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Abstract. Antarctic and Greenland Ice Sheet variability occurs on various timescales and 59 

is important for projections of sea-level rise; however, significant uncertainties remain 60 

concerning ice-sheet mass changes during and beyond the rest of this century. In this review 61 

we explore the degree to which short-term fluctuations and extreme glaciological events over 62 

the last three decades reflect the ice sheets’ longer-term evolution and response to ongoing 63 

climate change. Short-term (decadal or shorter) variations in atmospheric or oceanic 64 

conditions can trigger  amplifying feedbacks that ultimately increase ice-sheet sensitivity to 65 

climate change. Variability in ocean- and atmosphere-induced melting has the potential to 66 

trigger ice thinning, retreat and/or collapse of ice shelves, grounding-line retreat and ice-flow 67 

acceleration. Greatly contrasting Greenland melt anomalies since 2012, for example, highlight 68 

the role of increased interannual climate variability on extreme glaciological events and ice-69 

sheet evolution. Failing to adequately account for such seasonal- to decadal-scale variability 70 

can result in biased projections of multi-decadal ice mass-loss. Future research priorities 71 

therefore include fully realising advances in Earth observation, climate and ocean datasets 72 

and models, and developing and implementing more sophisticated ice-sheet models that are 73 

constrained directly by observational records and can capture ice-dynamical changes across 74 

a wide range of timescales. 75 

 76 
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Introduction 97 

  98 

The Antarctic Ice Sheet (AIS) and Greenland Ice Sheet (GrIS) have together overtaken the 99 

mountain glaciers as the main cryospheric contributor1 to accelerating global mean sea-level 100 

rise, contributing 382(±42) Gt yr-1 (~1.1 mm yr-1) of sea-level, equivalent or almost one third 101 

of total sea-level rise) from 2002 to 2022 (Figure 1). Almost two-thirds of this estimated mass 102 

loss, 255(±19) Gt yr-1, was from the GrIS, which partly reflects warmer summer conditions for 103 

much of Greenland compared with Antarctica; however, for both ice sheets considerable 104 

year-to-year mass variability is superimposed upon the highly significant downward trends 105 

(Figure 1). The main mass-loss contributions came from the southern half of the GrIS and the 106 

low-elevation areas of the West AIS, while the much smaller Antarctic Peninsula region 107 

underwent only relatively small mass losses and the East AIS slightly gained mass during the 108 

21-year period (Figure 1). 109 

The period since around 2000 has seen well-documented changes in the ice sheets2, 110 

with the dramatic breakup of several Antarctic ice shelves (for example in 1995, 2002 and 111 

2008) and a selection of major GrIS surface melt events (for example in 2012, 2019 and 2022) 112 

perhaps being the most iconic. Some of these short-term events (e.g. the major GrIS melt 113 

episodes of July 2012 and July/August 2019) can easily be identified as distinct downward 114 

anomalies in the GrIS mass fluctuations where relatively short-term events (a few days to a 115 

few weeks) meant that those year’s mass losses were approximately double those of 116 

surrounding years (Figure 1b). However, it remains unclear how indicative such short-term 117 

extreme events are of longer-term change and what the relative role of system-intrinsic 118 

variability (sub-daily to decadal timescale variations in atmosphere and ocean circulation and 119 

ice dynamics) versus longer-term external forcing (especially climate change over some 120 

decades or centuries) is: in other words, the importance of ice-sheet ‘weather’ versus 121 

‘climate’.  122 

As a result of this long- vs. short- term variability, amidst various sources of 123 

uncertainty1, computer-model projections of future ice-sheet mass change that crucially 124 

underpin sea-level projections are uncertain, with crucial ramifications for climate adaptation 125 

(for example coastal protection strategies) and implications for mitigation. This uncertainty is 126 

https://paperpile.com/c/HDcSvR/i2x5Y
https://paperpile.com/c/HDcSvR/3WrfZ
https://paperpile.com/c/HDcSvR/i2x5Y
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exacerbated because ice-sheet model projections are often forced by average conditions 127 

excluding extremes or variances.  128 

In this review, we apply a multi-disciplinary perspective to the latest evidence from 129 

observations and models of ice-sheet change to help overcome this impasse. We first outline 130 

the key drivers (atmosphere and ocean) and hydrological processes that are involved in ice-131 

sheet change. Next, we explore short- and long- term changes in the AIS and GrIS, and the 132 

interrelations between these timescales that can yield key insights into ice-sheet sensitivity 133 

and response to ongoing climate warming. The final part of the paper synthesises our findings 134 

and makes priority research recommendations for the next five years to the international 135 

research community, funding agencies and policymakers. 136 

  137 

Drivers and processes of ice-sheet mass change 138 

 139 

Ice-sheet mass budget is a function of surface mass balance (predominantly net snow 140 

accumulation minus the runoff of surface meltwater), basal mass balance (net mass change 141 

due to accumulation and melting at the base of an ice sheet or ice shelf), and dynamics (ice 142 

flow and calving) (Figure 2). Ice-sheet mass change is driven by various processes (Figure 2), 143 

including variations in atmospheric and oceanic forcing, and hydrology, each of which we 144 

discuss in the following sections. In addition, we consider the effect of sea-ice on ice-sheet 145 

change and introduce two potential ice-sheet instabilities.  146 

 147 

Atmospheric forcing 148 

  149 

The atmosphere interacts with the mass balance of ice sheets on a wide range of spatial (sub-150 

metre to hundreds of km) and temporal (sub-minute to decadal) scales (Figure 2). 151 

Atmospheric circulation impacts ice sheets primarily via its direct influence on 152 

accumulation/ablation by regulating snow and rainfall and the surface energy balance (the 153 

net amount of energy from radiation and heat fluxes at the ice-sheet surface that goes into 154 

controlling surface temperature changes, melt and surface mass losses). Along ice-sheet 155 

margins, daily to weekly timescales and tens to hundreds of kilometre spatial scales dominate. 156 

Atmospheric events such as foehn and katabatic winds (relatively warm and cold downslope 157 
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mountain winds, respectively) can also impact the snow/ice accumulation and surface melt 158 

rate3. 159 

Snow accumulation across both ice sheets decreases from the margin, where it can 160 

locally reach values well above 1 m per year water equivalent (WE), towards the elevated 161 

interior ice sheet, where colder and drier conditions prevail. In the high interior, where 162 

accumulation rates are below 10 cm per year WE (polar deserts), a marked fraction of 163 

precipitation is caused by ‘diamond dust’. This phenomenon results from radiative cooling 164 

and quasi-steady snow crystal formation when the lower atmosphere saturates 165 

accordingly4,5, which climate models struggle to represent well6. In the south-eastern GrIS and 166 

over the Antarctic Peninsula, topographic lifting of relatively warm and moist air masses 167 

enhance snowfall amounts7,8. Atmospheric rivers - episodic narrow bands of enhanced 168 

moisture transport - enhance downwelling longwave radiation and cause high-melt episodes 169 

that are often contemporaneous with large amounts of snowfall9–11. While snowfall from 170 

large synoptic-scale systems is relatively spatially homogeneous, in-air sublimation in the dry 171 

polar atmosphere12 and sublimation and erosion by near-surface (katabatic and foehn) 172 

winds13,14 can also introduce significant small-scale spatial variability that complicates 173 

accumulation studies from in-situ observations using stakes or firn cores8.  174 

An observed increase towards a more negative North Atlantic Oscillation (NAO) in 175 

summer, with accompanying anticyclonic circulation anomalies (“blocking”) over the western 176 

GrIS, since the 1990s15 has enhanced surface melt and runoff by regulating complex 177 

interactions between components of the radiation budget16,17 and thus  the surface mass 178 

balance. Descending air inside the anticyclone together with low-level warm advection 179 

accompany extreme melt episodes18, with part of the related circulation anomalies linked to 180 

low-frequency tropical Pacific sea-surface temperature variability19. Similarly, shallow 181 

surface-based temperature inversions20 and accompanying cloud-radiative anomalies21,22 182 

also have a key role (especially in increased melting recorded in northern Greenland) but 183 

remain poorly constrained in climate models. 184 

Although most of the AIS’s current mass loss occurs via ice-shelf basal melting and 185 

iceberg calving, its interannual surface mass balance variability is dominated by atmospheric 186 

processes23. A combination of stratospheric ozone depletion, greenhouse gas emissions and 187 

multidecadal Pacific/Atlantic sea-surface temperature variabilities has been suggested to 188 

drive a trend towards a more positive Southern Annular Mode (i.e. stronger westerly winds 189 

https://paperpile.com/c/HDcSvR/kz1Vs
https://paperpile.com/c/HDcSvR/wqaig
https://paperpile.com/c/HDcSvR/QcBer
https://paperpile.com/c/HDcSvR/J8qrC
https://paperpile.com/c/HDcSvR/3OfNR
https://paperpile.com/c/HDcSvR/Ywaz7
https://paperpile.com/c/HDcSvR/Bj5B7+cGkyb+nsqmV
https://paperpile.com/c/HDcSvR/w2PPD
https://paperpile.com/c/HDcSvR/8nSjs
https://paperpile.com/c/HDcSvR/435mh
https://paperpile.com/c/HDcSvR/Ywaz7
https://paperpile.com/c/HDcSvR/0C5Tn
https://paperpile.com/c/HDcSvR/azwuV
https://paperpile.com/c/HDcSvR/F3JeB
https://paperpile.com/c/HDcSvR/2L6MR
https://paperpile.com/c/HDcSvR/c8fs1
https://paperpile.com/c/HDcSvR/p4AnV
https://paperpile.com/c/HDcSvR/Oh0KW
https://paperpile.com/c/HDcSvR/9Nz0C
https://paperpile.com/c/HDcSvR/l9qXN
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which contract towards Antarctica) since the 1950s24, which has in turn been linked to 190 

Antarctic ice-shelf basal melting25 enabled by enhanced circumpolar deep water upwelling26 191 

and AIS precipitation changes27. However, it is notable that since 1980 Antarctic ice shelves 192 

experienced only minor changes in surface melt28.  The top 10% of daily precipitation totals 193 

contribute around half of the total annual precipitation events and therefore dominate SMB 194 

over much of the AIS, especially in coastal areas including over the ice shelves29.  195 

Buried snow slowly (decades to millennia) transforms into ice in the up to 120 m thick 196 

firn layer30,31. The firn layer acts as a low-pass filter between short-term atmospheric 197 

variability in snowfall (replenishing firn pore space) and melt (destroying it), and thus acts to 198 

modulate the response of the ice sheet to atmospheric forcing. Refreezing is also critical 199 

because this caps the firn and increases runoff. Over the GrIS, for example, firn layer 200 

saturation translates into the expansion of the runoff zone which can ultimately lead to 201 

accelerated mass loss. These quasi-irreversible changes in the firn layer provide a useful 202 

baseline for helping to distinguish ice-sheet weather from climate. 203 

 204 

Oceanic forcing 205 

  206 

Oceanic forcing drives ice-sheet mass loss by melting marine-terminating glaciers and ice 207 

shelves (Figure 2). In Greenland, most of the glaciers that reach the coast terminate into fjords 208 

as cliff-like vertical ice fronts. There, submarine melting is regulated by turbulent fluxes that 209 

transport oceanic heat toward the ice front. These turbulent fluxes are controlled by the 210 

ocean temperatures in the fjords and plumes that develop adjacent to the ice front32. 211 

Relatively high oceanic temperatures are associated with inflow of Atlantic waters into the 212 

fjords at depth33, while plumes originate from subglacial melt-water discharge that is 213 

ultimately driven by surface melting and subsequent runoff (which, in turn, is closely linked 214 

to atmospheric forcing32). Submarine melting might also cause the indirect retreat of marine-215 

terminating glaciers by enhancing iceberg discharge34-36. Collectively, oceanic forcing has 216 

been implicated in the multidecadal retreat and thinning of tens of coastal glaciers around 217 

Greenland since at least the early 1990s, as well as decadal oscillations in their frontal position 218 

and thickness32,37. 219 

https://paperpile.com/c/HDcSvR/APW1q
https://paperpile.com/c/HDcSvR/sPHWe
https://paperpile.com/c/HDcSvR/gp8ps
https://paperpile.com/c/HDcSvR/CtW7M
https://paperpile.com/c/HDcSvR/irX85
https://paperpile.com/c/HDcSvR/aCIRJ
https://paperpile.com/c/HDcSvR/RwyY5
https://paperpile.com/c/HDcSvR/SpXaf
https://paperpile.com/c/HDcSvR/qdVvx
https://paperpile.com/c/HDcSvR/l0zNm
https://paperpile.com/c/HDcSvR/qdVvx
https://paperpile.com/c/HDcSvR/m1Awm
https://paperpile.com/c/HDcSvR/huw0G+43Pox
https://paperpile.com/c/HDcSvR/qdVvx
https://paperpile.com/c/HDcSvR/Q6873
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Unlike the GrIS, approximately 75% of the AIS’ periphery is surrounded by floating ice 220 

shelves38. Since the beginning of routine satellite observations in the early 1990s, most of the 221 

multidecadal mass loss of the AIS has occurred in regions exhibiting strong basal melting, 222 

retreat, and thinning of ice shelves23,39-41, implicating oceanic forcing as a key driver. 223 

Interannual to multi-decadal acceleration, thinning and retreat of Antarctic outlet glaciers42–224 
44 has been observed where warm waters from the depths of the Southern Ocean can upwell 225 

and be channelized towards the base of ice shelves26,39,41-45. Similarly, warm ocean waters 226 

have been linked with the retreat of marine-terminating glaciers and ice shelves in the 227 

western Antarctic Peninsula since at least the 1990s46. The role of subglacial water discharge 228 

in ice-shelf basal melting remains poorly constrained, with some research suggesting it can 229 

increase basal melting near the grounding zone47,48. 230 

Both the GrIS and AIS exhibit interannual- to decadal-scale variability in response to 231 

oceanic forcing potentially related to internal climate variability37,49. A sustained anomaly in 232 

oceanic forcing, as simulated for the Amundsen Sea over the 20th century50, can ultimately 233 

perturb an ice sheet until its equilibrium state cannot be recovered under evolving climate 234 

conditions. However, a historical dearth of oceanographic measurements precludes a 235 

detailed assessment of the precise mechanisms controlling these long-term styles of 236 

behaviour. 237 

 238 

Effect of sea ice on ice-sheet change 239 

  240 

Natural variability in sea-ice cover can also drive changes in ice-sheet mass budget. During the 241 

satellite era, ice-shelf advance has been observed when highly pressurised sea ice is 242 

connected to the shelf front or tidewater glaciers, which prevents calving through enhanced 243 

buttressing and reduced gravitational flow51,52. Sea ice cover also limits how much and how 244 

far atmospheric moisture reaches inland in the form of snowfall, with important implications 245 

for accumulation53,54.  Prior to the satellite era, records of such processes and their 246 

importance for longer-term ice-sheet mass balance can be reconstructed from ice-core 247 

proxies55,56 and marine sediment cores57 that are used to infer past sea-ice cover and its 248 

relationship with changing oceanic and atmospheric frontal systems. For relatively small and 249 

thin ice shelves (including the Antarctic Peninsula's Larsen A and B ice shelves prior to their 250 

https://paperpile.com/c/HDcSvR/s7qsK
https://paperpile.com/c/HDcSvR/l9qXN+fsvOd+KkhUE
https://paperpile.com/c/HDcSvR/TMrsf
https://paperpile.com/c/HDcSvR/l4LLs+bAbyy+7LT1u
https://paperpile.com/c/HDcSvR/l4LLs+bAbyy+7LT1u
https://paperpile.com/c/HDcSvR/gp8ps
https://paperpile.com/c/HDcSvR/fsvOd
https://paperpile.com/c/HDcSvR/TMrsf
https://paperpile.com/c/HDcSvR/nLc58
https://paperpile.com/c/HDcSvR/Jq9pK
https://paperpile.com/c/HDcSvR/6Edre+V38Gc
https://paperpile.com/c/HDcSvR/Q6873
https://paperpile.com/c/HDcSvR/2ZBMP
https://paperpile.com/c/HDcSvR/eZHfu
https://paperpile.com/c/HDcSvR/VwVW3
https://paperpile.com/c/HDcSvR/qMmZA
https://paperpile.com/c/HDcSvR/C1ZvL
https://paperpile.com/c/HDcSvR/AeS8B
https://paperpile.com/c/HDcSvR/N1F89
https://paperpile.com/c/HDcSvR/YcsIV
https://paperpile.com/c/HDcSvR/rBDo0


9 
 

collapse), short-lived, high-energy ocean waves during times of regional, storm-driven sea-ice 251 

loss, can also occasionally trigger calving events51,58.  252 

 253 

Ice-sheet hydrology 254 

  255 

Surface melt is widespread and complex in both Greenland and on Antarctica’s low-lying ice 256 

shelves59,60 (Figure 2). Surface melt has the potential to affect surface mass balance, ice 257 

dynamics and ice-shelf collapse. The GrIS experiences considerable mass loss through runoff; 258 

models show that on average 50% of ice loss between 1992-2018 occurred via this 259 

mechanism39,61. There, surface melt can also influence ice dynamics through connections to 260 

the subglacial hydrological system62. At the ice-bed interface, AIS subglacial hydrology is 261 

poorly characterised but has the potential to drive ice-sheet melt and flow, as suggested for 262 

the Antarctic Peninsula63,64. Akin to the processes driving seasonal GrIS flow, these 263 

accelerations have in-part been linked to prolific surface meltwater drainage to the bed63,64.  264 

In Antarctica, surface melting is widespread only on and immediately adjacent to the 265 

continent’s ice shelves28,59, where much of the melt refreezes in-situ so is not lost through 266 

runoff39. Meltwater can, however, influence ice-shelf stability though the formation of 267 

surface meltwater lakes, leading to surface meltwater-driven ice-shelf flexure and/or 268 

through-ice fracture (“hydrofracture”)65. Some Antarctic Peninsula ice shelves have been 269 

noted to be particularly vulnerable to hydrofracture, and their future vulnerability will be 270 

partly determined by the production and destination of surface melt66 as well as snowfall rate, 271 

which replenishes pore space67,68. Ultimately, hydrofracture-driven ice-shelf disintegration 272 

events can lead to accelerated ice loss via the de-buttressing of upstream glacier ice69. 273 

Sudden ice-shelf collapse can be influenced by weather events. For example, the 2002 274 

collapse of Larsen B Ice Shelf was preceded by three months of exceptional surface melting70. 275 

However, the ice shelf had already been partly primed for collapse by melt ponding71 and ice-276 

shelf thinning due to basal melting in prior decades72, suggesting that climatic influences can 277 

also provide the foundation for collapse events. Firn aquifers (subsurface meltwater 278 

reservoirs) form in both the GrIS73 and AIS74. Like melt ponds, they are sensitive to both 279 

climatological accumulation and melt rate75,76. In this regard, changes in their extent and 280 

volume might also be a useful indicator of ice sheet ‘climate’. 281 

https://paperpile.com/c/HDcSvR/VwVW3
https://paperpile.com/c/HDcSvR/dXkQz
https://paperpile.com/c/HDcSvR/dTXYk+uMbpn
https://paperpile.com/c/HDcSvR/fsvOd
https://paperpile.com/c/HDcSvR/g3YVG
https://paperpile.com/c/HDcSvR/fkZ2n
https://paperpile.com/c/HDcSvR/x2Hfr+qLLe4
https://paperpile.com/c/HDcSvR/x2Hfr+qLLe4
https://paperpile.com/c/HDcSvR/irX85
https://paperpile.com/c/HDcSvR/dTXYk
https://paperpile.com/c/HDcSvR/fsvOd
https://paperpile.com/c/HDcSvR/TKx7K
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In a warming climate, surface melting is likely to become an increasingly important 282 

component of ice-sheet mass budget77,78, partly due to the amplifying melt-albedo 283 

feedback79,80, but this phenomenon might be mitigated on Antarctic grounded ice by snowfall 284 

increases81. The relationship between climate and the development of surface hydrological 285 

systems over multi-annual timescales is still uncertain82, as is the impact of hydro-dynamic 286 

coupling on ice motion for grounded ice62,83 with large spatial variability expected84. 287 

 288 

Marine Ice Sheet and Ice Cliff Instabilities 289 

 290 

In the Amundsen Sea sector of West Antarctica, satellite-derived observations of pervasive 291 

grounding-line retreat over the past three decades23,85,86 have raised concerns of an upcoming 292 

onset of a “Marine Ice Sheet Instability” (MISI). MISI is a self-enhancing process that can lead 293 

to a rapid and irreversible retreat of grounding lines in regions where the bed topography is 294 

below sea level and deepens inland. Several factors can slow down or stop this instability (see 295 

Box 1) but it is believed that the current retreat of some glaciers of the Amundsen Sea Sector, 296 

such as Thwaites Glacier, may already be undergoing MISI. , MISI would destabilise the 297 

marine-based sectors of the AIS in the absence of sufficient ice-shelf buttressing and other 298 

pre-conditioning factors87-90.  299 

In addition to MISI, another potential instability leading to rapid retreat is termed  300 

“Marine Ice Cliff Instability” (MICI)91,92: a mechanism which could greatly amplify rates of ice-301 

sheet demise via the disintegration of marine terminating glaciers as a function of frontal cliff 302 

height. Direct observations of cliff failure are, however, limited, making it difficult to assess 303 

whether MICI has ever been at play and how to parameterize the retreat of marine-304 

terminating glaciers in this manner93. Box 1 gives some additional details on the mechanisms 305 

and importance of MISI and MICI. 306 

 307 

Antarctica: ‘weather’ versus ‘climate’ 308 

  309 

We now provide a wider discussion of short-term fluctuations (sub-daily to decadal) of the 310 

AIS, followed by inferred longer-term changes (multi-millennial), projected multi-decadal to 311 
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multi-centennial changes, and finally the interaction between these short- and long- 312 

timescale variations. 313 

 314 

Short-term fluctuations 315 

 316 

Since the beginning of routine satellite observations in the early 1990s, most of the mass loss 317 

of the AIS has occurred in regions exhibiting strong basal melting, retreat, and thinning of ice 318 

shelves23,39–41, implicating oceanic forcing as a key driver (Figure 3b). Interannual to multi-319 

decadal acceleration, thinning and retreat of Antarctic outlet glaciers42–44,46 has been 320 

observed where warm waters from the depths of the Southern Ocean can upwell and be 321 

conveyed towards the base of ice shelves26,39,41-45. 322 

On an hourly to daily basis, tides modulate the amount of oceanic heat that is 323 

advected from the open ocean to the AIS’ margins94,95. Tides can enhance the basal melting 324 

of ice shelves96 causing an additional estimated 4% of ice loss for the entire AIS97. Satellite 325 

interferometry has revealed that tides also cause short-term fluctuations in grounding line 326 

position, resulting in retreats and advances ranging from a few km to more than 15 km23,85 . 327 

Such behaviour is believed to cause oceanic water penetration to and well inland of the  328 

grounding zone, increasing oceanic-enabled melting98,99. 329 

Atmospheric forcing can also have strong short-term variations through, for example, 330 

atmospheric rivers, intense accumulation and melt events100 or other extreme weather 331 

events. These extreme events are in turn regionally linked to large-scale modes of 332 

atmospheric-ocean circulation variability, especially El Niño tropical Pacific warm episodes 333 

and a recently more positive Southern Annular Mode, where teleconnections are in both 334 

instances modulated through changes in the Amundsen Sea Low atmospheric pressure 335 

system29.  The direct influence of surface melting on AIS mass loss is negligible at present39, 336 

but is expected to become an increasingly important factor in controlling the overall mass 337 

balance of the AIS59,79. For example, Larsen B Ice Shelf had been thinning throughout the 338 

Holocene101, to the point that it became vulnerable to the presence of liquid water at its 339 

surface. Prior to its 2002 collapse, the ice shelf had two decades of progressive surface lake 340 

expansion coinciding with regional climatic warming72. The collapse coincided with the 341 

drainage of over 2000 surface lakes, which is suggested to have contributed to the break-up 342 
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event through ice-shelf flexing, weakening and fracturing71,102,103. The rapid disintegration of 343 

Larsen B instigated prolific inland glacier acceleration due to the loss of buttressing after the 344 

collapse of the ice shelf69,104. Similar mechanisms, together with enhanced, ocean-driven 345 

basal melting, have also been implicated in the break-up of Wilkins Ice Shelf in 2008105. 346 

Ultimately, the fate of both ice shelves underscores how sustained extreme warm weather 347 

events associated with atmospheric river activity, alongside ocean swell-wave induced 348 

damage, have the potential to trigger ice-shelf disintegration10,58,82,106,107. 349 

At interannual timescales, the variability of basal melting of  West Antarctic ice shelves 350 

over recent decades has been linked to tropical Pacific atmosphere-ocean teleconnections, 351 

notably El Niño Southern Oscillation, and to the southward shift and intensification of the 352 

westerly winds offshore from Antarctica that regulate the upwelling and advection of 353 

Circumpolar Deep Water (CDW) towards the continent26,108-110. In other Antarctic sectors over 354 

the past decades, interannual variability of basal melt rates has been linked to intrinsic 355 

oceanic variability (for example the Totten Glacier in the Indian Ocean sector111), and remote 356 

connection with the westward shift of the Amundsen Sea Low (for example, the Filchner-357 

Ronne cavity112). For an ice sheet in quasi-equilibrium with the climate, these variations in 358 

oceanic forcing are not expected to cause significant deviations from the equilibrium state. 359 

Indeed, high basal melt rates (>10 m yr-1) do not necessarily imply that the ice shelves and 360 

tributary glaciers are out of balance. However, a sustained climate anomaly or long-term 361 

trend in oceanic forcing can perturb the system to a new stable state. 362 

Surface melt percolating under grounded ice may also increase ice discharge. For 363 

example, rapid intra-annual acceleration of multiple glaciers in the Antarctic Peninsula have 364 

been inferred to be controlled by surface meltwater inputs to the subglacial environment63,64, 365 

and there is evidence to suggest that changes in surface climate might directly influence active 366 

subglacial hydrological networks in the region64,113.  367 

Finally, the discharge of icebergs and meltwater in the upper ocean layers has been 368 

suggested to temporarily cause an expansion in sea-ice cover114, which in turn acts to warm 369 

subsurface waters through enhanced water mass stratification while lowering near-surface 370 

air temperatures around the Antarctic margin115,116. This phenomenon also acts to trap warm 371 

CDW in intermediate ocean layers, funnelling it towards the undersides of Antarctica’s ice 372 

shelves where melting is maximised near the grounding line115-117. The resulting amplifying 373 
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feedback on ice loss caused by increased sub-ice shelf melt, and the damping feedback caused 374 

by atmospheric cooling, may therefore be important for the AIS’s long-term future91. 375 

 376 
Reconstructed longer-term changes 377 

 378 

The low-latitude geological record indicates that, during past warm climate time intervals, sea 379 

level was higher than at present, implying partial melting of the GIS and AIS. Sea level was 380 

more than 7 m higher in the mid-Pliocene Warm Period [3.3 -3 Ma (million years ago)] when 381 

atmospheric CO2 levels peaked above 400 ppm118,119.  Even during the Early Pleistocene 382 

Marine Isotope Stage (MIS) 31 (1.1-1 Ma), the Mid- and Late-Pleistocene MIS 11c (426-396 383 

ka) and MIS 5e (128-116 ka) - when atmospheric CO2 levels were around or less than 300 ppm 384 

and the ocean-continent configuration was similar to today (but the Southern Hemisphere 385 

surface temperature exceeded that of today due to astronomical forcing) - sea level was 386 

higher than present, implying partial melting of the AIS.  387 

Uncertainties in absolute values of Northern versus Southern ice sheet contribution 388 

to past sea-level change obtained from far-field reconstructions can be reduced by direct 389 

observations from the Antarctic interior and margins. There, geological archives yield proxies 390 

for precipitation, temperature, sea ice, salinity, water depth, and circulation during past 391 

interglacials120. These data document ice-margin retreat in the Ross Sea and in the Wilkes 392 

Subglacial Basin (WSB), East Antarctica, during the warm Pliocene121,122 and late Pleistocene 393 

interglacial intervals123, when Antarctic air temperatures were at least 2°C higher than pre-394 

industrial levels for ≥2,500 years (Figure 3a). Numerical simulations constrained by ice and 395 

sediment cores show that the ice retreated from the WSB around 330,000 and 125,000 ka, 396 

coinciding with periods of warmer Southern Ocean conditions and a 4-6-m higher global mean 397 

sea level124 (Figure 3a). If paleo and modern oceanographic data, still lacking in this region, 398 

inform about present conditions and confirm these simulations, these findings suggest that 399 

even modest (~0.5°C) future warming would be sufficient to cause ice loss from the WSB125.  400 

Unfortunately, proxy reconstructions can also only be used to approximate a low temporal or 401 

spatial resolution climate average state, meaning that while proxies can help to establish ice 402 

sheet sensitivity to external climatic forcing, numerical modelling is still relied upon to assess 403 

the importance of non-linear variability on AIS processes.  404 

 405 
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Projected longer-term changes 406 

 407 

On decadal to centennial timescales under projected global warming, increasing atmospheric 408 

temperatures could result in substantial surface melt over large areas of the GrIS and also AIS, 409 

similar to that currently observed in the Canadian Arctic and west Greenland59,79. The 410 

resulting mass loss is projected to be partly compensated by increases in Antarctic snowfall 411 

by 2100, although there remains considerable uncertainty about the magnitude of 412 

offset77,126,127. Whether or not atmospheric warming could contribute to the disintegration of 413 

an entire glacial basin on centennial to millennial timescales remains uncertain128. Under 414 

future climate warming, models also project increased oceanic heat supply to present-day 415 

ice-shelf cavities that are exposed frequently to relatively warm CDW intrusions in the 416 

Amundsen Sea129 and some parts of East Antarctica130, leading to enhanced basal melt and 417 

increased contribution to sea level (Figure 3c). Other, currently cold, ocean cavities (with no 418 

or seldom CDW intrusions, for example Filchner-Ronne Ice Shelf’s cavity131-133) might 419 

transition to warm cavities under high greenhouse gas emission scenarios, with potentially 420 

important implications for the mass balance of adjoining ice streams and neighbouring ice-421 

sheet drainage areas (Figure 3c).  422 

As alluded to in the previous sections, increases in ocean-driven basal melting, surface 423 

ablation or calving rates may lead to widespread ice stream grounding-line retreat23,92,134–137. 424 

The large Thwaites and Pine Island glaciers in AIS, for example, have seen their grounding 425 

lines retreat by more than 1 km yr-1 during the satellite era85,86, and several modelling efforts 426 

have suggested that the grounding line of these glaciers could retreat far inland of their 427 

present-day position in the future89,91,138, as they presumably did during the mid-Pliocene 428 

Warm Period and/or some of the Pleistocene warm interglacials (Figure 3a). Over longer 429 

(multi-centennial) timescales, marine geomorphological evidence has revealed episodes of 430 

analogous retreat on the Ross Sea continental shelf, where a 200-km recession of the 431 

grounding line from the continental shelf edge occurred over several centuries during the last 432 

deglaciation (~11.5 kyr BP139). During this time, similar styles of rapid retreat also occurred 433 

across the Marguerite Bay region offshore of the Antarctic Peninsula140. However, such self-434 

enhancing retreat can be slowed by several local factors140-142; for example,  otherwise 435 
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vulnerable grounding lines are known to have re-advanced during the Holocene, once the sea 436 

bed rose due to post-glacial isostatic rebound143.  437 

Notwithstanding local-scale processes, the trigger mechanism for each of the rapid, 438 

MISI-like grounding-line migration events detailed above has been ascribed to an array of 439 

intermittent, atmosphere-ocean-related forcing events impinging upon the Antarctic coastal 440 

margin through time139,144,145, as well as – in the case of the recent retreat observed in the 441 

Amundsen Sector – a likely multi-decadal trend in climatic forcing over at least the past 100 442 

years146, although internal climate variability is also important147.  443 

At the continental scale, current ice-sheet models predict a total AIS contribution to 444 

sea level rise (relative to the 1995–2014 baseline) of 3-34 cm by 2100 in the case of the high-445 

emission Shared Socioeconomic Pathway (SSP) 5–8.5 (>1000 ppm atmospheric CO2)2 (Figure 446 

3c). For a Paris Climate Agreement-like future scenario or better (lower-emission scenarios 447 

SSP1–2.6, <450 ppm atmospheric CO2), AIS’s contribution is similar to that of SSP5-8.5 by 448 

2100 (sea-level rise = 3–27 cm), but is significantly lower over multi-centennial timescales2.  449 

As previously discussed, the Marine Ice Cliff Instability (MICI) phenomenon could 450 

increase the future mass loss of Antarctica in high-end scenarios. Indeed, explicit 451 

parameterization for MICI under SSP5-8.5 is predicted to increase AIS’ contribution to sea 452 

level rise to 2–56 cm by 2100, but this estimate is uncertain and only based on one model 453 

study91. Under SSP1–2.6 scenarios, AIS’ contributions are again predicted to be similar to that 454 

of SSP5-8.5 by 21002. 455 

Over much longer (multi-centennial) timescales, the difference between projected 456 

sea-level rise for both SSP scenarios clearly emerges. Under SSP1-2.6, the AIS’ contribution is 457 

up to 78 cm and could reach 135 cm sea-level rise by 2300 if parameterising for MICI2. Under 458 

SSP5-8.5 scenarios, the projected AIS contribution reaches 3.13 m and up to more than 13 m 459 

if MICI is accounted for in the projections2. Although the uncertainties related to the 460 

knowledge gaps about MISI, MICI and ice-ocean interactions preclude more accurate 461 

projections of the AIS’s future contribution to sea level, estimates of multi-metre sea-level 462 

rise fall within the range of that inferred from geological records for key warm paleo 463 

periods118,119 (Figure 3). 464 

 465 

   466 
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Interaction of short- and long-term changes 467 

 468 

Most short-term atmospheric and oceanic fluctuations around Antarctica, causing episodic 469 

calving or anomalous snowfall or melt events, are part of the internal variability of the climate 470 

system. Since the AIS is not currently in steady state, these short-term variations in 471 

atmospheric or oceanic conditions can trigger self-reinforcing (amplifying) feedbacks that 472 

ultimately increase the AIS’s sensitivity to longer-term climatic forcing. For example, 473 

observations of ice flow in the Amundsen Sea Embayment or the collapse of Larsen B ice shelf 474 

illustrate that variability in ocean- and atmosphere-induced melting has the potential to 475 

trigger ice thinning, retreat or collapse of ice shelves, grounding-line retreat and ice-flow 476 

acceleration.  477 

Over much shorter timescales, the marine geomorphological record148-150 has further 478 

revealed that pulses of extremely rapid grounding-line retreat (10s to 100s m per day) can 479 

occur in the absence of steeply retrograde bed topography conducive to MISI, and across a 480 

period of only days to months (i.e., behaviour potentially reflective of ice-sheet 481 

perturbation(s) in response to ‘weather’-type forcing). Most notably, this includes an  inferred 482 

grounding-line retreat rate of up to 50 m per day (equivalent to ≥10 km yr-1) in the Antarctic 483 

Peninsula during regional deglaciation of the continental shelf (approximately 10,700 yr 484 

BP148), which constitutes the highest known rate of retreat in Antarctica. Grounding-line 485 

retreat rates nearing this magnitude have, however, now been detected in West Antarctica 486 

(~30 m per day over the course of 3.6 months in 2017 at Pope Glacier135), offering important 487 

corroboration of these inferred magnitudes of retreat.  488 

These marine geomorphological observations ultimately reveal how nonlinear ice-489 

sheet retreat can be, with substantial ‘pulses’ of grounding-line retreat occurring over short 490 

timescales followed by longer periods of relative stability. They also highlight the important 491 

role ice sheet bed geometry plays in modulating rates of retreat, with suggestions that flat-492 

bedded parts of ice sheets may be particularly vulnerable to pulses of rapid ungrounding150. 493 

In the context of Antarctica, the longer-term ice-dynamical response of the ice sheet to such 494 

rapid recession remains unknown. Nonetheless, the prolific rates of retreat inferred from 495 

these records imply that, even in the absence of MISI/MICI, the future pace of short-term AIS 496 
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retreat over such vulnerable regions may be significantly greater than most satellite- and 497 

model-derived insights suggest.  498 

 499 

Greenland ‘weather’ versus ‘climate’ 500 

 501 
Here we discuss short-term fluctuations (sub-daily to interannual) of the Greenland Ice Sheet, 502 

followed by observed longer-term changes (decadal to geological), then projected decadal to 503 

centennial changes, and finally the interaction between short- and long- timescale changes. 504 

 505 

Short-term fluctuations  506 

  507 

Short-term fluctuations in the GrIS mass balance mainly arise from surface melting. Extreme 508 

examples linked to climate warming are the record seasonal melt events of summers 2012 509 

and 2019151, when over a few days to a few weeks ~60-90% of the surface temporarily melted 510 

(which had not been seen since at least 1979, the start of the satellite record), and 511 

unprecedentedly late seasonal melt in September 2022 that involved 36% of the ice-sheet 512 

surface including the Summit station at 3250 m elevation152. The 2019 melt event resulted in 513 

a record 444 Gt yr-1 mass loss, approximately double the average mass loss for the 2010s153 514 

(Figure 1). Extreme melting is commonly driven by atmospheric blocking, and is also 515 

associated with atmospheric river delivery of extreme heat and moisture154. The frequency of 516 

moisture-laden air masses has increased155. As part of an atmospheric river episode, rainfall 517 

occurred in mid-August 2021 at Summit, apparently for the first time in modern history, 518 

prolonging melt conditions through the ensuing melt-albedo feedback156. With Greenland 519 

climate warming157, the melt threshold in the lower atmosphere is more frequently crossed, 520 

producing an increasing rainfall fraction of total precipitation158 (see Figure 4). 521 

Surface meltwater can infiltrate to the bed and increase ice flow. The ice dynamical 522 

response to surface melting can occur on diurnal to weekly timescales159–161, depending on 523 

the amount of melt and the seasonally evolving subglacial drainage efficiency, with peak 524 

summer speeds often exceeding the annual mean by 25-100% in the fast flowing areas 40 km 525 

inland from the GrIS margin159,162–164.  526 

Tidewater glacier calving allows large-scale mass loss over short timescales. Calving-527 

induced changes in near-terminus stresses can disrupt upstream ice flow on timescales of 528 
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minutes165 to days166,167.  Changes in the frontal position of tidewater glaciers (driven by 529 

variation in submarine melting and/or calving) rates) can trigger increases in dynamic mass 530 

loss that last several years and have a marked impact on regional mass balance (e.g. ref. 168). 531 

Calving is fundamentally controlled by the stress state at the glacier terminus, which can be 532 

modified by bed topography169,170, tidal variation171,172, submarine melt173,174, surface 533 

meltwater ejection from the grounding line into fjord waters which enhances underwater 534 

heat exchange and melting175, and at the ocean surface the stabilising effect of sea ice and 535 

mélange176,177. Observations and modelling evidence suggests that short-term surface 536 

meltwater variability affects the calving dynamics of Greenland tidewater glaciers34,175,178 but 537 

the net effect is complicated by the listed factors. 538 

  539 

Observed longer-term changes 540 

  541 

Over 2002-2020, the average mass change of the GrIS was -235±21 Gt yr-1 153. During 2007-542 

2017, the overall mass loss was estimated to comprise a 64% contribution from surface mass 543 

balance and 36% from ice dynamical losses, with the largest rates of GrIS surface elevation 544 

change occurring at fast-flowing marine outlets61. Reference 179 contends that surface 545 

ablation through meltwater runoff is the primary control on the trend and interannual 546 

variability of the GrIS mass budget.  547 

A slight increase in surface elevation observed by satellite altimetry in the interior GrIS 548 

above 2000 m elevation between 2007 and 2017 suggests that snow accumulation increased 549 

during this period of increasing temperatures61, but surface mass balance models generally 550 

underestimate snow accumulation in the interior GrIS180 and cannot explain the observed 551 

interior thickening61. Greenland atmospheric warming157 has been accompanied by melt, 552 

runoff and rainfall increases158,181 that have outpaced the 7% snowfall accumulation increase 553 

per degree Celsius warming during 1840 to 1999182. In the snow accumulation area, the effect 554 

of increased refreezing in the firn has led to an expansion of partly impermeable ice slabs, 555 

limiting firn meltwater storage and enhancing lateral runoff through firn183,184. This 556 

deterioration of the firn layer includes an expansion of the bare ice area across the northern 557 

and western GrIS17,185,186. Firn deterioration is further augmented by melt and rainwater 558 
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storage in perennial firn aquifers, and in the south-east of the GrIS, aquifer area has 559 

increased187. 560 

Ice-core paleoclimatic reconstructions of GrIS during the previous interglacial, the 561 

Eemian (130-115 kyr before present), suggest the ice sheet is more resilient to increased 562 

melting than derived from regional climate model (RCM) projections, with temperatures at 563 

8±4 °C above the mean of the past millennium188 producing a relatively modest ~2 m sea-level 564 

increase. Through the last 11.7 kyrs of the current interglacial, ice-core reconstructions 565 

indicate an initial thinning of several hundred m in the northwest and southeast of GrIS over 566 

the first few thousand years after the glacial-interglacial transition, while the interior areas 567 

have remained stable within a few hundred m through the Holocene189.  568 

 569 

Projected longer-term changes 570 

  571 

The current generation of physically-based GrIS sea-level projections is built on a chain of 572 

modelling efforts from general circulation model output to regional climate models, ice-sheet 573 

models and statistical emulation2, where uncertainties in all elements are propagated to the 574 

final result. 575 

For the SSP5-8.5 high emission scenario, AR6 GrIS model projections2,77,126 yield a 13.0 576 

cm (with a likely range of 9 to 18 cm) contribution to sea level rise by year 2100. Under a Paris 577 

Climate Agreement-like future scenario (SSP2-4.5), the sea-level rise contribution is 8 cm 578 

(likely range 4 to 14 cm), 62% of the high emission amount. The two scenarios begin to 579 

increasingly diverge after mid-century, with summer air temperature over Greenland 580 

differing 0.6°C by 2050 and 2.4°C by 2100 (Figure 4). 581 

The two decades (2002-2022) of observed GrIS mass change190 (updated data – our 582 

Figure 1) indicate an average sea-level rise contribution of 0.70±0.05 mm per year, while 583 

another recent study191 gives 0.61±0.25 mm per year over the same period. These 20-year 584 

rates are not reached by the AR6 projections median estimate in the SSP2-4.5 scenario until, 585 

respectively, years 2029 to 2049190 (2022 to 2042191) or, in the case of ref. 191, by 2021 to 586 

2041 under SSP5-8.52. This difference of timing between the observed and modelled average 587 

rate of change, although within the AR6 error envelope (Figure 4), probably arises from the 588 

limitations of the Global Climate Model (GCM) and RCM forcing, the range of Ice Sheet Model 589 
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Intercomparison Project 6 (ISMIP6) model results77, and observed processes not fully 590 

incorporated by ice-sheet model projections. 591 

Currently, about half of the surface meltwater on the GrIS is refrozen and retained in 592 

the firn  in model estimates192. Under future warming scenarios, the ability of the firn to retain 593 

meltwater could decrease and eventually be lost, and centuries of cold climate would be 594 

required for it to be regained. Climate projections show that the refreezing capability could 595 

start to permanently decline by year 2100 under the high emission scenario SSP5-8.5193. 596 

Although RCMs show increasing precipitation over Greenland in a warming climate, it 597 

is not certain by how much snow accumulation will increase and projected surface mass 598 

balance suggests that surface melt and runoff will far outweigh any increase in 599 

accumulation194–196. Climate warming has contributed to elevated GrIS snow-line altitude and 600 

a mass-budget deficit. Keeping the average deficit realised over the past two decades 601 

constant would lead to a sea-level contribution of at least 27±7 cm179. While the approach 602 

does not provide a timescale for the response, modelling suggests that the GrIS adjusts to 603 

surface mass balance perturbations across annual to multi-millennial timescales197–199.  604 

  605 

Interaction of short- and long-term changes 606 

  607 

Extreme atmospheric blocking episodes have led to near-record surface meltwater runoff in 608 

2012 and 2019151. However, these record atmospheric events were either followed (2013) or 609 

preceded (2018) by greatly contrasting melt anomalies, highlighting the role of increased 610 

interannual variability on extreme glaciological events and ice-sheet evolution. 611 

The response of tidewater glaciers to atmospheric and oceanic forcing remains a key 612 

uncertainty in determining the future mass loss from the GrIS2. Over several years, 613 

atmospheric circulation anomalies were found to drive a warm ocean current which 614 

destabilised the largest west GrIS tidewater glacier200. Further connection comes through 615 

increasing meltwater runoff driving underwater melting201. Seasonal ice-velocity fluctuations 616 

are observed at tidewater glaciers, influenced by surface melt and runoff, subglacial 617 

hydrology, and ice-ocean interactions at the ice front164. While seasonal ice flow variability is 618 

a complex response to surface meltwater, basal drainage, calving events and break-up of 619 

mélange at the tidewater terminus162,202, interannual flow variability can be a response to 620 
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both contemporary terminus retreat or a lagged response to inland changes in snowfall and 621 

ice flux203–205. 622 

Englacial and subglacial water, its transit, heat transfer to ice, lubricating effects on 623 

glacier flow, and subglacial storage have received much attention. As infiltration of surface 624 

meltwater increases, the extent to which lubricating effects are self-regulating remains a key 625 

topic. Global Navigation Satellite System (GNSS) and surface climate measurements in 626 

western Greenland159 confirm an annual cycle in ice flow coupled to surface meltwater 627 

production and transport into the subglacial drainage system206. The observed ice 628 

acceleration decreases as the melt season progresses, indicating the development of an 629 

efficient, lower pressure subglacial drainage network207. While this self-regulation has now 630 

been firmly documented208,209, it has not been observed more than 40 km inland from the 631 

GrIS margin. The efficiency of meltwater routing and subglacial drainage is likely to increase 632 

with climate warming and limit the impact of runoff fluctuations on annual ice flow velocities 633 

or multiannual acceleration163,202,210,211 in contrast to their much clearer effect on diurnal to 634 

seasonal-scale flow162–164. 635 

Inland and up to 140 km from the ice margin, where thicker ice and lower surface melt 636 

rates occur, persistent ice-flow acceleration has been observed in winter and summer at and 637 

above the equilibrium line altitude212. The underlying cause appears to be upstream migration 638 

of a distributed subglacial drainage along with the potential viscous warming and decoupling 639 

of a previously frozen bed. The area over which such meltwater penetration occurs is 640 

projected to increase under future climate scenarios213. Late melt season rainfall is also 641 

implicated in land-terminating glacier acceleration214. However, the relatively modest values 642 

of ice acceleration involved (~1 m yr-1 over 3 years212) means this is unlikely to significantly 643 

influence mass loss relative to either changes in surface mass balance or the major dynamic 644 

changes documented at tidewater glaciers215.   645 

The many scales of iceberg calving, from the day-to-day crumbling of small bergs to 646 

the detachment of large tabular bergs at intervals of years to decades216, are a continuum 647 

connecting the short- and long-term dynamics of marine outlet glaciers.  Sustained retreats 648 

of calving termini often co-occur with dynamic drawdown of ice from tens of km 649 

upstream217,218.  Numerical models suggest that perturbations of calving termini can initiate 650 

long-term, large-scale dynamic changes far into the ice-sheet interior219. Glacier outlet 651 

geometry, including the ice thickness and the presence or absence of steep "knickpoints" in 652 
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the bed topography, controls how fast and how far a wave of thinning initiated at the 653 

terminus can propagate inland220. High-melt years, or consecutive years with high melt and 654 

loss of mélange can destabilise the terminus and trigger a rapid dynamical retreat221.  Such a 655 

threshold is where glacier sensitivity to terminus position could depend on tides171 and near-656 

terminus bed topography, so that normal calving when the terminus is around a susceptible 657 

point in the bed could initiate multi-annual retreat166,222. Model results further show that 658 

failing to account for seasonal- to decadal-scale climate variability can bias the projected 659 

multi-decadal mass loss223,224. 660 

 661 

Summary and future perspectives 662 

 663 

With both ice sheets having entered a new regime of negative mass balance (Figure 1), and 664 

highly uncertain projections for their sea-level contribution(Antarctica especially), it is of 665 

utmost importance to continue monitoring the behaviour of both ice sheets using in-situ and 666 

spaceborne methods. While we have learned much about the causes, nature and implications 667 

of ‘weather’ vs. ‘climate’ forcing for ice sheet mass balance from such methods, continued 668 

and enhanced monitoring and modelling efforts are required to fully partition their relative 669 

importance in driving future ice-sheet demise. Such knowledge, including higher-resolution 670 

mass changes, high-elevation, tidewater glacier and ice-shelf hydrology and dynamics, 671 

calving, ocean heat flux and grounding zone bed geometry, will be critical for accurately 672 

predicting both Greenland and Antarctica’s future evolution and contribution to sea level. 673 

Below, we discuss further these key unknowns and data requirements in the context of 674 

satellite monitoring, in-situ measurements and modelling, and suggest a series of specific, 675 

actionable recommendations on how to address them. 676 

 677 

Satellite monitoring 678 

  679 

Forthcoming spaceborne observing systems will further extend our understanding of short-680 

term change across the polar regions, and include the launch of NISAR (a NASA-Indian Space 681 

Research Organization SAR mission; https://nisar.jpl.nasa.gov/) in 2024 and the ESA Harmony 682 

mission (https://www.eoportal.org/satellite-missions/harmony) in 2029. Both missions have 683 

https://paperpile.com/c/HDcSvR/st2ig
https://paperpile.com/c/HDcSvR/bTOT6
https://paperpile.com/c/HDcSvR/X7AVN
https://paperpile.com/c/HDcSvR/TOL1v+xHY2O
https://paperpile.com/c/HDcSvR/uXmJR+YEOge
https://nisar.jpl.nasa.gov/
https://nisar.jpl.nasa.gov/
https://www.eoportal.org/satellite-missions/harmony


23 
 

vastly expanded capabilities to sample the deformation, flow dynamics and grounding line 684 

changes of the ice sheets at weekly resolution and with unprecedented precision. It will be 685 

essential for the community to use these data for interpretation and to constrain models, 686 

provide feedback to the missions, and help design the next generation of satellite sensors. 687 

The NASA/DLR (German Aerospace Center) Gravity Recovery and Climate Experiment 688 

mission (GRACE) and its successor GRACE-Follow-On (GRACE-FO) have provided the most 689 

accurate, spatially comprehensive and continuous assessment of mass change across the ice 690 

sheets since 2002225 (Figure 1), which are critical for constraining models and projections of 691 

sea-level rise. A joint GRACE-FO successor mission between Deutsches 692 

GeoForschungsZentrum/Deutsches Zentrum für Luft-und Raumfahrt (GFZ/DLR) and NASA/JPL 693 

is scheduled for launch in 2027. This mission will fly an upgraded laser-ranging interferometer, 694 

which will improve intra-satellite distance measurements by two orders of magnitude226, with 695 

corresponding enhancements in the spatial and temporal resolution of future mass change 696 

observations226,227. In parallel, the ESA Ministerial Council has started to engage in the launch 697 

of an additional GRACE-FO-type satellite pair in 2031. The framework of both GFZ/DLR-698 

NASA/JPL and ESA satellite pairs flown in a hybrid Bender orbit configuration, termed the 699 

Mass change And Geosciences International Constellation (MAGIC)228, will globally reduce 700 

and homogenise uncertainties of sea-level change estimates. Beyond these missions, 701 

continued international investment into initiatives such as the EU Copernicus programme and 702 

the long-running NASA/USGS Landsat programme will be key towards ensuring long-term 703 

continuity in our ability to routinely monitor the ice sheets from space. 704 

Aside from the (multi-)national, space-agency managed Earth Observation 705 

programmes mentioned above, an increasing number of commercial companies have 706 

recently launched dedicated, ultra-high resolution imaging satellites capable of providing 707 

daily to sub-daily visible and radar microwave observations of ice-sheet and ice-shelf rifting, 708 

fracturing and iceberg calving at better than 1-m spatial resolution. Such data offer substantial 709 

insights not necessarily possible from conventional imaging afforded by, for example, the 710 

more moderate resolution Landsat and EU Copernicus/ESA Sentinel constellation of satellites. 711 

Despite these opportunities, most commercial satellite imagery presently comes with 712 

substantial cost, usage restrictions and/or other access barriers at the ice-sheet scale. We 713 

therefore advocate the need for increased dialogue with these companies for the purposes 714 

of dedicated and routine commercial satellite image acquisition over the polar regions and 715 
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open-access use by the international scientific community. Upcoming initiatives such as the 716 

International Polar Year 2032/33 can and should act as important catalysts for the 717 

commencement of such dialogue and, ultimately, the facilitation of scientific progress. 718 

 719 

In-situ observations 720 

 721 

To improve our understanding of ocean conditions offshore of Greenland and Antarctica and 722 

of sub ice-shelf conditions, autonomous “Argo” floaters (https://argo.ucsd.edu/) are now 723 

ready for ice environments and should be urgently deployed to provide a comprehensive 724 

observational network across the polar oceans. Argo-derived observations should be 725 

complemented by conductivity, temperature and depth (CTD) probes deployed on sea 726 

mammals (https://www.meop.net/) and observations of the ice-sheet proximal environment 727 

collected using robotic devices229,230 and other in-situ techniques231. Such a network would 728 

enable models to constrain ocean state and ice-melt rates at the ice-sheet margins with 729 

minimised uncertainty. In Antarctica, the observation network should ideally also extend to 730 

the grounding zone, as this is the region most crucial to ice-sheet evolution, most difficult to 731 

access, and also the least well observed at present. In Greenland, there is not a single direct 732 

measurement of submarine melt rate at a tidewater glacier , and very few indirect 733 

measurements, which severely limits our understanding of the importance of submarine 734 

melting in these regions. Dedicated field campaigns (e.g. ref. 232) and new 735 

technologies/methodologies are needed to address this deficiency. 736 

Knowledge gaps about the Antarctic subglacial topography, especially around 737 

grounding zones233 and on the continental shelf234 (Figure 3a) under areas of present-day ice-738 

shelf cover, currently preclude understanding of ice-sheet dynamics in response to 739 

atmospheric and oceanic forcing in sectors potentially vulnerable to rapid retreat. It is 740 

therefore urgent that we improve understanding of the precise geometry and geological 741 

composition of the AIS grounding zone at the continental scale, via dedicated in-situ 742 

geophysical campaigns such as that proposed by the Scientific Committee on Antarctic 743 

Research (SCAR)-funded ‘RINGS’ Action Group (https://www.scar.org/science/rings/about/). 744 

Seaward of the present-day grounding zone, we further expect that the collection of 745 

systematic bathymetric and subsea-floor information over deglaciated margins will yield 746 
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important new insights into the configuration and behaviour of ice-sheets past and 747 

present148,150, with additional importance for model boundary setting, validation and 748 

uncertainty reduction purposes. 749 

Improving model- and satellite-based estimates of, for example, AIS surface melt and 750 

firn hydrology will require a similar (and substantially increased) network of surface-based 751 

‘energy balance-enabled’ weather stations, operating radiation sensors. A similar effort on 752 

the GrIS under the guidance of the Geological Survey of Denmark and Greenland has led to 753 

excellent ice-sheet wide coverage from around 2010, enabling the calibration of satellite-754 

based surface melt rate estimates using machine learning techniques235. And finally, 755 

improving model representations of ice-shelf flexure and hydrofracture in response to surface 756 

meltwater ponding and drainage, urgently requires additional arrays of in-situ observations. 757 

Valuable observations could include water-pressure measurements to monitor lake depths, 758 

arrays of GNSS stations to quantify ice-shelf flexure (e.g. ref. 236), and seismic data to give 759 

insights into fracturing and rifting.  760 

 761 

Ice-sheet modelling 762 

 763 

A major challenge for the modelling community lies in capturing the long-term essence of ice-764 

sheet dynamics occurring at continental to global scale and short-term response occurring at 765 

local to regional scales within the same simulation. More sophisticated ice-sheet models – 766 

constrained directly using knowledge gleaned from both the satellite and marine 767 

geomorphological records as well as in-situ field observations – are needed to better predict 768 

future trends of rapid ice-sheet evolution. Observationally constrained, regional-scale process 769 

models160,236 have yet to be upscaled to the ice-sheet scale, underscoring the requirement for 770 

comprehensive in-situ-based observations to help improve model-based predictions of the 771 

rate at which the ice sheets will respond to 'weather' versus 'climate' forcing.  772 

The processes that models do not currently explicitly simulate include decreased 773 

permeability of firn layers183, amplified melt due to biological snow and ice darkening237,  774 

tidewater glacier acceleration and destabilisation by submarine melting37,238,239, loss of the 775 

buttressing effect from ice shelves240, accelerating interior motion from increased melt and 776 

rainfall214, enhanced basal thawing due to hydraulically-released latent heat and viscous 777 
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warming241, and ice-shelf flexure, (hydro)fracture and collapse in response to surface 778 

meltwater ponding and drainage72,103,236. The aforementioned spectrum of processes not 779 

currently included in the modelling chain leads to deep uncertainty, and could give rise to 780 

additional sea-level contributions, represented by the high-end storyline in AR62 or high-end 781 

mass loss estimates in ref. 242. 782 

GCM and Earth System Model projections typically under-represent changes in 783 

atmospheric circulation and wind that are associated with increased Greenland atmospheric 784 

blocking243,244 (Figure 5), which means that projected surface melt increase of the GrIS could 785 

be misrepresented if such summer circulation changes that have been observed since the 786 

1990s persist in the next decades245. 787 

Accurately simulating calving and damage processes using physics-based treatments 788 

is one of the greatest current challenges in ice-sheet modelling. The lack of a unified, physics-789 

based treatment of calving processes in models continues to contribute to the deep 790 

uncertainty surrounding sea-level projections for both ice sheets, especially the AIS2,246. In 791 

particular, the highest sea-level projections currently included in AR6 are produced by 792 

numerical simulations that contain a representation of MICI which results in sea-level rise 793 

estimates that are an order of magnitude higher than simulations without MICI1. However, 794 

these projections are based on a simplified, untested and unverified implementation of MICI 795 

in a single ice-sheet model128, requiring two separate calving mechanisms: ice-shelf collapse 796 

caused by hydrofracturing, followed by potential cliff failure92,93. At present there is no 797 

scientific consensus about the physical basis and exact formulation of these mechanisms in 798 

simulations of large-scale ice sheet dynamics. Attempts have been made to implement calving 799 

laws and damage mechanisms in ice-sheet models93,247,248. However, in the ISMIP6 sea-level 800 

projections, AIS calving and damage are not considered in any ice-sheet model138., although 801 

ISMIP6 GrIS simulations did include a heavily parameterised representation of retreat due to 802 

calving and submarine melting77. Therefore, there is an urgent need to improve the physical 803 

representation of ice-sheet and ice-shelf fracture, validate calving laws and implement robust 804 

damage mechanics algorithms in numerical ice-sheet models, although such improvement 805 

will need to overcome the mismatch between the scales of fracture and calving processes and 806 

the resolution of ice-sheet scale models. Alongside investment in model development, the 807 

remotely sensed and in-situ data sources outlined above offer an important opportunity for 808 

model validation for this purpose. 809 
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Model representation of sub-shelf melting is another key challenge. Despite the 810 

development of sophisticated coupled ice-ocean models133,249, which have greatly improved 811 

the ability to represent melt rates for complex time-evolving geometries and ocean 812 

properties, a number of challenges remain. To increase confidence in the representation of 813 

melt rates near the grounding line, where ice dynamics are particularly sensitive to basal melt, 814 

high-resolution numerical simulations constrained by satellite- and in-situ-based observations 815 

of past and present basal melt and seafloor bathymetry are required. Secondly, the two-way 816 

interaction between changes in ice-shelf geometry (thinning, thickening and calving) and 817 

basal melt rates are key to simulating future mass loss from the AIS137,250, yet these feedbacks 818 

remain poorly understood. For the GrIS, it is not yet possible to meaningfully couple ice sheet 819 

and ocean models across the ~200 complex fjord systems, which fall below the resolution of 820 

regional ocean models, with a need for alternative methods to bridge this gap. Improved 821 

observations of melt rates for changing cavity shapes and ocean conditions at annual to 822 

centennial timescales are thus a fundamental research priority. 823 

Due to the high computational cost of coupled ice-ocean simulations, most sea-level 824 

projections are currently based on stand-alone ice-sheet model simulations that use a range 825 

of simplified melt parameterisations. Not only do spatial melt patterns vary greatly between 826 

these parameterisations, but recent AIS projections126,138,251 have also revealed that their 827 

sensitivity to changes in ocean temperature constitutes a major source of uncertainty. This 828 

limitation needs to be addressed by developing new calibration approaches based on 829 

transient ocean model simulations252,253. 830 

Co-ordinated ice-sheet modelling exercises such as ISMIP6/7 are largely unfunded, 831 

community-driven efforts: therefore, given the above-mentioned limitations with models, we 832 

strongly advocate funding this kind of co-ordinated modelling exercise. Finally, another recent 833 

advance that is becoming increasingly important in ice-sheet modelling is the development 834 

and implementation of coupled ice sheet-Earth system models, such as UKESM and 835 

CESM2/3127,254,255, where ice sheets are able to dynamically interact with the climate and 836 

wider Earth system. Ice sheet and coupled models can complement each other to fully realise 837 

and shed light upon ‘weather’ vs. ‘climate’ in a truly interconnected, global sense. 838 

 839 

 840 
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Figure 1. Time series of mass change for (a) the Antarctic Ice Sheet and (b) the Greenland 1589 

Ice Sheet for 2002 to 2022 based on 213 monthly gravity field solutions from GRACE/GRACE-1590 

FO satellite data. For Antarctica, estimates are shown for the entire ice sheet, as well as East 1591 

Antarctica (blue), West Antarctica (red) and the Antarctic Peninsula (yellow). The glacial-1592 

isostatic adjustment (GIA) correction applied for Antarctica represents the arithmetic average 1593 

of the models IJ05 R2256, AGE1257  and ICE-6G_D258; time series are updates from ref. 259. For 1594 

Greenland, estimates are shown for the entire ice sheet (purple), as well as the regions north 1595 

(green) and south (grey) of about 72°N. The correction for GIA is the GGG1.D model, tuned to 1596 

fit measured GIA-induced GPS uplift rates260; time series are updates from ref. 190. Shading 1597 

represents 2-sigma monthly empirical uncertainties. For the annotated mass balances, 1598 

uncertainties consist of propagated empirical uncertainties and the spread of ten model 1599 

corrections for GIA for Greenland190 and thirteen for Antarctica259. Over the 21-year period 1600 

Greenland lost approximately double the mass of Antarctica, while there are significant 1601 

interannual variations in the mass changes of both ice sheets.  1602 
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  (a)  1616 

 1617 

 1618 

 1619 
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 1624 

(b) 1625 

 1626 
 1627 

Figure 2. Schematic of key weather, climate, hydrological and ocean processes influencing 1628 

(a) Antarctic and (b) Greenland ice-sheet mass balance. While Greenland is dominated by 1629 

atmospheric processes, oceanic forcing predominates for the Antarctic Ice Sheet.   1630 
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 1631 

Figure 3. Past, present and future changes of the Antarctic Ice Sheet.  (a) Simulated Antarctic 1632 

ice sheet retreat during a generic warm interglacial of the Pliocene (magenta line) and during 1633 

the Last great Interglacial (~130 ka, blue line, LIG) accounting for MICI91. White spots indicate 1634 

all existing deep marine sediment drilling sites (Deep Sea Drilling Project, Ocean Drilling 1635 

Program, International Ocean Discovery Program) around Antarctica and yellow squares 1636 

correspond to the sites showing geological evidence for grounding-line retreat during the 1637 

Pliocene and Pleistocene epochs261. (b) Antarctic ice thickness changes from 2003-201939. 1638 

Grounded ice thickness change is shown with semi-transparent colouring to emphasise rates 1639 

of ice shelf-thinning. The locations of observed ice-shelf collapse events during the satellite 1640 

era are also shown. (c) ISMIP6 ensemble member-derived volume changes above floatation 1641 

in mm SLE in 2100 for emission scenario RCP8.5138. Changes are calculated relative to 2015 1642 
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and using 362.5 Gt = 1 mm sea-level rise as a standard conversion factor (e.g. ref. 77), and 1643 

positive values indicate a contribution to global mean sea-level rise. Numbers are shown for 1644 

each drainage basin23 and show the median (black), the min (blue) and the max (orange) from 1645 

the ensemble. Overall, the ensemble indicates a maximum Antarctic contribution up to ~32 1646 

cm GMSR by 2100, in line with IPCC AR6 projections2. For panels (a) and (c), the black line 1647 

corresponds to the present-day grounding line and coastline from BedMachine Antarctic 1648 

v3233. Bathymetry is from IBCSO v2262. Knowledge of the AIS’s past and ongoing behaviour is 1649 

essential for accurately constraining projections of its future evolution.  1650 
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 1673 
 1674 

Figure 4. Past and future Greenland air temperature and sea-level contribution between 1675 

1850 and 2100. a) June through August summer air temperature data are from land-based 1676 

observations (stations marked with asterisks) and projected from 1960 to 2100, data after 1677 

ref. 263, courtesy of X. Fettweis. An inset rainfall trend map is derived from the Copernicus 1678 

Arctic Regional ReAnalysis (CARRA)264 on which non-stippled areas have trend confidence 1679 

above 66% as measured as 1 minus the p-statistic, suggesting significant difference from a 1680 

random series. No areas having rainfall decrease exceed 66% confidence. b) Greenland Ice 1681 

Sheet mass balance sea-level equivalent (in cm). The observations and projections are offset 1682 

to align with AR6 projections starting in 2016. The available data indicate that Greenland 1683 

climate and the ice sheet sea level contribution has begun departing from a period of relative 1684 

stability. 1685 
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  1687 

Figure 5. Atmospheric circulation and associated surface temperature changes in 1688 

meteorological reanalyses (ERA5, NCEP2, JRA55 and MERRA2) and CMIP6 global climate 1689 

models. Annual mean surface air temperature (SAT) and wind trends over 1979-2020 in (a 1690 

& b) the mean of four reanalyses (ERA5, NCEP2, JRA55 and MERRA2) and in (c & d) the mean 1691 

of 29 CMIP6 models. Shading: surface temperature trends; arrows: 500 hPa zonal/meridional 1692 
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wind trends. Following ref. 244, SAT (y-axis) and 500hPa stream function (rotational 1693 

component of winds, x-axis) trends in individual reanalyses and CMIP6 models (see legend) 1694 

are also shown for both (e) Greenland (only land points) and (f) West Antarctica (60-90°S; 0-1695 

180°W; also only land points). This figure shows that winds are poorly represented by the 1696 

GCMs for GrIS and that SAT and winds are poorly represented for the AIS.  1697 
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Box 1 about MISI and MICI  1725 

 1726 

Marine Ice Sheet Instability (MISI) is a self-enhancing process, triggered by external forcing 1727 

(for example ocean warming), which results from the interactions between grounding lines, 1728 

bed topography and ice dynamics. MISI is typically triggered by the thinning of a confined ice 1729 

shelf, buttressing upstream flow, which leads to grounding line retreat. Once the grounding 1730 

line is destabilised, it may continue to retreat in a self-enhancing fashion. How far the 1731 

grounding line retreats depends on multiple factors, but the geometry of the bed topography 1732 

is an important control on MISI: grounding lines are believed to be especially susceptible to 1733 

such self-enhanced rapid retreat in regions of retrograde bed slopes. This irreversible process 1734 

can be slowed down or stopped by several local factors, such as strong lateral shear stresses, 1735 

or the presence of pinning points and morphological landforms140. These landforms can be 1736 

pre-existing tectonic features or formed via the deposition of subglacial and ice proximal 1737 

sediments265-268. Rapid uplift of the bed arising from glacio-isostatic adjustment can further 1738 

shoal those features, potentially arresting rates of grounding line retreat (for example, refs. 1739 

269 and 270).    1740 

 1741 

Marine Ice Cliff Instability (MICI) is a mechanism that is more hypothetical than MISI, but could 1742 

also further amplify ice-sheet mass loss. This mechanism would be triggered by the collapse 1743 

of ice shelves, exposing an ice cliff at the grounding line. If the ice cliff is tall enough, the 1744 

stresses at the cliff may exceed the strength of ice, and the cliff may fail structurally, triggering 1745 

repeated calving events128. Contrary to MISI, MICI does not require a retrograde bed slope to 1746 

occur and could also happen on a flat or prograde terrain. Furthermore, the percolation of 1747 

meltwater into newly-formed surface crevasses, alongside subsequent refreezing in situ, 1748 

could further enlarge the crevasses and act to enhance MICI, leading to even faster rates of 1749 

retreat271. Direct observations of cliff failure are, however, limited at present, making it 1750 

difficult to assess whether MICI has ever occurred in the past. It is therefore still difficult to 1751 

accurately parameterize the retreat of marine terminating glaciers that undergo cliff failure93.  1752 

https://paperpile.com/c/HDcSvR/ZTa7f
https://paperpile.com/c/HDcSvR/H2GJp
https://paperpile.com/c/HDcSvR/LihOe+p5E24+JYt1h
https://paperpile.com/c/HDcSvR/anQMj+gaPOC
https://paperpile.com/c/HDcSvR/VdhPe
https://paperpile.com/c/HDcSvR/4xgTq
https://paperpile.com/c/HDcSvR/EBKpv

