2

corresponds to a pair of distinct vertices connected by two parallel edges, and a cycle of length ℓ ≥
3 corresponds to distinct vertices i1, . . . , iℓ, such that ik and ik+1 are adjacent for k = 1, . . . , ℓ−1,

and iℓ and i1 are adjacent. An orientation of a graph is an assignment of a direction to all edges,

where there is only one choice for the direction of each loop, and two choices for the direction

of each other edge. For such an orientation, the indegree of a vertex i is the number of edges
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incident to i which are directed towards i, where each loop attached to i contributes 1 to this

number.

Consider a connected graph G, with loops and multiple edges permitted. Then, as will be

discussed below, the following are all equivalent:

(i) G is acyclic, i.e., a tree.

(ii) The number of edges in G is equal to the number of vertices in G minus 1.

(iii) There exists an orientation of G in which one vertex has indegree 0, and each other vertex

has indegree 1.

Similarly, the following are all equivalent:

(i′) G contains exactly one cycle.

(ii′) The number of edges in G is equal to the number of vertices in G.

(iii′) There exists an orientation of G in which each vertex has indegree 1.

The equivalences between (i) and (ii), and between (i′) and (ii′), are standard facts in graph

theory. The implications from (iii) to (ii), and from (iii′) to (ii′), follow from the observation that

in any oriented graph, the sum of indegrees over all vertices equals the number of edges. The

implication from (i) to (iii) can be confirmed by choosing any vertex i of a tree G, and for an edge

which connects a vertex j of distance d from i to a vertex j′ of distance d+ 1 from i, assigning

the direction from j to j′. The implication from (i′) to (iii′) can be confirmed as follows. First

observe that if G contains exactly one cycle, with vertices i1, . . . , iℓ, then G consists of that cycle

together with ℓ mutually disjoint trees τ1, . . . , τℓ, such that ik is a vertex of τk, for k = 1, . . . , ℓ.

The required orientation of such a graph can then be obtained by directing the edges of the cycle

to form a directed path around the cycle (which can be done in two ways for ℓ ≥ 2), and for an

edge which connects a vertex j in τk of distance d from ik to a vertex j′ of distance d+1 from ik
(where these distances are taken within τk), assigning the direction from j to j′, for k = 1, . . . , ℓ.

Now let G(m) be the set of graphs with vertices labelled 1, . . . , m (and with loops and multiple

edges permitted), such that each connected component contains at most one cycle.

For example, for m = 2,

G(2) =
{

• •1 2 , • •1 2 , • •1 2 , • •1 2 , • •1 2 , • •1 2 , • •1 2 , • •1 2

}
. (17)

It will now be shown that there exists a bijection Γ from A(m) (as defined in Subsection 4.1)

to G(m), where for a ∈ A(m), Γ(a) is the graph with vertices labelled 1, . . . , m, and with a{i}
loops attached to vertex i for i = 1, . . . , m, and a{i,j} edges connecting vertices i and j for

1 ≤ i < j ≤ m.

Note that the elements of G(2) in (17) are listed in the order which corresponds, using Γ, to

the order in which the elements of A(2) are listed in (13).

To confirm the well-definedness of Γ, consider a ∈ A(m), and associate each edge of Γ(a) with

its set of endpoints (so that loops are associated with singletons, and other edges are associated

with sets of size 2). Then Φ(a) is the family of edges of Γ(a), and due to (14), Φ(a) has a system s

of distinct representatives. Now form an orientation of Γ(a) by directing each edge e towards

the endpoint of e which represents e in s. It follows that for this orientation, each vertex has

indegree at most 1. Hence, due to the implications above from (iii) to (i), and from (iii′) to (i′),

each connected component of Γ(a) contains at most one cycle, so Γ(a) ∈ G(m), as required.

It is clear from the definition of Γ that any a ∈ A(m) can be uniquely recovered from Γ(a),

and hence Γ is injective.
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To confirm the surjectivity of Γ, consider G ∈ G(m), associate each edge of G with its set

of endpoints, and form a nonnegative integer sequence a = (aS)S∈E(m) by setting aS to be the

number of edges S in G, for each S ∈ E(m). Hence, Φ(a) is the family of edges of G. Due to the

implications above from (i) to (iii), and from (i′) to (iii′), there exists an orientation O of G in

which each vertex has indegree at most 1. A system of distinct representatives of Φ(a) can then

be obtained by representing each edge e of G by the endpoint of e towards which e is directed

in O. It follows, using (14), that a ∈ A(m) and G = Γ(a), as required.

For G ∈ G(m), define an edge pair in G to be a pair of parallel edges connecting the same two

vertices, and a single edge in G to be an edge which is neither a loop nor an edge within an edge

pair, and let #(loops, G), #(single edges, G) and #(edge pairs, G) denote the number of loops,

single edges and edge pairs, respectively, in G.

Applying the bijection Γ to A(m) in (15) now gives

EhrP(m,n)(t)
∣∣
n≥m−1

=
∑

G∈G(m)

(
(n−m+ 1)t

)#(loops, G)
t#(single edges, G)

(
t(t + 1)/2

)#(edge pairs, G)
. (18)

4.3. Graph enumeration. In this subsection, P(m,n) with n ≥ m − 1 is initially considered

in the form P(m,m+ p− 1), where p is a fixed nonnegative integer.

Consider the exponential generating function Fp(t, z) for EhrP(m,m+p−1)(t), as defined by

Fp(t, z) = 1 +

∞∑

m=1

EhrP(m,m+p−1)(t)
zm

m!
. (19)

Substituting (18) into (19) gives

Fp(t, z) = 1 +

∞∑

m=1

∑

G∈G(m)

(p t)#(loops, G) t#(single edges, G)
(
t(t+ 1)/2

)#(edge pairs, G) zm

m!
.

Now let GC(m) denote the set of connected graphs in G(m), and define

fp(t, z) =

∞∑

m=1

∑

G∈GC(m)

(p t)#(loops, G) t#(single edges, G)
(
t(t + 1)/2

)#(edge pairs, G) zm

m!
. (20)

It follows from the exponential formula for exponential generating functions (see for example [17,

Secs. 5.1–5.3]) that

Fp(t, z) = efp(t,z). (21)

Since G(m) consists of graphs in which each connected component contains at most one cycle,

a graph in GC(m) is one of the following.

• A tree.

• A graph obtained by attaching a loop to one vertex of a tree. Such a graph will be referred to

as a looped tree. Note that a looped tree can be associated with a rooted tree by regarding

the vertex with the loop attached as the root, and then deleting the loop.

• A graph obtained by converting one edge of a tree to an edge pair. Such a graph will be

referred to as an enhanced tree.

• A connected graph without any loops or multiple edges, and with exactly one cycle. Such a

graph will be referred to as a quasitree.
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Denote the associated subsets of GC(m) as Gtrees(m), Glooped trees(m), Genh. trees(m) and Gquasitrees(m),

respectively.

The implications from (i) to (ii), and from (i′) to (ii′) in Subsection 4.2, give the following

data for G ∈ GC(m):

#(loops, G) #(single edges, G) #(edge pairs, G)

G ∈ Gtrees(m) 0 m− 1 0

G ∈ Glooped trees(m) 1 m− 1 0

G ∈ Genh. trees(m) 0 m− 2 1

G ∈ Gquasitrees(m) 0 m 0

Expressing GC(m) in (20) as the disjoint union of Gtrees(m), Glooped trees(m), Genh. trees(m) and

Gquasitrees(m) then gives

fp(t, z) =
1

t

∞∑

m=1

|Gtrees(m)| (tz)
m

m!
+ p

∞∑

m=1

|Glooped trees(m)| (tz)
m

m!

+
t + 1

2t

∞∑

m=1

|Genh. trees(m)| (tz)
m

m!
+

∞∑

m=1

|Gquasitrees(m)| (tz)
m

m!
. (22)

Now consider the function

T (z) =

∞∑

m=1

mm−1 z
m

m!
. (23)

For information on T (z), see for example [8, pp. 331, 332 and 338] or [17, pp. 23–28 and 43].

Note that T (z) is related to the Lambert W function W (z) by T (z) = −W (−z).

Cayley’s formula for the number of trees on m labelled vertices states that |Gtrees(m)| = mm−2.

Therefore, |Glooped trees(m)| = mm−1, since every looped tree in Glooped trees(m) can be uniquely

obtained by choosing any tree in Gtrees(m), and choosing any one of the m vertices of the tree at

which to attach a loop. Similarly, |Genh. trees(m)| = (m − 1)mm−2, since every enhanced tree in

Genh. trees(m) can be uniquely obtained by choosing any tree in Gtrees(m), and choosing any one

of the m− 1 edges of the tree to be converted to an edge pair.

It follows immediately using (23) that

∞∑

m=1

|Glooped trees(m)| z
m

m!
= T (z), (24)

and it can be shown that
∞∑

m=1

|Genh. trees(m)| z
m

m!
=

T (z)2

2
, (25)

∞∑

m=1

|Gtrees(m)| z
m

m!
= T (z)− T (z)2

2
, (26)

where (25) can be obtained by observing that every enhanced tree corresponds uniquely to

a set {τ1, τ2} of disjoint rooted trees τ1 and τ2 (since an enhanced tree can be viewed as τ1
and τ2, together with an edge pair connecting the roots of τ1 and τ2), noting that T (z) is the

exponential generating function for rooted trees (since the number of rooted trees on m labelled

vertices is mm−1), and applying the multiplication formula for exponential generating functions
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(see for example [17, Prop. 5.1.1]). Using |Genh. trees(m)| = (m − 1)mm−2 = mm−1 − mm−2 =

|Glooped trees(m)| − |Gtrees(m)|, together with (24) and (25), then gives (26).

It is also a known result in graph theory (see for example [12, Eq. (3.5)]), that

∞∑

m=1

|Gquasitrees(m)| z
m

m!
= −T (z)

2
− T (z)2

4
− log

√
1− T (z), (27)

where this can be obtained by first observing (as done similarly in Subsection 4.2) that every

quasitree corresponds uniquely to an undirected cycle τ1, . . . , τℓ of disjoint rooted trees, for some

ℓ ≥ 3 (since a quasitree can be viewed as τ1, . . . , τℓ, together with ℓ edges connecting the roots

along the cycle). Noting that the exponential generating function for undirected cycles is

∞∑

ℓ=3

(ℓ− 1)!

2

zℓ

ℓ!
=

1

2

∞∑

ℓ=3

zℓ

ℓ
= −1

2

(
z +

z2

2
+ log(1− z)

)
,

and that the exponential generating function for rooted trees is T (z), and applying the com-

positional formula for exponential generating functions (see for example [17, Prop. 5.1.4]) then

gives (27).

Substituting (24)–(27) into (22) gives

fp(t, z) =
T (tz)

t
− T (tz)2

2t
+ p T (tz) +

(t+ 1) T (tz)2

4t
− T (tz)

2
− T (tz)2

4
− log

√
1− T (tz)

=

(
p− 1

2
+

1

t

)
T (tz)− T (tz)2

4t
− log

√
1− T (tz).

Applying (21) then gives

Fp(t, z) =
e(p−1/2+1/t) T (tz)−T (tz)2/(4t)

√
1− T (tz)

,

and using (19) with p = n−m+ 1 then gives

EhrP(m,n)(t)
∣∣
n≥m−1

= m! tm [zm]
e(n−m+1/2+1/t) T (z)−T (z)2/(4t)

√
1− T (z)

, (28)

where, for a nonnegative integer k and power series f(z), [zk]f(z) denotes the coefficient of zk

in the expansion of f(z).

As noted in [8, Eq. (2.38)]), for any nonnegative integer k and power series f(z), the function

T (z) satisfies

[zk] f
(
T (z)

)
= [zk] f(z) (1− z) ekz. (29)

Applying (29) to (28), with f(z) = e(n−m+1/2+1/t) z−z2/(4t)
/√

1− z, gives

EhrP(m,n)(t)
∣∣
n≥m−1

= m! tm [zm]
√
1− z e(n+1/2+1/t) z−z2/(4t). (30)

Finally, (30) gives

EhrP(m,n)(t)
∣∣
n≥m−1

= m! tm
∑

0≤i≤j≤m

(
[zi]

√
1− z

) (
[zj−i] e(n+1/2+1/t) z

) (
[zm−j ] e−z2/(4t)

)
,

and explicitly evaluating the power series coefficients gives (1), after some straightforward sim-

plification.
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5. Discussion

Some comments on Theorem 1 are as follows.

(i) As shown in [18, Exer. 4.64 & Sol. 4.64] and references within, the Ehrhart polynomial of

the permutohedron Π(m, . . . , 1) can be expressed as an edge-weighted sum over all forests

with vertices labelled 1, . . . , m. Hence, (18) provides an analogous expression for the par-

tial permutohedron P(m,n)|n≥m−1. Also, an expression for the Ehrhart polynomial of the

permutohedron Π(m, . . . , 1) in terms of the function T (z) in (23) is obtained in [2, 1st Eq.,

Thm. 5.2], and (28) can be regarded as an analogous expression for the partial permutohe-

dron P(m,n)|n≥m−1.

(ii) As shown in [5, Rem. 6.6], it follows from (30) that, for n ≥ m− 1,

EhrP(m,n) t) = (mt+ nt− t+ 1)EhrP(m−1,n)(t)

− (m− 1)(nt + t/2 + 3/2)tEhrP(m−2,n)(t) + (m− 1)(m− 2)t2 EhrP(m−3,n)(t)/2, (31)

where this recurrence determines EhrP(m,n) |n≥m−1 with suitable initial conditions. It would

be interesting to find an alternative proof of Theorem 1 which obtains (31) directly.

(iii) As shown in [5, p. 36], the explicit expression (4) for the volume of P(m,n)n≥m−1 follows

from (1). Hence, Theorem 1 provides a new proof of (4).

(iv) As discussed in [5, Rems. 6.4 & 6.5], Theorem 1 provides the answer a question in [19] for

the number of integer points in the parking function polytope Pm (see (iii) of Section 3),

as well as to certain other related questions, including one in [16, Section 6].

(v) It is expected that the (a, b)-parking function polytopes in (iii) of Section 3 can be expressed

in terms of type-Y generalized permutohedra for arbitrary a and b, and that the techniques

used to obtain Theorem 1 could also be used to obtain expressions for Ehrhart polynomials

of such polytopes.
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