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Abstract

We present a new, all-sky quasar catalog, Quaia, that samples the largest comoving volume of any existing
spectroscopic quasar sample. The catalog draws on the 6,649,162 quasar candidates identified by the Gaia mission
that have redshift estimates from the space observatory’s low-resolution blue photometer/red photometer spectra.
This initial sample is highly homogeneous and complete, but has low purity, and 18% of even the bright
(G< 20.0) confirmed quasars have discrepant redshift estimates (|Δz/(1+ z)|> 0.2) compared to those from the
Sloan Digital Sky Survey (SDSS). In this work, we combine the Gaia candidates with unWISE infrared data (based
on the Wide-field Infrared Survey Explorer survey) to construct a catalog useful for cosmological and astrophysical
quasar studies. We apply cuts based on proper motions and colors, reducing the number of contaminants by
approximately four times. We improve the redshifts by training a k-Nearest Neighbor model on SDSS redshifts,
and achieve estimates on the G< 20.0 sample with only 6% (10%) catastrophic errors with |Δz/(1+ z)|> 0.2
(0.1), a reduction of approximately three times (approximately two times) compared to the Gaia redshifts. The final
catalog has 1,295,502 quasars with G< 20.5, and 755,850 candidates in an even cleaner G< 20.0 sample, with
accompanying rigorous selection function models. We compare Quaia to existing quasar catalogs, showing that its
large effective volume makes it a highly competitive sample for cosmological large-scale structure analyses. The
catalog is publicly available at 10.5281/zenodo.10403370.

Unified Astronomy Thesaurus concepts: Quasars (1319); Catalogs (205); Large-scale structure of the universe
(902); Gaia (2360); Active galactic nuclei (16)

Supporting material: animation

1. Introduction

Quasars are powerful tools for many fields of astrophysics.
They are key probes of accretion physics (e.g., Sunyaev &
Zeldovich 1970; Yu et al. 2020), which informs the evolution
of active galactic nuclei (AGNs). The evolution of quasars and
their host galaxies are intertwined, giving insight into super-
massive black hole growth (e.g., Hopkins et al. 2006) as well as
massive galaxy formation (e.g., Kormendy & Ho 2013).
Studies of the quasar distribution can also be used to
understand black hole evolution (e.g., Powell et al. 2020) and
halo masses and environmental effects (e.g., DiPompeo et al.
2017). Quasars can also be utilized as background sources for
cosmic phenomena such as gravitational lenses (e.g., Claeskens
& Surdej 2002), and quasar spectra encode the properties of the
intergalactic medium via the Lyα forest (e.g., Rauch 1998).

Quasars are key tracers for large-scale structure cosmology.
They reside in peaks of the dark matter distribution and their
clustering can be used to measure cosmological parameters,
including the growth rate of structure fσ8 (e.g., García-García
et al. 2021; Alonso et al. 2023), the Hubble distance DH (e.g.,
Hou et al. 2020), primordial non-Gaussianity (e.g., Leistedt
et al. 2014; Castorina et al. 2019; Krolewski et al. 2023), and

the baryon density Ωb (e.g., Yahata et al. 2005). Cross-
correlations between quasars and other tracers provide
measurements of key cosmological quantities, such as with
photometric galaxy samples to measure the baryon acoustic
feature (e.g., Ata et al. 2018), with cosmic microwave
background (CMB) lensing to constrain quasar bias and the
growth of structure (e.g., Sherwin et al. 2012), and with
foreground galaxies as a probe of weak lensing (e.g., Ménard &
Bartelmann 2002; Scranton et al. 2005; Zarrouk et al. 2021).
They can also be used as standardizable candles to measure the
expansion rate of the universe (e.g., Setti & Woltjer 1973;
Risaliti & Lusso 2015; Lusso et al. 2020). Finally, given the
large volume typically covered by quasar samples, the quasar
distribution provides a test of the cosmological principle of
isotropy and homogeneity (e.g., Secrest et al. 2021; Dam et al.
2023; D. W. Hogg et al. 2024, in preparation).
Many surveys have observed and cataloged quasars, with

around 1 million spectroscopically identified and several
million when including photometric samples. The Sloan Digital
Sky Survey (SDSS) Data Release 16 includes a highly
complete catalog of 750,414 quasars with spectroscopic
redshifts (Lyke et al. 2020). Photometric surveys observe a
much larger number of quasars, at the expense of low redshift
accuracy; nearly 3 million quasars with reliable photometric
redshifts have been cataloged (Kunsági-Máté et al. 2022),
including with the Wide-field Infrared Survey Explorer (WISE;
Wright et al. 2010), which imaged the entire sky and
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Pan-STARRS (Chambers et al. 2016), which observed three-
quarters of the sky. Shu et al. (2019) combined photometry
from Gaia DR2 and unWISE (Lang 2014) to identify 2.7
million AGN candidates and estimate their photometric
redshifts. Upcoming surveys will observe even more quasars:
the Dark Energy Spectroscopic Instrument (DESI; Aghamousa
et al. 2023) expects to obtain spectra for 3 million quasars, and
the Rubin Observatory’s LSST will photometrically observe
upward of 10 million quasars (Ivezić 2017). However, none of
these quasar catalogs is both all-sky and contains precise
redshift information. The recently released Gaia DR3 quasar
candidates (Gaia Collaboration et al. 2023a) constitute a new
sample that promises to fill this gap.

The Gaia quasar sample presents a new opportunity to
explore these science topics. While the Gaia satellite was
designed to map stars in the Milky Way (Gaia Collaboration
et al. 2016), it broadly observes bright objects in the sky, which
includes many extragalactic sources. Previous work identified a
small number of quasars in earlier Gaia data releases, including
identification based solely on their astrometric properties
(Heintz et al. 2018, 2020). In DR3, the Gaia collaboration
released a sample of 6,649,162 quasar candidates that were
incidentally observed during the survey (Delchambre et al.
2023; Gaia Collaboration et al. 2023a, 2023b). The sources
cover the entire sky and have Gaia blue photometer (BP)/red
photometer (RP) spectra, low-resolution spectra covering the
wavelength range of 330–1050 nm. These spectra allow for
redshift estimates of the sources, with 86% having a precision
of |Δz/(1+ z)|< 0.01 compared to SDSS redshifts when no
processing issues affect the redshift estimation (flags_q-
soc = 0 or flags_qsoc = 16), which is the case for 20% of
the sample; for the full sample including sources with redshift
warning flags set, this percentage of high-precision redshifts
decreases to 53%. While not as precise as high-resolution
spectroscopic redshifts, they are significantly better than
photometric redshifts. The median redshift of the sample is
z= 1.67. The Gaia quasar candidate sample was constructed
for completeness over purity, and has an estimated purity of
52%; the Gaia Collaboration also suggests criteria for a higher
purity (∼95%) subcatalog of ∼1.9 million quasars. Overall, the
sample presents an unprecedented resource for quasar science
and cosmology.

There are two main issues with this raw Gaia sample. First,
the sample contains a large number of non-quasar contami-
nants. Second, a significant fraction of the redshift estimates are
catastrophic errors, due to emission line misidentification given
the limitations of the low-resolution spectra. Understanding and
eliminating sample contaminants matters greatly in identifying
the most extreme (e.g., brightest or most luminous) quasars,
which has been addressed in the AllBRICQS catalog (Onken
et al. 2023) that draws on Gaia quasar candidates. In this work,
we construct a clean quasar catalog across the full magnitude
range with lower contamination and improved redshift
estimates, with the particular goal of building a catalog
appropriate for large-scale structure analyses as well as other
quasar science. For both of these, we rely on crossmatches with
WISE observations of the quasars (Wright et al. 2010), which
adds key infrared (IR) information. To filter out contaminants,
we apply color cuts based on the Gaia and WISE photometry,
as well as a proper motion cut. To improve the redshifts, we
identify quasars that are also observed by SDSS, for which we
have highly precise spectroscopic redshifts, and train a k-

Nearest-Neighbors (kNN) model based on their photometry and
Gaia redshift estimates. Further, the Gaia quasar candidate
sample has strong systematic imprints from various observa-
tional effects, such as Galactic dust. To model these
systematics so that their effects can be mitigated in the
analyses of the catalog, we fit a model for the selection function
based on observational templates using a Gaussian process. We
release both the catalog and selection function as publicly
accessible data products.
This paper is organized as follows. In Section 2, we describe

the initial data sets used in the construction of the catalog. The
construction of the catalog is detailed in Section 3. In Section 4,
we present the final catalog and perform verification and
comparisons to other samples, and outline the data format. We
summarize the catalog and describe the access to the data in
Section 5.

2. Initial Data Sets

2.1. Gaia DR3 Quasar Candidate Sample

While performing its all-sky survey of the Milky Way, the
Gaia satellite (Gaia Collaboration et al. 2016) also observed
millions of extragalactic objects. These sources—both quasar
and galaxy candidates—were first released in Gaia DR3 (Gaia
Collaboration et al. 2023a, 2023b). Gaia obtained BP/RP
spectra of the sources, which are low-resolution spectra with
relatively narrow wavelength ranges; the BP covers
330–680 nm and has 30� R� 100 and the RP covers
640–1050 nm (Carrasco et al. 2021) with 70� R� 100. The
raw spectra are not released by Gaia (besides a small subsample
—the rest will be released in Gaia DR4), but redshift estimates
and other derived information are contained in the catalogs.
The quasar candidates were selected based on multiple

classifiers and criteria, described in detail in Gaia Collaboration
et al. (2023a). The majority (5.5 million) of the quasar
candidates were identified with the Discrete Source Classifier
(DSC) module (detailed in Delchambre et al. 2023, a machine-
learning model that takes as input the source’s BP/RP
spectrum, G-band magnitude, G-band variability, parallax,
and proper motion, and outputs a class label trained on SDSS
spectroscopic classifications. Given these SDSS labels, the
results of this module will inherit many of the same selection
effects as SDSS. DSC is estimated to have a completeness of
over 90% and a purity of around 24% for quasars. Another
machine learning model selected over 1 million sources based
on their variability, as active nuclei have time-variable
accretion; the model inputs were statistics of time series data
in all Gaia bands as well as photometric and astrometric
quantities, as detailed in Rimoldini et al. (2023). Additionally, a
set of nearly 1 million sources was selected based on their
surface brightness profile; this selection used existing major
quasar catalogs to compile an initial list of sources, which were
then processed by the Gaia surface brightness profile module
(Ducourant et al. 2023). This module included quasars in the
candidates catalog which passed certain criteria, including
having Gaia observations covering >86% of the source’s
surface area and a confident assessment (positive or negative)
of host galaxy presence. Finally, the 1.6 million sources used to
define the Gaia-CRF3 celestial reference frame were con-
tributed, which are based on crossmatches of Gaia to external
quasar catalogs. A large fraction of sources are identified as
quasars by multiple of these methods; the overlapping
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contributions are shown in Figure 3 of Gaia Collaboration et al.
(2023a). The full quasar candidate sample contains 6,649,162
sources,7 selected for high completeness, but with a low purity
estimated to be around 52% (Gaia Collaboration et al. 2023a).
We show the overlaps between this Gaia quasar candidate
sample and other samples and subsamples used and constructed
in this work in Figure 1.

Most of the quasar candidates (6,375,063) are assigned
redshifts using the Quasar Classifier (QSOC) module, which
uses a chi-squared approach on the quasars’ BP/RP spectra
compared to composite spectra from SDSS DR12Q (Delcham-
bre et al. 2023). We refer to these Gaia redshift estimates as
zGaia. Many of these redshifts are determined by a single line
due to the narrow spectral range, resulting in aliasing issues
when lines are misidentified (see Figure 15 in Delchambre et al.
2023). An estimated 63.7% of the redshifts have |Δz|< 0.1,
increasing to 97.6% for quasar candidates with no redshift
warning flags (this is the case for nearly 80% of quasars with
G< 18.5, but decreases to less than 20% for G> 19.5).

Gaia Collaboration et al. (2023a) provide a query to select a
purer subsample of the quasar candidates. It requires higher
quasar probability thresholds from the various classifiers and
excludes surface-brightness-selected galaxies that have close
neighbors. This results in 1,942,825 sources with an estimated
purity of 95%; 1.7 million of these have Gaia redshifts. The sky
distribution of this sample, which we call the Gaia DR3 purer
sample, is shown in Figure 2. The Gaia DR3 purer sample has
a low density in the Galactic plane; we speculate that this is
largely due to dust extinction making sources too faint to

observe at low Galactic latitudes. Gaia DR3 purer also has
significant overdensities around the LMC and SMC, as the
sample still contains stellar contaminants.
For our analysis, we start with the full quasar candidate

sample, rather than the Gaia DR3 purer sample or cutting on
other Gaia pipeline flags, to allow greater completeness and
minimize reproducing biases; we compare our catalog with the
Gaia Collaboration et al. (2023a) Gaia DR3 purer subsample in
Section 4.3. We construct a superset of our catalog (which is a
subset of the Gaia quasar candidates sample) that contains all
the information needed for catalog construction: we require that
sources are in the Gaia quasar candidates table, have Gaia G,
BP, and RP measurements, unWISE W1 and W2 observations
(described in Section 2.2), Gaia-estimated QSOC redshifts, and
a maximum G magnitude of G< 20.6. This magnitude cut was
chosen to be slightly deeper than our desired catalog magnitude
limit of G< 20.5, in order to provide a buffer for redshift
estimation. This results in a superset with 1,518,782 sources.
We call our final catalog Quaia, so we refer to this as the Quaia
superset.

2.2. unWISE Quasar Sample

We use the unWISE reprocessing (Lang 2014; Meisner et al.
2019) of WISE (Wright et al. 2010) to contribute IR
photometry to Gaia sources. The unWISE coadds combine
data from NEOWISE (Mainzer et al. 2011) with the original
WISE survey, providing a time baseline 15 times longer.
Compared to the original AllWISE catalog, unWISE has
deeper imaging and improved modeling of crowded fields. The
unWISE catalog (Schlafly et al. 2019) contains measurements
in the W1 (3.4 μm) and W2 (4.6 μm) bands for over 2 billion
sources. We do not use the W3 and W4 bands as these do not
go as deep as we need. We perform a crossmatch of the Gaia
quasar candidate sample to unWISE sources within 1″.8 We
also crossmatch the SDSS training and validation samples
(Sections 2.3, 2.4) to unWISE.
When combined with optical photometry, unWISE IR color

information is very useful to identify quasars and distinguish
them from contaminants. This photometry also contains useful
redshift information; recent approaches to estimate redshifts

Figure 1. A summary of the overlaps between the various data sets and
subsamples used in this work. The values describe the fraction of objects in
each column’s sample that are in each row’s sample. Note that we only list
unWISE as a row because the inverse is not relevant to this work.

Figure 2. Sky distribution of the quasar candidates in the Gaia DR3 purer
quasar sample, in Galactic coordinates and displayed using a Mollweide
projection.

7 The Gaia DR3 quasar candidates sample (and all other Gaia data) can be
downloaded at https://gea.esac.esa.int/archive with table name gaiadr3.
qso_candidates.

8 We use NOIRLab’s crossmatch service to perform this operation, available
at https://datalab.noirlab.edu/xmatch.php.
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from photometry with neural networks achieve a mean
|Δz|∼ 0.22 (Yang et al. 2017; Jin et al. 2019; Kunsági-Máté
et al. 2022). In our case of redshift estimates from narrow-range
BP/RP spectra, we expect IR photometry to add information
that can break line identification degeneracies in order to
improve estimates. We incorporate the W1 and W2 bands into
both our quasar selection (Section 3.1) and redshift estimation
(Section 3.2) procedures.

2.3. SDSS DR16 Quasar Sample

The SDSS released the largest spectroscopic quasar catalog
in DR169 (Lyke et al. 2020). It combines new sources from the
extended Baryon Oscillation Spectroscopic Survey (eBOSS),
part of SDSS-IV, with previously observed sources from earlier
SDSS campaigns. The catalog contains 750,414 quasars, with
an estimated 99.8% completeness (compared to the SDSS-III/
SEQUELS sample of Myers et al. 2015, which has higher
signal-to-noise spectra) and 98.7%–99.7% purity. We remove
sources with redshift warnings, ZWARNING!= 0, as well as a
handful of sources with unreasonably low or negative redshift
estimates (z< 0.01). This results in 638,083 sources, which is
the sample shown in Figure 1. We crossmatch these with the
Gaia catalog, as well as unWISE (Section 2.2), using a
maximum separation of 1″ on the sky. We remove sources with
fewer than five observations in BP (phot_bp_n_obs) or RP
(phot_rp_n_obs), following Bailer-Jones (2021), as well as
sources that are duplicated in the SDSS star or galaxy samples
(Section 2.4). This results in 343,074 sources with both Gaia
and unWISE observations that pass these criteria.

We use these to calibrate the cuts to decontaminate our
sample (Section 3.1); for this purpose, we only keep sources
that are also in the Quaia superset (sources that are in the Gaia
quasar candidates table, have all necessary Gaia and unWISE
photometry, Gaia-estimated QSOC redshifts, and G< 20.6).
This sample contains 246,122 quasars. We also use this sample
(after applying the cuts described in Section 3.1) to train our
redshift estimation model (Section 3.2). While this spectro-
scopic sample has quite high completeness and accurate
redshift information, we note that it is still imperfect, contains
selection effects, and represents only a particular definition of a
quasar; these issues will propagate to our catalog.

2.4. Contaminant Samples: Galaxies and Stars

To guide the decontamination of our catalog (Section 3.1),
we compile known contaminant samples, namely galaxies and
stars. For the galaxy sample, we use SDSS spectroscopic
galaxies from DR18.10 Following Bailer-Jones (2021), we
include all galaxies with class label GALAXY in the SpecObj
table, exclude galaxies with subclass labels AGN or AGN
BROADLINE, and exclude sources with redshift warnings,
zWarning=0. We crossmatch these with Gaia DR3 and
unWISE with a 1″ radius, and remove sources with fewer than
five observations in BP or RP, as for the SDSS quasars. We
also remove apparent stellar contaminants from the galaxies
sample with the cut in G−RP and BP−G from Equation (1)
of Bailer-Jones et al. (2019), and additionally remove sources
duplicated in the SDSS quasar or star samples. This leaves

600,897 crossmatched SDSS galaxies in our sample; 1316 of
these are in the Quaia superset.
For the star sample, we also use SDSS DR18 sources,

selecting objects with the class label STAR in the SpecObj
table. As for the quasars and galaxies, we crossmatch these
with Gaia DR3 with a 1″ radius and remove sources with fewer
than five observations in BP or RP, and remove sources
duplicated in the other samples. This results in a stellar sample
with 482,080 crossmatched SDSS-Gaia stars, with 2276 of
these in the superset.
For the decontamination procedure, we also compile a

sample of sources in or near the LMC or SMC, as most of these
will be stellar contaminants but have different properties than
the SDSS star sample. To do this, we select all sources in the
Gaia quasar candidates table that are within 3° of the center of
the LMC or 1.5° from the center of the SMC. While this may
include stars not actually in the LMC or SMC, we have chosen
these fairly narrow radii in order to capture mostly LMC and
SMC stars and a few potential quasars. Additionally requiring
that these have unWISE photometry, this gives 11,770 LMC-
and SMC-adjacent stars; 9927 are in the superset.

3. Catalog Construction

3.1. Decontamination with Proper Motions and unWISE
Colors

The full Gaia quasar candidate sample is known to contain a
significant fraction of contaminants (stars and other non-quasars,
such as galaxies). The stellar contaminants might include sources
such as brown dwarfs, which have similar colors as high-redshift
quasars, and potentially blue horizontal branch stars, blue
stragglers, and white dwarfs, which are UV bright like lower-
redshift quasars. To remove stellar contaminants, we make an
initial cut on proper motion μ, as quasars should have negligible
proper motions due to their large distances. The value of μ has a
dependence on G, so we make a cut in this space. To guide this
cut, we use labeled sources: SDSS quasars, SDSS galaxies, SDSS
stars, and Gaia LMC- and SMC-adjacent stars, as described in
Sections 2.3 and 2.4. The G–μ distributions of these sources are
shown in the top panel of Figure 3. In the middle panel, we show
the intersection of these labeled sources with our Quaia superset,
which consists of sources in the Gaia quasar candidates table that
have Gaia redshift estimates, complete Gaia, and unWISE
photometry, and are below G< 20.6. We see that the SDSS
quasars tend to have much smaller proper motions than the other
types of sources, with a very linear edge to the G dependence at
the high proper motion side of the distribution. Based on this, we
choose the cut

m < - -10 mas yr . 1G0.4 18.25 1 ( )( )

At G = 18.25, this corresponds to μ 2.5 mas yr−1, and allows
for less severe cuts at deeper magnitudes given the typically
less precise astrometry. This is related to the proper motion
uncertainty as a function of G, which has been quantified by
Gaia (Gaia Collaboration et al. 2021). We show this cut
overlaid on the Quaia superset in the lower panel of Figure 3;
based on the labeled data, we can clearly pick out the
populations. The proper motion cut excludes 39,470 sources,
2.6% of the superset.
Next, we determine the color cuts based on Gaia and

unWISE photometry. Generally, stars and galaxies are dim in
redder, IR wavelengths compared to AGN. For instance, the

9 The SDSS DR16Q quasar catalog is publicly available at https://www.sdss.
org/dr16/algorithms/qso_catalog.
10 SDSS DR18 data can be accessed at https://skyserver.sdss.org/CasJobs/
jobdetails.
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eBOSS quasar target selection (Myers et al. 2015) involved
linear cuts in the optical-IR, involving the SDSS g, r, and i
bands and the WISE W1 and W2 bands.
In Figure 4, we show color–color distributions for the same

samples as in Figure 3. The left panel shows W1−W2 versus
G−W1 color, and the right column shows G−RP versus
BP−G color. The top row, with the full labeled samples, shows
that different types of sources tend to be localized to different
areas of this parameter space (we show only a subset of each type
for clarity). In particular, the colors involving unWISE (left panel)
separate out the source types relatively clearly, demonstrating the
importance of the unWISE crossmatch: SDSS quasars have very
red W1−W2, and intermediate G−W1 color, while galaxies
have bluer W1−W2 and redder G−W1 compared to quasars,
and stars (both SDSS stars and stars near the LMC and SMC) are
bluer in both colors. In Gaia color–color space, galaxies tend to
have bluer BP−G and redder G−RP colors than the other types
of sources. In the middle row of Figure 4, showing the intersection
of the labeled sources with the Quaia superset, we see that the
superset restrictions have eliminated many of the sources,
especially SDSS galaxies and stars, though a significant number
remain. (We note that it is possible that some of these SDSS
galaxies do host AGN though they were not classified as such by
SDSS.) The Quaia superset is shown in the bottom panel; we can
see clear populations of quasars, stars, and galaxies lining up with
the labeled sources. Importantly, we can see the effect of the
stricter SDSS color selection in the red (high G−W1) region of
parameter space into which the Gaia quasar candidates extend, but
are not represented in the SDSS sample in the above panels.
We choose to apply linear cuts in these colors to decontaminate

the sample. While other works (e.g., Hughes et al. 2022) train
classifiers to determine which objects are true quasars using SDSS-
classified quasars as labels, we opt for simpler cuts for ease of
reproducibility and to mitigate the propagation of SDSS selection
effects, which may include color- and magnitude-dependent
effects. We choose four cuts based on the distribution of sources
in color–color space. The first is in W1−W2, which has been
shown to be useful for distinguishing quasars; for instance, Nikutta
et al. (2014) demonstrated that a small crossmatched SDSS quasar
sample has very red W1−W2= 1.2± 0.16, while other types of
objects—namely star-forming and AGN galaxies, luminous red
galaxies and stars—have bluer W1−W2. Stars tend to have the
bluest W1−W2, with a mean of W1−W2=− 0.04± 0.03, so a
cut in W1−W2 is a reliable way to filter out stellar contaminants.
We add a cut in G−W1 to filter out the bulk of the stars
(including the LMC and SMC), and another in BP−G to cut out
the galaxy contaminants. Finally, we find that these single color
cuts were not sufficient to remove all of the LMC and SMC, so we
add an additional diagonal cut in W1−W2 andG−W1, choosing
a reasonable slope.
We optimize the values (intercepts) of these four cuts with a

grid search, trying values spaced out by 0.1 mag. We note that
while we show the full samples in Figure 4, in practice we make
the proper motion cut before optimizing the color cuts. We choose
the color cuts that maximize our objective function ,

l l l= - - -N N N N , 2q s s g g m m ( )

where Nq is the number of true quasars that make it into the
catalog, Ns SDSS stars, Ng SDSS galaxies, and Nm LMC and

Figure 3. Proper motion μ vs. G magnitude for two different sets of sources.
The black line shows the cut we make; the shaded gray region is excluded from
the catalog. Top: the sources for which we have labels (SDSS data as well as
sources near the LMC and SMC in the Gaia quasar candidates sample) that are
also in the Quaia superset (Gaia DR3 quasar candidates that have all necessary
photometry, Gaia redshift estimates, and G < 20.6). Middle: sources in the top
row that are also in the Quaia superset. Bottom: the superset of quasar
candidates from which Quaia is constructed. The proper motion cut includes
nearly all SDSS quasars in the superset while excluding a large number of stars.
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SMC stars, and the λ parameters balance the relative ratios of
each. We choose λs= 3, λm= 5, and λg= 1.

The optimal cuts for the objects to keep in the catalog are

- >
- >
- > -

- + - >

G

BP G
G

W1 2.15
W1 W2 0.4

0.3
W1 1.2 W1 W2 3.4. 3

( )
( )
( )
( ) ( ) ( )

These are shown as the black lines in all panels of Figure 4, with
the gray shading indicating exclusion regions. These cuts, as well
as the proper motion cuts described above, exclude ∼7% of the
superset, resulting in 1,414,385 quasars in our decontaminated
sample. We apply an additional magnitude cut of G< 20.5 to
reduce edge effects in our redshift estimation; this constitutes our
deep sample, with 1,295,502 sources. We refer to this as Quaia in
the rest of this work. However, the catalog becomes less clean and
reliable as we push to deeper magnitudes—due to less precise
measurements and stronger systematics, notably the Gaia
scanning pattern—so we produce a version of the catalog with
G< 20.0 to ensure a cleaner sample. This brighter catalog has
755,850 sources, and we report most of our results on this sample
throughout the rest of this work.

3.2. Spectrophotometric Redshifts with unWISE and SDSS

We use unWISE and SDSS data to improve the redshift
estimation of the sources. Figure 5(a) shows the redshifts
estimated by the Gaia QSOC pipeline zGaia compared to the
SDSS redshifts zSDSS for a test sample of sources from Quaia
with G< 20.5; note that the 2D histogram is plotted in log-
space to show the outliers more clearly. We find that of the
Gaia redshifts zGaia, 82% (81%) agree to |Δz/(1+ z)|< 0.2
(0.1). A significant fraction of zGaia are highly precise: 75%
agree with SDSS to |Δz/(1+ z)|< 0.01. We also clearly see
bands of incorrect estimation due to line aliasing issues.
Additionally, in the crossmatched sample, nearly all of the very
high zGaia estimates (z> 4.5) are shown to be incorrect in
comparison to SDSS. We note that the redshift estimation is
much more accurate for sources that have no redshift warning
flags set (flags_qsoc=0), as discussed in Section 2.1, but
this is only true for 21% of the sources in Quaia (G< 20.5),
and even including sources with flags_qsoc = 16 this
leaves only 39% of sources.

We train a kNN model on Quaia sources to estimate
improved redshifts. (We also tested other models including
XGBoost and a multilayer perceptron, and found that the kNN
outperformed both by a small margin.) We include all sources
in our decontaminated catalog (Section 3.1), which goes out to
G< 20.6, in order to have a buffer beyond our desired
G< 20.5 sample to reduce edge effects from the training set.
The features that we train on are the Gaia redshift zGaia, colors
constructed using Gaia and WISE photometry (G− RP,
BP−G, BP− RP, G−W1, W1−W2), the Gaia G-band
magnitude, and the dust reddening E(B− V ) at the location of
the source. (We find that including the rest of the photometry
does not make a difference in the results.) The reddening is
determined with the Corrected Schlegel, Finkbeiner, & Davis
dust map introduced by Chiang (2023), which corrects the
standard Schlegel et al. (1998) dust map by subtracting off the
contribution from the cosmic infrared background (CIB).
(We also include the appropriate correction factor given by

Schlafly & Finkbeiner (2011).)11 The labels are the SDSS
redshifts, zSDSS.
We use as our labeled data sources from the crossmatched

SDSS DR16Q sample (Section 2.3) that are also in our
decontaminated catalog Quaia, so that we train on sources
drawn from the same distribution to which we will apply the
model; this is 243,206 sources. We apply a 70%/15%/15%
train/validation/test split. We build a k-d tree on the training
set features using the KDTree implementation of sklearn.
At the prediction stage, we access the K nearest neighbors of
each input feature vector, first excluding neighbors with zero
distance in feature space (i.e., neighbors that are in the training
set). We assign the predicted label to be the median zSDSS of the
K nearest neighbors and the uncertainty to be the symmetrized
inner 68% error of those neighbors. We use the validation set to
tune K, and choose the value that maximizes the fraction of
predicted redshifts with |Δz/(1+ z)|< 0.1, which is K= 27;
we note that this value only varies at the ∼1% level for values
15<K< 50, and is similar for other choices of |Δz/(1+ z)|.
Finally, we apply the model to the full Quaia and output kNN
redshift estimates, zkNN, for each source.
The results are shown in Figure 6, which shows the

cumulative distribution of errors |Δz/(1+ z)| for zkNN
compared to that of zGaia (with zSDSS as the truth) for the test
set with G< 20.0. (The shapes are similar for G< 20.5, just
shifted to somewhat lower accuracy.) We find that the zkNN
estimates have far fewer outliers than zGaia. However, the zGaia
estimates tend to be more precise, as they use the full spectral
information, while the kNN is essentially smoothing over the
likeliest neighboring sources in feature space. We thus choose
to combine the properties of both of these redshift estimates to
obtain our final spectrophotometric (SPZ) redshifts zQuaia in the
following way. For sources for which zQuaia and zGaia agree to
|Δz/(1+ z)|< 0.05, we assign zQuaia= zGaia to preserve the
precision of the Gaia estimate. For sources for which zQuaia and
zGaia differ by |Δz/(1+ z)|> 0.1, we assign zQuaia= zkNN to
preserve accuracy. In between these thresholds, we apply a
smooth, linear transition to avoid hard features in our estimates.
These zQuaia estimates are also shown in Figure 6 compared to
the true (spectroscopic, taken as truth for our purposes) SDSS
redshifts, and we can see that these achieve nearly as high
precision as zGaia while maintaining the high accuracy of zkNN.
Our zQuaia results for the test set are shown in Figure 5(b)

compared to zSDSS, shown here for the full catalog depth
G< 20.5. We find that 91% (84%) of our SPZ redshifts agree
to |Δz/(1+ z)|< 0.2 (0.1), and 62% highly agree to |Δz/
(1+ z)|< 0.01. We also give the bias (mean redshift error) and
scatter (σ68, the symmetrized inner 68% region of the redshift
errors) of |Δz/(1+ z)| in the figure; our SPZ redshifts
significantly decrease the bias and scatter. The SPZ estimation
corrected all of the very high-z Gaia estimates, and some of the
intermediate-outlying aliasing effects. We still have some
catastrophic outliers due to line aliasing, but with our SPZ
redshifts, we find a reduction in the number of |Δz/
(1+ z)|> 0.2 (0.1) outliers by approximately three times
(approximately two times) compared to the Gaia redshift
estimates.
We investigate the dependence of the redshift error on the G-

band magnitude in Figure 7. The fraction of redshifts with an
error above various thresholds is shown as a function of

11 The dust map was accessed with the Python package https://dustmaps.
readthedocs.io.
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samples with the given cut on G. The errors are lowest at a
bright magnitude cut of G<∼ 19.0; in this sample, sources
with SPZ redshift estimates inaccurate to |Δz/(1+ z)|> 0.2
(0.1) comprise only 3% (4%) of the sample, and to the more

stringent requirement of |Δz/(1+ z)|> 0.01, 12%. This outlier
fraction increases steadily as fainter sources are included. For
G< 20.0, 6% (10%) are inaccurate to |Δz/(1+ z)|> 0.2 (0.1),
and 25% for |Δz/(1+ z)|> 0.01. Compared to the Gaia

Figure 4. Color–color plots of three different sets of sources. The left column shows W1 − W2 vs. G −W1 color, and the right column shows G − RP vs. BP − G
color. The black lines show the cuts we make; the shaded gray region is excluded from the catalog. The rows have the same samples as in Figure 3, except that in the
top row, only 20,000 of each type of SDSS source is shown for clarity. In both color–color projections, the labeled sources are mostly localized in particular regions of
parameter space, and we can see these populations somewhat clearly in the Quaia superset.
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redshift estimates, the SPZ estimates zQuaia reduce the number
of |Δz/(1+ z)|> 0.2 (0.1) outliers by approximately three
times (approximately two times). The choice of G cut to use in
a given analysis will depend on the nature of the analysis and
its sensitivity to outliers.

We note that our finding that the unWISE IR information
significantly improves redshift estimates, compared to only the
optical information used in the Gaia QSOC estimates, is
consistent with other photometric redshift work. For instance,
DiPompeo et al. (2015) showed that including WISE mid-IR
photometry in the redshift estimation of SDSS-imaged quasars
results in a significant improvement in the estimates, even more
so than including both GALEX near- and far-UV data and
UKIDSS near-IR data. More recently, Yang & Shen (2023)

compiled a photometric quasar catalog from the Dark Energy
Survey (DES) DR2, combining DES optical photometry with
near-IR photometry as well as unWISE mid-IR photometry;
they obtained photo-zs with 92% having |Δz/(1+ z)|< 0.1
when all IR bands are used compared to 72% with only optical
data. Additional photometric information at other wavelengths
could further improve our estimates (as well as catalog
decontamination), but is not currently available for enough
sources in our Quaia catalog to be worthwhile. For instance, for
the UV all-sky survey GALEX (Martin et al. 2005), cross-
matches to Quaia sources are only available for 32% of the
Quaia objects for near-UV observations, and when including
far-UV only 16%; this significant discrepancy is largely due to
the faint end of Quaia, where GALEX observations do not
reach deep enough. The Pan-STARRS1 survey (Chambers
et al. 2016) covers only three-quarters of the sky, with

Figure 6. The cumulative distribution of redshift errors for Quaia test set
sources with G < 20.0, considering SDSS spectroscopic redshifts zSDSS as the
ground truth, for estimates directly from our kNN model (gray), the original
zGaia redshifts (purple), and our final zQuaia estimates (black) based on a
combination of the other two. Our SPZ redshifts have far fewer outliers and
similar precision compared to the Gaia estimates.

Figure 7. The fraction of outlying redshifts with |Δz/(1 + z)| > (0.01, 0.1,
0.2), as a function of G magnitude, for our redshift estimation test set. The SPZ
redshifts are shown in black, and the Gaia redshifts in purple. The fraction of
outliers increases steeply with increasing G for G > 19.5 for both zQuaia and
zGaia, though the fraction of catastrophic outliers for zQuaia is significantly lower
(and the dependence less steep) compared to zGaia.

Figure 5. (a) Gaia redshift estimate zGaia vs. SDSS (true) redshift zSDSS for a test set of sources in our quasar catalog Quaia with G < 20.5. (b) Our estimated SPZ
redshifts zQuaia, which are based on a kNN model, vs. zSDSS for the same sample. The bias (mean redshift error) and scatter (σ68, the symmetrized inner 68% region of
the redshift errors) of the redshift estimates compared to zSDSS are shown in the panels. The zQuaia redshifts significantly decrease both the bias and scatter, as well as
catastrophic outliers and unreasonably high-redshift estimates. The one-to-one line (perfect accuracy) is shown in gray; note that the color bar is on a log scale, and that
a majority of the sources in both cases lie along this line.
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crossmatches to 75% of Quaia sources. We tested adding Pan-
STARRS1 data to the redshift estimation feature set and found
only a small improvement, and thus chose to prioritize keeping
the full sky span of Quaia, though we make note that
incorporating Pan-STARRS1 may be useful for certain
applications.

3.3. Selection Function Modeling

Observational and astrophysical effects impact which
sources we observe and their properties; this is known as the
selection function. As Gaia is a space-based mission, it avoids
many of the observational issues of ground-based surveys, such
as seeing and airmass. However, there are still significant
selection effects: for our model, we consider dust, the source
density of the parent surveys, and the scan patterns of the
parent surveys.

We fit a selection function model to a particular version of
the catalog, namely, a particular maximum G. For the fiducial
selection function we work only in terms of sky position. We
make a healpix map of the catalog with NSIDE = 64 and count
the number of observed catalog sources in each healpix pixel.
We choose this NSIDE, which results in 49,152 pixels each
with an area of ∼0.84 deg2, to balance constructing a map with
reasonably high resolution with ensuring a sufficient number of
sources in the pixels for stable fits, as well as fitting within
memory limitations for the Gaussian process fit. In the case of
no selection effects (and under the assumption of isotropy), we
would expect each pixel to contain roughly the same number of
sources. Our goal is to model the dependence between the
number of sources per pixel and the various systematics.

The systematics maps (templates) we use are shown in
Figure 8. We use the dust map of Chiang (2023), and convert it
to a healpix map of NSIDE= 64. To do this, we evaluate the
reddening E(B− V ) at the centers of pixels of a high-resolution
NSIDE= 2048 healpixelization of the sphere, and apply the
0.86 correction factor proposed by Schlafly & Finkbeiner
(2011). We convert these to extinction values by multiplying
by RV= 3.1, and then take the mean of all of these values
within each healpixel target NSIDE= 64 map. This produces a
smoothed dust extinction map on the desired scale. The result is
shown in Figure 8(a); the extinction is highest around the
Galactic plane, with structure extending outward.

For the stellar distribution, we randomly select ∼10.6
million Gaia sources with 18.5<G< 20, the magnitude range
of most of our quasar sample. The vast majority of these will be
true stars. (While this sample will contain some other types of
objects, including possibly some quasars and other extragalac-
tic sources, these will be orders of magnitude less numerous
than stars.) We count the number of stars per NSIDE = 64
healpixel; this is shown in Figure 8(b). We also include a
template of the unWISE source distribution, for which we
randomly selected ∼10.6 million unWISE sources (1% of the
catalog) that have flux in both W1 and W2, and have primary
status (Prim= 1). We count the number of these sources per
NSIDE = 64 healpixel, as shown in Figure 8(c).

In initial fits we found that the regions of the LMC and SMC
are particularly poorly modeled, and that the fit is improved by
including separate templates of just the LMC and SMC source
density for both the Gaia and unWISE sources; this gives the
model the freedom to assign different coefficients to these
regions than to the overall survey source density. (The need for
different coefficients could be for a number of reasons, such as

a difference in stellar density, contamination, or magnitude
distribution; we leave a deeper investigation of this to future
work and just use this empirical finding to improve our model.)
For the LMC/SMC templates, we cut out a wide region around
the LMC and SMC (9° in radius around the LMC and 5°
around the SMC), and subtract the background, which we
approximate using the region at the same latitude but opposite
longitude (mirrored across the l= 0° line) of the given source
distribution map. We do not show these maps here as they are
visually similar to the stellar and unWISE source density maps
in the LMC and SMC regions (though with the background
subtracted).
For the Gaia completeness, we use the quantity M10

introduced by Cantat-Gaudin et al. (2023).12 M10 is the median
magnitude in a given sky patch of the Gaia sources with �10
transits across the Gaia field of view; it incorporates the effects
of both the scanning law and source crowding. The actual
completeness map derived by Cantat-Gaudin et al. (2023)
depends on both M10 and G-band magnitude; this completeness
is very close to 1 for nearly all of the sky for G= 20.0, with
some non-negligible incompleteness for G= 20.5. However,
this completeness model is based on the full Gaia source
catalog, while we expect the selection function of our quasar
sample to be different. We thus use the M10 map directly in our
fit to capture the effects of the Gaia scanning law and source
crowding specific to Quaia. We downsample the map to
NSIDE= 64; this is shown in Figure 8(c).
For the unWISE scanning law, using the ∼10.6 million

unWISE sources described above, we take the mean number of
single-exposure images in the coadd in W1 for the sources in
each NSIDE = 64 healpixel. This is shown in Figure 8(e); we
can see that the scan is in strips of constant ecliptic latitude, and
that there is a significant increase in observations at the ecliptic
poles.
To model the selection function we use a Gaussian process, a

flexible machine-learning method for regression; for a detailed
treatment, see Rasmussen & Williams (2005). (We first tried a
linear model and found that it gave a very poor fit, because
there are significant nonlinearities between the systematics and
the catalog number density.) We first scale the data: for the
labels (number of Quaia sources per pixel) we work in their
logarithm, and only fit for the pixels with a nonzero number of
sources. For the Gaia stellar distribution, the unWISE source
distribution, the unWISE scan pattern, and LMC/SMC map
templates, we also take the log of the number of quasars per
pixel; for the LMC/SMC map, we first replace zeros with a
very small value. For all of the input feature maps, we take the
mean-subtracted systematics values. We assume a Poisson
error on the labels (and apply the appropriate log transforma-
tion). For the Gaussian process, we use the george software
package (Ambikasaran et al. 2016). We use an exponential
squared kernel k of the form

=
-

k r
r

exp
2

, 42
2

( ) ( )⎜ ⎟
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where r is the distance between points in feature space. We
train the Gaussian process on all of the data, optimizing the
parameter vector using the BFGS solver (Fletcher 1987); this
includes fitting for the mean of the labels. We finally evaluate

12 This map can be accessed with the gaiaunlimited package, https://
gaiaunlimited.readthedocs.io.
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the predicted number of sources in each pixel. Where there
were no Quaia sources in the label map, we fix the prediction
to zero.

To convert this to a selection function in terms of the relative
completeness, we first identify clean pixels in the map having
low dust extinction (AV< 0.03 mag), low star counts
(Nstars< 15), low unWISE source counts (<150), no stars or
unWISE sources in the LMC or SMC, and high M10 (M10>
21 mag) and unWISE coadds (>150); this results in 479 pixels.
We take the mean predicted number of quasars in these clean

pixels, and add two times the standard deviation in these pixels
to encompass the scatter. We then normalize the predicted
source numbers by this value, which ensures that all final
values end up being less than 1 for clarity. The result is a
selection function map in terms of the relative probability of a
source at a given location being included in the catalog. We
emphasize that this is relative; we have not normalized it to an
absolute probability so as not to make the selection function
map extremely sensitive to the maximum value. We also note
that this fit must be redone for each version of the catalog

Figure 8. The systematics maps used in the selection function model: (a) dust extinction from Chiang (2023); (b) the stellar distribution based on ∼10.6 million
randomly selected Gaia sources with 18.5 < G < 20; (c) the unWISE source distribution based on ∼10.6 million randomly selected unWISE sources; (d) the quantity
M10, the median magnitude of sources with �10 Gaia transits, which encodes the Gaia scanning law and source crowding; and (e) the unWISE scan pattern given by
the mean number of single-exposure images of the sky region in the coadd. Note that the color bar on the M10 and unWISE scanning law maps are reversed, as high
values indicate a cleaner region, the inverse of the other maps. We also include separate templates for only sources in the LMC and SMC regions for both the stellar
and unWISE source densities, with the background subtracted. All templates are discussed in more detail in the text.
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because it depends on the particular number density and
distribution of sources.

There will be a dependence of the selection function on the
G-band magnitude, as well as other quantities such as redshift.
While we do not include these in our modeling or fiducial
selection function map, we do release selection functions for a
redshift split version of the catalog, using two redshift bins,
which is important for certain cosmological analyses. The code
to generate the selection function for any input catalog is also
provided so that users can construct maps that meet their needs.

4. Catalog: Results and Verification

4.1. Properties of the Catalog

Quaia, the Gaia-unWISE Quasar Catalog, consists of
755,850 (1,295,502) quasar candidates with G< 20.0 (20.5).
The sky distribution of Quaia for each of these magnitude
limits is shown in Figure 9. The catalog covers the full sky,
besides the Galactic plane, including the southern sky—most of
which is not well covered by other surveys (discussed further in
Section 4.3). The sky distribution is remarkably uniform, and
the nonuniform imprints visually follow the selection effects
that we incorporated into our selection function map, most
notably the dust distribution (Figure 8(a)). Quaia also does not
show an obvious overdensity around the LMC and SMC (as the
Gaia DR3 purer sample does) because we have removed these
with our decontamination procedure. In fact, there is now a
slight underdensity of sources near the LMC; this makes sense
because some quasars in that sky region are obscured by dust
and confusion in the LMC, though it is possible we have also
somewhat overcorrected for this and removed some true
quasars.

The dearth of quasars in the Galactic plane is due largely to
dust extinction and stellar crowding, as well as the fact that the
SDSS training set quasars (for both the original Gaia DR3
quasar candidates sample and our decontamination procedure)
are not representative of quasars in this dust-reddened region. If
we exclude the regions with very high extinction AV> 0.5 mag,
the quasars nearly uniformly cover the remaining sky area,
which comprises 30,277.52 deg2 ( fsky= 0.73). Based on this
area we can also compute the effective volume Veff covered by
the quasars, which depends on the number density as a function
of redshift and the power spectrum value P(k), integrated over
the physical volume. We assume a P(k) of ´4

-h10 Mpc4 1 3( ) , based on the value for the eBOSS clustering
catalog of quasars at around k∼ 0.01 (Mueller et al. 2021).
This gives an effective volume of 7.67 (h−1 Gpc)3 (3.19 (h−1

Gpc)3) for the G< 20.5 (G< 20.0) sample.
We show a 3D map of the Quaia catalog in Figure 10, using

our zQuaia redshift estimates converted to spatial coordinates
with a fiducial Planck cosmology. We also show a 3D map of
the full SDSS quasar sample for comparison; Quaia spans a
much larger volume than SDSS. We note that for SDSS large-
scale structure analyses, the eBOSS quasar clustering catalog is
used, which contains fewer sources than the full SDSS catalog
as it spans only the intermediate (UV-excess) redshift range
and is designed to be uniform across the sky (described in more
detail in Section 4.3).

We show the redshift distribution of Quaia in Figure 11. The
distribution of our Gaia-unWISE-SDSS spectrophotometric
redshift estimates, zQuaia, for the full G< 20.5 catalog is shown
in black. We compare this to other samples, cut to the same

G limit where relevant: the Gaia redshifts zGaia for the same
sample; zGaia for sources in the full Gaia quasar candidates
sample with G< 20.5 (that have redshift estimates); zGaia for
sources in the Gaia DR3 purer sample with G< 20.5 (that have
redshift estimates); and zSDSS for the SDSS DR16Q sources
that have Gaia crossmatches, with G< 20.5. We see that the
Quaia SPZ redshifts have a smoother distribution than the
others, with a clear peak around z= 1.5; the median value is
1.47. These SPZ estimates have also greatly reduced the high-z
tail present in the Gaia redshifts. There are still a significant
amount of intermediate-z objects; 10% (N= 132,417) of the
sources in the full G< 20.5 Quaia catalog have z> 2.5 (for the
G< 20.0 catalog, this is also 10% (N= 77,337) of sources).
We note that the zGaia redshift distribution for the Gaia DR3
purer sample is very similar to those same redshift estimates
for Quaia; this is partially because a very high fraction of the
objects in Quaia are also in the larger Gaia DR3 purer sample
(see Figure 1).
We see a slight bump in the zQuaia distribution around

z∼ 2.3, the same location as the peak in the SDSS DR16Q
quasar distribution. In the SDSS distribution, this feature is
most prominent in the SDSS-III campaign quasars (see
Figure 6 of Lyke et al. 2020), which targeted higher-redshift
sources. To check the robustness of our redshift estimation, we
reconstruct the sample and retrain the redshifts using the
eBOSS quasar clustering catalog (Ross et al. 2020). This is the
sample used for large-scale structure clustering analyses (e.g.,
Mueller et al. 2021; Rezaie et al. 2021), which has a smooth
redshift distribution peaked around z= 1.5. It does still have a
slight step around z∼ 2.3. We find that the zQuaia redshift
distribution does not change significantly when trained on this
sample, and that the feature at z∼ 2.3 remains. We hypothesize
that this feature is thus a real feature of Gaia-selected quasars,
rather than an imprint from the training set, likely related to
details of the optical color selection around that redshift. We
also find that compared to the full SDSS-trained sample, the
sample trained on the eBOSS quasar clustering catalog
produces a redshift distribution that is less smooth at low
redshifts, possibly because of the lower number of low-z
eBOSS quasars; similarly, the high-z tail is shorter. For these
reasons, we choose to use the full SDSS sample (as described
in Section 2.3) for the spectroscopic quasar training sample for
our fiducial Quaia catalog, but confirm that the redshift
distribution (and the source selection) is broadly robust to this
choice.
We show the G-band magnitude distribution of Quaia in

Figure 12, in comparison to the other Gaia and SDSS quasar
samples described above. We see that our catalog (as well as
the Gaia DR3 purer sample) has removed all of the sources
with excessively bright (for quasars) magnitudes G< 12.5 that
are present in the full Gaia sample, as well as many sources
with 12.5<G< 16. For the Gaia DR3 and SDSS samples, the
number of quasars drops off sharply after G∼ 20.75; to avoid
the complicated selection effects at these depths, we limit our
catalog to G< 20.5 as shown. We also note that the SDSS
DR16 quasars do not extend as bright as Quaia, and this
extrapolation past the training set could bias the results in this
regime, though in practice this affects very few sources.
We note that some of the Quaia sources may technically be

considered lower-luminosity AGNs, or Seyfert-like galaxies,
rather than quasars. We estimate the fraction of these sources
using the criterion of Schneider et al. (2010): sources are
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considered true quasars if they have SDSS i-band luminosity Mi

brighter than Mi=−22.0. To estimate the i-band magnitude for
our Gaia sources, we compute the median G− i color for the
subset of Quaia sources with SDSS crossmatches, where G is the
Gaia G band, and then subtract this value from the G-band
magnitudes to obtain an effective i-band magnitude for all Quaia
sources. We convert these to absolute magnitudesMi assuming a
flat ΛCDM cosmology with H0= 70 km s−1 Mpc−1, Ωm= 0.3,
and ΩΛ= 0.7, following Schneider et al. (2010), and assuming a
value of dust reddening of Av/E(B− V )= 1.698 corresponding
to the SDSS i band and Rv = 3.1. We find that a small fraction,
8%, of Quaia sources have effectiveMi<−22.0 and thus do not
meet this standard luminosity criterion for being true quasars.
This distinction may be important for certain studies, though

may not be relevant for others, and should be kept in mind for
analyses of Quaia.

4.2. Selection Function Model

We show the results of our selection function modeling
(Section 3.3) for the G< 20.0 catalog in Figure 13. The
selection function map is shown in Figure 13(a), where the
values are the relative completeness; note that these should not
be interpreted as a probability, and users may choose to
normalize these values in different ways. The relationship of
the selection function model to the dust and source density
maps is clear visually. In Figure 13(b), we show the fractional
residuals between a random catalog downsampled by this

Figure 9. Sky distribution of the Quaia quasar catalog, in Galactic coordinates and displayed using a Mollweide projection. Panel (a) shows sources with G < 20.0,
the cleaner version with more reliable redshifts, and (b) shows the catalog down to its magnitude limit of G < 20.5.
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selection function and the true quasar catalog. The residuals
generally look like homogeneous noise, indicating a good fit;
the root mean squared fractional error is 0.49.

Around the edges of the Galactic plane the residuals show a
slight bias to positive values (meaning the completeness there
was predicted to be higher than it actually is); in the region
around zero Galactic longitude just above the Galactic plane,
the residuals are slightly biased to negative values (meaning the
completeness there was predicted to be lower than it is). These
discrepancies indicate that our templates are not fully capturing
the selection effects in these regions. As these are largely
limited to the region around the Galactic plane, the issue could
be circumvented by applying a latitude cut for sensitive
analyses. The underdensity around the LMC is well modeled
by the selection function, with no clear residual in that region.
The selection function map for the G< 20.5 catalog (not
shown) is similar with some moderate differences, and is also
provided as a data product.

The selection function may change more significantly for
different subsets of the catalog, such as redshift bins. The
selection function should be refit for a given sample to be
analyzed; we provide a code to fit the selection function for any
other subset of the catalog. We note that depending on the
subsample, certain regions may be more poorly modeled, and
in particular, the regions around the LMC and SMC; users
should check the residuals and may choose to mask the regions
around the LMC and SMC to be more conservative.

4.3. Comparison to Existing Quasar Catalogs

We compare Quaia to other existing quasar catalogs:
Projections of these catalogs are shown in Figure 14. We
show the Gaia DR3 purer sample (Figure 14(a)); a cross-
matched catalog of WISE and Pan-STARRS (WISE-PS1), a
current leading large-area photometric redshift quasar sample
(Figure 14(b)); the SDSS DR16Q catalog, the current best
spectroscopic sample of quasars (Figure 14(c)); the eBOSS
quasar clustering catalog, the subsample of SDSS DR16Q
intended for clustering analyses (Figure 14(d)); and Milliquas,
a meta-catalog compiling confirmed quasars from the literature
(Figure 14(e)).

The Gaia DR3 purer sample is described in Section 2.1; here
we include only sources with QSOC redshift estimates (zGaia).
The WISE-PS1 sample was constructed by Beck et al. (2022),
based on the Source Types and Redshifts with Machine
learning (STRM) algorithm by Beck et al. (2020). The quasar
catalog with updated photometric redshifts is presented by
Kunsági-Máté et al. (2022); here we include only those quasars
with redshifts labeled reliable, which is 59% of the sample. The
SDSS DR16Q quasar catalog is the one described in
Section 2.3, from Lyke et al. (2020), which compiles sources
from eBOSS as well as previous SDSS campaigns (and is
intended as a superset of SDSS quasars rather than a uniform
sample). The eBOSS quasar clustering catalog is detailed in
Ross et al. (2020); it is a subsample of SDSS DR16Q selected
for large-scale structure clustering analyses, and as such is
much more homogeneous than the full catalog. For the eBOSS
clustering catalog, we have included both eBOSS and legacy
SDSS quasars (IMATCH= 1 or 2) and applied the clustering
cuts of requiring sectors to have >0.5 completeness (COMP_-
BOSS) and redshift success rate (sector_SSR); we have
additionally removed sources with ZWARNING!= 0. The
Milliquas catalog was compiled by Flesch (2021); a significant
portion of the sources are from SDSS and AllWISE. For each
of these samples, we have shown quasars brighter than a
limiting magnitude of G∼ 20.5; for the non-Gaia catalogs we
convert to G from the survey’s r-band magnitude using the
conversion in Equation (2) of Proft & Wambsganss (2015),
which is based on the SDSS ¢r band. While this should give a
reasonable estimate for the SDSS sample (using rSDSS) and the
WISE-PS1 sample (using rPS1 which is very similar to rSDSS), it
may not be as reliable for Milliquas which catalogs red
magnitudes from various sources, as well as for sources with
z> 3, which were not included in the Proft & Wambsganss
(2015) fit.
A summary of the catalogs is shown in Table 1, for the full

catalogs (limited to sources with reliable redshifts) as well as
the Geff< 20.5 subsamples. We exclude Milliquas from this
comparison given its very heterogeneous nature; we do include
SDSS DR16Q, though it is also not intended to be uniform, to
show the comparison of Quaia to this large spectroscopic
catalog of quasars. For these quantifications, we exclude areas

Figure 10. Left: a projection of the 3D map of the full Quaia catalog (G < 20.5). Right: the same projection for the quasars in SDSS DR16Q, the largest spectroscopic
quasar catalog (note that it is a superset of SDSS quasars from multiple campaigns and as such is not intended to be uniform). The color bar shows the redshifts of the
quasars (zQuaia for Quaia, zSDSS for SDSS), which have been converted to distances with a fiducial cosmology. Quaia spans a significantly larger volume than the
SDSS sample.

(An animation of this figure is available.)

13

The Astrophysical Journal, 964:69 (19pp), 2024 March 20 Storey-Fisher et al.



that have AV> 0.5 mag, as well as healpixels with no quasars.
For the sky fraction fsky, we see that Quaia and Gaia DR3
purer are limited only by the dusty regions, and cover over
30% more area than WISE-PS1 (which is limited by Pan-
STARRS), nearly three times that of SDSS DR16Q, and over
five times that of the eBOSS quasar clustering catalog.
Compared to the Gaia DR3 purer sample, Quaia has a
slightly smaller number of sources, but due to its redshift
distribution gives a slightly higher effective volume. The on-
sky number density is similar for all of the catalogs when
limiting them to similar magnitudes, with WISE-PS1 slightly
higher because it has a similar number of objects to the Gaia
catalogs but over a smaller area, and SDSS DR16Q and the
eBOSS clustering catalog slightly lower. When including

Figure 11. Redshift distribution of Quaia for our spectrophotometric redshift estimates zQuaia (black), normalized to the total number of objects. For comparison, we
also show the normalized distributions of other samples, cut to the G < 20.5 limiting magnitude of Quaia where relevant: the Gaia redshift estimates zGaia for the same
Quaia sources (purple); zGaia for the sources in the full Gaia quasar candidate sample with G < 20.5 (gray); zGaia for the Gaia DR3 purer subsample with G < 20.5
(green); and the SDSS redshifts zSDSS for the SDSS DR16Q quasar sample that have Gaia crossmatches, with G < 20.5 (blue). The median redshift of each
distribution is shown by the diamond and vertical line in the respective color.

Figure 12. Distribution of G magnitudes of Quaia (black), compared to the full
Gaia candidates sample (gray), the Gaia DR3 purer sample (green), and the
SDSS DR16Q quasar sample (blue).

Figure 13. (a) The selection function map for the G < 20.0 subset of Quaia,
based on a Gaussian process model of the dust, stellar distribution, andM10. (b)
The fractional residuals between a random catalog downsampled by the
modeled selection function and the true Quaia G < 20.0 catalog.
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faint sources for the catalogs, WISE-PS1 has two and a half
times the on-sky number density as Quaia, and SDSS DR16Q
and the eBOSS clustering catalog have one and a half to two
times.

For the volume comparison, we compute two different
volumes. The first is a simple spanning volume, Vspan, which is
just the comoving volume in the sky area of the survey (as
given by fsky of the full sky area) in a redshift range
0.8< z< 2.2, a typical redshift range for clustering analyses
(taken from the range of the eBOSS quasar clustering catalog).
Thus, it compares in the same way as the survey areas, but
gives an idea of the physical volume the catalogs span. The

second is the effective volume, described in Section 4.1; we use
that same = ´ -P k h4 10 Mpc4 1 3( ) ( ) for the volume calcul-
ation for all catalogs. We see that the effective volume of
WISE-PS1 is much larger (nearly three times) than that of
Quaia as a result of its larger number of sources, though when
considering samples with the same limiting magnitude, WISE-
PS1 and Quaia have comparable effective volumes. The
effective volume of Quaia is nearly twice as large as that of
SDSS DR16Q, and 6× for the magnitude-limited sample;
compared to the eBOSS quasar clustering catalog, the effective
volume of Quaia is over twice as large, and 7× for the
magnitude-limited sample.

Figure 14. Other current quasar catalogs for comparison with Quaia. All are shown for sources with G < 20.5 or the equivalent converted from another band, in
Galactic coordinates and displayed using a Mollweide projection. The catalogs are (a) the Gaia DR3 purer sample, (b) the WISE-PS1-STRM catalog, (c) the SDSS
DR16Q catalog, (d) the eBOSS quasar clustering catalog, and (e) the Milliquas catalog. Note that the color bars have different scales in each panel.
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The catalogs all have a similar median redshift, of around
1.4< z< 1.7, extending to 1.77 for SDSS DR16Q when
including faint sources. However, they have significantly
different redshift precision; in Table 1 we show outlier
fractions estimated from comparisons to spectroscopic red-
shifts. We see that both of the Gaia catalogs have a similar
fraction of high-precision redshifts (|Δz/(1+ z)|< 0.01), but
Quaia has a much higher fraction of redshifts that are not strong
outliers (|Δz/(1+ z)|< 0.1) compared to Gaia DR3 purer.
WISE-PS1 falls between Quaia and Gaia DR3 purer in terms
of strong outliers, but has an extremely low fraction of high-
precision redshifts as it is a photometric survey. We note that
for both Gaia DR3 purer and WISE-PS1, the redshift precision
is significantly lower when considering the full catalog
compared to samples limited to Geff< 20.5 like Quaia; we
show both for a fair comparison. The SDSS DR16Q catalog
and the eBOSS quasar clustering catalog have spectroscopic
redshifts, so these are almost all very high precision; Lyke et al.
(2020) estimated from a visual inspection that less than 1% of
the SDSS DR16Q redshifts are outliers with Δv> 3000 km s−1

(|Δz|> 0.01), independent of redshift; note that this is a
slightly different sample than the eBOSS clustering catalog, but
we can expect it to be similar. The SDSS DR16Q quasar
sample has typical statistical redshift errors of |Δz|∼ 0.001.

To give more of an idea of the redshift precision of Quaia,
we compare it to existing all-sky photometric galaxy catalogs.
A common statistic to summarize photometric redshift
uncertainty robust to outliers is the SMAD, scaled median
absolute deviation, defined as 1.4826×med(|Δz−med(Δz)|),
where Δz= zphot− zspec (the scaling factor adjusts the MAD
such that SMAD is approximately equal to the standard
deviation for normalized data). The SMAD of the full Quaia
catalog (G< 20.5) is SMAD(Δz)= 0.023, and the normalized
SMAD of the redshift errors with the (1+ z) factor divided
out is SMAD(Δz/(1+ z))= 0.008. For comparison, the
WISE × SuperCOSMOS catalog of 20 million galaxies with
zmed= 0.2 (Bilicki et al. 2016) has an SMAD(Δz) of ∼ 0.04
and an SMAD(Δz/(1+ z)) of ∼ 0.035. The Two Micron All
Sky Survey Photometric Redshift (2MPZ) catalog has
around 1 million galaxies with a similar median redshift

(Bilicki et al. 2013), which have an SMAD (Δz) of ∼ 0.015.
Quaia thus falls in between these common photometric galaxy
samples in terms of overall redshift precision; however, we
note that it is difficult to capture the redshift error of Quaia in a
single statistic, given both its large number of highly precise
redshifts and non-insignificant number of outliers.
We also note that the ongoing DESI survey (Aghamousa

et al. 2023; DESI Collaboration et al. 2024) will observe a high
density of quasars over a large sky area (Chaussidon et al.
2023), which will be competitive with and complementary to
Quaia.

4.4. Catalog Format

The complete Quaia catalog contains our decontaminated
quasar sample with computed redshift information, relevant
Gaia properties, and crossmatched catalog information. The
complete catalog format with column names, units, column
descriptions, and an example entry is shown in Table 2.
Additional information for the sources can be obtained by
joining the catalog with the relevant data source with the
associated identifier (Gaia or unWISE). We include only
sources with G< 20.5 in the catalog; we also publish a version
limited to G< 20.0, along with the selection function models
fit to each (Section 4.2) and random catalogs generated from
the selection functions. The catalog includes our SPZ redshifts
zGaia along with 1σ redshift errors, sky position, Gaia
photometry, unWISE photometry, and proper motion informa-
tion. The catalog is in FITS format (Wells et al. 1981), and
units and descriptions are provided for each column.

4.5. Limitations

While the Quaia catalog presents a highly useful quasar
sample, it does have various limitations. We reiterate and
discuss the main ones here.
We estimate spectrophotometric redshifts for the quasars,

which are generally more accurate than the Gaia estimates, but
are still low precision compared to spectroscopic redshifts. The
uncertainties on these redshifts should be taken into account for
any measurements, and the rate of catastrophic redshift errors

Table 1
Comparison between Quaia and Other Existing Quasar Catalogs, Detailed in the Text

N fsky -n, deg 2¯ -V h, Gpcspan
1 3( ) -V h, Gpceff

1 3( ) zmed f (|δz| < 0.01) f (|δz| < 0.1)

Quaia 1,234,715 0.73 40.78 143.78 7.08 1.48 0.63 0.84

Gaia purer 1,647,311 0.73 54.42 143.76 9.24 1.63 0.53 0.62
G < 20.5 1,286,788 0.73 42.51 143.76 6.50 1.61 0.62 0.70

WISE-PS1 2,386,121 0.56 103.89 109.08 20.88 1.38 0.11 0.71
Geff < 20.5 1,130,925 0.56 49.25 109.06 7.32 1.41 0.12 0.76

SDSS DR16Q 637,371 0.26 60.18 50.30 4.16 1.77 ∼1 ∼1
Geff < 20.5 297,940 0.26 28.17 50.23 1.18 1.67 ∼1 ∼1

eBOSS clustering 409,286 0.14 72.52 26.80 3.21 1.60 ∼1 ∼1
Geff < 20.5 190,263 0.14 33.96 26.61 1.01 1.49 ∼1 ∼1

Note. We show the quantities for the full catalogs (for sources with reliable redshifts) as well as the catalogs limited to G < 20.5 or the rough equivalent converted
from another band. For all quantities and catalogs shown, we exclude areas with high dust extinction (AV > 0.5 mag); this excludes ∼5% of sources for Quaia and
Gaia DR3 purer, ∼18% of the full WISE-PS1 sample, and a negligible number of sources for SDSS DR16Q and the eBOSS clustering catalog. We note that the SDSS
DR16Q catalog is a superset of quasars from many SDSS campaigns and is not intended to be uniform, which should be considered in particular for the sky fraction
and spanning volume quantities. We show the number of sources N, the fraction of sky area covered fsky, the mean number density per square degree n̄, the spanning
volume between 0.8 < z < 2.2 Vspan, the effective volume Veff, the median redshift zmed, and the fraction of objects with |δz| ≡ |Δz/(1 + z)| < 0.01 and <0.1 (where
applicable).
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(not necessarily captured by the redshift uncertainty) should be
considered when thinking about possible uses of the catalog.

The selection function model has multiple potential limita-
tions. While it broadly captures the selection effects that affect
the quasar sample, it has significantly lower accuracy around
the galactic plane; precision measurements may require
masking this region. The regions around the LMC and SMC
are also more poorly modeled; users may want to mask this
area. We also note that we are not fitting the healpixels with
zero quasars, which may result in a slight bias toward
populated regions, and fixes the zero-probability region of the
selection function. Our selection function map depends only
on-sky position and not other properties such as magnitude or
redshift (besides fitting it to the appropriate subsample); a
treatment incorporating these dependencies may be important
for certain uses. The gold standard for completeness estimation
is data injection and recovery tests. Unfortunately, the Gaia
instrumentation has black-box elements, such as onboard
image segmentation, onboard object detection, and onboard
downlink prioritization, that make it impossible to perform end-
to-end injection tests, so we rely on a data-driven approach,
which may be less robust and more sensitive to modeling
choices. Given this, it is possible that we are overfitting the
selection function. Finally, the selection function depends on
the assumption of isotropy, which we know to be broken to
some extent by the kinematic dipole (Stewart & Sciama 1967;
Secrest et al. 2021); we will explore and measure this in an
upcoming work (see Section 4.6). Users employing the
selection maps or generating their own selection function for
some subset of the catalog should take note of these potential
issues.

Generally, Quaia has a relatively low number density (e.g.,
compared to the SDSS sample). This means that it may not be
ideal for certain cosmological measurements, which may be
shot noise dominated.

Finally, we note that this catalog is based on the Gaia quasar
candidates sample, and it will inherit many of the limitations of
that sample (Gaia Collaboration et al. 2023a). We are also
limited to the Gaia-derived properties (e.g., the Gaia redshifts

that are a feature for our estimates). In upcoming Gaia data
releases, the collaboration will release more BP/RP spectra and
we will have the opportunity to work directly from the spectral
data to improve the catalog.

4.6. Potential Applications

Quasars are highly biased tracers of the cosmic web that
trace the matter distribution at higher redshift than galaxies and
in the mildly nonlinear regime. Given the Quaia catalog’s
sampling of quasars to deep magnitudes and across a large
volume, and its reduced systematic contamination allowed by
space-based observations, Quaia lends itself to large-scale
structure analyses, many of which are currently ongoing.
Thanks to its large volume and well-characterized selection

function, Quaia is perhaps the best current sample for testing
homogeneity and isotropy in the Universe (D. W. Hogg et al.
2024, in preparation), and relatedly for measuring the dipole in
the quasar distribution (A. Williams et al. 2024, in preparation),
which recent measurements have consistently found to be in
mild tension with the kinematic interpretation in the ΛCDM
model. Quaia’s volume also makes it a good sample for a
measurement of the matter-radiation equality scale, keq (e.g.,
Bahr-Kalus et al. 2023).
The catalog is particularly well suited for cross-correlations

with other all-sky observations of projected tracers of the large-
scale structure, which are less sensitive to redshift errors
compared to 3D ones. Examples of this are the CMB, the CIB,
or maps of the thermal Sunyaev–Zel’dovich effect. Aghamousa
et al. (2023) used the cross-correlation between CMB lensing
and Quaia to constrain the growth of matter fluctuations via the
parameter S8, achieving competitive constraints as well as
showing that Quaia can break the degeneracy between Ωm and
σ8. An analysis of primordial non-Gaussianity (parameterized
by fNL) from this cross-correlation with CMB lensing is also
underway. Analyses of the cross-correlation with CMB
temperature to measure the Integrated Sachs–Wolfe effect,
and with the CIB to constrain the star formation history at high
redshifts (e.g., Jego et al. 2023), are currently under
investigation. Another measurement enabled by the catalog is

Table 2
Format and Column Descriptions of Quaia, Published as a FITS Data File (Wells et al. 1981)

Column Name Symbol Units Description Example Entry Value

source_id L L Gaia DR3 source identifier 6459630980096
unwise_objid L L unWISE DR1 source identifier 0453p000o0014479
redshift_quaia zQuaia L Spectrophotometric redshift estimate 0.416867
redshift_quaia_err L L 1σ uncertainty on spectrophotometric redshift estimate 0.060812
ra L deg Barycentric R.A. of the source in ICRS at 2016.0 44.910498
dec L deg Barycentric decl. δ of the source in ICRS at 2016.0 0.189649
l L deg Galactic longitude 176.659434
b L deg Galactic latitude −48.835164
phot_g_mean_mag G mag Gaia G-band mean magnitude 20.173105
phot_bp_mean_mag BP mag Gaia integrated BP mean magnitude 20.200150
phot_rp_mean_mag RP mag Gaia integrated RP mean magnitude 18.871586
mag_w1_vg W1 mag unWISE W1 magnitude 14.774343
mag_w2_vg W2 mag unWISE W2 magnitude 13.923867
pm μ mas yr−1 Total proper motion 0.383797
pmra μα* mas yr−1 Proper motion in R.A. m m dºa a*

cos of the source in ICRS at 2016.0 0.217806

pmdec μδ mas yr−1 Proper motion in decl. μδ of the source in ICRS at 2016.0 −0.316007
pmra_error σμα* mas yr−1 Standard error of proper motion in R.A. direction 0.679419
pmdec_error σμδ mas yr−1 Standard error of proper motion in decl. direction 0.608799

Note. For an example entry, we show the first catalog row.
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the cross-correlation of quasar proper motions with the large-
scale structure, which directly estimates the cosmological
quantity Hfσ8 (Duncan et al. 2024). Additionally, cross-
correlations of Quaia with galaxy surveys may allow for
measurements of the baryon acoustic feature (Patej &
Eisenstein 2018; Zarrouk et al. 2021) and quasar environments
(Padmanabhan et al. 2009; Shen et al. 2013).

Quaia is also useful for void studies, including constraining
core cosmological parameters with the void size distribution;
this investigation is underway (N. Arsenov et al. 2024, in
preparation). The catalog is additionally relevant to astro-
physical analyses of quasar properties, given its large sky
coverage and multiband photometry, such as the role of galaxy
interactions on AGN activity. Quaia sources may also be used
to study the potential of quasars as standard candles. Further,
Quaia provides perhaps the best quasar coverage of the
southern sky, which may be important for a variety of
applications such as identifying interesting sources there,
adding new information to known sources, or calibrating
surveys in that sky region. Finally, while a 3D clustering
analysis of Quaia may be limited by the catalog’s relatively low
number density and moderate redshift precision, a careful
analysis may yield useful constraints, especially using
techniques targeted at wide-field surveys (e.g., Lanusse et al.
2015).

The latter is comparable or better than other state-of-the-art
galaxy and quasar samples used in large-scale structure
analyses, but not enough to necessarily allow an accurate
interpretation.

5. Summary and Data Access

We have constructed a new quasar catalog, Quaia, the Gaia-
unWISE Quasar Catalog, designed for cosmological studies,
derived from the Gaia DR3 quasar candidates sample and using
unWISE photometry to remove contaminants and derive
precise redshifts. Our key contributions and the features of
the catalog are as follows:

1. We have decontaminated the Gaia DR3 quasar candidates
sample with proper motion cuts and optimized color cuts
based on Gaia and unWISE photometry. This reduced the
number of known contaminants by approximately four
times, while only excluding 1.2% of known quasars with
respect to the superset of Gaia quasar candidates (that
have unWISE photometry, Gaia redshifts, and a G-
magnitude cut of G< 20.6).

2. The catalog extends to a limiting magnitude of G< 20.5
and contains 1,295,502 sources; we also release a
brighter, cleaner sample limited to G< 20.0, which
includes 755,850 sources.

3. Quaia covers the entire sky, only limited by selection
effects near the Galactic plane; excluding highly dust-
extincted regions (AV> 0.5 mag), this results in an area of
30277.52 deg2 ( fsky= 0.73).

4. We have improved the Gaia redshift estimates using a
kNN model trained on these redshifts and Gaia and
unWISE colors with SDSS spectroscopic redshift labels,
producing spectrophotometric redshifts. The median
redshift of the G< 20.0 catalog is zmed= 1.45, with
94% (75%) of redshifts within |Δz/(1+ z)|< 0.2 (0.01)
of SDSS redshifts. This is a reduction in the number of
catastrophic outliers by approximately three times

(approximately two times) compared to the Gaia redshift
estimates.

5. We produced a data-driven model of the selection
function, which includes the systematic effects of dust,
the source density of the parent surveys Gaia and
unWISE, and the scanning laws of the parent surveys.
We used this to generate random catalogs of Poisson-
distributed points with similar selection effects to Quaia.

The catalog, selection function, and related data products are
publicly available at 10.5281/zenodo.10403370, along with
documentation. The code used to generate this catalog is open
source and available at https://github.com/kstoreyf/gaia-
quasars-lss.
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