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Thesis Summary 
 

The overarching theme of this thesis is invesƟgaƟng perceptual compensaƟon while 

determining object movements. The two forms of compensaƟon highlighted here are 

compensaƟon for self-movement, as self-movement creates reafferent moƟon in the image 

that must be interpreted when determining the movement of objects, and auditory speed 

constancy, or the compensaƟon for object distance that we are able to perform when 

determining object movement. A new paradigm is introduced and used throughout most of 

the thesis to invesƟgate the precision of the image and non-image signals that we use during 

compensaƟon for self-controlled self-movements, with the complicaƟons of allowing 

parƟcipants to control the sƟmulus accounted for in a new psychometric model that includes 

an external source of variability not present in standard cumulaƟve Gaussian fits. The 

precision of the non-image signals is a main focus throughout, with discussion surrounding 

the finding that non-image signal precision depends on the modality of the image, that the 

non-image signal follows Weber’s law while image signals do not, and that the standard 

Bayesian model of movement percepƟon is not relevant in the context of self-controlled head-

rotaƟons. These “anƟ-Bayesian” results are verified quanƟtaƟvely with proof that a Bayesian 

model derived here, that can account for the sƟmuli being parƟcipant controlled, is a less good 

fit than the psychometric model menƟoned above. The first invesƟgaƟon into auditory speed 

constancy is presented in this thesis, with results suggesƟng that individual differences in 

distance percepƟon underly the incomplete speed constancy that is found. These findings are 

summarised in the context of using compensaƟon to interpret the movement of ourselves 

and visual and auditory objects at different distances from us. 
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General Introduction 
1.1 – Why is InterpreƟng MoƟon Important? 

Understanding moƟon in the images that we obtain, and movement of ourselves and 

objects in the world, is an integral component of our perceptual experience. Whether we are 

crossing a road, catching a ball, or threading a needle, being able to interpret the movements 

of objects in the world and how our own movement can interact with them, is an essenƟal 

skill. We rarely observe movement passively with our perceptual systems, because our 

recepƟve organs (e.g., eyes and ears) also move. Our own movements create reafferent 

moƟon in the images captured by these receptors, which needs to be interpreted correctly in 

order for us to accurately and precisely judge the movement of objects. One method for 

accounƟng for our self-movement is to use ‘non-image’ signals such as propriocepƟve, 

vesƟbular, and muscular cues that contain informaƟon about our self-movement, while it is 

also oŌen possible to use the informaƟon residing in the reafferent moƟon itself. These 

methods will be introduced in more detail below, however, no maƩer the chosen method, 

understanding the consequences of our self-movements and compensaƟng for them is 

necessary for our percepƟon of movement. 

Some researchers believe that self-movement is the only reason that the brain 

evolved, with the life cycle of a sea squirt oŌen cited in support of this theory (Glenberg et al., 

2007; Llinás, 2002). Sea squirts begin life with the ability to acƟvely move and a funcƟoning 

brain but, when they find a suitable lifelong home, they digest their brain maƩer and remain 

staƟonary for the rest of their lives. Clearly, then, self-movement is an important part of our 

existence as it necessitates the development of an organ with the intricacies of our brain. At 

least part of this necessity must come from the need to understand the consequences of our 

self-movement. This thesis will explore the soluƟons that we employ, involving the art of 

compensaƟon, to measure and interpret both the movement of ourselves, and of objects. 

The majority of this thesis is centered around the percepƟon of object movement 

during self-movement, with Chapter 2 introducing a new paradigm designed to allow us to 

measure the precision of the non-image signals that can be used during self-movement 

compensaƟon to inform an observer about their own self-controlled self-movements. In 



Chapter 3, the same paradigm will be used to invesƟgate whether these signals adhere to 

Weber’s law, in other words, whether their precision decreases with increasing magnitude. 

Not only will this provide a verificaƟon of the paradigm put forward in Chapter 2, it also 

facilitates a comparison between the non-image signals and those which encode image 

moƟon. This comparison will be pursued further in Chapter 4, where a noise manipulaƟon will 

also be introduced to the sƟmuli to test the theory behind a standard Bayesian model. In 

Chapter 5, a Bayesian model will be derived that is the first of its kind to account for the 

between-trial variability of sƟmuli which are based on self-controlled self-movement, and a 

quanƟtaƟve test of this Bayesian model will be presented. TransiƟoning away from the 

percepƟon of object movement during self-movement, Chapter 6 will instead contain an 

invesƟgaƟon into a different type of compensaƟon, namely speed constancy as a funcƟon of 

the distance of moving auditory objects from a staƟonary listener. UlƟmately, the chapters of 

this thesis are connected by a single theme, compensaƟon, and how we uƟlise compensaƟon 

to perceive movement of ourselves and of objects. 

1.2 – CompensaƟon For Object Distance 

Broadly speaking, compensaƟon involves accounƟng for, or neutralising the effect of, 

something. As menƟoned above, most of this thesis contains invesƟgaƟons into how self-

movement is compensated for when trying to judge object movement, with close aƩenƟon 

paid to both the inaccuracies that occur during this process, and the precisions of the signals 

that are used to complete it. It is not only our self-movement that is compensated for during 

movement percepƟon, though. We also need to compensate for the effects of the distance 

between ourselves and objects when we interpret their movement. This is because the 

movement informaƟon contained in images is relaƟve to the receptor and therefore 

corresponds to moƟon in angular form. For example, objects that are further from the 

observer need to move faster if they are to create the same angular change in the image, as 

shown in Figure 1.1. To recover the lateral speed of the object in 3D space, the distance to the 

object needs to be taken into account. This is known as speed, or velocity, constancy and has 

been well invesƟgated in the vision literature (e.g., Brown, 1931; Distler et al., 2000; Epstein, 

1973; McKee & Welch, 1989; Rock et al., 1968; Wallach, 1939; Zohary & Siƫg, 1993). Speed 

constancy is thought to have close links to size constancy (Rock et al., 1968; Wallach, 1939), 

which is the compensaƟon for object distance that we are able to achieve when interpreƟng 



the sizes of objects. Here, using size constancy to predict distance and then this distance 

predicƟon to interpret movement is the strategy that is assumed during speed constancy. We 

do not solely use an object’s size to determine how far away from us it is though, in reality, 

many depth cues are used and each cue gives addiƟonal informaƟon to our distance 

measurement. When these cues are removed systemaƟcally, there is a measurable decrease 

in our ability to perform speed constancy (Distler et al., 2000; McKee & Welch, 1989), which 

shows the importance of all of the available cues to depth percepƟon when interpreƟng 

object movement. Further discussion of speed constancy is in Chapter 6, where it will be 

invesƟgated whether speed constancy can also be found within the auditory system, with 

staƟonary observers. 

Figure 1.1: The object that is further from the observer has to move faster (larger arrow 
denotes faster movement) than the nearer object, in order to create the same angular change 
in the image. 

 

One way to think about the compensaƟon for object distance that is integral to speed 

constancy is in terms of reference frames (e.g., Paillard, 1991). These set the spaƟal context 

that informaƟon is interpreted with respect to. CompensaƟon can therefore be thought of as 

a process that transforms informaƟon from one reference frame to another. For example, in 

the context of speed constancy, the iniƟal image moƟon is eye-centred and defines changes 

in visual angle. This can be converted into a world-centred reference frame (i.e. moƟon in 3D 

space) using distance informaƟon. Importantly, there are other reference frames that the 



perceptual systems use to interpret image moƟon, including reference frames centred on the 

self (or ego). CompensaƟon for our self-movement can also be thought of as a transformaƟon 

of reference frames. For example, when using informaƟon from the visual image to interpret 

the movement of an object, the image is eye-centered, so we can use self-movement 

informaƟon, from the non-image signals described above, to transform the image moƟon into 

world-centred coordinates. This transformaƟon of reference frames is a way of idenƟfying and 

accounƟng for the moƟon in the image that is due to our self-movement. 

1.3 – CompensaƟon During Self-Movement 

Measuring the movement of an object during self-movement involves not just 

compensaƟng for the effect of object distance on image moƟon, but also the consequences 

of the self-movement itself. As menƟoned above, if the observer is staƟonary, eye-centred 

and world-centred reference frames contain moƟon in different units (angular direcƟon 

versus movement in 3D). However, when we move, there is another difference in the moƟon 

that the two frames contain. Take the example of an object that is staƟonary within a room. 

During eye-movement, the eye-centred image of the object contains moƟon due to the eye 

moving, however the object has not moved within a world-centred reference frame. If the 

object is the only informaƟon in the image, observers need to take into account the movement 

of their eye, to perceive the object as staƟonary. During eye and/or head rotaƟon, the method 

of compensaƟon for self-movement stems from the geometric relaƟonship defined by 

EquaƟon 1.1. Object movement is the sum of image moƟon and self-movement because the 

self-movement generates equal and opposite reafferent image moƟon. However, perceptual 

systems do not have direct access to image moƟon and self-movement, so these must be 

esƟmated from neural signals, as shown in EquaƟon 1.2. Perceived object movement is 

therefore the sum of an image signal and a non-image signal. 

𝑂𝑏𝑗𝑒𝑐𝑡 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 𝐼𝑚𝑎𝑔𝑒 𝑀𝑜𝑡𝑖𝑜𝑛 + 𝑆𝑒𝑙𝑓 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 

 (1.1) 

𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 𝑂𝑏𝑗𝑒𝑐𝑡 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 𝐼𝑚𝑎𝑔𝑒 𝑆𝑖𝑔𝑛𝑎𝑙 + 𝑁𝑜𝑛 𝐼𝑚𝑎𝑔𝑒 𝑆𝑖𝑔𝑛𝑎𝑙 

 (1.2) 



Evidence that this form of compensaƟon for self-movement occurs, comes from 

instances where it is absent. Haarmeier et al. (1997) describe the situaƟon of a paƟent, R.W., 

who, when they pursued a sƟmulus with their eyes, perceived the world as moving at nearly 

the same velocity as their eye movements. This was demonstrated by measuring the degree 

to which a staƟonary object appeared staƟonary during a smooth pursuit eye movement. For 

the healthy controls, this was indeed the case. But for R.W., the object had to move at almost 

the same speed and in the same direcƟon as the eyes in order for it to appear staƟonary. In 

other words, R.W. thought objects were staƟonary when image moƟon was 0. With respect 

to EquaƟon 1.2, it appears that R.W. has no access to their non-image signal. Another example 

comes from Lindner et al. (2005), who found that schizophrenic paƟents with a specific 

symptom type, delusions of influence, could not compensate for smooth pursuit as well as 

healthy controls. CompensaƟon was not completely absent this Ɵme, the object movement 

was somewhat slower than the self-movement, but in the same direcƟon as it, when the 

object appeared staƟonary. This is a common effect in healthy parƟcipants known as the 

Filehne illusion (Filehne, 1922) and is discussed in more detail below. However, the error in 

compensaƟon shown by the schizophrenic group was more than that shown by healthy 

controls. Lindner et al. (2005) explained their finding based on the idea that delusions of 

influence arise from an error in aƩribuƟng the cause of perceptual events, specifically the 

delusion that self-movements are controlled by an external force. It was assumed that this 

meant that the non-image signal contained less moƟon for the schizophrenic parƟcipants than 

the non-image signal for the control parƟcipants during the same self-movement, which 

caused the perceived movement of the object to be more similar to the image moƟon 

esƟmate (in the opposite direcƟon to the self-movement; see EquaƟon 1.2), causing an 

increased Filehne illusion for the schizophrenic parƟcipants compared to the control 

parƟcipants. It could be the case that this increased Filehne illusion was caused by atypical 

image or non-image signals, or it could arise because the process that compares the two types 

of signal is at fault. 

1.4 – CompensaƟon During Self-Movement is Imperfect 

The experiments of Haarmeier et al. (1997) and Lindner et al. (2005) above make the 

point that compensaƟon for self-movement is not always accurate. These studies are based 

on a simple sƟmulus situaƟon in which the perceived movement of a single object is judged 



during self-movement, specifically smooth pursuit eye movement. The rest of the scene is not 

visible. Wertheim carried out a series of experiments that showed that simple sƟmulus 

manipulaƟons like changing spaƟal frequency (Wertheim, 1987), size (Wertheim, 1994) and 

eccentricity (De Graaf & Wertheim, 1988) altered perceived movement in these simplified 

contexts. In these experiments, the movement of sƟmuli was adjusted psychophysically unƟl 

the target sƟmulus appeared staƟonary while making a smooth pursuit eye movement across 

it. Perfect compensaƟon for the eye movement would mean that a staƟonary sƟmulus should 

appear as such, and no moƟon would need to be added. However, parƟcipants typically see 

staƟonary sƟmuli as moving against the eye movement, an effect first reported by Filehne 

(1922). In these simplified studies then, researchers need to add sƟmulus moƟon in the same 

direcƟon as the eye movement in order to make the sƟmulus appear staƟonary, as shown in 

Figure 1.2. 

Figure 1.2: In order to counter the Filehne illusion (whereby a stationary object is 
perceived to move in the opposite direction to the self-movement), experimenters need to 
move objects slightly in the same direction as the self-movement for the object to be perceived 
as stationary. 

 

Many authors have measured the Filehne illusion in a variety of seƫngs. Most notably, 

it has been found that the Filehne illusion is not solely a visual illusion, with analogous errors 

occurring in other modaliƟes such as tacƟle moƟon percepƟon during hand movements 

(Moscatelli et al., 2015), and auditory moƟon percepƟon during head rotaƟons (Freeman et 

al., 2017). Moscatelli et al. (2015) observed this effect when they asked parƟcipants to 

determine whether a surface was moving towards or away from them underneath their finger, 

either with their hand staƟonary or moving. It was found that during hand movement, the 

surface needed to move slightly in the same direcƟon as the hand to appear staƟonary. With 

their hands staƟonary, parƟcipants could accurately determine when the surface was 



staƟonary. Effects similar to the Filehne illusion were also observed in the auditory system by 

Freeman et al. (2017). In their experiments, it was also found that the extent of the Filehne 

illusion effect remained constant at different eccentriciƟes, however precision of auditory 

moƟon percepƟon deteriorated when the sƟmulus was presented at greater eccentricity. 

A perceptual error closely related to the Filehne illusion is the Aubert-Fleischl 

phenomenon (Aubert, 1887; Fleischl, 1882). This describes the fact that a visual object tracked 

by a smooth pursuit eye movement appears to move slower than the same object observed 

when the eyes are staƟonary. In this phenomenon, image and non-image signals are again 

compared, but unlike the Filehne illusion which occurs when the signals are simultaneous, the 

Aubert-Fleischl phenomenon contains moƟon in image and non-image signals at different 

Ɵmes. As both of these errors are due to a mismatch between our esƟmates of eye movement, 

during eye pursuit, and object movement, uƟlising image moƟon when the eyes are 

staƟonary, they will be referred to as “self-movement compensaƟon errors” throughout this 

thesis. 

1.5 – Models of CompensaƟon During Self-Movement 

Non-Image Signals versus Reference Signals 

In a target arƟcle, Wertheim (1994) discussed the Filehne illusion in a much wider 

context, claiming that invesƟgaƟons into the Filehne illusion had revealed deficiencies in two 

general approaches to understanding percepƟon, namely direct percepƟon, as proposed by 

Gibson (1954), and inferenƟal (or indirect) percepƟon (e.g., Gregory, 1980). Wertheim argued 

that direct percepƟon theory states that we measure the movement of ourselves based on 

the moƟon of reƟnal images alone. This was not quite the same as the direct percepƟon 

theory that Gibson proposed. Instead, Gibson and others believed that the informaƟon 

contained in invariants in the scene was sufficient to determine the movements of objects 

(Gibson, 1968; Koenderink, 1986; Koenderink & van Doorn, 1987; Lee, 1980), and only more 

recently has it been shown that opƟc flow paƩerns can be used to determine the movements 

of ourselves and objects (Rushton & Warren, 2005; Warren & Rushton, 2008). It can be shown 

mathemaƟcally that the direcƟon and speed of the moƟon in the image can allow us to 

disƟnguish whether we are moving or not, and also how we move along, and rotate about, 

each Cartesian axis (Bruss & Horn, 1983; Lappe et al., 1999; Longuet-Higgins & Prazdny, 1980). 



Figure 1.3 displays some of the basic features idenƟfied by the mathemaƟcs. TranslaƟonal and 

rotaƟonal movements of the observer generate uniquely different paƩerns of moƟon. For 

sideways translaƟon, the moƟon of each point in the image has speed that is inversely 

proporƟonal to the distance between the observer and the point, as demonstrated in Figure 

1.3A.  For rotaƟon, however, the moƟon of each point in the image is the same irrespecƟve of 

the distance between the observer and the point, as shown in Figure 1.3B. Different types of 

self-movement therefore produce different types of reafferent image moƟon that we can use 

to determine how we moved. According to the theory that Wertheim introduces to oppose 

the direct and indirect percepƟon theories, the encoded image therefore becomes its own 

comparison as the image moƟon and the self-movement are both represented in the image 

signal (Wertheim refers to this as a ‘strange loop’). Wertheim then sets direct percepƟon 

against inferenƟal percepƟon by arguing that ‘inferenƟal’ compensaƟon means that image 

signals are exclusively used in comparison against non-image signals. Crucially, in both cases, 

he uses versions of EquaƟon 1.2, with non-image signals being used as an esƟmate of self-

movement in the inferenƟal theory, and reafferent moƟon in image signals being used as an 

esƟmate of self-movement in the direct percepƟon theory. The issue therefore comes down 

to how we esƟmate our own movement in these simple sƟmulus contexts that are used to 

probe the Filehne illusion. 

Figure 1.3: (A) the motion in the image is inversely proportional to the distance from 
the observer during horizontal translation of the observer. (B) the motion in the image is the 
same irrespective of the distance from the observer during rotation of the observer. 

 

In order to explain why perceived movement varies with various sƟmulus properƟes 

during pursuit, Wertheim suggested that the image-based cues to self-movement, used in 



direct percepƟon theories, are combined with the non-image cues put forward by inferenƟal 

theory. In relaƟon to the experiments Wertheim was focussing on, the issue becomes 

convoluted because the sƟmulus being judged is the only sƟmulus visible (apart from a small 

pursuit target to control the eye movement), and also because Wertheim was one among 

many who had assumed, albeit implicitly, that the image signal was accurate (e.g., Mack & 

Herman, 1973, 1978; Wertheim, 1987; Yasui & Young, 1975). Wertheim proposed that the 

self-movement from EquaƟon 1.1 is measured with a combinaƟon of non-image and image 

informaƟon, rather than the non-image signal alone (in EquaƟon 1.2). He called this a 

“reference signal”. Wertheim also proposed that the weight given to the image signals within 

the reference signal depended on a low band-pass spaƟotemporal filter that allows sƟmuli 

which generate a sensaƟon of vecƟon to contribute to the reference signal. Small and fast 

sƟmuli presented for a short period of Ɵme consequently have no impact. This idea could 

therefore potenƟally explain why perceived movement during pursuit changes with spaƟal 

frequency, sƟmulus size, duraƟon and other sƟmulus properƟes. As these sƟmulus properƟes 

change, so does the size of reference signals. 

But as Freeman and Banks (1998) later pointed out, the inferenƟal theory considered 

by Wertheim and the others assumed that image moƟon is somehow recovered veridically. In 

other words, they assume that the image signal in EquaƟon 1.2 is immune to any sƟmulus 

manipulaƟon, which it is not (e.g., changes in spaƟal frequency; Campbell & Maffei, 1981; 

Diener et al., 1976; Smith & Edgar, 1990). If this assumpƟon is relaxed, Freeman and Banks 

(1998) showed that inferenƟal theory based on EquaƟon 1.2 can explain these findings 

without relying on a reference signal. In their first experiment, Freeman and Banks asked 

parƟcipants to adjust the speed of a sƟmulus unƟl it appeared to match a standard sƟmulus. 

During some of the intervals, both sƟmuli were observed with staƟonary eyes to ensure that 

only image signals were present. Echoing previous findings (e.g., Campbell & Maffei, 1981; 

Diener et al., 1976), Freeman and Banks found that in these fixated condiƟons, the lower the 

spaƟal frequency, the slower the sƟmulus appeared to move. Note that there is some 

evidence that at high speeds and with high spaƟal frequency sƟmuli this effect is reversed 

(Smith & Edgar, 1990). Using this behavioural data, Freeman and Banks were then able to 

predict quanƟtaƟvely how changing the spaƟal frequency of their sƟmuli would affect 

parƟcipants’ compensaƟon for self-movement. In parƟcular, they demonstrated that it was 



possible to invert self-movement compensaƟon errors by decreasing the spaƟal frequency of 

the sƟmulus. This was demonstrated for both the Filehne illusion and Aubert-Fleischl 

phenomenon: staƟonary objects could be made to appear to move in the same direcƟon as 

the smooth pursuit eye movements, and pursued objects made to appear to move faster than 

objects observed with staƟonary eyes. 

Nevertheless, it is difficult to tease these different models apart. Turano and Massof 

(2001) presented moving dots to parƟcipants during fixaƟon and then pursuit, and used a 

staircase procedure to idenƟfy when parƟcipants perceived the speeds of the two sets of dots 

to match. Using this methodology, they found that the funcƟon that best described the 

relaƟonship between perceptually equivalent image moƟon velocity and self-movement (eye) 

velocity was a non-linear model that introduced the modulaƟon of the non-image signal by 

the image signal (an implementaƟon of Wertheim’s reference signal). However, in order to do 

this, they also included a non-linear relaƟonship between input and output speed in their 

reference signal model, compared to a linear relaƟonship in the model without the interacƟon 

term. Therefore, the two models had different numbers of free parameters that produced 

different relaƟonships between input and output speed in the signals involved in the 

compensaƟon. Around the same Ɵme, Freeman (2001) showed that including non-linear 

terms in a model without the interacƟon term fit the data beƩer than a linear version for 

velocity matching, but he did not implement a reference-signal version. Souman et al. (2006) 

did, and compared all three models. They also devised a novel velocity-matching task in which 

both speed and direcƟon ‘around the clock’ were assessed, unlike all the studies cited above, 

where sƟmulus and pursuit were always along the same horizontal axis. They found that 

Turano and Massof’s model fit the data best, but noted that the improvement was not large. 

All of the models performed well. 

Flow-Parsing 

One conclusion that can be drawn from the studies in the previous secƟon is that using 

small, solitary sƟmuli might not be the best way to discover which cues are being used to 

perform self-movement compensaƟon. As discussed above, according to Wertheim, the 

image moƟon serves two roles in these experiments: as an input to a reference signal, and as 

the input to an image signal that needs to be compared to the reference signal for 

compensaƟon to occur. In a significant departure, Rushton and Warren (2005) argued that the 



main role of image signals, that include reafferent moƟon (i.e. reƟnal flow), was to enable the 

observer to separate out the image moƟon that is related to object movement from the 

reafferent image moƟon that is related to self-movement. In a series of experiments, they 

have demonstrated that the visual system is able to idenƟfy differences between the moƟon 

of one part of the image (that contains an object) from the global moƟon in the rest of the 

image, and also between the moƟon of one part of the image and another, spaƟally similar, 

part of the image (Rushton et al., 2018; Rushton & Warren, 2005; Warren & Rushton, 2007, 

2008, 2009). The moƟon that differs from its global or local counterpart can be used as an 

esƟmate of object movement. They termed this process ‘flow-parsing’ as the global or local 

flow is parsed out, leaving only the image moƟon due to the movement of the object 

remaining. Their experiments typically consist of a flow paƩern presented on a screen with a 

target probe that moves in its own way. ParƟcipants are then asked about the movement of 

the probe, for instance, being asked to replicate its movement direcƟon. In this case, the 

perceived movement direcƟon would become biased by the global or local flow paƩern. In 

the context of flow parsing, compensaƟon is the idenƟficaƟon and separaƟon of moƟon due 

to object movement from reafferent moƟon due to self-movement, in the image. 

Many of the experiments on flow-parsing concentrate exclusively on image moƟon. 

ParƟcipants are staƟonary, with head and eyes sƟll. However, Warren and Rushton did not 

intend for non-image signals to be ignored – they viewed these signals as being combined 

somehow when available (Warren & Rushton, 2009). In fact, Warren and Rushton (2007) 

found that flow parsing was present during eye movements. ParƟcipants were instructed to 

fixate a moving probe and report its direcƟon of movement while flow paƩerns were used 

that corresponded to rotaƟon or translaƟon of the eyes. The effect of the perceived distance 

of objects was different in these two cases (see Figure 1.3), suggesƟng that parƟcipants were 

parsing the flow paƩerns in order to determine how their eyes were moving with respect to 

the screen, despite the use of only rotaƟonal eye movements in the experiments. This idea is 

further supported by the work of Dupin and Wexler (2013) who found that parƟcipants used 

flow-parsing strategies alongside the use of non-image signals when performing self-

movement compensaƟon. 

In the experiments presented in this thesis, the sƟmuli were individual, small, fast 

sƟmuli presented for a short period of Ɵme with no background context. The image signals 



should therefore contain no flow paƩerns for parƟcipants to idenƟfy their own movement 

through flow-parsing, and there should be no influence of the image moƟon on the reference 

signal (due to the low band-pass spaƟotemporal filter). For this reason, we reject the term 

reference signal and discount the method of flow-parsing in this context, instead referring to 

non-image signals throughout this thesis as our esƟmate of self-movement. This means that 

the image and non-image signals can be interpreted as separate enƟƟes without any 

interacƟon. These signals will be invesƟgated throughout this thesis to test current theories 

that interpret self-movement compensaƟon errors. 

1.6 – CompensaƟon in Hearing 

Throughout this chapter so far, theories of visual moƟon percepƟon have been 

discussed, but this is not the only modality of percepƟon that is invesƟgated in this thesis. In 

the auditory modality, movement percepƟon is performed quite differently to vision. For a 

start, unlike eyes, ears cannot move independently from the head. This means that the 

geometry of the image signals that are produced is different. Another difference between the 

modaliƟes is that visual image signals are inherently spaƟally organized whereas 

interpretaƟon of auditory signals is needed to make the informaƟon spaƟally relevant. 

Movement of auditory objects is measured through constant monitoring of locaƟon cues 

including interaural Ɵme delay and level differences (ITDs and ILDs) which are the delay 

between a sound reaching each ear, and the difference in level of the sound when it reaches 

each ear. Spectral cues are also used during auditory localisaƟon, which refer to the profile of 

the sound entering the ear. These are unique to the shape and size of our head and ears, and 

form what is known as a Head-Related Transfer FuncƟon (HRTF). These locaƟon cues enable 

us to measure the locaƟon of auditory objects with respect to the head, and it is through 

monitoring of these posiƟons that we are able to determine distance travelled. Note that it is 

also possible to determine the speed of these objects by differenƟaƟng distance with respect 

to Ɵme, however, another difference between the movement percepƟon of the modaliƟes is 

that, while the visual system has a preference for measuring the speed of moƟon (Freeman 

et al., 2018; Reisbeck & Gegenfurtner, 1999), the auditory system has a preference for 

measuring the distance (Carlile & Best, 2002; Freeman et al., 2014). 



Despite these differences between the movement percepƟon of the auditory and 

visual systems, the small body of literature invesƟgaƟng compensaƟon for self-movement in 

the auditory modality (Freeman et al., 2017; Genzel et al., 2016; Yost & Pastore, 2019) also 

finds that self-movement compensaƟon is not complete. Genzel et al. (2016) presented 

staƟonary sƟmuli to their parƟcipants before and aŌer acƟve, passive, counteracted, or no 

self-movement. Their parƟcipants were instructed to determine whether a second sƟmulus 

was presented to the leŌ or the right of an iniƟal sƟmulus and were therefore judging locaƟon 

rather than movement. Between the sƟmuli, they: acƟvely turned their head; were turned 

passively by a rotaƟng chair; rotated their head acƟvely while the rotaƟng chair underneath 

them counteracted the rotaƟon (resulƟng in their body turning underneath a world-staƟonary 

head); or remained staƟonary. It was found that the type of self-movement influenced the 

extent of self-movement compensaƟon. In the acƟve self-movement condiƟon, the second 

sƟmulus had to be presented in the direcƟon opposite the head turn to be perceived as in the 

same locaƟon as the first sƟmulus, whereas in the counteracted self-movement condiƟon this 

effect was reversed. It is interesƟng to note that in Genzel et al’s study, and in the situaƟon of 

locaƟon percepƟon during self-movement in the visual modality (e.g., Mita et al., 1950), 

during acƟve self-movement, staƟonary objects appear to move in the same direcƟon as the 

self-movement, which is contrary to self-movement compensaƟon errors in movement 

percepƟon where staƟonary objects appear to move in the opposite direcƟon to the self-

movement. 

1.7 – Using Precision to Explain Bias 

The previous explanaƟons of self-movement compensaƟon errors relied on errors in 

the underlying signals that we use in the compensaƟon process. If these systemaƟc 

inaccuracies are really the culprit, it would be sensible to think that they can be calibrated out 

by our perceptual systems over mulƟple presentaƟons of sƟmuli. Similar calibraƟon of visual 

signals occurs during prism adaptaƟon (e.g., Facchin et al., 2019; Herlihey & Rushton, 2012; 

Redding & Wallace, 1985, 2006), where inaccurate sensory evidence is presented to an 

observer through a prism, and, by changing the mapping of visual or motor coordinates, or 

perhaps the relaƟonship between the two, parƟcipants can account for the errors in the 

sensory evidence and use the visual informaƟon afforded to them effecƟvely. Despite the 

evidence that perceptual systems are conƟnually calibraƟng, self-movement compensaƟon 



errors persist. One potenƟal explanaƟon for this is offered by a different class of theory based 

on the Bayesian framework. 

All perceptual signals contain some variability. There are many sources of this 

variability, including external sources such as other sƟmuli or background variaƟon, and 

internal sources such as variability in neuronal firing. While precision and accuracy are disƟnct 

measurements, a trade-off between the two may be an important part of percepƟon, with 

increasing the precision of our esƟmates oŌen coming at the cost of biases, for example, in 

Bayesian models (e.g., Landy et al., 1995). 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

 (1.3) 

Figure 1.4: (A) a standard Bayesian model of motion perception. (B) the same Bayesian 
model but with more noise in the sensory evidence (wider likelihood distribution). This causes 
a shift in the posterior, towards the prior, as denoted by the arrow. 

 

At the heart of Bayesian theories is the idea that percepƟon is based on making 

staƟsƟcal inferences about the state of world given that sensory measurements are variable. 

The probability of an event, A, happening, given that another event, B, is confirmed, can be 



expressed as in Bayes’ rule (EquaƟon 1.3). This can also be visualised by presenƟng the 

probabiliƟes as frequency distribuƟons, as can be seen in Figure 1.4A. Applying Bayes’ rule to 

a moƟon percepƟon problem, for object movement, A, and low level sensory evidence, B, 

P(A) (blue in Figure 1.4A) represents the prior, which is the probability that the object 

movement is equal to A, given all of the experience that the observer has had with previous 

object movements; P(B|A)/P(B) (pink in Figure 1.4A) represents the likelihood, which is the 

probability that the sensory evidence, B, provides support for the object movement being 

equivalent to A; and P(A|B) (yellow in Figure 1.4A) represents the posterior, which is the 

resulƟng percepƟon, aŌer mulƟplicaƟon of the prior and likelihood. This can also be thought 

of as the probability that the object movement is equal to A, given that the sensory evidence 

is equal to B. Note that in Figure 1.4, the prior has a peak of 0 as it is a velocity distribuƟon 

which is symmetrical about 0 (note also that this is a simplified distribuƟon that only takes 

into account moƟon in two direcƟons, this depicƟon in Figure 1.4 assumes that the X axis is 

oriented to the direcƟon of the object movement. A more representaƟve distribuƟon would 

need to be 4-D, to account for moƟon in any direcƟon in 3D while also displaying a probability). 

The slow-speed nature of the prior is due to the slow speeds of most objects that we interact 

with (Weiss et al., 2002). In Figure 1.4, the effect of changes to the precision of the sensory 

evidence is shown. In panel B, compared to panel A, the sensory evidence is less precise (has 

more variability), so the likelihood distribuƟon is wider, and this results in a shiŌ of the 

posterior so that it is closer to the prior. As the sensory evidence is assumed to be accurate in 

these Bayesian models, the shiŌ in the posterior is a bias that makes the posterior more 

inaccurate. Note, however, that the likelihood distribuƟon is slightly wider than the posterior 

distribuƟon in Figure 1.4, evidencing that the use of the prior does allow us to uƟlise posterior 

measurements that are more precise than the original sensory evidence alone. It is this 

increase in precision of the posterior over the sensory evidence that is prioriƟzed in these 

Bayesian models, over the accuracy of the posterior with respect to the sensory evidence, and 

it is this prioriƟzaƟon of precision over accuracy that causes the errors in our percepƟon 

according to Bayesian models. 

Bayesian models have been used to model the effects of different sƟmulus properƟes 

on perceived speed (Ascher & Grzywacz, 2000; Champion & Warren, 2017; Senna et al., 2015; 

Stocker & Simoncelli, 2006). One of these such effects is the contrast effect. It is well known 



that at slow speeds, sƟmuli that have low contrast are perceived as moving slower than sƟmuli 

with high contrast, and at high speeds this effect is reversed (Thompson, 1982). As menƟoned 

previously, there is a tendency for objects in the world to move slowly, leading to a slow-speed 

prior that is centered on no movement. The contrast effect at slow speeds can be explained 

by a Bayesian model that uses this slow-speed prior. As the contrast of a sƟmulus decreases, 

the precision of the sensory evidence decreases. As shown in Figure 1.4, if the sensory 

evidence is less precise, the posterior shiŌs more towards the prior. It follows that low contrast 

sƟmuli are shiŌed more towards the slow-speed prior, and are therefore perceived as slower 

than higher contrast sƟmuli. As the contrast effect changes at higher sƟmulus speeds, some 

researchers have disputed the appropriateness of Bayesian modelling in this context 

(Champion & Warren, 2017), while others have derived more complex Bayesian models which 

include filters that enable the explanaƟon of the duality of the contrast effect (Ascher & 

Grzywacz, 2000). 

Freeman et al. (2010) used a Bayesian model to explain the effects of self-movement 

on perceived speed (self-movement compensaƟon errors). From EquaƟon 1.2, we know that 

perceived object movement is based on the combinaƟon of a signal that denotes our own 

movement and a signal that denotes the moƟon in the image. Freeman et al. argued that 

these two signals are subjected to separate Bayesian operaƟons but that they are based on 

the same slow-speed prior. A crucial predicƟon of the model was that the esƟmate of self-

movement, in their case smooth pursuit eye movement, should be less precise than the 

esƟmate of image moƟon. In their behavioural experiments, Freeman et al. generated 

psychometric funcƟons by asking parƟcipants to compare the speeds of objects presented 

while the eyes were staƟonary, and, separately, to compare the speeds of objects that they 

pursued. They found that speed judgements were less precise for the pursued objects, in 

agreement with their Bayesian model. ParƟcipants were also asked to compare the speeds of 

one object presented while the eyes were staƟonary, and another that they pursued, as in 

experiments invesƟgaƟng the Aubert-Fleischl phenomenon. The pursued sƟmuli appeared to 

move at around half the speed of the sƟmuli presented while the eyes were staƟonary. Taking 

these two results together, Freeman et al. proposed that self-movement compensaƟon errors 

may be explained by having accurate image and non-image signals, but with a difference in 

precision, such that the non-image signal is less precise than the image signal. In a Bayesian 



model, this would cause a greater shiŌ towards the slow-speed prior for the self-movement 

esƟmate than the image moƟon esƟmate, making the self-movement esƟmate slower than 

the image moƟon esƟmate during equivalent moƟon. This is the hallmark of self-movement 

compensaƟon errors. As these Bayesian models have highlighted, it is important to invesƟgate 

not only the accuracy or inaccuracy of our percepƟon but also the precision of percepƟon and 

its underlying signals, as precision can have a marked effect on accuracy, and could cause the 

perceptual errors that we experience. 

1.8 – Measuring the Precision of AcƟve Self-Movement 

In psychophysics, the precision of perceptual signals is assessed by measuring 

thresholds. These can be absolute, such as measuring the minimum sƟmulus level for 

detectability, or relaƟve, such as measuring the smallest change needed to discriminate 

between two sƟmuli. Many methods have been developed to determine thresholds, including 

different types of staircase, where sƟmuli are manipulated depending on the perceptual 

decisions made by an observer in real Ɵme, and the method of constant sƟmuli, which will be 

used throughout this thesis. The laƩer method allows experimenters to pre-select a range of 

constant sƟmulus levels that they expect to encompass the threshold of interest. ParƟcipants 

are then asked to compare each of these constant sƟmulus levels to a standard sƟmulus that 

remains the same throughout the experiment. The responses of the parƟcipant can be used 

to generate a psychometric funcƟon, and a measurement of the threshold can be obtained 

from this funcƟon. This is a simple procedure for measuring the precision of signals, as long 

as the sƟmulus levels that are used are experimenter-controlled. 

One of the main goals of this thesis, however, is to invesƟgate the precision of 

perceptual signals that encode parƟcipant-controlled self-movement. The example of self-

movement that will be invesƟgated in this thesis is self-controlled head rotaƟon. While 

training techniques can be used to promote the repeatability of these movements, as will be 

evidenced in Chapter 3, trial by trial variability sƟll remains and ulƟmately the parƟcipant has 

control over their own movement. This contrasts with eye movements which can be more 

easily influenced by the experimenter, with repeatable pursuit targets or, in the case of 

saccades, flashed fixaƟon points with known Ɵming and locaƟon. The fact that head rotaƟons 

are not easily experimentally controlled makes the use of procedures like the method of 



constant sƟmuli non-trivial. In Chapter 2, a novel, two-phase paradigm will be developed to 

overcome these problems, and this paradigm will be used throughout Chapters 2-5 to 

invesƟgate the precisions of the image and non-image signals, and self-movement 

compensaƟon errors. 

In the vision literature, the non-image signals that we use to measure our own 

movement are known as “extra-reƟnal” signals and eye movements are typically used as an 

example of self-movement. However, in this thesis, the term non-image signal is used, as one 

of the aims of this thesis to generalise this idea for other forms of self-movement (head 

rotaƟons) and other modaliƟes of percepƟon (audiƟon). It is important to note that non-

image signals arise from mulƟple sources. In the case of head rotaƟon, these signals include: 

vesƟbular measurements of the acceleraƟon and velocity of the rotaƟon (Cullen & Zobeiri, 

2021; Israel & Warren, 2005; St George & Fitzpatrick, 2011); muscular efferent and afferent 

signals that instruct the neck muscles in how to move, and relay informaƟon about how the 

neck muscles did move respecƟvely (Tuthill & Azim, 2018); and responses from skin receptors, 

for example, if long hair brushes against the observer’s neck during a rotaƟon (Churan et al., 

2017; Dallmann et al., 2015; Moscatelli et al., 2015). Throughout this thesis, it will be assumed 

that these different sources are interpreted as a single, combined non-image signal, with no 

aƩempt made to separate out their influence. As rotaƟonal self-movement induces moƟon in 

the visual and auditory images that is equal and opposite to the angular velocity of the self-

movement, no maƩer the distance to the object (see Figure 1.3B), it can be assumed that the 

angular velocity of the object is equivalent to a summaƟon of an image signal and a non-image 

signal (see EquaƟon 1.2; e.g., Bridgeman, 2010; Epstein, 1973; Von Holst, 1954; Woodworth 

& Schlosberg, 1938). Angular velocity will be used as a measurement of the speed of objects 

in Chapters 2-5 while it is noted that, in order for parƟcipants to measure the 3D velocity with 

respect to the world, a compensaƟon for the distance between the observer and the object 

(speed constancy; e.g., Brown, 1931; Distler et al., 2000; Epstein, 1973; McKee & Welch, 1989; 

Rock et al., 1968; Wallach, 1939; Zohary & Siƫg, 1993) would be necessary. 

As the head rotaƟons invesƟgated in this thesis are self-controlled, the non-image 

signal includes muscular efferent signals. These signals are copies of the instrucƟons that are 

sent to the muscles telling them how to contract or relax and are only present during acƟve, 

rather than passive, movement. The terms ‘acƟve’ and ‘passive’ stem from the vesƟbular 



literature, with one difference between the two types of movement being the amount of 

parƟcipant and experimenter influence over the movement. Many examples of this disƟncƟon 

can be found in literature pertaining to head movements in both monkeys (Klam & Graf, 2003; 

McCrea et al., 1999) and humans (Brooks & Cullen, 2019; Cullen, 2004), limb movements 

(London & Miller, 2013), and even touch (Chapman, 1994). A typical example of passive self-

movement would be an experimenter controlling the movement of a parƟcipant through a 

rotaƟng chair, however the non-image signal would then not contain muscular efferent 

signals. 

1.9 – Summary 

Throughout this chapter, compensaƟon has been discussed in the context of depth 

percepƟon, invesƟgated further in Chapter 6, and self-movement, invesƟgated throughout 

the rest of the thesis. CompensaƟon for self-movement can be interpreted in many ways: as 

a transformaƟon of reference frame; as a measurement of relaƟve moƟon between a 

representaƟon of an object and the rest of the scene in an image; or through the combinaƟon 

of non-image signals, that encode self-movement, and image moƟon signals. The laƩer is the 

only method that is relevant in the context of the experiments presented in this thesis as the 

sƟmuli are small, singular and presented for a short duraƟon of Ɵme with no background 

informaƟon. There may be inaccuracies in the measurement of image moƟon or self-

movement when using image and non-image signals, but it would make sense for these 

inaccuracies to be calibrated out over Ɵme. A Bayesian explanaƟon of self-movement 

compensaƟon errors that instead focuses on the relaƟve precisions of these signals suggests 

that the prioriƟsaƟon of precision over accuracy causes these errors, so the precisions of the 

image and non-image signals will be invesƟgated throughout Chapters 2-5. In the next chapter, 

the two-phase paradigm menƟoned above that enables the measurement of perceptual 

thresholds during parƟcipant-controlled self-movement will be explained, and an iniƟal 

experiment invesƟgaƟng the precision of the non-image signal will be presented. 

  



The Precision of the Non-Image Signal 
2.0 - Preface 

The main aim of this thesis is to invesƟgate the signals that we use to compensate for 

our own self-movement. Presented here is an experiment that uƟlises a new paradigm, 

developed during this thesis, that enables the measurement of the precision of both the 

image and non-image signals that we use to measure object movement during self-

movement. In this chapter, only the precision of the non-image signal will be invesƟgated. The 

paradigm will be outlined throughout this chapter as an experiment is presented in which 

parƟcipants observed either visual or auditory sƟmuli either during self-movement or not. 

This chapter also introduces a novel psychometric funcƟon that is necessary in a scenario 

where sƟmuli with external variaƟon (e.g., when they are based on self-controlled self-

movements) are mulƟplied by gain factors that are then used as the independent variable in 

a psychophysical invesƟgaƟon. In the case presented here, parƟcipant head rotaƟons vary 

across trials, violaƟng the assumpƟon of a single cumulaƟve Gaussian in the psychometric 

funcƟon, and requiring the novel funcƟon presented here. This work is taken from a paper 

that is published on BioRxiv: hƩps://doi.org/10.1101/2023.09.20.558633 

2.1 – IntroducƟon 

Bodily movement is a key part of everyday life. Our eyes, head, limbs and torso are 

seldom at rest. Action therefore sets the backdrop in which perceptual systems normally 

operate, with many everyday tasks relying on information about current self-movement. This 

is derived from a number of perceptual signals, some based on images such as retinal flow, 

and some based on non-image sources including the vestibular and motor systems. 

Information from non-image sources also plays a role in interpreting images, allowing the 

observer to differentiate between self-generated movement and movements of external 

objects.  

Success in these active tasks is constrained by two fundamental types of error, namely 

the precision and accuracy of the underlying perceptual signals. Precision is driven by internal 

and external noise and corresponds to the width of the distribution of the underlying 

perceptual signal as it varies across time. Accuracy, on the other hand, corresponds to the 



distribution’s average and is usually referred to as bias. While a lot is known about the 

precision and accuracy of image signals, especially in vision and hearing, much less is known 

about the errors accompanying non-image signals. This is especially the case when the self-

movement is ‘active’ (i.e., self-controlled), partly because it is difficult to apply standard 

psychophysical techniques to actions that are under participant control. We therefore 

developed a new way to measure precision in these circumstances, using head rotation as an 

example of self-movement. The technique makes no attempt to differentiate between the 

various sources of non-image information that are used to encode active self-movement. 

Rather, it assumes that they are combined to provide a single non-image signal, and it is the 

precision of this composite signal that we measure. Our technique relies on using image 

signals as a comparison, which allowed us to compare the results when using vision or 

hearing. 

In a typical precision-measuring task, participants are asked to compare a fixed 

standard stimulus with a range of test stimuli shown over a series of trials (e.g., Altman & 

Viskov, 1977; De Bruyn & Orban, 1988; Mallery et al., 2010). The values assigned to the test 

are usually controlled by a method of constant stimuli or a staircase procedure, both of which 

provide a measure of a just-noticeable-difference that can be used to estimate the precision 

of the underlying signal. Crucially, these methods rely on the ability to repeat a set of stimuli 

over trials. Self-controlled self-movements, however, are not repeatable: every instance of 

every action is unique. To measure non-image signal precision, this variability must be 

accounted for, both within and across trials. 

One solution is to use ‘passive’ self-movement because the action is then controlled 

by the experimenter. The best-known examples come from vestibular research, where 

participants are moved on a chair or platform (Brooks & Cullen, 2019). Notable examples also 

come from studies of perceived stability during eye movement, where various contraptions 

and implements have been used to passively rotate the eye (Merton, 1964; Skavenski, 1972). 

But active non-image signals also include efferent sources, such as copies of motor commands 

(Von Holst, 1954), not just the vestibular, somatosensory and, in the case of passive rotation 

of the eye, the proprioceptive cues that passive stimulation generates (Cullen & Zobeiri, 2021; 

Israel & Warren, 2005; St George & Fitzpatrick, 2011; Tuthill & Azim, 2018). Passive 

stimulation therefore reduces the number of non-image sources by removing the effortful 



efferent signals, potentially producing cue conflicts between the signals that contain motion 

and those which are silenced. 

 

Figure 2.1: Schematic of the two-phase procedure for measuring the precision of non-
image signals encoding active self-movement. We use head rotation as an example. Phase 1 
consists of two intervals: a standard interval, in which the head moves and a head-fixed 
stimulus (visual or auditory) appears ‘on the nose’ in the 3rd sweep, and a test interval, in 
which the same movement of the stimulus, scaled by the motion gain, is replayed but with 
head stationary. Phase 2 also consists of two intervals, both with the head stationary. Here, 
the motion gain used to scale stimulus motion in the standard interval is set to the Point of 
Subjective Equality found in Phase 1. For both phases, a method of constant stimuli is used to 
manipulate motion gain across trials and construct psychometric functions. These are then 
used to determine the precision of the image signal in the head-stationary intervals, and the 
non-image signal in the head-moving interval, based on a model described in the Appendix of 
this chapter.  

 

Instead, we focus on active self-movement, specifically head rotation, where non-

image sources consist of vestibular cues, motor commands, and proprioceptive feedback, plus 

any number of somatosensory cues, such as the gliding of hair across the back of the neck. 

Our method for measuring non-image signal precision uses two experimental phases, 



combined with a novel analysis that accounts for the variability of self-movement across trials. 

The paradigm is sketched in Figure 2.1. Based on two-interval forced-choice, the participant 

makes self-controlled left and right head rotations in the first interval of each trial of Phase 1, 

and an auditory or visual stimulus appears in the 3rd sweep (see bottom left panel). This 

stimulus is head-centred – it moves with the participant – and is used to mark which portion 

of the head movement to judge. This methodology was preferred to asking participants to 

pursue a moving target with the head as it is known that this type of self-movement is 

somewhat inaccurate (Chen et al., 2002; Collins & Barnes, 1999). We refer to this interval as 

the ‘standard’. In the second ‘test’ interval of Phase 1, shown in the 2nd column of the figure, 

an auditory or visual stimulus is again shown, but this time with the head stationary. The 

stimuli move with a trajectory defined by the recorded head movement from the first interval, 

but scaled up or down by a multiplicative factor we call ‘motion gain’. Hence, the pattern and 

duration of motion experienced in the two intervals is the same, apart from overall 

magnitude, and is encoded by different motion cues. In the head stationary interval, the 

motion cues depend on image signals. In the head-moving interval, they depend on non-

image signals, including any extra-retinal contributions related to smooth compensatory eye 

movements like the vestibulo-ocular reflex (Barnes, 1988), or an inhibitory pursuit drive to 

keep the eye head-centred (Bedell et al., 1989). We note that the auditory and visual stimuli 

used to mark the 3rd head sweep do not provide any informative motion cue as they are 

head-fixed and presented in a dark and quiet lab. This remains the case even if their perceived 

positions shift due to audiogyral (Clark & Graybiel, 1949) and oculogyral illusions (Graybiel & 

Hupp, 1945). That said, it is doubtful that these illusory shifts in position occur over the time 

scales used in our experiments (Carriot et al., 2011). 

Following the two intervals, participants indicate which interval appears to ‘move 

more’. We avoided the terminology ‘faster’ or ‘further’ because cue preference depends on 

modality: for vision, participants prefer speed rather than displacement and duration 

(Freeman et al., 2018; Reisbeck & Gegenfurtner, 1999), whereas for hearing the reverse is 

true (Carlile & Best, 2002; Freeman et al., 2014). Motion gain is manipulated across trials using 

a method of constant stimuli, resulting in a psychometric function that includes two sources 

of internal noise, one based on the image signal (e.g., visual or auditory motion) and one 

based on the non-image signal. To tease these two sources of noise apart, Phase 2 isolates 



the internal noise of the image signal, using the same set of head movement recordings from 

Phase 1 to move the stimuli in the same trial-by-trial order, but with the head always 

stationary. Again, the second interval is a scaled version of the first. The precision of the non-

image head rotation signal can then be recovered from Phase 1, with image precision now 

known. 

In the experiment presented here, we used this novel technique to measure non-

image precision accompanying head rotation, using either auditory or visual stimuli. The 

modality used to deliver image motion should not affect the precision of the non-image signal 

because the same image signal (with the same underlying noise) is present in all intervals 

apart from the first interval of Phase 1. This paradigm assumes that the eye movements are 

similar (but not necessarily absent) in the three head-stationary intervals. If this were not the 

case, Phase 2 could not be used to estimate the precision of the non-image signal in the head-

stationary interval of Phase 1.  

Note that Phase 1 of the paradigm also provides information about bias, specifically 

whether the magnitude of perceived object movement is the same with or without head 

movement. This is interesting in its own right, partly because it is well known that objects 

pursued by an eye movement appear slower (Aubert, 1887; Fleischl, 1882). In this case, the 

non-image ‘extra-retinal’ signal evidently provides a lower estimate of speed than the image 

signal. Analogous perceptual slowing has been demonstrated for passive head rotation 

(Garzorz et al., 2018) and active touch (Moscatelli et al., 2019), and has also been implicated 

for the auditory system during active head rotation (Freeman et al., 2017). But as far as we 

are aware, whether head rotation produces self-movement compensation errors whereby 

object motion during self-movement is perceived as slower than during fixation is currently 

not known for either vision or hearing. 

2.2 – Methods  

SƟmuli and Materials 

Auditory stimuli were played over a 2.4m diameter ring of 48 Cambridge Audio Minx 

speakers as shown in Figure 2.2. The room was sound treated and completely dark. The 

speakers were controlled by two MoTU 24-channel sound cards, each linked to four 6-channel 

Auna amplifiers. Intensity was normalised across individual speakers. The stimuli consisted of 



white noise spatially windowed by a Gaussian distribution (σ = 5.25° in power, equivalent to 

0.7 of the speaker spacing i.e., σ = 7.5˚ in amplitude). We have previously shown that this 

value avoids aliasing artifacts in our speaker system that could occur if the Gaussian 

distribution is undersampled, while at the same time avoiding the sound becoming too diffuse 

(Stevenson-Hoare et al., 2022). The noise was sampled at a rate of 48KHz with a peak level of 

70dB. The position of the spatial Gaussian was refreshed at a rate of 240Hz, a rate set by the 

motion tracker described below. The result was a ‘blob’ of noise that could be moved 

smoothly across the speakers. The actual motion path taken was determined by the measured 

head movements, using the motion gain parameter to scale its magnitude. 

Figure 2.2: Laboratory set-up. 

 

Visual stimuli were presented to the participant using an AdaFruit NeoPixel strip of 

342 LEDs driven by a single Arduino Uno microcontroller. The LED strip was positioned just 

below the speakers, as shown in Figure 2.2, and was driven at a framerate of 40Hz. The strip 

subtended 128˚ either side of straight ahead. This yielded an LED spacing of 0.75˚. To ensure 

that the LEDs presented stimuli at a comfortable brightness, a single layer of 1.2f neutral 

density filter reduced the intensity of the display. As with the auditory stimuli, smoothly 

moving stimuli were created by using a Gaussian distribution that spatially windowed the LED 



output for each display frame (σ = 1.05°). In order to prevent individual LEDs being visually 

resolved, the strip was placed in a curved enclosure with one open side that was covered by 

three layers of diffuser gel at a distance of 35mm, blurring the image. The overall size of the 

resulting blob was increased slightly by the diffuser (σ = 1.07˚), which we confirmed using a 

Minolta LS100 photometer and an array of small apertures. The peak luminance of the blob 

was ~0.042cd/m2. 

Head Tracking 

Head movement was measured using a Polhemus Liberty tracker that sampled 

position at a rate of 240Hz. The tracker was mounted to a head band worn by the participant. 

For the head-moving interval of Phase 1, the head-tracking data were used to detect the 3rd 

sweep in real-time and keep the subsequent auditory or visual stimulus head-centred (i.e., 

motion gain = 1). To detect a change in head-movement direction, we convolved the head 

tracker samples with a finite difference filter to obtain a smoothed derivative. The filter was 

13 samples long, meaning there was a 7-frame delay in detecting the head-turn (~30ms). An 

example waveform is shown in Figure 2.3A, with the detected 3rd sweep shown in black and 

blue. 

Figure 2.3: (A) Example head movement waveform. The black portion corresponds to 
the 3rd sweep as detected by the algorithm described in the text. The visual or auditory 
stimulus appeared during this time. The blue portion defines the region of interest over which 
median head speed was calculated for analysis. (B) An example distribution of median head 
speeds for a single repetition of Phase 1 (110 trials) for one participant. The dotted line shows 
the best fitting Gaussian, which was used to determine the mean and standard deviation of 
the distribution. 



 

Procedure 

In Phase 1, each trial consisted of a ‘head-moving’ standard followed by a ‘head-

stationary’ test. The start of the first interval was signalled by a short beep (0.25s) followed 

by a momentary pause to check the head was centred before the experiment moved on. 

‘Centred’ was defined as 10 consecutive head-tracker samples within ±7.5˚ of the centre of 

the LED/speaker array. Participants were then instructed to rotate their heads smoothly left 

and right, or vice versa, at a pace and amplitude that they felt comfortable with. While it was 

their free choice, we found some participants alternated the start direction from trial to trial, 

while others mostly started in the same direction. The auditory or visual stimulus appeared 

during the 3rd sweep and moved with the head. The start of the head-stationary test interval 

was signalled using a blue blob that appeared for 0.2s, with progress again paused to check 

the head was centred. Note that the motion in the test interval was based on the 3rd sweep 

recorded in the standard interval only: the dead-time created by the initial 2 sweeps was 

skipped. In Phase 2, the same beep and light were used to identify the start of each interval, 

with both intervals head-stationary and the initial 2 sweeps skipped. Each replication of Phase 

1 and Phase 2 contained the same number of trials, based on the same head movement 

recordings, shown in the same order. 

Psychometric functions were collected based on a method of constant stimuli using 

11 motion gain values. For Phase 1, these ranged from 0.2 – 1.2 in 0.1 steps for the auditory 

condition, and 0.4 – 1.0 in 0.06 steps for the visual condition. The ranges were based on pilot 

experiments that showed the visual condition produced steeper psychometric functions than 

the auditory condition. Each motion gain was repeated 10 times, yielding 110 trials per 

session. For Phase 2, the same step sizes were used, but the range was centred on the Point 

of Subjective Equality (PSE) calculated from Phase 1. This ensured that the precision of the 

image-motion signal we estimated for each replication of Phase 1 and 2 were based on 

motion gains centred on a comparable value. The PSE was derived using the Palamedes 

toolbox (Prins & Kingdom, 2018; Wichmann & Hill, 2001; note the model described in the 

Appendix returns the same PSE as the toolbox). 



Participants sat in the centre of the speaker/LED ring and wore the head tracking 

equipment. Head position was checked with a laser crosshair mounted above the centre of 

the ring, which enabled the interaural axis and speaker ring to be aligned. The head tracker 

was boresighted with the participant facing forwards and pointing their head towards the 

central speaker. Boresighting was repeated at the start of each replication of each phase of 

the experiment.  

Each participant repeated three pairs of Phases 1 and 2 for each modality. 

Psychometric functions were fit to each replication separately. Three out of five participants 

carried out the auditory condition first. 

Head-Movement Analysis 

To analyse the head movements after data collection, position samples were first 

smoothed using MatLab’s ‘lowpass’ function with a passband of 8Hz. The temporal derivative 

was then taken and the median velocity calculated over a portion of the 3rd sweep that ranged 

from 20-60% of the sweep length (shown in blue in the example waveform of Figure 2.3A). 

This Region-Of-Interest (ROI) was adopted because it maximised the number of head-

movement samples and goodness-of-fit of the psychometric function (see Appendix for 

evaluation). Figure 2.3B shows an example for one participant of the distribution of these 

median velocities for one run of Phase 1. For modelling purposes, the distribution of each 

110-trial run was fit with a Gaussian (dotted line) to extract a mean and standard deviation. 

Psychophysical Analysis 

The distribution shown in Figure 2.3B emphasises the fact that, as with other self-

movements, head rotation varies across replications. Using motion gain therefore seems a 

good way of controlling for this variability because it links the related image motion to the 

ongoing self-movement in real-time. The patterns of motion are therefore identical, meaning 

the only difference between signal inputs is speed and displacement – duration is fixed. On 

the face of it, therefore, motion gain provides the experimenter with a repeatable parameter 

that can be used to define a psychometric function or drive a staircase. Examples are provided 

by Serafin et al. (2013) and Steinicke et al. (2009), who plot psychometric functions defined 

by changes in motion gain within acoustic and visual virtual reality set-ups, respectively. 

However, closer inspection of their figures suggests a consistent feature not accounted for by 



fitting a standard cumulative Gaussian: on occasions, their data appear to asymptote more 

than a constrained lapse rate parameter would allow (e.g. <6%, as suggested by Wichmann & 

Hill, 2001). In the Appendix, we construct a model of the psychophysical task that shows why. 

The model emphasises that motion gain is not always a good shorthand for the actual 

stimulation experienced by the participant, namely the magnitude of motion (speed or 

displacement). 

In keeping with standard Signal Detection Theory, the model assumes that 

participants base their judgement on a point estimate of stimulus magnitude (e.g., the peak 

speed of head and image movement, or average speed, or displacement). Crucially, the point 

estimates vary across trials due to the external noise introduced by variable self-movement, 

as well as the internal noise. The external noise produces some surprising effects (see Figure 

2.A1). First, the function’s true slope is steeper than the best-fitting single cumulative 

Gaussian. Second, as the variability of the self-movement increases, the function’s 

asymptotes depart markedly from 0 and 100%, much further than a typical constrained lapse 

rate parameter of 6% would allow.  

Following standard practice, we assume that internal and external noise is Gaussian 

distributed. The precision of a given signal is therefore defined by its standard deviation. If 

the self-movement did not vary at all, the precision of the non-image signal could be 

calculated by standard fitting of a cumulative Gaussian to the psychophysical data, and then 

applying the ‘variances sum’ law to both phases. Thus, for Phase 1, 𝜎ீభ

ଶ = 𝜎
ଶ + 𝜎

ଶ, where the 

subscripts correspond to the cumulative Gaussian fit to the data, the image signal (auditory 

or visual), and the non-image signal encoding head rotation. For Phase 2, 𝜎ீమ

ଶ = 2𝜎
ଶ; hence 

the precision of the non-image signal (𝜎
ଶ) in Phase 1 can be found by substitution. But when 

self-movement varies, this standard approach is an approximation at best. Variable self-

movement adds external noise that varies across the psychometric function because it is 

scaled by motion gain; hence the assumption of a single cumulative Gaussian is not correct. 

We develop the appropriate formulae in the Appendix and show how these can be used to 

extract the internal noise of the image signal (𝜎
ଶ) and non-image signal (𝜎

ଶ) from the two 

phases of our experiment. Similar formulae can be applied to a more typical motion gain 

scenario used in virtual reality set-ups, where both self-movement and image motion are 



shown at the same time (e.g., Cherni et al., 2020; Nilsson et al., 2018; Serafin et al., 2013; 

Steinicke et al., 2009). 

ParƟcipants 

All observers gave informed consent, and the experimental procedures were 

approved by the School of Psychology, Cardiff University Ethics Committee 

(EC.12.04.03.3123GRA2). Five participants took part in the experiment (2 female, 3 male). 

Two participants were naïve to the purposes of the experiment and three were 

experimenters. Participants wore spectacle correction if required. 

The code used for fitting the model using the two-phase paradigm, together with the 

raw data and summary data, can be found here: 

https://osf.io/qcz7w/?view_only=2e2bb846820d4862bcb02a036d3ee815 

2.3 – Results 

Figure 2.4: (A) Precision of the non-image signal encoding head rotation for the two 
stimulus conditions. Precision is defined as the standard deviation of the underlying signal 
distribution, as defined by the model in the Appendix. Note therefore that larger standard 
deviations correspond to less precise signals. Bars correspond to the mean of the individual 
data points shown as solid symbols. (B) Head speed using the same format. 

 

Figure 2.4A shows the mean precision of the non-image head-rotation signal (bars) 

across the five participants together with their individual data (solid points). Non-image 



signals were less precise in the auditory condition, producing an increase in the standard 

deviation of the underlying signal distribution as defined by the model described in the 

Appendix (t(4) = 4.19, p = 0.01). Contrary to our prediction, therefore, modality appears to 

matter. Figure 2.4B shows that head speeds were slightly faster when an auditory target 

appeared in the 3rd head sweep compared to a visual one, however this difference was non-

significant (t(4) = 1.76, p = 0.15, NS). It is unlikely, therefore, that the marked difference in 

non-image signal precision measured using visual and auditory stimuli could be explained by 

a scaling of precision with magnitude (i.e. Weber’s law). This point is explored further in 

Chapter 3, where an investigation of Weber’s law on the non-image signal is presented. 

 

Figure 2.5: PSEs for the psychometric functions collected in Phase 1. These indicate the 
relative bias between image and non-image signals for both modalities. A value less than one 
means that head tracked stimuli appear slower. This is a self-movement compensation error. 

 

Figure 2.5 shows the mean PSEs obtained from Phase 1. The PSEs are remarkably 

similar for vision and hearing (t(4) = -0.71, p = 0.52, NS). The PSEs are around 0.7, meaning 

that stimuli had to be slowed by 30% in the head stationary interval, in order to be perceived 



as the same speed as the head moving interval. For vision, this finding resembles the Aubert-

Fleischl phenomenon (a self-movement compensation error; Aubert, 1887; Fleischl, 1882), 

where motion appears slower if stimuli are followed by a smooth eye pursuit. Our data show 

that perceived slowing occurs for active head movement too, albeit for auditory and visual 

stimuli that are linked directly to the self-movement as opposed to being pursued in a more 

typical closed-loop manner. The biases found are comparable to those during passive head 

rotation (Garzorz et al., 2018). 

2.4 – Discussion 

We have proposed a novel technique for measuring the combined precision of the 

non-image signals that encode active self-movement (e.g. vestibular cues, proprioception and 

motor commands). Traditional psychophysical techniques are difficult to use in these 

situations because the self-movement is under participant control. Stimulation is therefore 

not repeatable across trials. The new technique relies on three factors: (1) linking image 

motion to self-movement using a motion gain parameter that can be manipulated in a 

consistent fashion across trials; (2) the generation of two psychometric functions limited by 

identical sources of noise, apart from the internal noise related to non-image signals encoding 

active self-movement; (3) a model that yields the internal noise sources, while controlling for 

the external noise created by self-movement as it varies across trials. The technique could 

easily be adapted for other examples of active self-movement, such as walking and active 

touch, and situations where non-image signals and image signals are experienced 

simultaneously (e.g. virtual reality). 

AssumpƟons of the Model 

The model assumes that eye movements made in all head-stationary test intervals are 

similar. If this were not the case, then the image noise in Phase 2 could be different from the 

noise in the test interval of Phase 1. For instance, if observers pursued the stimuli in the test 

interval of Phase 1, but not in Phase 2, then motor cues related to the pursuit system would 

be present in the first phase but not the second. However, eye movements were recorded in 

a subsequent experiment, presented in Chapter 3, and showed that fixation accuracy was 

similar in all intervals where the head was stationary, with the evidence suggesting that 

observers were able to keep their eyes stationary for a large percentage of the time. Fixation 



accuracy dipped for the head-moving interval, but most samples were still near the auditory 

target. Hence the eyes were not moving significantly for much of the time, see Chapter 3 for 

more detail. While we did not measure eye movements in this experiment, it is unlikely that 

fixation accuracy would differ across intervals where the head was stationary in the two 

phases for vision and hearing. We say this for two reasons. First, we’d expect more variability 

in eye fixation to head-fixed auditory stimuli than visual stimuli, and yet fixation accuracy was 

good in the auditory-only experiment presented in Chapter 3. Second, in Chapter 4, fixation 

accuracy was similar across phases for both visual and auditory stimuli. 

The model assumes that internal noise is fixed. While head speed was controlled by 

participants and therefore free to vary from session to session, we view the fixed noise 

assumption as a reasonable approximation for the range of stimuli contributing to any single 

psychometric function. Indeed, the fixed noise assumption is implicit when fitting a single 

cumulative Gaussian to the data, unless the logarithms of stimulus values are used. 

Measurement Noise 

The psychometric functions derived from Phase 1 and 2 are based on the same 

measurements of head rotation. This controls for any effect of measurement noise 

introduced by the head tracker because the (head-stationary) test intervals are based on the 

same set of recordings, presented in identical order. The effect on the precision of the image 

signal in the two phases is therefore the same, such that any influence is cancelled out.  

This does not mean that all of our conclusions are immune to the effect of 

measurement noise. However, the effect of measurement noise is likely small. The standard 

deviation of position samples output by our head tracker is ~0.55°. This is considerably lower 

than the positional noise needed to produce significant changes in speed discrimination 

thresholds previously reported in vision (Bentvelzen et al., 2009; Rideaux & Welchman, 2020). 

For instance, in the ‘high noise’ condition of Bentvelzen et al, positional noise was added to 

their LED system with a standard deviation of 7.4° at an update rate of 25Hz. This produced 

thresholds that doubled compared to baseline. We would therefore expect visual image signal 

thresholds to change around 7.4% (i.e. 100*0.55/7.4). Bentvelzen et al used a two-interval 

technique, so this equates to a 5.25% change in the standard deviation of the underlying 

signal. This is quite a small change, moreover, spatial hearing is considerably less precise than 



perifoveal vision, suggesting the effect would be even smaller still for these less precise 

auditory signals. While image signals were not investigated in this experiment, auditory image 

signals were investigated in the experiment presented in Chapter 3, and visual and auditory 

image signals were investigated in the experiment presented in Chapter 4. In those chapters, 

the effects of this 5.25% theoretical measurement noise will be noted. 

Vision versus Hearing 

In the experiment presented here, non-image signal precision was lower when using 

auditory stimuli in the head-stationary test intervals. This finding was corroborated in a 

further experiment, presented in Chapter 4. Here we speculate that these differences stem 

from the need to convert perceptual signals into common units. 

Suppose that the non-image signal is dominated by vestibular cues. Vestibular activity 

is based on acceleration, but as pointed out in the Introduction, vision prefers speed (Freeman 

et al., 2018; Reisbeck & Gegenfurtner, 1999) while hearing prefers displacement (Carlile & 

Best, 2002; Freeman et al., 2014). The motion signals therefore start in different units and 

must be transformed before they can be compared. One strategy is to integrate the vestibular 

cue once to get speed for vision, and twice to get displacement for hearing. Each 

transformation step adds noise. Therefore, non-image precision will be lower when auditory 

stimuli are used. 

Alternatively, let’s suppose that motor signals (proprioception and motor commands) 

dominate the non-image signal. Freeman et al. (2018) showed that observers prefer speed 

versus displacement and duration cues when judging the motion of a pursued target, and that 

the cue being used was extra-retinal (i.e. motor commands and/or proprioception). Assuming 

the same is true for head rotation, the motor signals in our experiments start out in speed 

units. No transformation is therefore needed when comparing motor signals to vision because 

vision prefers speed anyhow, but one transformation step is needed to get the preferred cue 

of displacement for hearing. Once again, the precision measured using auditory stimuli would 

be lower because it needs more transformation steps. The situation is more complex if the 

non-image signal consists of both vestibular and motor cues because they would need to be 

converted into common units before comparing with vision or hearing (known as cue 

promotion in the cue combination literature: Landy et al., 1995). Nevertheless, hearing will 



always need an additional transformation step compared to vision, meaning that the 

precision of the non-image signal should decrease whenever auditory stimuli are used. 

Conclusions 

We have presented a novel technique for the measurement of the precision of non-

image signals encoding active self-movement. We used head rotation as an example of self-

movement, and showed that the precision measured was different when using auditory 

versus visual stimuli, which may be caused by the additional transform that must take place 

for comparison between non-image and auditory image signals. 

This paradigm and psychometric function will be used throughout Chapters 3-5 to 

further investigate the precisions of the signals encoding object movement perception during 

self-movement. Chapter 3 will further investigate some of the themes from this chapter, with 

an investigation into the effects of self-movement speed on the precision of the non-image 

signal, which also allows for an investigation of the comparison between the precisions of the 

image and non-image signals. 

2.5 – Appendix 

Phase 1 consists of a head-movement interval followed by an image-motion interval. 

In the first, there is no image motion as the object is spatially linked to the movement of the 

participant. Perceived motion therefore depends on a point estimate (ℎ) of the non-image 

signal encoding head rotation. We assume that ℎ is corrupted by fixed additive Gaussian noise 

across trials. Using N(𝜇, 𝜎) to denote a normal distribution with mean 𝜇 and standard 

deviation 𝜎, the non-image signal is therefore distributed as ℎ = 𝜇 + N(0, 𝜎). The mean 𝜇 

depends on the head movement magnitude (𝐻), which we also assume is normally distributed 

across trials (see Figure 2.3B in the main text). Perceived motion in interval 1 (𝑀ଵ) is therefore: 

𝑀ଵ = 𝑏𝑁(𝜇ு , 𝜎ு) + 𝑁(0, 𝜎) 
(2.A1) 

where 𝑏 is a linear bias term that sets the gain of the head-movement signal relative to its 

input i.e. ℎ = 𝑏𝐻. Note that either speed or displacement could be used to characterise the 

distributions of head rotation and signals (to reiterate a point made in the main text, 

displacement and speed are perfectly correlated when manipulating motion gain because 

duration is fixed). The model is ambivalent. Swapping between speed and displacement 



changes the units but not the relative differences found for a chosen parameter across 

conditions. 

In the second interval, image motion (𝐼) moves as a fixed proportion (𝑔) of the head 

movements recorded in interval 1: 𝐼(𝑡) = 𝑔𝐻(𝑡). We refer to 𝑔 as the ‘motion gain’. As the 

head and eyes are stationary, sensed movement depends on an image signal (𝑖). Following 

similar logic to interval 1, the perceived motion in interval 2 is therefore: 

𝑀ଶ = 𝑔𝑁(𝜇ு, 𝜎ு) + 𝑁(0, 𝜎) 
(2.A2) 

Note that Equation 2.A2 assumes that the image signal is unbiased. Hence 𝑏 in 

Equation 1 defines the relative bias between ℎ and 𝑖, such that b < 1 means that the non-

image signal registers a lower magnitude than the image signal. Following standard Signal 

Detection Theory (e.g. Jones, 2016), we assume observers base their choice on an internal 

decision variable (𝑑) that depends on the difference between the perceived motion in the 

two intervals: 

𝑑 = 𝑀ଶ − 𝑀ଵ 

(2.A3) 

The choice ‘Interval 2 appears to move more’ corresponds to 𝑑 > 0. From signal detection 

theory we define 

𝑑ᇱ =
𝜇ௗ

𝜎ௗ
 

(2.A4) 

such that the probability of choosing Interval 2 is given by: 

𝑃 =
𝜆

2
+ (1 − 𝜆)Φ ቆ

𝑑′

√2
ቇ 

(2.A5) 

where 𝜆 is the lapse rate and Φ is the cumulative distribution function of the standard normal 

distribution. 

Substituting (2.A1) and (2.A2) into (2.A3): 

𝑑 = (𝑔 − 𝑏)N(𝜇ு , 𝜎ு) +  N(0, 𝜎) + N(0, 𝜎) 



(2.A6) 

By inspection: 

𝜇ௗ = (𝑔 − 𝑏)𝜇ு 

(2.A7) 

Note that the PSE occurs when 𝜇ௗ = 0. At this point 𝑔 = 𝑏; hence the relative bias 

between ℎ and 𝑖 can be read directly from the psychometric function. If the bias 𝑏 < 1, then 

the PSE occurs when image motion is slower than head-movement. This is analogous to the 

Aubert-Fleischl phenomenon (Aubert, 1887; Fleischl, 1882), in which moving objects appear 

slower when pursued. Conversely, if 𝑏 > 1, then image motion must be faster to achieve the 

PSE.  

To obtain 𝜎ௗ, we sum the variances of the three distributions defined by Equation 2.A6 

and take their square root: 

𝜎ௗ = ට(𝑔 − 𝑏)ଶ𝜎ு
ଶ + 𝜎

ଶ + 𝜎
ଶ 

(2.A8) 

If the head movement did not vary across trials (𝜎ு
ଶ = 0), then the square root of the 

sum 𝜎
ଶ + 𝜎

ଶ is the slope of the best-fitting cumulative Gaussian. The precision of the non-

image signal (𝜎) could then be obtained by measuring 𝜎
ଶ in Phase 2 and subtracting it from 

the sum. However, 𝜎ு
ଶ ≠ 0. Variable head movements make the recovery of 𝜎  more 

complicated because they act as an external source of noise that varies with motion gain 

across the psychometric function.   

 



Figure 2.A1: (A) The black curve shows a psychometric function based on gain-
dependent noise with [𝜇ு , 𝜎ு

ଶ , 𝜎
ଶ, 𝜎

ଶ, 𝑏, 𝜆] = [20,100,2,1,0.7,0]. The red curve is the best 
fitting cumulative Gaussian as determined by the Palamedes toolbox, with lapse rate 𝜆 = 0. 
(B) Same curves but with lapse-rate 𝜆 = 0.06 for the gain-dependent noise psychometric 
function, and free to vary for the single cumulative Gaussian (𝜆 ≤ 0.06, a standard constraint 
suggested by Wichmann and Hill (2001)). 

 

Figure 2.A1 shows that fitting a single cumulative Gaussian is an approximation at best. 

The black curves show example psychometric functions based on the formulae above (see 

legend for parameter values) while the red curves show the best-fitting single cumulative 

Gaussian. The difference between the two panels is whether a lapse-rate is included or not. 

The external noise has two effects: (1) the asymptotes of the psychometric function move 

away from 𝑃= 0 and 1; (2) the slope becomes steeper and is not well fit by a single cumulative 

Gaussian. The degree to which the external noise causes substantial departures from the 

standard fit depends on the relationship between the values of 𝜇ு, 𝜎ு
ଶ, 𝜎

ଶ, 𝜎
ଶ, 𝑏 and whether 

lapse-rate is allowed to vary in the standard fit.  

Fiƫng Procedure 

We fit psychometric functions to our data based on the formulae above, using the 

measured head movements to estimate the mean and standard deviation of 𝐻. A MatLab 

function for doing this can be found in the Thesis Appendix (“fitSMmodel”). Phase 2 data were 

fit first, with 𝜎
ଶ and 𝜆 free to vary, and 𝜇ு and 𝜎ு

ଶ  fixed, using the Gaussian distributions that 



we fit to the obtained head movement speeds (see Figure 2.3B in the main text). Phase 1 was 

then fit, with 𝜎
ଶ, 𝑏 and 𝜆 free to vary and 𝜎

ଶ, 𝜇ு and 𝜎ு
ଶ  fixed. To avoid local minima in the 

fit, each parameter was cycled through a search space of 20 values and the best fit chosen. 

This yielded 20n separate cycles of the fitting routine, where n is the number of free 

parameters which was different for the two phases (400 cycles for Phase 2 and 8000 cycles 

for Phase 1). 

We did not find much difference between fitting the new psychometric function and 

fitting a single cumulative Gaussian. One likely explanation for this similarity was that the 

head movements were relatively consistent (𝜎ு
ଶ low) given the repetitive nature of the task. 

It may also be the case that including a constrained lapse-rate parameter soaked up a 

proportion of the asymptotic effect of the external noise. This can be seen by comparing 

Figure 2.A1A (no lapse rate) with Figure 2.A1B (constrained lapse rate <= 6%). The lapse rate 

mimics the asymptotic behaviour produced by the external noise. 

Region-Of-Interest for CalculaƟng Head RotaƟon Speed 

The analysis depends on mean and variance of the head movements made in interval 

1.  The mean and variance were estimated from histograms of average speeds in the 3rd sweep 

as described in the main text. To determine the region-of-interest (ROI), we compared the 

goodness-of-fit of psychometric functions from three ROIs: 20-80%, 20-60% or 40-60% of the 

sweep length. The psychometric functions were fit using MLE, so the appropriate measure of 

goodness-of-fit is the deviance (Wichmann & Hill, 2001). Figure 2.A2B shows that deviance 

did not change with the different ROIs used (the deviance has been averaged across 

conditions, phases and participants). However, Figure 2.A2A shows that an ROI of 20-80% 

produced a slower estimate of head movement speed than the other two ROIs, which was 

also more variable due to the inclusion of salient periods of acceleration and deceleration. 

We therefore opted for an ROI of 20-60%. 



Figure 2.A2: (A) Head speed and (B) model goodness-of-fit for each ROI used to analyse 
the head movements. Error bars represent ±1SE. 

  



Investigating Weber’s Law in the Non-
Image Signal 

3.0 – Preface 

The previous chapter outlined the paradigm that will be used throughout this chapter 

and Chapters 4 and 5 to invesƟgate the precisions of the signals involved in perceiving object 

movement during self-movement. This chapter focuses on how the precisions of these signals 

change as the speeds of the self-movement and object movement change. A classic 

assumpƟon within perceptual science is that discriminaƟon thresholds scale proporƟonally 

with sƟmulus magnitude (Weber's law; e.g., Laming, 2009). This assumpƟon will be 

invesƟgated within the context of object movement percepƟon during self-movement in this 

chapter. This will also allow for a comparison between the precisions of the image and non-

image signals as distribuƟons of precision across different speeds will be generated. 

3.1 – IntroducƟon 

As noted by Algom (2021), previously when discussing Weber’s Law there have been 

issues of misunderstanding so, for clarity, the term “Weber’s Law” will be used in this thesis 

to refer to the observation that the just noticeable difference (JND) of a signal is proportional 

to the signal’s magnitude. This means that the smallest physical change in a stimulus that is 

detectable by the observer grows proportionally as the stimulus becomes more intense. This 

idea was first proposed by Ernst Heinrich Weber (1795–1878) and is not to be confused with 

what some researchers call Weber-Fechner Law which highlights the change in sensation that 

stems from changes to stimulus intensity. Fechner’s Law assumes that each JND is perceived 

as equal to the last, despite Weber’s law suggesting that the intensity of the JND is 

proportional to the stimulus intensity. Fechner’s law goes on to suggest that if JNDs that are 

different in intensity are perceived as the same, stimuli can be judged by measuring how many 

JNDs they are above the detection threshold. Weber and Gustav Theodor Fechner (1801–

1887) are seen as the creators of psychophysics as early advocates for a more quantitative 

approach to psychological research. 



Weber’s Law has been investigated in a multitude of different contexts with varying 

results. An in-depth review of such studies was produced by Masin (2009) where it can be 

seen that despite some studies finding “acceptable” evidence for Weber’s Law (Leshowitz et 

al., 1968; Masin, 2009), most others have found that this concept breaks down at low and/or 

high stimulus magnitudes, despite the authors often claiming that Weber’s law held. 

Throughout this thesis, the signals encoding the perception of object movement and self-

movement are pertinent. Some research that investigated Weber’s law in object movement 

perception includes the work of De Bruyn and Orban (1988) who looked at Weber’s Law in 

visual motion perception. The first experiment they present focuses on visual velocity 

discrimination. In this experiment, the stimuli were random dot patterns that were moved by 

turning a mirror at rates ranging from 0.5 to 256°/s. De Bruyn and Orban found that the 

Weber fractions, which are a proportional measurement of the JND with respect to the 

stimulus intensity and should remain constant if Weber’s law holds, decreased substantially 

between 0.5 and 4°/s and then shallowed until around 64°/s where they increased 

substantially again to form a U-shaped distribution. These findings suggest that Weber’s law 

breaks down during visual motion perception at slow speeds and fast speeds. In hearing, 

Altman and Viskov (1977) investigated Weber’s law in the context of implied auditory motion. 

They achieved this by presenting auditory tones over headphones with differing spatial 

properties and a delay between them. This method allowed for implied motion in the fused 

auditory image which enabled Altman and Viskov to investigate the precision of auditory 

motion perception. Their Figure 3B shows the Weber fractions at different implied motion 

velocities which show a distinct decrease between velocities of 20 to 40°/s, shallowing at 

higher speeds until the Weber fraction became constant at around 100°/s. This implies that 

Weber’s law breaks down at slow speeds in auditory motion perception, but there was no 

evidence here of a breakdown at fast speeds. This investigation only obtained speeds of 

140°/s which may explain the difference between the distributions of precision obtained in 

the investigations of visual and auditory motion perception. We would therefore predict that 

Weber’s law should break down for the image motion signal at slow object movement speeds, 

with the possibility of a further breakdown at high object movement speeds, creating a U-

shaped distribution if the movement speeds that we investigate are high enough. 



Other relevant experimentation was completed by Mallery et al. (2010) who 

investigated Weber’s law in the context of the vestibular system. They achieved this by 

turning participants using a rotating chair and found that Weber’s law predicted their data 

relatively well, however, they found that a power function with an exponent of around 0.4 

produced a more successful fit. When converted to Weber fractions, this data appears to 

decrease as the speed of the movement increases but is shallowing throughout, suggesting 

that Weber’s law may not hold over this range of speeds. The maximum rotational velocity 

used in Mallery et al’s study was 150°/s. Similar findings were obtained by Nouri and Karmali 

(2018) who investigated the vestibulo-ocular reflex. When converted to Weber fractions, 

their data appears to follow a similar trend to Mallery et al’s data, in fact, the power function 

that Mallery et al obtained fits Nouri and Karmali’s data quite well. If we draw comparisons 

from vestibular passive self-movement perception, it seems likely that our investigation of 

the non-image signal encoding self-controlled self-movements should find that Weber’s law 

fits the data relatively well, but that the data could potentially be better described by a power 

function.  

In order to investigate Weber’s law in the context of self-controlled self-movements, 

we selected rotational head turns as an example of self-movement and trained participants 

to turn their heads at one of five angular velocities (20, 50, 80, 110, 140°/s). We then used 

the same novel paradigm that was introduced in Chapter 2 to measure the precision of the 

combined non-image signal that encodes our perception of self-movement. When using this 

paradigm to obtain a value for the precision of the non-image signal, a measurement of the 

precision of the image signal encoding object movement perception is also generated. It is 

important to note that the precision of the image signal was not presented in Chapter 2 

because the image signal, whose precision can be measured with Phase 2 of the paradigm 

outlined in Chapter 2, represented slower object movement than the self-movement in Phase 

1. This was due to the self-movement compensation error, shown by the bias that was found 

in Chapter 2. In this chapter, the values for the precisions of the image signals will be relevant, 

as we can construct distributions of both the non-image and image signal precisions at 

different signal speeds, to compare them. This experiment was conducted with auditory 

stimuli, which, as seen in Chapter 2, may affect the obtained value for the precision of the 



non-image signal. The effect of this stimulus selection on this investigation into Weber’s law 

will be taken up in the General Discussion chapter. 

3.2 – Methods  

SƟmuli and Procedure 

The aim of this experiment was to determine signal precision as a function of head 

rotation and stimulus speed. Before each replication of the main experiment, a training 

session was therefore run to help participants rotate their heads at one of the five target 

speeds. The training stimuli were audiovisual, consisting of visual and auditory blobs as used 

in the experiment presented in Chapter 2. These moved in synchrony. During the main 

experiment, however, only auditory stimuli were used. For the training, audiovisual stimuli 

were used in place of auditory-only stimuli as pursuit of auditory-only stimuli is poor (Leung 

et al., 2016). The procedure for the main experiment was the same as in Chapter 2, including 

the auditory and visual signals denoting the start of each interval. The experiment consisted 

of two experimental phases linked by the set of head movements recorded in the first. Instead 

of the 11 gain values used during the method of constant stimuli in Chapter 2, here only 7 

gain values were used. The same ranges were employed, meaning that the gain values used 

for this auditory-only experiment ranged from 0.2-1.2 in steps of one sixth. The head tracking 

was also completed in the same way as in Chapter 2. Each trained head speed was 

investigated by completing training and main experiment pairs. This process was repeated 

three times, yielding 15 training and main experiment pairs presented in a random order. 

Head Speed Training Sessions 

Training sessions consisted of a two-stage process that was run ahead of each 

replication of the main experiment. In Stage 1, participants were asked to track an audiovisual 

stimulus with their head. The stimulus moved independently along a sinusoidal path at a 

frequency of 1Hz at one of five amplitudes: 5, 12.5, 20, 27.5, or 35°. These correspond to 

median target speeds from 30.0°/s to 209°/s for the ROI defined in Experiment 1. Five and 

three-quarter periods were shown for each speed to generate 12 sweeps. In Stage 2, 

participants attempted to reproduce the trained head speed, this time using a head-

stationary audiovisual fixation target moving with the nose as a guide (motion gain = 1). Again, 

they completed five and three-quarter periods, determined by recording the number of head 



direction reversals detected in the head tracking as described in Chapter 2. The accuracy of 

head rotation was assessed by calculating the median head speed for each of the final 10 

head sweeps as described in Chapter 2. If 7/10 sweeps had a median within 5°/s ±5% of the 

desired training speed, performance on that training run was deemed sufficiently accurate. If 

not, the participant was given feedback on how many sweeps were accurate, and how many 

were too fast and/or slow, and the run repeated. Participants had to complete at least three 

training runs, with at least one successful run before progressing to each replication of the 

main experiment. 

Psychophysical Analysis 

The psychometric function derived in Chapter 2 was used again in this experiment to 

obtain values for the variability of the image and non-image signals while also returning 

measurements for the Point of Subjective Equality (PSE) that are equivalent to Palamedes fits. 

Eye Tracking and Analysis 

Eye movements were tracked using a Pupil Labs Pupil Core head mounted eye tracker. 

The tracker had a 120Hz sampling frequency and a front-facing world camera. The camera 

was used for calibration by having participants look at a 3 by 2 array of calibration points that 

can be seen in Figure 2.2 in the previous chapter. These were used to convert the eye tracker’s 

normalised units into degrees. Two forms of analysis were performed on the eye movement 

data. First, the proportion of the eye position data that showed that participants were looking 

straight ahead, with a spatial ROI of ±3°, was calculated. This was done by first excluding all 

samples with less than 0.6 confidence as defined by the Pupil Labs software, and then drift 

correcting trial by trial. During the head-moving interval, this corresponded to the participant 

focusing their eyes on the position of the auditory blob. During the head-stationary intervals, 

this corresponded to the participant avoiding pursuit of the auditory blob with their eyes. For 

reference, the outcome of this measure if participants were to perfectly counter-rotate to 

maintain fixation during the head-moving intervals was calculated. 

In a second, more standard, analysis, after removing samples with less than 0.6 

confidence, the gaps were filled using linear interpolation (e.g., Halow et al., 2023). If the 

waveform had 50% or greater dropped samples it was excluded from further analysis. Gaps 

were more frequent for the head-moving condition. The resulting waveform was then 



smoothed using a Gaussian filter (σ = 16Hz in the frequency domain) and the 1st, 2nd and 3rd 

derivatives taken numerically, corresponding to velocity, acceleration and jerk. Saccades were 

detected using Wyatt’s jerk analysis, with a jerk threshold of 20,0000°/s3 (Wyatt, 1998). 

Saccadic samples were removed from the analysis, along with 4 samples either side of each 

saccade detected, as well as the initial 20 samples at the start and beginning of each 

waveform. Mean velocity and speed were then calculated for the 3rd sweep for each head-

movement interval, and the single sweep constituting the head-stationary intervals. As a 

comparison, the VOR needed to maintain stable fixation on a point at the same distance as 

the speakers was calculated, using an approximation given by Leigh and Zee (1999, p274): 

𝐸 = −𝐻 ቀ1 +
ோ


ቁ, where H is the head velocity, R = 0.1m, the distance from eye to centre of 

head rotation, and D = 1.2m, the distance of the speakers from the participant. Note that we 

assume the eyes were fixating at this distance because a visible fixation point appeared before 

the 2nd interval of each trial (for details, see the Procedure section of Chapter 2). 

ParƟcipants 

All observers gave informed consent, and the experimental procedures were 

approved by the School of Psychology, Cardiff University Ethics Committee 

(EC.12.04.03.3123GRA2). Three experimenters and seven participants studying psychology at 

Cardiff University (8 female, 2 male) took part in the experiment. The student group were 

unaware of the purposes of the experiment. Participants completed at least two replications 

of the experiment, with eight participants completing three. Eye movements were recorded 

for nine of the participants. Only one of these normally wore spectacles, which were removed 

to allow the eye tracker to operate. 

The code used for fitting the model using the two-phase paradigm, together with the 

raw data and summary data, can be found here: 

https://osf.io/qcz7w/?view_only=2e2bb846820d4862bcb02a036d3ee815 

3.3 – Results 

Figure 3.1 plots the mean head rotation speed that participants executed in the main 

experiment. The dotted line indicates perfect performance with respect to the head speeds 

they were trained on in the head training session prior to data collection. Head movements 



were reasonably accurate in the main experiment, producing a well separated set of rotation 

speeds that covered a wide range (F(4,45) = 16.89, p < 0.001).  

Figure 3.1: mean head velocity for 10 participants over the ROI defined in Figure 2.3A 
in Chapter 2. The dotted line indicates perfect performance with respect to the head speeds 
they were trained on in the head training session prior to data collection. Error bars represent 
±1SE. 

 

Figure 3.2A plots the percentage of eye position samples within a spatial ROI of ±3°, 

as a function of trained head speed of 9/10 of the participants. As can be seen, all head-

stationary intervals (open points) produced a similar level of performance. Accuracy was 

lower for the head-moving interval but was still quite high. As a reference, the dashed line 



plots the same measure assuming participants had perfectly stabilised eye position via 

counter-rotation so as to fixate a world-stationary point. 

Figure 3.2: (A) Eye fixation accuracy expressed as % of samples within ±3° of head-
centred target. Open symbols correspond to the three head-stationary intervals (one in Phase 
1, two in Phase 2) and closed circles the head-moving interval. The stars and dashed line 
correspond to the equivalent measure if participants had perfectly counterrotated the eye to 
remain fixed in world-centred coordinates. (B) Mean eye velocity over 9 participants for the 
two intervals in each phase. Open symbols correspond to the three head-stationary intervals 
(one in Phase 1, two in Phase 2) and closed circles the head-moving interval. The dashed line 
defines the VOR needed to maintain stationary gaze on a world-centred point at the same 
distance as the speakers. Negative velocities correspond to eye movement against the head 
rotation. (C) Mean eye speed (unsigned average). Format is the same as (B). Error bars 
represent ±1SE and can be smaller than symbol size. 

 

Figure 3.2B plots the mean eye velocity for 9/10 of the participants, together with the 

predicted VOR needed to maintain fixation on a virtual point at the same distance as the 

speakers (see Methods for calculation). Figure 3.2C plots the mean speed. During the head-

stationary intervals (open symbols), both mean velocity and speed were close to 0. In the 

head-moving interval, participants made small counter-rotations against the head velocity 

(ranging from -1.59°/s for the slowest head speed to 4.57°/s at the fastest). When an ANOVA 

was conducted on the eye velocities, there was found to be a significant difference based on 

the interval (F(3,16) = 35.764, p < 0.001) and during post-hoc tests it was found that the 

significant difference was between the head-moving interval and each of the head-stationary 

intervals (see Table 3.1). The same analysis was performed on the eye speeds, and again a 

significant difference based on the interval was found (F(3,16) = 42.101, p < 0.001). Similarly, 



during post-hoc tests it was found that the significant difference was between the head-

moving interval and each of the head-stationary intervals (see Table 3.2). 

Table 3.1 shows the significance of the Tukey post-hoc tests performed after the 
ANOVA on eye velocity (* denotes significance at the <0.05 level and ** denotes significance 
at the <0.01 level). 

 

Table 3.2 shows the significance of the Tukey post-hoc tests performed after the 
ANOVA on eye speed (* denotes significance at the <0.05 level and ** denotes significance at 
the <0.01 level). 

 

Crucially, there was no significant difference found between the velocity of any of the 

head-stationary intervals, confirming the assumption that the eye movements in all of the 

head-stationary intervals are similar. Also, despite being significantly different from the eye-

stationary intervals, the mean eye velocity and speed in the head-moving interval were many 



orders of magnitude smaller than the VOR necessary to counter the head rotation perfectly 

(see Figure 3.2). 

Figure 3.3: (A) Precision as a function of stimulus speed for the auditory image signal 
(open symbols) and non-image signals (closed symbols). Precision is defined as the standard 
deviation of the underlying signal distribution defined by the model in the Appendix. Note 
therefore that larger standard deviations correspond to less precise signals. (B) The same data 
expressed as Weber fractions i.e. standard deviation / speed. Error bars represent ±1SE. 

 

Figure 3.3A plots the non-image signal precision (filled circles) and auditory image 

signal precision (open circles) as a function of the mean head or stimulus speed, respectively. 

The latter compresses horizontally because the speeds are set by the PSE obtained from 

Phase 2 of the main experiment. This corresponds to a motion gain of around 0.7 (see Figure 

3.4 for the PSEs at each training speed). The horizontal compression is therefore around 30% 

compared to the closed circles.  

For the auditory image signal, precision did not vary with stimulus speed (F(4,45) = 

0.154, p = 0.96, NS). However, for the non-image signal, precision decreased with head speed, 

such that the standard deviation of the underlying signal distribution increased (F(4,45) = 

6.035, p < 0.001). Also evident is the fact that the auditory image signal is less precise than 

the non-image signal over the range of stimulus speeds tested. Figure 3.3B plots the same 

data as Weber fractions i.e., standard deviation divided by head or stimulus speed. For both 

types of signal, precision adheres Weber’s law for medium to high speeds. Thus the Weber 

fractions are approximately constant over much of the range of speeds tested. At lower 



speeds, however, the two functions differ, where Weber fractions start to rise steeply for the 

auditory image signal. This rise is reminiscent of other studies of Weber’s law in the 

perception of auditory motion (Altman & Viskov, 1977). The same is not true for the non-

image signal, where Weber’s law appears to hold reasonably well across all head speeds 

investigated. This finding is similar to previous work using passive stimulation of the vestibular 

system (Mallery et al., 2010). 

Figure 3.4 plots the mean PSEs from Phase 1 as a function of mean head speed. They 

appear similar for all head speeds experienced (F(4,45) = 0.57, p = 0.69, NS). Hence the same 

proportional reduction in image speed was needed to match the perceived motion in the 

head movement interval. This value was around 0.7, replicating the findings in Chapter 2. 

Over a wide range of head speeds, therefore, moving auditory stimuli appear slower during 

head movement, akin to the Aubert-Fleischl phenomenon in vision. However, unlike vision 

and pursuit eye movement (Freeman et al., 2010; Powell et al., 2016), the non-image signal 

appears more precise than the auditory image signal, which could have important 

implications for the interpretation of the bias shown in Figure 3.4. This point is taken up in 

more detail in the Discussion section of this chapter. 

 



Figure 3.4: PSEs from Phase 1 as a function of head speed. Error bars represent ±1SE. 

 

In Chapter 2, we found that non-image signal precision was higher using visual stimuli 

compared to auditory stimuli. To investigate further, we fit a regression line to the non-image 

precisions in Figure 3.3A using Deming’s technique, a procedure that is used when both X and 

Y values are dependent measures with error (see Harrison et al., 2015). The result is shown in 

Figure 3.5, together with the two non-image precision values found in Chapter 2. The 

regression analysis shows good agreement between the experiments presented in Chapter 2 

and here for auditory stimuli. The precision value from Chapter 2 (open circle) falls very close 

to the regression line determined by the experiment presented here. At the same time, 

however, the analysis casts further doubt on whether Weber’s law can explain the better non-

image precision found using visual stimuli (open triangle). If Weber’s law were to account for 

the discrepancy in precision, the head speeds in the visual condition of Chapter 2 would need 

to be halved in order to shift the open triangle horizontally onto the regression line. Taken 

together with the evidence from Chapter 2, it appears that the modality of a stimulus affects 



the precision of the non-image signal; one reason that this may be the case was discussed in 

Chapter 2. 

 

Figure 3.5: Deming regression (solid line) for the non-image signal precision data from 
this experiment (filled circles). The open circle is the non-image signal precision from the 
auditory condition of Chapter 2, and the open triangle is the visual condition of Chapter 2. 
Error bars represent ±1SE. 

 

3.4 – Discussion 

Results from this experiment suggest that Weber’s law describes the precision of both 

image and non-image signals for medium to high speeds. However, at low speeds Weber 

fractions for the auditory image signal rose steeply, unlike those for non-image precision. 

Both findings echo previous reports in the literature. For auditory motion based on ITDs, 

Altman and Viskov (1977) found Weber fractions were roughly constant from around 60-

140°/s but rose steeply at lower speeds. For vision, the same rise at slower speeds is found 

but matched by a similar rise at faster speeds (De Bruyn & Orban, 1988). For passive vestibular 



stimulation, the trend is similar to the Weber fractions we found for the non-image signal, 

although further analysis by Mallery et al. (2010) showed that a power law with an exponent 

around 0.4 is better description of the raw thresholds than the straight line predicted by 

Weber’s law. Similar behaviour has been reported for the variability in the vestibulo-ocular 

reflex, an eye movement controlled by the vestibular system (Nouri & Karmali, 2018). One 

implication is that the non-image signal we measured is dominated by the vestibular system. 

This assumes that the precision of motor signals behaves differently but we are unaware of 

any studies that have tried to measure the precision of motor signals on their own. 

Further evidence that supports the findings of Chapter 2 can also be found in this 

experiment. Here we present more evidence that perceived speed slows during self-

controlled head rotations, with this finding being extended to different rotational velocities, 

and we present further evidence that there is a difference between the precision of the non-

image signal when it is compared to a visual or an auditory stimulus. A Deming regression 

showed that the difference between these modalities in Chapter 2 is greater than the 

difference that would be expected due to Weber’s law, as the non-image signal precision 

value from the visual version of the experiment in Chapter 2 falls below the Deming regression 

line based on the precisions of the non-image signals at different head rotation speeds 

obtained in this experiment. 

Auditory SƟmuli 

Only auditory stimuli were used in this experiment for participants to compare to their 

self-movement. As seen in Chapter 2, this stimulus selection may return values for the 

precision of the non-image signal that are lower than if visual stimuli were used. We assume 

that this stimulus selection did not change the outcome of the investigation into Weber’s law, 

however, as we assume that the difference in the absolute precision values found in Chapter 

2 is due to an extra conversion step needed to convert the non-image signal into relevant 

units for comparison to auditory, over visual, stimuli (for more detail see the discussion 

section of Chapter 2). These conversions should have a constant additive effect on the 

variability measurements obtained at different speeds, such that the distribution of precision 

values should have a consistent shape, no matter the modality of the stimuli. We predict that, 

if this experiment was conducted with visual stimuli, a similar pattern of non-image signal 

precision would be obtained with slightly lower Weber fractions across the board. We would 



also expect that the distribution of image signal precisions would be a U-shaped distribution 

in that case, in line with the evidence from De Bruyn and Orban (1988). 

Measurement Noise 

As mentioned in Chapter 2, according to the work of Bentvelzen et al. (2009), when 

added to a visual stimulus, positional noise with a standard deviation of 7.4°was enough to 

double the threshold when compared to baseline. Using our measurement that the standard 

deviation of the position samples from our head tracker is ~0.55°, we would expect that the 

thresholds obtained in a visual version of this experiment to change by 7.4%. As auditory 

spatial perception is considerably less precise than vision, we would expect that the effect of 

this noise would be even smaller than 7.4% for this auditory version of the experiment, and 

yet the difference between the precision of the auditory image signal and non-image signal is 

much greater than 7.4% across the board. 

Bayesian models of moƟon percepƟon 

In both Chapter 2 and this chapter, we found that perceived speed was lower when 

the head rotated. The bias was very consistent across modalities (Chapter 2) and stimulus 

speed (this chapter), adding to a large body of evidence showing that non-image signals based 

on eye rotation, head rotation, and hand/arm movement typically provide lower estimates of 

motion magnitude than signals encoding image motion in vision, hearing and touch (see 

below). On the face of it, the bias between non-image signals and image signals is puzzling 

because one might expect this type of constant error to be calibrated out by the perceptual 

system. One possible explanation, as mentioned in the General Introduction, is that the bias 

results from a Bayesian observer trying to optimise precision. According to the Bayesian 

hypothesis, the fact that early signals are noisy means that perception needs to infer the state 

of the world by combining imprecise measurements with prior expectations about the world 

state. The result is a posterior distribution that has greater precision than the original 

measurements, but not necessarily greater accuracy. As signals become noisier, the position 

of the posterior is increasingly pulled towards the prior distribution such that accuracy shifts. 

For motion, the claim is that the prior peaks at 0 because most objects are at rest (Weiss et 

al., 2002). Hence, as signals become noisier, speed estimates reduce. 



The Bayesian framework has been used to explain why perceived visual speed slows 

at low contrast (Stocker & Simoncelli, 2006); why pursued objects appear slower (Freeman et 

al., 2010; Powell et al., 2016); why moving sounds appear slower when presented against 

background noise (Senna et al., 2015); and why tactile stimuli appear slower when made 

noisier or ‘pursued’ by an hand/arm movement (Moscatelli et al., 2019). It can also be used 

to account for individual differences in motion perception (Powell et al., 2016). Nevertheless, 

the overarching theory is not without its detractors (Hammett et al., 2007; Hassan & 

Hammett, 2015; Thompson et al., 2006). One simple test is to correlate measures of precision 

(e.g. thresholds) with bias – the Bayesian hypothesis predicts that as precision declines, 

perceived speed should slow. Many of the papers cited above show this to be case. However, 

there are a growing number of reports that this isn’t always true. Some recent studies in 

vision, hearing and vestibular research have shown changes in bias with little change in 

precision (Freeman et al., 2017; Freeman & Powell, 2022; Hassan & Hammett, 2015), and vice 

versa (Rideaux & Welchman, 2020). The findings of this experiment add to these seemingly 

‘non-Bayesian’ set of results. They show that auditory image signals are less precise than non-

image signals, even though the latter produce substantially lower estimates of motion 

magnitude. 

Conclusions 

In agreement with current literature, we found that the non-image signal obeys 

Weber’s law over a wide range of stimulus speeds, unlike its image-based counterpart. Taking 

the results from this and the previous chapter, we also found that the magnitude of perceived 

motion is reduced during head movement for both vision and hearing. This finding is difficult 

to explain within a Bayesian framework because image precision was not greater than non-

image precision over the wide range of stimulus speeds investigated. 

Alongside Chapter 2, the results obtained from this chapter suggest that a standard 

Bayesian model may struggle to explain the finding that perceived speed slows during self-

movement (self-movement compensation error). For this reason, it is important to test this 

standard Bayesian model in the situation that the paradigm that is central to this thesis 

generates. Chapter 4 will therefore investigate whether a Bayesian model can explain the self-

movement compensation error, by attempting to replicate the findings, here, that the 

auditory image signal is less precise than the non-image signal and extend them to the visual 



modality, and then by adding an external source of noise to investigate whether this yields 

Bayesian effects. The latter is a critical test of Bayesian modelling for the explanation of self-

movement compensation errors. 

  



Can a Bayesian Model Explain Self-
Movement Compensation Errors in the 

Context of Self-Controlled Head 
Rotations? 

4.0 – Preface 

In the previous chapter, it was found that our esƟmate of auditory velocity is less 

precise than our esƟmate of self-movement speed. There, it was noted that this evidence adds 

to a body of seemingly ‘non-Bayesian’ results, as a Bayesian model using the standard slow-

speed prior would predict that, if this were the case, we would perceive objects as moving 

faster when we are staƟonary rather than when we are moving with the object (the opposite 

effect to the Aubert-Fleischl phenomenon and the results of the previous two chapters which 

show evidence of self-movement compensaƟon errors).  

However, the experiment in Chapter 3 uƟlised only auditory sƟmuli, so this chapter 

will also invesƟgate whether similar ‘non-Bayesian’ results occur with visual sƟmuli. Also in 

this chapter, one of the criƟcal assumpƟons of Bayesian modelling will be tested as a source 

of external noise will be added to the visual and auditory sƟmuli. Assuming that this causes a 

change in the precision of moƟon percepƟon, it should also cause a change in bias, due to the 



inherent link between precision and bias in Bayesian modelling (see Figure 4.1, a copy of 

Figure 1.4).  

Figure 4.1: (A) a standard Bayesian model of motion perception. (B) the same Bayesian model 
but with more noise in the sensory evidence (wider likelihood distribution). This causes a shift in the 
posterior, towards the prior, as denoted by the arrow. 

 

4.1 – IntroducƟon 

As explained in the General IntroducƟon, the standard Bayesian approach assumes 

that the sensory evidence is, on average, accurate. Bayesian theorists point out that sensory 

evidence is noisy, so the observer has to make best guesses to determine what the sensory 

evidence represents in terms of the state of the world. One route to a best guess is to combine 

current sensory evidence with prior expectaƟons about the world, and weight this according 

to the precision of the evidence. Conceptually, the prior and the likelihood (the distribuƟon of  

sensory evidence) are thought of as distribuƟons, which when mulƟplied together yield a 

posterior distribuƟon, the peak of which represents the ‘best guess’ (Figure 4.1). The locaƟon 

of this peak is shiŌed away from the accurate peak of the likelihood as accuracy is sacrificed 

for extra precision (the posterior is more precise or reliable, and less variable or contains more 

noise, than the sensory evidence, which is demonstrated by the likelihood being wider than 



the posterior, see Figure 4.1) The mulƟplicaƟon, by definiƟon, places more weight on the 

likelihood if it is more precise. Hence, the precision of sensory measurements has a direct 

impact on perceptual bias because it determines the extent to which the peak of the posterior 

differs from the peak of the likelihood (which is assumed to be accurate). 

Bayesian models have been used to understand moƟon percepƟon in a variety of 

contexts. There is a prior expectaƟon of slow movement in visual speed percepƟon due to the 

tendency of objects to move slowly in the world (Weiss et al., 2002). Accordingly, less precise 

sensory evidence should result in a slower percepƟon of movement because more weight is 

given to the slow-speed prior (see Figure 4.1). We can manipulate the variability of sensory 

evidence by changing sƟmulus properƟes. Changing variability like this has been shown to 

have a direct effect on perceived speed. For instance, low contrast sƟmuli appear to move 

slower than higher contrast sƟmuli at slow speeds (Thompson, 1982) and this effect has been 

predicted by Bayesian models based on the logic presented above (Ascher & Grzywacz, 2000; 

Weiss & Adelson, 1998). A similar effect occurs for auditory sƟmuli presented in quiet or loud 

backgrounds, with sounds that have low signal-to-noise raƟos (those presented in louder 

backgrounds, for example) appearing to move slower than those with higher signal-to-noise 

raƟos. This effect can also be predicted by a Bayesian model (Senna et al., 2015). When it 

comes to self-movement compensaƟon errors, objects are perceived as moving faster when 

their movement is interpreted by a staƟonary observer than when the same movement is 

interpreted by an observer that has equivalent self-movement (with the eyes or head) to the 

movement of the object. Our esƟmate of object movement should therefore be faster than 

our esƟmate of self-movement when the two are equivalent. In a Bayesian model with a slow-

speed prior, this would occur if the sensory evidence pertaining to self-movement (in this 

thesis, a non-image signal) is less precise than the sensory evidence pertaining to object 

movement (an image signal). This appears to be the case for smooth pursuit eye movement, 

as objects appear to move slower, and speed discriminaƟon is worse, when objects are 

followed by eye movements compared to with the eyes staƟonary (Freeman et al., 2010). A 

similar effect has been observed during finger movement, where the movement of a surface 

appears slower, and the precision of speed discriminaƟon is worse, when parƟcipants move 

their fingers with a plaƞorm compared to with their finger staƟonary (Moscatelli et al., 2019). 

Moscatelli et al. (2019) also included an experiment where they manipulated the texture of 



the surface and found that the effect was more prominent with a textured surface and 

disappeared with a smooth surface (this is a method of adding variability to the sensory 

evidence). 

However, in Chapter 3, it was shown that similar slowing of perceived auditory speed 

during head rotaƟon is not accompanied by more precision when the head is staƟonary. One 

explanaƟon for this may be that auditory movement percepƟon is not Bayesian. Another is 

that the standard Bayesian framework does not apply; perhaps the assumpƟon that image 

and non-image signals are accurate is violated for auditory movement percepƟon, or perhaps 

hearing has a prior for fast movement (aŌer all, sounds are moving waves which are typically 

generated through movement). For these reasons, the experiment in this chapter compared 

vision and hearing. Also included in this experiment was a manipulaƟon that added external 

noise to manipulate the precision of the sensory evidence when the head was staƟonary. This 

manipulaƟon was used as, according to a Bayesian model, it should cause a change in the bias, 

irrespecƟve of whether there is a slow-speed or fast-speed prior and irrespecƟve of the 

accuracy of the sensory evidence. This manipulaƟon, then, will be a criƟcal test of the Bayesian 

nature of auditory movement percepƟon. 

The aim of the two-phase paradigm used in the previous chapters was to measure the 

precision of the non-image signal that we use to encode our self-movement when there is no 

relevant movement informaƟon in the image. To do this, a measurement of the precision of 

the image signal was obtained, from Phase 2, and used to measure the precision of the non-

image signal from Phase 1. This was necessary because Phase 1 contained internal noise from 

both the image and non-image signals. In order to isolate the noise due to the non-image 

signal from Phase 1, a measurement for the precision of the image signal was obtained in 

Phase 2, with the sƟmuli in all of the head staƟonary intervals (the second interval of Phase 1 

and both intervals of Phase 2) moving at the same speed. While it was shown in the previous 

chapter that the auditory image signal is relaƟvely constant in its precision at a wide range of 

different speeds, the same cannot be assumed for vision, for example, the results of De Bruyn 

and Orban (1988) suggest a more pronounced change in precision as a funcƟon of visual 

speed. To match the speeds of the image signals in Phases 1 and 2, we set the moƟon gain of 

the standard in Phase 2 to be equivalent to the Point of SubjecƟve Equality (PSE). This meant 

that the average perceived speed of the objects during the head-moving interval and each 



interval of Phase 2 were equivalent, however, the average objecƟve speeds were different 

(moƟon gain of 1 for the head-moving interval in Phase 1, and average moƟon gain equal to 

the PSE for both intervals in Phase 2). A consequence of this is that we were unable to directly 

compare our measurements of the precisions of the image and non-image signals. In the 

experiment presented in this chapter, we added a third phase to the paradigm that allowed 

us to obtain a measurement of the precision of the image signal at the same average objecƟve 

speed as the head-moving interval of Phase 1, by replicaƟng Phase 2 except with sƟmuli 

having average moƟon gain equal to 1, rather than the PSE. 

The key manipulaƟon in this experiment is the addiƟon of external sƟmulus noise to 

produce a change in the precision of the image signals. To manipulate sƟmulus noise, we 

included dynamic changes in sƟmulus width. This is different from adding posiƟonal (or speed) 

noise that has been used before (Bentvelzen et al., 2009; Rideaux & Welchman, 2020). 

However, the reason for the inclusion of this noise manipulaƟon is that, in a pilot study, we 

found that dynamic changes in sƟmulus width produced salient changes in precision for both 

hearing and vision, whereas posiƟonal/speed noise only produced sizeable changes for vision. 

4.2 – Methods 

SƟmuli and Materials 

The stimuli and materials used in this experiment were similar to those used in the 

previous chapters. The only difference between the stimuli used here and in Chapter 2, was 

the inclusion of a dynamic stimulus width jitter in the ‘jitter’ condition. The jitter was added 

to all of the 5 intervals where the participant was stationary (the second interval of Phase 1 

and both intervals in Phases 2 and 3), and this was achieved by updating the standard 

deviation of the Gaussian distribution that spatially windowed the visual and auditory stimuli. 

The standard deviation was updated every 0.2s, with one of four standard deviations 

randomly chosen from a set of predetermined values (σ = 7.5, 15, 22.5, and 30° for the 

auditory stimuli and σ = 1.05, 2.1, 4.2, and 6.3° for the visual stimuli). An example of the effect 

of the dynamic width jitter on the standard deviation of the stimulus can be seen in Figure 

4.2. Technical note: due to a mistake in coding, the 2 sets of jitters used resulted in a mean 

stimulus width greater than the non-jittered stimuli (mean stimulus width of the non-jittered 

auditory stimulus was 7.5° vs theoretical mean width of 18.75° for the jittered auditory 



stimulus, and mean stimulus width of the non-jittered visual stimulus was 1.05° vs theoretical 

mean width of 3.41° for the jittered visual stimulus). However, this does not affect the 

predictions because an increase in average stimulus width would likely have the same effect 

(a decrease) on image signal precision as the dynamic stimulus width jitter, or perhaps no 

effect at all. 

Figure 4.2: an example of the standard deviation of the Gaussian distribution that windowed 
the jittered stimulus across the duration of the presentation. 

 

Procedure 

The procedure was also similar to previous experiments. Phase 1 still consisted of a 

‘head-moving’ standard and a ‘head-stationary’ test, pre-empted by a short beep and a blue 

blob respectively. Each interval only started once the participant had their head ‘centred’ as 

defined in Chapter 2 (10 consecutive head-tracker samples within ±7.5˚ of the centre of the 

LED/speaker array). The ‘head-moving’ standard appeared after the participant began 

rotating their head, on the third sweep of the head rotation, and moved with the head. The 

‘head-stationary’ test was based on the motion of this third sweep, with a multiplicative gain 

factor applied. In Phases 2 and 3, the same beep and light were used to signal the start of 

each interval, with all of the intervals head-stationary. The stimuli were again based on the 

head recordings from the ‘head-moving’ intervals from Phase 1 with gain factors applied. All 

three phases consisted of the same number of trials presented in the same order. The 

presentation order of Phase 2 and 3 was randomised, however Phase 1 was always presented 

first. 

As mentioned in the introduction, the difference between Phases 2 and 3 was the gain 

factor that was applied to the stimuli. In Phase 2, the standard was multiplied by a gain factor 



equivalent to the PSE from the first phase. In Phase 3, the standard was multiplied by a gain 

factor of 1, so that the stimulus moved in the exact same way as the participants’ head 

movements from the first interval of Phase 1. 

As in the previous chapters, the method of constant stimuli was used, here with 7 gain 

values. The ranges of the gain values was consistent with the previous chapters with the visual 

version utilising gain values from 0.4-1 in steps of 0.1 and the auditory version utilizing gain 

values from 0.2-1.2 in steps of one sixth. Each gain value was repeated 10 times giving 70 

trials per phase, and the three-phase paradigm was completed three times by each 

participant for the visual and auditory versions in both the jittered and non-jittered 

conditions. Head and eye tracking was completed in the same manner as Chapter 3. 

Participants were not trained to move at any particular speed and were instead instructed to 

move at whatever reasonable speed they felt comfortable at. 

Psychophysical analysis 

The same analysis as detailed in the appendix of Chapter 2 was used to measure the 

PSE and the precision of the image and non-image signals. 

Head and Eye Movements 

The head and eye movements of parƟcipants were recorded using the same Polhemus 

Liberty head tracker and Pupil Labs Pupil Core eye tracker as in Chapter 3. Only the posiƟon 

analysis used in Chapter 3 was used here as similar conclusions were made by all types of eye 

movement analysis in Chapter 3. 

ParƟcipants 

All observers gave informed consent, and the experimental procedures were approved 

by the School of Psychology, Cardiff University Ethics CommiƩee (EC.12.04.03.3123GRA2). Six 

parƟcipants took part in the experiment (2 female, 4 male), including three of the 

experimenters and three parƟcipants who were naïve to the purposes of the experiment. Eye 

movements were recorded for five of the parƟcipants. Two of these usually wore spectacles, 

which were removed to allow for the eye tracking. 



4.3 – Results 

Non-JiƩered CondiƟon Only 

Figure 4.3 shows the PSE in terms of the moƟon gain applied to the test sƟmulus in 

the auditory and visual condiƟons. It is clear that the PSE in each modality is less than 1 

(Auditory: t(5) = -11.550, p < 0.001; Visual: t(5) = -15.769, p < 0.001), with the object moving 

around 30% slower when the parƟcipants perceived the object movement in the head-

staƟonary condiƟon (test) as equivalent to the head-moving condiƟon (standard). This is the 

same self-movement compensaƟon error effect that has been shown in the previous two 

chapters and it is again the case that this effect is consistent across both the auditory and 

visual modaliƟes. For a Bayesian model to explain this effect, it would need to be the case that 

the precision of the image signal was greater than the precision of the non-image signal.  

Figure 4.3: Point of Subjective Equality (in terms of the motion gain of the test stimulus) for the 
auditory and visual versions of Phase 1. Error bars represent ±1SE. 

 

In Figure 4.4, the precisions of the non-image (pink bars) and image (blue bars) signals 

are ploƩed, and it is clear that the image signals are not more precise than the non-image 

signals. This conclusion is supported by an ANOVA that showed no significant interacƟon 



between modality and signal type (F(1,20) = 0.198, p = 0.661, NS) and no significant main 

effect of modality or signal type (Modality: p = 0.154, NS; Signal type: p = 0.505, NS). With 

these results, there is evidence that the standard Bayesian model is not relevant here. 

However, this evidence could point to a Bayesian model that includes biased signals, similar 

to the model suggested by Freeman and Powell (2022). 

Figure 4.4: Precisions of the non-image (pink) and image (blue) signals in the auditory and 
visual versions of the experiment. Lower bars mean more precision. Error bars represent ±1SE. 

 

The Effect of Dynamic Size JiƩer 

The criƟcal test of the Bayesian model in this experiment is the effect of the dynamic 

size jiƩer. The jiƩer should cause the image signal for the jiƩered sƟmulus to be less precise 

than the image signal for the non-jiƩered sƟmulus. Figure 4.5 shows the precisions of the 

image signal in the non-jiƩered (blue bars) and jiƩered (yellow bars) condiƟons. Here, it 

appears as though the jiƩer successfully decreased the precision of the visual image signal but 

did not decrease the precision of the auditory image signal. To verify this, an ANOVA was 

conducted which, instead, showed no significant interacƟon between modality and jiƩer 

condiƟon (F(1,20) = 0.143, p = 0.709, NS) and no significant main effect of modality or jiƩer 



condiƟon (Modality: p = 0.141, NS; JiƩer: p = 0.516, NS). These results suggest that the jiƩer 

manipulaƟon was not successful at decreasing the precision significantly in either modality. 

Figure 4.5: Precisions of the image signals in the non-jittered (blue) and jittered (yellow) 
conditions, in the auditory and visual versions of the experiment. Lower bars mean more precision. 
Error bars represent ±1SE. 

 

As shown above, there is no staƟsƟcally significant difference between the precisions 

of the image signals in the non-jiƩered and jiƩered condiƟons. It should be expected, then, 

that the PSE in the jiƩered condiƟons should not differ from the non-jiƩered condiƟons. As 

Figure 4.7 shows, this is the case as the PSEs are consistent throughout the auditory and visual, 

non-jiƩered (blue bars) and jiƩered (yellow bars) condiƟons. This conclusion is supported by 

an ANOVA that showed no significant interacƟon between modality and jiƩer condiƟon 

(F(1,20) = 1.008, p = 0.327, NS) and no significant main effect of modality or jiƩer condiƟon 

(Modality: p = 0.794, NS; JiƩer: p = 0.583, NS). 



 

Figure 4.7: Point of Subjective Equality (in terms of the motion gain of the test stimulus) for 
the auditory and visual versions, both without (blue) and with (yellow) dynamic size jitter, of Phase 1. 
Error bars represent ±1SE. 

 

Head and Eye Movements 

Figure 4.8A plots the mean head speed of parƟcipants in the head moving intervals of 

both the auditory and visual versions of the experiment in the non-jiƩered (blue bars) and 

jiƩered (yellow bars) condiƟons. The head movement speeds appear to be similar across all 

of the condiƟons. This conclusion is supported by an ANOVA that showed no significant 

interacƟon between modality and jiƩer condiƟon (F(1,20) = 0.055, p = 0.818, NS) and no 

significant main effect of modality or jiƩer condiƟon (Modality: p=0.862, NS; JiƩer: p=0.956, 

NS). 

Figure 4.8B plots the percentage of eye samples within a spaƟal ROI of ±3° for each 

condiƟon, the same style of analysis can be found in Chapter 3. In Chapter 3 this analysis was 

followed with a more standardised eye velocity and speed analysis but similar conclusions 

were made. Here, it can be seen that the head staƟonary intervals (open symbols) have a 

similar level of fixaƟon. Accuracy is lower in the head moving interval (closed symbols), like in 



Chapter 3, but sƟll much higher accuracy than if parƟcipants performed counter-rotaƟon 

(dashed line). 

Figure 4.8: (A) head rotation speeds for participants in the auditory and visual versions, both 
without (blue) and with (yellow) dynamic size jitter, of interval 1 of phase 1. (B) Eye fixation accuracy 
expressed as % of samples within ±3° of head-centred target. Open symbols correspond to the three 
head-stationary intervals (one in Phase 1, two in Phase 2) and closed circles the head-moving interval. 
The stars and dashed line correspond to the equivalent measure if participants had perfectly 
counterrotated the eye to remain fixed in world-centred coordinates. Error bars represent ±1SE. 

 

4.4 – Discussion 

In the experiment presented in this chapter, the precisions of the image and non-image 

signals were measured with and without external noise consisƟng of dynamically changing 

sƟmulus width. This noise manipulaƟon was unsuccessful in adding variability to the either 

the visual or the auditory image signal. It is unclear why this occurred, because pilot 

experiments showed a reasonable change in precision. 

With the self-movement compensaƟon error found throughout this thesis, a standard 

Bayesian model of movement percepƟon, as detailed in Chapter 1, predicts that the non-

image signal should be less precise than the image signal. However, this was not the case for 

either vision or hearing. Without jiƩer, the precision of the image and non-image signals were 

similar. In the previous chapter, it was found that the auditory image signal was less precise 

than the non-image signal. A similar effect was not significant here but can be seen by 



observaƟon of the data. These results are difficult to explain using the standard Bayesian 

model. 

Unfortunately, the key manipulaƟon for a test of Bayesian models when it comes to 

explaining self-movement compensaƟon errors, the dynamic size jiƩer, was unsuccessful. This 

unsuccessful manipulaƟon lead to no change in bias, which lends some support to a non-

standard Bayesian model, as similar signal precisions caused similar biases. 

The AssumpƟons of the Bayesian Model 

It is an integral assumption of standard Bayesian modelling that the sensory evidence 

from each signal is accurate. In the case of this experiment, that also means that the image 

and non-image signals we measure contain sensory evidence that is equivalent in its average 

speed (as the stimuli that we use to determine the precisions of the signals are matched in 

their speed; motion gain = 1). Another assumption of the Bayesian models of movement 

perception is that the priors for the motion in the image and non-image signals are equivalent. 

If the priors are equivalent and the average speed of the sensory evidence is equivalent, the 

only way to produce a relative difference between the average of the posteriors is for the 

sensory evidence to have different precisions. The experiment presented here showed that 

this is not the case in vision or hearing. I will now inspect the assumptions of the Bayesian 

model to attempt to address these findings. 

First, I would like to address the assumption that the image and non-image signals 

share the same prior. While this may not appear intuitive, the slow-speed prior for visual 

object movement perception has been widely accepted in the literature with stationary 

observers (e.g., Ascher & Grzywacz, 2000; Hürlimann et al., 2002; Stocker & Simoncelli, 2006; 

Weiss & Adelson, 1998; Weiss et al., 2002; Welchman et al., 2008). In these papers, as 

participants remain stationary, it is difficult to know whether the prior is for slow object 

movement or slow motion in the images that our receptors obtain, as these are equivalent. 

However, it is typically assumed that the prior is for slow object movement. If there is no 

object movement, as this prior suggests is typical, and assuming that the sensory evidence 

from the image and non-image signals is accurate, self-movement generates equal and 

opposite motion in the image and non-image signals. This inherent link between image and 

non-image motion means that, whatever the prior for motion in the non-image signal is 



during self-movement, a reflected prior should be expected for motion in the image signal, 

and vice versa (it should also be assumed that the prior is symmetrical as stimuli are not likely 

to tend to move rightwards more than leftwards, for example). 

As mentioned earlier, it is typically assumed that the slow-speed prior found in visual 

object movement perception relates to object movement rather than the motion in the 

image, so the question remains whether image motion and non-image motion also have slow-

speed priors. To address this assumption, Figure 4.10 shows that if the prior was not centered 

on no motion, and was instead an expectation for motion that was equivalent to the motion 

in the sensory evidence, it would be impossible to create any kind of bias. Assuming that the 

prior is for slow-speed motion gives the Bayesian model its best chance of generating an 

appropriate bias in order to explain self-movement compensation errors. 

Figure 4.10: (A) a Bayesian model for movement perception that, instead of having a slow-
speed prior, has a prior that is equivalent to the motion in the sensory evidence. (B) the same Bayesian 
model but with more noise in the sensory evidence (wider likelihood distribution). This does not cause 
a shift in the posterior, unlike the standard Bayesian model in Figure 4.1. 

 



Now, to address the assumption that the sensory evidence from each signal is 

accurate. Introducing a bias term so that one or both of the signals could contain inaccurate 

sensory evidence would allow for the finding that object movement appears slower during 

self-movement. Relaxing this assumption could be thought of as a hybrid model, because the 

original theories about inaccurate signals (e.g., Dyde & Harris, 2008; Freeman & Banks, 1998; 

Mack & Herman, 1973; Wertheim, 1981) that the Bayesian models appeared to usurp, would 

be introduced back into a Bayesian framework. It would also allow for differences in the 

priors, as the biased sensory evidence over time would generate different priors for image 

and non-image motion. Here, it is important to note that without constraints, a Bayesian 

model would be able to fit any dataset. It is with constraints that we can limit the free 

parameters and find a realistic model of our perception. Current Bayesian models apply the 

assumption of accurate sensory evidence because it is thought that if signals were 

consistently inaccurate, over time we would learn to accurately compensate for these errors, 

whereas differences in the precisions of the signals would be more challenging to equate over 

time. 

“AnƟ-Bayesian” Evidence 

This is not the first experiment to find evidence that standard Bayesian accounts 

cannot explain. For example, researchers have investigated the perceived speed of objects 

with different luminance and found non-Bayesian results (Freeman & Powell, 2022; Hassan & 

Hammett, 2015). Freeman and Powell conducted four experiments with mixed support for 

the standard Bayesian model before concluding that the assumptions of the model need to 

be changed. It was found by these researchers that decreasing the luminance of a moving 

stimulus increased its perceived speed. Their participants were more precise at judging the 

speed of their lower luminance stimuli, which lends support to a standard Bayesian model, as 

the additional precision at low luminance would decrease the bias towards the slow motion 

prior. However, in a further experiment, Freeman and Powell accounted for contrast changes 

when manipulating luminance. With their “equicontrast” stimuli, the bias such that low 

luminance stimuli appeared faster still occurred, however, the difference in sensory precision 

no longer remained. This result cannot be explained by a standard Bayesian model. Later, 

Freeman and Powell introduced external noise by adding luminance jitter which generated 

results that appeared to restore Bayesian behaviour. Freeman and Powell concluded that the 



standard Bayesian assumption that the sensory information is accurate needs to be relaxed, 

as their behavioural results fit with a Bayesian observer with biased inputs. Unlike with the 

luminance jitter added by Freeman and Powell (2022), our dynamic size jitter did not produce 

significant changes to the precisions of the image signals, however the jitter also did not 

produce changes in the bias. Overall, our results, along with those of Freeman and Powell, 

suggest that a hybrid Bayesian model with biased sensory evidence explains behaviour well. 

Our manipulation of precision did not cause significant changes in the precisions of 

the image signals. Other methods of manipulating the precision of sensory evidence are, of 

course, available, including changing the speed, position, luminance, or constant size of the 

stimulus to name just a few. Rideaux and Welchman (2020) investigated whether natural 

scene statistics could explain the effect of contrast on visual speed perception, whereby lower 

contrast stimuli appear to move slower. They compared this effect to manipulating precision 

by adding speed noise to the stimulus trajectory. They found that while low contrast stimuli 

did indeed appear to move slower than high contrast stimuli, high contrast stimuli with speed 

noise did not appear to move slower than during monotonic movement. This suggests that 

certain types of additional variability may create bias changes like those suggested by 

Bayesian models, while other forms of additional variability may not. That said, their findings 

are made more puzzling by the fact that the contrast manipulation produced no change in 

precision, in contrast to studies by Powell et al (2016) and Warren & Champion (2017). 

Nevertheless, Rideaux and Welchman, in their analysis of scene statistics, found that 

contrast and speed are linked in nature and assumed that this means that we expect stimuli 

with low contrast to move slower, due to this being commonly found in natural scenes. This 

suggests that the manipulations of contrast and speed jitter are different, as a manipulation 

to contrast directly affects the overall perceived speed in the scene, whereas the overall 

perceived speed in the scene is not affected by their speed jitter, as it causes no change to 

the average speed of the stimulus. It appears to be the case that selecting the right 

manipulation for the external variance of the image is an important task when investigating 

how the precisions of signals change with external variance. A further study with multiple 

different precision manipulations may find results that provide evidence that even a hybrid 

Bayesian model is inappropriate in the context of movement perception. 



Conclusions 

In this chapter, I have presented an experiment that allowed for an investigation into 

the Bayesian nature of the perception of object movement during self-controlled head 

rotations. This experiment consisted of a three-phase version of the paradigm used 

throughout this thesis so far, with the third phase being used to provide image and non-image 

signal precision measurements for stimuli that moved at the same speed. A similar bias to the 

previous chapters was found such that the perceived speed of an object slows during self-

movement (termed a self-movement compensation error in this thesis), however the image 

signal was not significantly more precise than the non-image signal in either the auditory or 

visual modality. This replicated the result shown for the auditory modality in the previous 

chapter. 

Adding a dynamic stimulus width jitter did not cause significant changes to the 

precisions of the image signals, meaning that a hybrid Bayesian model explains our data well. 

It may, however, be the case that a different method of adding external noise may create a 

situation where even a hybrid Bayesian model is inappropriate. 

  



Derivation of a Bayesian Model Which 
Accounts for Trial-by-Trial Variation In 

Stimuli  
5.0 – Preface 

So far in this thesis, a method has been introduced that can measure the precisions of 

the image and non-image signals that we use to interpret the speed of object movement 

during self-movement. In Chapter 2, a new psychometric funcƟon was derived that allowed 

for the fact that the sƟmuli used in these experiments are fully dependent on the self-

movements of parƟcipants which are variable from trial to trial. In Chapter 4, results found 

with the paradigm were used to criƟque the standard Bayesian model which, it appears, is not 

appropriate in the context of perceiving object movement during self-controlled head 

rotaƟons. It remains an interesƟng challenge, however, to aƩempt to derive a standard 

Bayesian model that allows for the external variability that is introduced when sƟmuli are 

based on the self-movements of parƟcipants. This derivaƟon is completed in this chapter, with 

the equaƟons then being used to prove quanƟtaƟvely that the standard Bayesian model 

produces psychometric equaƟons that are a less good fit to the behavioural data from Chapter 

4, than the psychometric funcƟons that were derived in Chapter 2. 

As outlined in the General IntroducƟon, one method that can be used to convert 

sensory inputs to an opƟmally precise percept, is to combine the low-level sensory input, or 

likelihood, to a prior expectaƟon of sƟmuli in the world. This combinaƟon is a Bayesian 

combinaƟon whereby the influence of the prior and the likelihood are mediated by their 

precisions. This is most clearly demonstrated when we represent the probabiliƟes of the prior, 

likelihood, and posterior as frequency distribuƟons (see Figure 5.1, a copy of Figure 1.4 and 

Figure 4.1). From Figure 5.1, we can see that the width of the frequency distribuƟon of the 

likelihood is greater than that of the posterior, and also that changes to the widths of the prior 

and likelihood affect not just the precision of the posterior, but also its mean (Figure 5.1B). 

Given that the posterior is the basis for perceptual decisions, the change in mean implies a 

change in perceptual accuracy. This second point is key for the model that we will derive in 

this chapter. As discussed in the General IntroducƟon, in Bayesian models, it is differences in 



the precisions of the sensory inputs that explain the changes in bias that underlie perceptual 

errors, including self-movement compensaƟon errors. 

Figure 5.1: (A) a standard Bayesian model of motion perception. (B) the same Bayesian 
model but with more noise in the sensory evidence (wider likelihood distribution). This causes 
a shift in the posterior, towards the prior, as denoted by the arrow. 

 

5.1 – DerivaƟon 

This derivaƟon takes many of its equaƟons and ideas from the work of Freeman et al. 

(2010). They provided a derivaƟon of a Bayesian model that they used to explain the Aubert-

Fleischl phenomenon (Aubert, 1887; Fleischl, 1882), an example of a self-movement 

compensaƟon error. They fit the Bayesian model to their behavioural data which not only 

confirmed the existence of the Aubert-Fleischl phenomenon in the context of their sƟmuli, 

but also showed that parƟcipants’ behavioural data were more precise when interpreƟng the 

movement of objects that were presented while their eyes were staƟonary, than objects that 

they pursued with their eyes. Freeman et al. used a standard Bayesian framework whereby 

differences in the precision of the sensory inputs explain changes in perceived speed (e.g., 

Ascher & Grzywacz, 2000; Moscatelli et al., 2019; Powell et al., 2016; Senna et al., 2015; Weiss 

& Adelson, 1998). These changes in perceived speed are thought to be caused by the existence 



of a universal prior for object movement that is a slow-speed prior (Stocker & Simoncelli, 

2006; Weiss & Adelson, 1998), due to all of our experience with slow or not moving objects 

(Weiss et al., 2002). This slow-speed prior biases any sensory inputs that are noisy, so that 

there is a greater shiŌ towards slow-moƟon for these inputs. In the context of Bayesian 

models of movement percepƟon: the less precise the sƟmulus, the slower it appears to move 

(Figure 5.1). In Freeman et al.’s Bayesian model, two Bayesian esƟmates of moƟon were used. 

These measurements were of the relaƟve moƟon between the sƟmulus and a background, 

when the eyes were staƟonary, and the moƟon of the pursuit target, when the parƟcipants 

pursued it. In their experiment, with accurate eye movements in each condiƟon, these relaƟve 

and pursuit target moƟons were equivalent to the moƟon in the perceptual image and the 

self-movement of the eye respecƟvely. These separate Bayesian measurements can explain 

self-movement compensaƟon errors, as the less precise sensory informaƟon during self-

movement would lead to an underesƟmaƟon of pursuit speed, compared to the esƟmate of 

relaƟve moƟon. Here, a similar Bayesian model will be derived but for our two-phase 

paradigm. This model will be tested later in the chapter by fiƫng it to the data from Chapter 

4 and comparing the goodness of fit to the psychometric funcƟons derived in Chapter 2. 

Each phase of the paradigm used throughout this thesis is made up of multiple two-

interval forced choice (2IFC) trials and each interval contains a participants’ measure of either 

their own movement, or the movement of a stimulus. In Bayesian models it is assumed that 

each of these measurements must be a combination of sensory evidence denoting the speed 

of the stimulus and a prior expectation based on all previous perception. This Bayesian 

combination is simply a multiplication of two distributions, so it is possible to calculate the 

mean and variance of the result (S) from the mean and variance of the likelihood, (L) and prior 

(P). AdapƟng the equaƟons from Ma et al. (2006), the mean and variance of S can be wriƩen 

as: 
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As menƟoned above, objects are typically at rest, so 


= 0 (Stocker & Simoncelli, 

2006; Weiss & Adelson, 1998; Weiss et al., 2002). Hence EquaƟon 5.1 reduces to: 
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 (5.3) 

EquaƟons 5.2 and 5.3 are relevant for one instance of a Bayesian measurement (e.g., 

measuring the moƟon in the non-image signal), however throughout our paradigm, 

parƟcipants are simultaneously expected to measure the moƟon in the image and non-image 

signal, and they are expected to do this across two separate intervals in each trial, and mulƟple 

trials per phase. Across these mulƟple trials, the sensory evidence will vary stochasƟcally due 

to internal and external noise. The variance of the likelihood, 
ଶ , can be thought of as an 

internal and an external component, 𝜎௧
ଶ + 𝜎௫௧

ଶ  . The internal component represents the 

intrinsic variability of the observer’s measurement of the sƟmulus, including the noise in the 

sensory informaƟon and also the noise in the observer’s interpretaƟon of that informaƟon 

(e.g., noise in the neuron firing rates), whereas the external component represents the 

variability of the sensory evidence across trials. Even if the same sƟmulus is presented on 

every trial, so the sensory evidence is constant across trials, the likelihood varies stochasƟcally 

across trials due to the observer’s interpretaƟon of the informaƟon, meaning that, instead of 

one single likelihood with a mean 

 and variance 𝜎௧

ଶ + 𝜎௫௧
ଶ  , the likelihood across mulƟple 

trials becomes a Gaussian distribuƟon of likelihoods, with mean 

 and variance 𝜎௧

ଶ ′ + 𝜎௫௧
ଶ . 

Note that, in this case, because the sƟmuli are the same across trials, 𝜎௫௧
ଶ  remains constant. 

Now we can describe 
ௌ

 with mean and variance as in equaƟons 5.4 and 5.5 (Freeman et al., 

2010; Stocker & Simoncelli, 2006). This mean and variance come from the fundamental 

principles of expected value and variance. When a distribuƟon is mulƟplied by a constant, its 

expected value is also mulƟplied by the constant (E(𝑟𝑋) = 𝑟𝐸(𝑋)), and its variance is 

mulƟplied by the square of the constant (𝑉𝑎𝑟(𝑟𝑋) = 𝑟ଶ𝑉𝑎𝑟(𝑋)). Using this, and the other 

fundamental principle that variance is unaffected by the addition of a constant 



(𝑉𝑎𝑟(𝑋 + 𝑎) = 𝑉𝑎𝑟(𝑋)), we can calculate the expected value for the mean and the variance 

as: 
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 (5.5) 
We uƟlise a typical assumpƟon alongside the method of constant sƟmuli, that the 

internal variability is constant across each of the levels of our sƟmulus.  

In our paradigm, every interval is made up of two Bayesian measurements performed 

simultaneously, one measurement of the non-image signal (which describes the head 

movement), and one measurement of the image motion. In each interval, one of these 

measurements is dependent on the head movement that is generated for that trial. These 

head movements vary across trials, meaning that the stimulus is not the same on every trial. 

Instead, the stimuli that are presented in each trial form a Gaussian distribution, with mean 




 and variance 𝜎
ଶ . This causes an additional source of noise not accounted for by other 

psychophysical methodologies that scale stimuli based on head movements (Serafin et al., 

2013; Steinicke et al., 2009). This source of noise was discussed in more detail in Chapter 2. 

Assuming that the observer has no bias, 


= 


 , therefore: 
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As this Gaussian distribution is independent of the distribution of internal variability 

across time, the variances of these distributions will add over multiple presentations of that 

interval, leaving the mean of the posterior the same, but changing its variance. Again, this 

mean and variance come from the fundamental principles. 
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 (5.7) 
As each interval of our paradigm is a simultaneous combination of a non-image signal 

and an image signal measurement, we need to combine two posteriors together to evaluate 

the interval as a whole. While one of the measurements in each interval is dependent on the 

head movement for that trial, the other measurement has 


= 0 . This is because the image 

is matched to the head rotaƟon during the head-moving intervals, and the head is staƟonary 

during the head-staƟonary intervals. From Weber’s law, we assume that, as the magnitude of 

a measurement approaches 0, its variance also approaches 0, so we discount the 

measurement with 


= 0  enƟrely when interpreƟng each interval of our paradigm. Note 

that it was found in Chapter 3 that the auditory image signal did not follow Weber’s law. It is 

noted in Chapter 2, however, that there may be contribuƟng components to the informaƟon 

in the head-moving interval that we are able to obtain a precision measurement of that are 

not non-image signals, including informaƟon due to the vesƟbulo-ocular reflex (Barnes, 1988) 

and inhibitory pursuit signals (Bedell et al., 1989). In the same way, variability of the image 

signal, despite its magnitude being zero, is another potenƟal component of the combined 

measurement of precision that we are able to obtain that we term the “non-image” signal in 

this thesis. In this derivaƟon, this variance is contained within the subsequent 
ଶ  term. 

For the first interval of Phase 1 (1.1), the stimulus speeds are equivalent to the head 

movement speeds, such that 


= 
ு

 and 𝜎
ଶ = 𝜎ு

ଶ  . As this is a head movement interval, the 

measurement that has 


≠ 0  is of a non-image signal, so ௧
ଶ ′ is replaced with 

ଶ  . 


(ଵ,ଵ)

=


ு


ଶ

𝜎
ଶ + 𝜎௫௧

ଶ + 


ଶ  

 (5.8) 

𝜎(ଵ,ଵ)
ଶ = (𝜎

ଶ+𝜎ு
ଶ) ቆ

𝜎
ଶ

𝜎
ଶ+𝜎௫௧

ଶ + 𝜎
ଶቇ

ଶ

 

 (5.9) 



For the second interval of Phase 1 (1.2), the stimulus speeds are equivalent to the 

head movement speeds scaled by a multiplicative gain factor, 𝑔, such that 


= 𝑔
ு

 . As each 

individual stimulus was multiplied by the same gain factor, the variance of this set of factors 

is scaled by 𝑔ଶ , such that 𝜎
ଶ = 𝑔ଶ𝜎ு

ଶ  . This is a head stationary interval, so ௧
ଶ ′ is replaced 

with 
ଶ . 
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For the first interval of Phase 2 (2.1), the stimulus speeds are equivalent to the head 

movement speeds scaled by the bias, or Point of Subjective Equality, from Phase 1, 𝑏, 

multiplied by a small scaling factor, 𝛼, to account for the bias related to the PSE, such that 
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For the second interval of Phase 2 (2.2), the stimulus speeds are again equivalent to 

the head movement speeds scaled by a gain factor, g, such that 


= 𝑔
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This is another head stationary interval, so ௧
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 (5.15) 
From standard signal detection theory (e.g., Jones, 2016), we assume that during our 

2IFC task, participants utilise an internal decision variable, 𝑑, to determine which of the 

intervals moved more. This decision variable depends on the difference between the 

perceived motion in each interval and can therefore be thought of as a subtraction of the 

second interval from the first. We can calculate the mean and variance of the decision variable 

for each of the phases as follows. Due to the scaling of the head movements, certain 

components of the variance are perfectly correlated (as they have 𝜎ு
ଶ  as a factor). For these 

components, the standard deviations of these components subtract (𝑉𝑎𝑟(𝑋 − 𝑌) =

ቀඥ𝑉𝑎𝑟(𝑋) − ඥ𝑉𝑎𝑟(𝑌)ቁ
ଶ

). The other, independent components of the variance do add 

(𝑉𝑎𝑟(𝑋 − 𝑌) = 𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟(𝑌)) and the mean of the resultant distribution is equal to the 

difference between the means of the intervals (E(𝑋 − 𝑌) = 𝐸(𝑋) − 𝐸(𝑌)).  Using these 

principles, the mean and variance of the decision variable for Phase 1 can be written as: 
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And for Phase 2:  
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In order to model the proportion of trials where a participant will perceive the second 

interval as faster than the first, we can look at the proportion of trials where 𝑑 > 0. From 

standard signal detection theory, we state the equation for 𝑑ᇱ, which then allows us to 

calculate the proportion of trials where a participant perceives 
ଶ
 , the mean of the second 

interval, as faster than 
ଵ
. 

𝑑ᇱ =
𝜇ௗ

𝜎ௗ
 

 (5.20) 

𝑃൫
ଶ

> 
ଵ

൯ =  Φ(𝑑′) 

 (5.21) 

These equations give us models that we can fit to our psychometric data for each 

phase where the multiplicative gain value of the second interval is represented along the x 

axis, with the proportion of times that the second interval was selected as faster than the 

first, along the y axis. Using our data, we can fix the parameters 
ு

 and 𝜎ு
ଶ, by fitting a normal 

distribution to the head speeds that were used by the participant. We can also fix the 

parameter 𝑏, by finding the PSE of the psychometric function of the first phase. This leaves us 

with the free parameters of 𝜎
ଶ, 𝜎

ଶ, 𝜎௫௧
ଶ   and 𝜎

ଶ. The full equations for Phases 1 and 2 can be 

found in the Appendix of this chapter, with versions that are most similar to the ones in this 

text and that are fully simplified. Note that Phase 3 is a replica of Phase 2 but with the value 

of 𝑏 set to 1. Utilising our paradigm, we can measure the precision of the non-image signal 

(𝜎
ଶ), and by including the third phase mentioned in Chapter 4, we are able to measure the 

precision of the image motion signal (𝜎
ଶ). These values can also be fitted with this Bayesian 

model, so a comparison between the outputs of the paradigm and this model can be made. 

In each method, psychometric functions are fit to behavioural data, which enables us to 

compare the suitability of each model, by comparing goodness of fit measures. These 

comparisons will be made in the next section. 



5.2 – Fiƫng Procedure 

Like in the Appendix of Chapter 2, I will fit psychometric functions to our behavioural 

data based on the formulae in the Appendix of this chapter. The equation derived for Phase 

2 (and 3) using the Bayesian model is equivalent to the equation used in Chapter 2 (once 

simplified, see Appendix), because the influence of the prior is the same in the two intervals 

and, so, cancels out (a formal demonstration of this is provided by Powell et al., 2016). The 

motion estimates are only based on image signals in Phases 2 and 3, meaning that these 

phases are standard speed discrimination experiments. As this is the case, the value of 𝜎
ଶ 

from the previous Phase 2 analysis was used, alongside the data for the head movements 

which defined 
ு

 and 𝜎ு
ଶ. The remaining variables (𝜎

ଶ, 𝜎
ଶ, 𝜎௫௧

ଶ ) were free to vary in the fitting 

routine which now only features the equation for Phase 1. To avoid fitting local minima, each 

parameter was cycled through a search space of 20 start values and the best fit was chosen. 



This yielded 203 (8000) separate cycles of the fitting routine. A MatLab function for this fitting 

procedure can be found in the Thesis Appendix (“BayesianPh1Fit”). 

Non-Image Signal Variance 

Using this fiƫng procedure on the behavioural data from Chapter 4 allows direct 

comparison between the values for the precision of the non-image signal that are produced 

by the Bayesian model, and the psychometric model developed in Chapter 2. In Figure 5.2, 

the difference between the non-image and image signal precisions (non-image signal 

precision measurement minus image signal precision measurement) is ploƩed for both the 

psychometric model that was developed in Chapter 2 (blue bars) and the Bayesian model that 

was developed in this chapter (yellow bars). This analysis was completed for the auditory 

(solid bars) and visual (striped bars) versions. An ANOVA was conducted on this difference 

data which showed no significant interacƟon between modality and model (F(1,20) = 2.049, p 

= 0.168, NS) and no significant main effect of modality (p = 0.564, NS), but did show a 

significant main effect of model (p = 0.02).  



Figure 5.2: the difference between the precision of the non-image and image signal 
(positive value means that the non-image signal is less precise than the image signal) for the 
auditory (solid bars) and visual (striped bars) versions of the experiment presented in Chapter 
4. Presented are the two analyses, the psychometric model that was proposed in Chapter 2 
(blue) and the Bayesian model that was proposed in this chapter (yellow). Error bars represent 
±1SE. 

It is clearly the case that the Bayesian analysis produces signal precisions such that the 

non-image signal is less precise than the image signal in both modaliƟes (posiƟve difference 

in Figure 5.2), while the psychometric model produces differences in the other direcƟon. It 

would be impossible for the Bayesian model to generate the appropriate bias that has been 

seen in the previous chapters (such that object movement appears to be slower during self-

movement) without the difference that is shown here. As discussed previously, if the non-

image signal was less precise than the image signal it would be influenced more by the slow-

speed prior and be perceived as slower, explaining the bias. While it was found with the 

psychometric model that this was not the case in previous chapters, providing evidence 

against the Bayesian model, here the Bayesian model returns values that appear to show that 

the non-image signal is less precise than the image signal. 

Goodness Of Fit 

Figure 5.3 shows the mean and standard error of the Deviance of the fits. Deviance is 

the recommended goodness-of-fit measure for psychometric funcƟons (Wichmann & Hill, 

2001). It is clear that the deviance of the Bayesian model is greater than the deviance of the 

psychometric model. This is a staƟsƟcally significant difference (t(67) = -3.754, p < 0.001) and 

it is likely that this addiƟonal deviance is due to the non-image signal being less precise than 

the image signal in the Bayesian fits. The addiƟonal noise that is added to the non-image signal 

in the Bayes model allows the model to fit the right bias for the dataset, however it also has 

the effect of adding addiƟonal noise to the psychometric funcƟon, causing a shallower 

funcƟon that is a less good fit to the behavioural data (e.g., Figure 5.4). As the fits to the 

behavioural data are significantly less good for the Bayesian model, it is unlikely that the value 

for the precision of the non-image signal that the model returns is a good indicator of the true 

precision of the non-image signal. 



Figure 5.3: the mean deviance of the psychometric functions fitted to the behavioural 
data for the psychometric (blue) and Bayes (yellow) models. Greater deviance means a worse 
fit. Error bars represent ±1SE. 

Figure 5.4: an example of behavioural data (circles) and the fits of the psychometric 
(blue) and Bayes (yellow) models. The Bayes model fit is shallower and has more deviance 
(Psychometric model fit deviance = 3.75; Bayes model fit deviance = 4.52). 



5.3 – Summary 

This chapter has shown that it is possible to derive a standard Bayesian model that 

accounts for the external variance that is introduced when sƟmuli are based on parƟcipant 

movements that are variable across trials. It was also shown here, though, that this Bayesian 

model is not as good at fiƫng the behavioural data in this thesis as the psychometric model 

that was derived in Chapter 2. This is likely to be due to the requirement of the standard 

Bayesian model for the non-image signal to be less precise than the image signal if self-

movement compensaƟon errors are to be explained, and the fact that this is not likely to be 

the case in reality, as shown in Chapters 3 and 4. 

The next chapter will contain an invesƟgaƟon into a different form of compensaƟon, 

namely speed constancy as a funcƟon of the distance between an observer and an object. 

This has been invesƟgated many Ɵmes in vision but, to the author’s knowledge, has not yet 

been invesƟgated in the auditory modality. Speed constancy is an important form of 

compensaƟon for the experiments already presented in this thesis, though it has not been the 

focus, as all of the sƟmuli have been presented at the same physical distance from the 

observer in each experiment. 

5.4 – Appendix 

Most similar to equations 5.16-5.19 in the main text: 
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Investigating Auditory Speed Constancy 
6.0 – Preface 

The experiments presented in this chapter were conducted as part of an Experimental 

Psychology Society (EPS) Study Visit Grant. I attended Ulm University under the supervision 

of Prof. Marc Ernst for a 12-week placement. I would like to extend my thanks to the incredibly 

supportive team that I found there. 

This chapter contains a departure from the investigations in Chapters 2-5. Whereas 

those chapters investigated the compensation for self-movement that we are able to perform 

when interpreting object movement, this chapter will instead focus on the compensation for 

distance that we are able to perform when interpreting object movement. The experiments 

presented in this chapter were conducted with stationary participants, so no compensation 

for self-movement was needed. This investigation was completed with auditory stimuli only 

so it focuses on distance perception in audition and provides a first look at compensation for 

distance during auditory object movement perception. 

6.1 - IntroducƟon 

As highlighted throughout this thesis, movement perception can be completed 

through the summation of an image signal and a non-image signal that represent the motion 

in the image and our self-movement. This could potentially mean that interpreting image 

motion in the absence of self-movement is made easier because one of these components is 

not present. However, the image motion is in an angular form because the motion is relative 

to the receptor. If an observer relied on image motion alone, they would find it difficult to 

differentiate between a fast moving object that is further away and a slower moving object 

that is nearer. In order to determine the 3D movement of an object in space, then, the 

observer needs a measurement of the distance between themselves and the object. In 

keeping with the overarching theme of this thesis, the use of this distance information to 

interpret the image motion is a form of compensation, as we compensate for the distance 

between us and objects in the world. In the vision literature, this compensation has been 

referred to as speed constancy (e.g., Brown, 1931; Epstein, 1973; Rock et al., 1968; Wallach, 



1939) or velocity constancy (e.g., Distler et al., 2000; McKee & Welch, 1989; Zohary & Sittig, 

1993). 

Visual Depth Cues 

Measuring the distance between ourselves and objects is fundamental to a number of 

perceptual judgements. Alongside interpreting the movement of objects, we use these 

distance measurements when estimating the size, and location, of objects. For the visual 

system, this can be achieved using many different depth cues, which fall into three main 

categories: monocular, binocular, and active cues. Monocular cues are present in single two-

dimensional images, and include occlusion, height in the visual field, image size, texture 

gradients and image blur. Combining two 2-D images that are highly overlapping creates our 

binocular vision. The main binocular cue to depth is binocular disparity which is where the 

images from each eye differ slightly. Due to this, objects that are nearer to us have a greater 

visual angle than objects that are further away, meaning that the images for each eye become 

more disparate for nearer objects and are more similar for further objects. Binocular disparity 

is often thought of as the main cue to depth, however the fact that depth perception is still 

possible with only one eye is evidence that it is certainly not the only depth cue. These 

monocular and binocular depth cues are passively available, whereas others involve active 

movement. While these movements can be as small as changing the tension of the muscles 

controlling the lens of the eye, they also include movements of the eye or head. 

Accommodation is the ability to control the tension of the muscles that control the lens in 

order to focus an image onto the retina (Watt et al., 2005). The amount of accommodation 

that is necessary depends on the distance to an object, hence this active tensing of muscles 

can be used as a depth cue. As noted in the General Introduction, self-movement causes 

unique reafferent motion profiles in the images that our eyes obtain. In Figure 6.1, a copy of 

Figure 1.3, it is clear that translational self-movement causes a different motion profile than 

rotational self-movement. During translational self-movement, stationary objects that are at 

different distances from an observer will generate different motion in the resulting image 

(Figure 6.1A). Differences in the motion of objects in the image during translational self-

movement can be used as a cue to the distance to those objects. This cue is known as motion 

parallax. 



Figure 6.1: (A) the motion in the image is inversely proportional to the distance from the 
observer during horizontal translation of the observer. (B) the motion in the image is the same 
irrespective of the distance from the observer during rotation of the observer 

 

While it is important to note the many different depth cues, distance measurements 

will be thought of as one composite signal that combines all of the available depth cues in this 

chapter. This is analogous to the way that the non-image signal was used to refer to a 

combination of all of the cues that we use to determine our self-movement, excluding image 

cues, throughout the rest of this thesis. 

Visual Speed Constancy 

As mentioned previously, speed constancy is the ability to compensate for the 

distance between ourselves and an object when we interpret the motion of that object in 3-

D space. Speed constancy is almost complete in the visual system (Brown, 1931; Epstein, 

1973; Rock et al., 1968), however, the process used to achieve speed constancy has been 

debated. Throughout this thesis, I have investigated non-image and image signals as it has 

been the case that a summation of these signals is the only appropriate method for self-

movement compensation in the experiments that I have presented so far. In a similar way, it 

may be the case that a measurement of image motion and a measurement of object distance 

are both used in an equation to return perceived object movement. Because of the geometry 

of this form of compensation, the relevant equation is presented in Equation 6.1. It may not 

be the case, though, that this is the only appropriate method for speed constancy in the 

experiments presented here. 



𝑂𝑏𝑗𝑒𝑐𝑡 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = tan(𝐼𝑚𝑎𝑔𝑒 𝑀𝑜𝑡𝑖𝑜𝑛) ∗ 𝑂𝑏𝑗𝑒𝑐𝑡 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

 (6.1) 

In a commentary, Wallach (1939) proposed that the speed constancy described earlier 

by Brown (1931) was similar to another effect that Brown also described: the transposition 

effect. The transposition principle states that when two moving systems (containing multiple 

objects) of different physical sizes are presented to a participant at the same distance, the 

larger system appears to move slower than the smaller one. Brown’s experiments presenting 

this principle involved participants matching the speed of a test system to a standard system, 

and found that the larger test system moved at twice the speed of the smaller standard 

system at the Point of Subjective Equality (PSE). Wallach pointed out that there is no 

difference between the retinal size of a system that is larger and also further from the 

observer than a smaller, closer system. He claimed that it follows that, no matter whether it 

is the physical size or the distance to the systems that differs, the perceived speed would 

differ, because the retinal size is different. Wallach’s claim was that Brown’s transposition 

principle is not confined to systems that change in physical size, rather, the difference in 

perceived speed occurs due to differences in retinal size. 

If differences in retinal size, instead of distance to the object, are used to determine 

the speed of an object, it may also be the case that retinal size is used to determine other 

properties of an object that are otherwise conflated by distance. As pointed out by Wallach, 

the retinal size of a larger object that is farther from the observer, and a smaller object that 

is closer to the observer, are equivalent. Here, the physical size of the objects differ, but this 

is difficult to know without measurement of the distance to the objects. Interpreting the sizes 

of these objects correctly is an analogous form of compensation to speed constancy, named 

size constancy, and it has been shown by Rock et al. (1968) that size and speed constancy 

both depart from reality by the same amount and are predictable by one another. This 

appears to link both speed and size constancy through retinal size changes. 

Other researchers have argued that size and speed constancy may not be as linked as 

Rock et al. proposed. McKee and Welch (1989) showed that speed constancy may not be as 

complete as size constancy. The stimuli in their experiment were lines presented on two CRT 

monitors, with one image presented to each eye. This allowed participants to use binocular 



disparity as a depth cue, and allowed the experimenters to manipulate this cue. Participants 

could use this cue to estimate distance reasonably well, despite there being no differences in 

retinal size across their stimuli. This suggests that retinal size is not used alone to perform 

both speed and size constancy. 

McKee and Welch (1989) went on to suggest that the transposition effect may have a 

more direct link to speed constancy. This idea goes back to the transposition principle and 

states that it is key that the difference between the sizes of the systems is quantifiable. It was 

suggested that the size of each system with respect to an object of known (or assumed) size 

was the reason for the differences in their perceived speeds. In this case, large objects relative 

to the object of known size appear slower than smaller objects on the same scale. This 

explanation was supported by a further experiment where the participants’ physical distance 

to the stimulus was altered, and the accuracy of speed constancy improved. Similar findings 

were reported by Zohary and Sittig (1993) who take terminology from Epstein (1978) and 

discuss two algorithms, distance calibration and relative displacement. They state that 

distance calibration (the compensation procedure outlined in Equation 6.1) can lead to 

velocity constancy if distance measurements are accurate, but that distance measurements 

may be unnecessary, as the relative sizes of objects are enough for velocity constancy, 

through the transposition effect. In naturally occurring situations, there should be no 

difference between the outcomes of the two processes. 

Another explanation for the difference in speed constancy in the studies by McKee 

and Welch (1989) and Zohary and Sittig (1993), and previous investigations into speed 

constancy, is the number and quality of the available depth cues. McKee and Welch admit 

that the only cue to distance in their experiments was binocular disparity, while Zohary and 

Sittig’s only quantification of the depth perception of their participants shows that the 

perceived distances were not close to veridical. In experiments by Distler et al. (2000), a VR 

(Virtual Reality) environment was used to measure speed constancy with different numbers 

of depth cues available. The cues included or excluded were: perspective, size, texture, 

viewing height, disparity, and motion parallax. It was found that speed constancy was 

apparent when all of these cues were present but became less apparent for situations where 

fewer cues were available. It could be the case then, that some of these depth cues, despite 

giving a sufficient sensation of distance, may not be enough to support speed constancy, 



where additional cues are needed. In naturally occurring scenarios, these depth cues are all 

available and speed constancy is almost complete. 

Auditory depth cues 

In the auditory system, information about the distance to a sound source is limited to 

the intensity, reverberation and spectral content of sounds, along with an auditory motion 

parallax cue, during self-movement. Other localisation cues such as the interaural time delay 

(ITD) and interaural level difference (ILD) have been identified as possible distance cues 

(Coleman, 1963; Hirsch, 1968), however, there is some debate as to whether these cues can 

be used, as they only vary by very small amounts for sound sources at different distances but 

the same angular localisation. Greene (1968) mathematically simulated almost optimal 

listening conditions and still found that depth measurements relying on these cues alone 

would be likely to be incorrect by a factor of nearly half. These theoretical limitations were 

confirmed by Molino (1973) who disputed the arithmetic of Greene, but also found that their 

own calculations did not support participants’ use of the ITD and ILD cues for depth 

perception. They presented stationary sounds at different distances from participants in a 

straight line, calibrated with inverse-square law so that their intensities matched. Their 

participants were unable to reliably determine the distance to each sound, suggesting that 

the ITD and ILD cues are not sufficient to determine the distance between a listener and a 

sound source. 

A much studied auditory cue to depth is intensity, which decreases as the distance 

between a listener and a sound source increases (e.g., Ashmead et al., 1990; Blauert, 1997; 

Gamble, 1909; Steinhauser, 1879; Stevens & Guirao, 1962; Thompson, 1882; von Békésy, 

1949; Zahorik et al., 2005). The inverse-square law is often cited to describe the decrease in 

intensity as distance increases (Equation 6.2, where I is the intensity of the stimulus and R is 

the distance between the observer and the sound source). This is because the power of a 

stimulus follows inverse square law, meaning that if the stimulus intensity is measured in 

decibels (dB; a unit representing an intensity ratio), the inverse square law holds. Note that if 



stimulus intensity is measured as a pressure change, an inverse first power loss is a better 

descriptor (Coleman, 1963).  

𝐼 =
1

𝑅ଶ
 

 (6.2) 

In reverberant areas, intensity remains a depth cue, but is enhanced by an additional 

cue based on reverberations. The more the primary, or direct, sound dominates reverberation 

in terms of its intensity, the nearer the sound source is perceived (e.g., Bronkhorst & 

Houtgast, 1999; Eargle, 1960; Maxfield, 1931; Steinberg & Snow, 1934). The direct-to-

reverberant energy ratio provides absolute depth information (Mershon & Bowers, 1979; 

Mershon & King, 1975; Zahorik et al., 2005), in contrast to stimulus intensity alone, which 

provides relative cues to distance (e.g., which sound source is closer) without generating 

absolute distance measurements (Mershon & King, 1975). This is not to say that the direct-

to-reverberant energy cue is a direct replacement for the stimulus intensity cue, instead it 

appears that the sensitivity of the direct-to-reverberant energy ratio is quite low, with just-

noticeable differences that correspond to a more than doubling of the auditory distance 

(Zahorik, 2002; Zahorik et al., 2005). 

The spectral content of an auditory stimulus can have one of two effects. For stimuli 

beyond around 15m in distance, the effects of frequency-dependent attenuation impact the 

stimulus, attenuating the lower frequency components of the sound by more than the higher 

frequency components. This leads to lower frequency stimuli being perceived as nearer to 

the observer. For nearby stimuli, within around 3m, the spectral content of the stimulus can 

again be used as a cue, however here the change in spectral content may be linked somewhat 

to the intensity of the stimulus (Blauert, 1997). 

We will not focus much on the auditory version of motion parallax here as participants 

remained stationary on a chinrest throughout the experiments presented in this chapter, 

however all other auditory depth cues were intentionally present, as the laboratory was not 

sound treated. As noted before, the distance measurements in this chapter will be thought 

of as one composite signal including all of the depth cues available. 



Does Hearing Exhibit Speed Constancy? 

While speed constancy has been investigated extensively in the visual system, to the 

knowledge of the author, no investigation has yet been made into speed constancy in the 

auditory system. The findings of Distler et al. (2000) indicate that environments rich in depth 

cues are more likely to support speed constancy than those with reduced cues. For this 

reason, the experiments in this chapter were carried out in a typical indoor environment that 

was not sound treated. A moveable speaker played a broad band sound which provided good 

binaural and monaural cues, while the use of room that was not sound treated enhanced 

reverberation cues. 

In Experiment 1, it needed to be verified that participants were able to make use of 

these cues to judge the distance to the sound source. A cross-modal matching task was used, 

where participants first listened to a static sound source whilst wearing a blindfold. They then 

removed the blindfold and moved the visible, but now silent, speaker to the location they 

thought the source had been played from. In Experiment 2, speed constancy was tested by 

having blindfolded participants compare the perceived speed of two sound sources moving 

at a constant speed along a frontoparallel plane. They were presented sequentially at two 

different depths. Perfect speed constancy would mean that the two stimuli should appear to 

move at the same speed when the linear speed in 3D space matched, as opposed to the 

angular speed relative to the participant. If speed constancy failed and the depth cues were 

ignored, then the perceived speed match would occur when the angular speed was the same, 

not the linear speed. 

6.2 – Experiment 1 – InvesƟgaƟng Auditory Depth PercepƟon 

6.2.1 – Methods 

SƟmuli & Materials 

The stimuli in this experiment were bursts of white noise that were presented via a 

speaker attached to a cable robot that moved with six degrees of freedom (see Figure 6.2). 

The stimuli were stationary and presented at different distances from the participants, who 

were instructed to place their chin on a chin rest to reduce movement. The robot could move 

the speaker 1m in any direction from a central point while participants were positioned with 



the centre of their head 2.21m from that central speaker position. The laboratory was not 

sound treated which allowed reflections and reverberations to be used as depth cues, as they 

would be in a natural setting. The cable robot was made up of eight motors that controlled 

eight cables that attached to a speaker housing unit. The cable runs were designed such that 

the motors could be positioned in a separate room to the speaker, in order to minimise the 

impact of the sound of the motors. A lightweight aluminium frame was bolted to the floor to 

house the cable robot and reduce any extraneous movement (see Figure 6.2). 

 Figure 6.2: Laboratory set-up. 

Procedure 

During a familiarisation phase, participants were instructed to pay attention to the 

distance between themselves and the stimulus that was about to be presented, this will 

subsequently be referred to as the stimulus distance. The speaker was repositioned to the 

nearest and furthest stimulus distances that were to be used in the experimental phase, and 

the auditory stimulus, a burst of white noise, was played. This ensured that the stimuli in the 

subsequent experiments were not novel to the participants, as it has been shown by Coleman 

(1962) that depth perception is poor for novel sounds, and improves when sounds have 

previously been presented to participants. During pilot testing for this experiment, 



participants commented that they were unaware of the minimum and maximum distances 

that the speaker could move to, and this was represented in the results, where participants 

showed a strong tendency towards the centre of the movement area of the speaker. 

Providing the minimum and maximum distance information in the familiarisation phase 

served to provide a scale for participants to determine the distance to the sound source. This 

links to the work of McKee and Welch (1989) and Zohary and Sittig (1993) who claimed that 

the transposition effect also required a scale. 

Participants were then blindfolded before the experimental phase began. In each trial 

in the experimental phase, the speaker moved from a starting position to a stimulus position, 

where a short sound burst was played, and then to an ending position. The participants then 

removed their blindfold and repositioned the speaker, by pressing the left and right buttons 

on a mouse to move the speaker towards or away from them in steps of 0.05m, to where they 

perceived the sound burst to have been played. They then locked in their answer by clicking 

in the scroll wheel of the mouse and refitted their blindfold before the speaker was moved to 

its starting position for the next trial. The stimuli were all presented along the intercept of the 

sagittal and transverse planes of the head and the distances to the stimuli were 1.51, 1.71, 

1.91, 2.11, 2.31, 2.51, 2.71, and 2.91m. The starting and ending positions were randomised 

to ensure that participants could not make a comparative judgement between the stimulus 

distance and the starting or ending position. These positions were always within 0.2m of the 

central position, which was 2.21m from the participant, and along the same axis as the stimuli 

(see Figure 6.3A). Each of the 8 depths was presented to the participant 10 times, making 80 

trials that were presented in a random order. 



Figure 6.3: the starting and ending positions of the speaker were within 0.2m of the central 
position. (A) In experiment 1, along the intercept of the sagittal and transverse planes of the head, (B) 
and in experiment 2, in any direction along the transverse plane. 

 

ParƟcipants 

The nine participants were students or staff at Ulm University (4 female, 5 male). 

Seven participants were naïve to the purposes of the experiment and two were 

experimenters. All participants self-reported normal hearing and vision.  

6.2.2 – Results 

For each participant, a speaker position setting, corresponding to a perceived stimulus 

distance, was calculated for each repetition of the experiment. These were then averaged 

across participants as shown in Figure 6.4. There is clear effect of stimulus distance (F(7,64) = 

27.05, p < 0.001), with multiple comparison tests revealing 19 of the 28 pairwise comparisons 

as significant (Table 6.1). Highlighted in grey in Table 6.1 is the comparison between the two 

distances that were selected as the stimulus distances in the next experiment.  



Figure 6.4: mean perceived stimulus distance as a function of actual stimulus distance. Error 
bars represent ±1SE. 

 

Table 6.1 shows the significance of the Tukey post-hoc tests performed after the ANOVA on 
stimulus distance (* denotes significance at the < 0.05 level and ** denotes significance at the < 0.01 
level). Highlighted in grey is the stimulus distances that were selected for Experiment 2, which have a 
significant difference in perceived distance at the < 0.01 level. 

 

The data also show a slight tendency towards the centre of the distances, with 

underestimation of distance at greater stimulus distance and overestimation of distance at 

shorter stimulus distance. Biases like these have been reported before, for example Gogel 

(1969) showed that participants tended towards a perceived stimulus distance of 2m. Gogel 



called this the specific distance tendency, however, the stimuli in their study were visual. 

Similar findings have been obtained with auditory stimuli (Anderson & Zahorik, 2014; 

Mershon & King, 1975; Zahorik et al., 2005), where the specific distance tendency has been 

shown to depend on the reverberation characteristics of the room, however a specific 

distance tendency of 1.9m was found on average by Zahorik et al. (2005). This aligns with our 

data, which suggest a specific distance tendency somewhere in the region of 2-2.1m 

(perceived distance matches stimulus distance; Figure 6.4).  

The results of Experiment 1 show that the stimulus set-up produced auditory cues that 

were sufficient to support reasonably good depth perception. This allowed us to investigate 

whether auditory movement perception exhibits speed constancy in Experiment 2. This was 

investigated by placing moving sound sources at different distances and having observers 

judge their speed. Perfect speed constancy predicts that the perceived speed of the sound 

sources should be the same when movement is expressed as a linear speed in 3D space as 

opposed to an angular speed subtended at the listener. 

6.3 – Experiment 2 – InvesƟgaƟng Auditory Speed Constancy 

6.3.1 – Methods 

SƟmuli & Materials 

Experiment 2 was completed with the same materials as Experiment 1, however the 

participants remained blindfolded throughout the entire experimental phase. Also differently 

from Experiment 1, the stimuli in Experiment 2 were not stationary. Instead they were 

presented whilst the speaker moved in straight lines parallel to the transverse plane of the 

participants, as shown in Figure 6.5. The stimuli were presented at two distances, a near and 

a far distance (1.71 and 2.71m from the participant). Previously, in Experiment 1, it was clear 

that there was a statistically significant difference between participants’ depth perception at 

these two stimulus distances (grey highlighted box in Table 6.1). The stimulus directions (left 

or right) were randomised. 



Figure 6.5: schematic of the movement of the standard stimuli in Experiment 2. (A) in the 
standard near condition, the standard stimulus was presented along a straight line 1.71m from the 
participant and parallel to the transverse plane of the participant. This standard stimulus moved with 
a velocity of 0.4m/s, leading to a mean angular velocity (the distance of the motion path was 
randomized) of 13.26o/s. (B) in the standard far condition, the standard stimulus was presented along 
a straight line 2.71m from the participant and parallel to the transverse plane of the participant. This 
standard stimulus moved with a velocity of 0.5m/s, leading to a mean angular velocity of 10.50o/s. 

 

Procedure 

As in Experiment 1, Experiment 2 also began with a familiarisation phase. In this phase, 

the fastest (0.75m/s) and slowest (0.15m/s) moving stimuli were presented at both the near 

(1.71m) and far (2.71m) distances, along with the corresponding standard stimuli (explained 

later in this section), so that the participants had a scale for the movement speeds of the 

stimuli in the subsequent experimental phase. 

Participants were then blindfolded before the experimental phase began. Like in 

Experiment 1, starting and ending positions were determined for the speaker that were within 

0.2m of the central position, however in this experiment this random variation was in any 

direction on the transverse plane (see Figure 6.3B). As Experiment 2 employed a two-interval 

forced choice procedure, an intermediary position was selected for the speaker to move to in 



between the two stimulus presentations. For each stimulus presentation, a speed was 

selected for the stimulus (either the standard speed or one of the test speeds) and a random 

duration was also selected. This speed and duration were used to calculate a distance and 

therefore stimulus onset and offset positions were generated. If it was possible to use these 

positions, they were selected, else a new random duration was selected. 

Each trial started when the speaker moved to its start location and then to the first 

stimulus onset position. The stimulus was presented to the participant during the movement 

of the speaker to the first stimulus offset position, then the speaker moved to its intermediary 

position. Next, the speaker moved to the second stimulus onset position and the stimulus was 

presented during the movement of the speaker to the second stimulus offset position. Finally, 

the speaker moved to its ending position and the participant made a judgement about 

whether the first or second stimulus moved faster. The Point of Subjective Equality (PSE), 

where the test and standard stimulus are perceived to move at the same speed is the statistic 

of interest in this experiment, as perfect speed constancy would be achieved if the PSE occurs 

when the standard and test have the same linear speed, whereas no speed constancy would 

be achieved if the PSE occurs when the standard and test have the same angular speed. 

Crucially, the two stimuli were presented one at either of the near (1.71m) and far 

(2.71m) distances from the participant, meaning that stimuli with the same linear speed had 

different angular speeds and vice versa. As the standard stimulus was presented at either of 

these distances, two different speeds of standard stimulus were used. This ensured that the 

linear and angular speeds of the standard stimuli fit within the range of the linear and angular 

speeds of the test stimuli. When the standard was presented at the near distance, it moved 

at 0.4m/s (angular velocity of 13.26°/s, see Figure 6.5A), and when it was presented at the far 

distance, it moved at 0.5m/s (angular velocity of 10.50°/s, see Figure 6.5B). The test stimulus 

always moved at one of 9 velocities (0.15, 0.225, 0.3, 0.375, 0.45, 0.525, 0.6, 0.675, and 

0.75m/s) no matter whether it was presented at the near or far distance (the test and 

standard were always presented at different distances). The order of presentation of the test 

and standard stimuli was randomised. Each of the nine test stimulus speeds was presented 

10 times for each of the two stimulus depths, making 180 trials that were presented in a 

random order. 

The randomisation of the starting, intermediary, and ending positions, along with the 

randomisation of duration and, subsequently, the distance travelled by the stimulus, ensured 



that none of duration, distance, or start and end locations could be measured as a proxy for 

speed. It is to be expected that in this scenario, participants will use the velocity cue to 

determine the motion of the stimulus, however the precision of the motion judgement may 

be decreased (Freeman et al., 2014). 

ParƟcipants 

Seven of the participants that completed Experiment 1 also completed Experiment 2 

(4 female, 3 male). One author was a participant in this experiment. All participants self-

reported normal hearing and vision. 

6.3.2 – Results 

To assess speed constancy, psychometric functions were fit to the data using the 

Palamedes tool box (Prins & Kingdom, 2018) and the PSE was obtained as a measure of the 

speed of the test stimulus that the participants perceived to be equivalent to the speed of the 

standard. Both linear velocity and angular velocity could be used to assess speed constancy, 

here angular velocity was selected for analysis. In the case of angular velocity, a lack of speed 

constancy would be evident if the PSE occurred at the point when the test stimulus had the 

same angular velocity as the standard stimulus. This corresponds to the blue bars in Figure 

6.6A. The angular velocity at the PSE that would represent perfect speed constancy was 

calculated and corresponds to the yellow bars in Figure 6.6A. 



Figure 6.6: (A) predictions of the angular velocity of the test stimulus at the PSE for no speed 
constancy (blue) and perfect speed constancy (yellow) in the standard near and standard far 
conditions. (B) behavioural data showing the angular velocity of the test stimulus at the PSE for each 
participant in each of the standard near and standard far conditions. Each participant is denoted by a 
different symbol and pairs of symbols are connected by lines. Bars represent the mean PSE across 
participants for each condition. 

 

As can be seen in Figure 6.6B, some participants (denoted by a triangle, a plus sign and 

a five-point star) show near perfect speed constancy, while others (denoted by a diamond, a 

square and an asterisk) show almost no speed constancy. In order to test for speed constancy, 

the angular velocities at the PSE were compared between the standard near and standard far 

conditions, as it should be the case that if speed constancy occurs, the angular velocity of the 

PSE in the standard far condition should be greater than in the standard near condition, while 

the opposite should be true if no speed constancy occurs. There was found to be no significant 

difference between the angular velocities at the PSEs in the conditions (t(6) = 0.996, p = 0.358, 

NS), suggesting that speed constancy is somewhere between non-existent and perfect. From 

Figure 6.6B, it is likely that this outcome is due to some participants exhibiting near perfect 

speed constancy and some participants exhibiting no speed constancy. Clearly individual 

differences are important in determining whether speed constancy is present in the auditory 

modality. 



As individuals appeared to exhibit different amounts of speed constancy, the data for 

two individuals from Experiment 1 is presented in Figure 6.7. The symbols refer to the same 

participants as the equivalent symbols in Figure 6.6B, where it can be seen that the triangle 

participant performed almost perfect speed constancy, while the diamond participant 

performed almost no speed constancy. In Figure 6.7, it can be seen that the triangle 

participant showed a more veridical distance perception, while the diamond participant 

strayed from the veridical at the further stimulus distances. It could be the case that this 

difference in the distance perception of these participants caused the difference between 

their speed constancy. 

Figure 6.7: perceived stimulus distance as a function of actual stimulus distance from 
Experiment 1 for the two participants selected after the analysis of Experiment 2, see text for details. 

 

6.4 – Discussion 

This chapter has been an investigation into the presence and extent of auditory speed 

constancy. In the first experiment presented here, participants were able to determine the 

distance between themselves and an auditory stimulus, albeit with some amount of 

departure from veridical. This inaccuracy at the nearer and farther distances aligns with the 

specific distance tendency observed by previous researchers (e.g., Anderson & Zahorik, 2014; 

Gogel, 1969; Gogel & Tietz, 1973; Mershon & King, 1975; Zahorik et al., 2005). Distances that 

were perceived as being statistically significantly different were then used in Experiment 2 to 



present moving stimuli in order to test the extent of participants auditory speed constancy. 

Results suggest that some participants perform almost perfect auditory speed constancy 

while other participants perform no auditory speed constancy. Overall, it appears that some 

auditory speed constancy is present but that the compensation is not perfect. 

Looking at the literature outlined earlier, along with the conclusions of Experiment 2, 

it appears that the speed constancy in the auditory system, if it exists, may be incomplete. 

Previously, it has been shown that without all of the cues that we use to determine the 

distance between ourselves and visual objects, visual speed constancy is incomplete (Distler 

et al., 2000; McKee & Welch, 1989). While there was no attempt to remove any of the 

auditory cues to distance in the experiments presented here, we did find that participants’ 

perception of distance strayed from the veridical. The accuracy of perceived distance was 

investigated for both the visual and auditory modalities by Anderson and Zahorik (2014). They 

found that auditory distance perception was less accurate and less precise than visual 

distance perception. It could therefore be the case that the near perfect speed constancy that 

occurs in the visual modality (Brown, 1931; Epstein, 1973; Rock et al., 1968) requires a highly 

accurate perception of distance that is generated by multiple cues in the visual system, and 

this may not be possible to the same extent in the auditory system. This would explain the 

less-than-perfect speed constancy found in Experiment 2. 

An interesting finding from Experiment 2 was that some participants showed near 

perfect speed constancy while other participants showed nearly no speed constancy. The 

data from Experiment 1 for two participants, one that performed near perfect speed 

constancy and one that performed almost no speed constancy, were presented in Figure 6.7, 

showing that the participant who performed near perfect speed constancy had a more 

veridical distance perception than the participant who performed almost no speed constancy. 

This reinforces the idea that veridical distance perception is a necessary requirement of speed 

constancy. The increased precision of distance perception in vision, compared to audition 

(Anderson & Zahorik, 2014), across participants, is likely to be the cause of the finding that 

speed constancy is consistently nearly perfect in vision but that the same across participant 

consistency is not present in auditory speed constancy. Further investigations into auditory 

speed constancy should take into account the accuracy of individual participants’ distance 

perception when interpreting auditory speed constancy. 



Summary 

This chapter contains a departure from the method of compensation investigated in 

Chapters 2-5. Here, speed constancy, or the compensation for distance that we are able to 

perform during perception of object movement, was investigated. Investigations into visual 

speed constancy are plentiful, however this is not the case for audition. Experiment 1 

showed that participants were able to determine the distance between themselves and 

auditory objects, while Experiment 2 showed that some participants employed auditory 

speed constancy while others did not. Interestingly, it may be the case that the participants 

that were more able to determine the physical distance of the auditory objects were also 

more able to perform speed constancy though more investigation into this is necessary. The 

next chapter will summarize the important discussion points from Chapters 2-5 and this 

chapter in a discussion of what has been gleaned about perceptual compensation for self-

movement and object distance in vision and hearing throughout this thesis. 

  



General Discussion 
7.1 – Summary of Findings 

Throughout this thesis, experiments have been conducted to investigate perceptual 

compensation for self-movement and object distance in vision and hearing. Starting with the 

investigation into compensation for self-movement, in Chapter 2, a novel paradigm was 

introduced that enables the measurement of the precision of a signal encoding self-

movement that combines a number of ‘non-image’ cues but excludes reafferent image 

motion (retinal flow). This combined signal can be used to compensate for the reafferent 

motion that is introduced into the image signal due to self-movement. The paradigm made 

the movement of the objects presented to participants dependent on their own self-

movement via a ‘motion gain’ parameter. This revealed a new source of external noise that 

is not accounted for in standard psychometric function fitting and is based on the trial to trial 

variation in the self-movement. For this reason, we developed a new psychometric function 

fitting procedure to separate the external noise from the variability (i.e. internal noise) of the 

non-image signal itself. Both visual and auditory stimuli were investigated in this experiment, 

with participant-controlled head rotations used as an example of self-movement. Chapter 2 

showed that the non-image signal appears to be less precise when the stimuli are auditory 

than when they are visual. As was speculated in Chapter 2, this may be due to the different 

motion units that auditory, visual, and self-movement perception operate with. The 

measurement of the displacement of an object is typically used in auditory movement 

perception (Carlile & Best, 2002; Freeman et al., 2014), whereas a speed measurement is 

typically used by the visual system (Freeman et al., 2018; Reisbeck & Gegenfurtner, 1999). It 

was speculated that non-image signals either originate in acceleration units (in the vestibular 

system) or speed units (from motor/proprioceptive cues), meaning that there are fewer 

transformations needed to get the image and non-image signals into the same units in the 

visual version of the experiment than the auditory version. This experiment also revealed 

another finding. It appears that there is a consistent bias in compensation for self-movement 

across both the visual and auditory modalities, such that objects appear slower when they 

are linked to self-movement than when the same stimulus passes by a stationary observer. 

This was referred to as a self-movement compensation error throughout this thesis. Other 



notable example of errors of this type include the Filehne illusion (Filehne, 1922) and the 

Aubert-Fleischl phenomenon (Aubert, 1887; Fleischl, 1882). 

In Chapter 3, the same paradigm was used to investigate whether non-image signals 

obey Weber’s law. This required participants to rotate their heads at different average 

speeds, which was achieved using a head rotation speed training session. The paradigm, 

developed in Chapter 2, also enables the measurement of the precision of the image signal 

encoding object movement with no self-movement present. This was used in Chapter 3 to 

compare the precisions of the image and non-image signals by measuring the precision of 

each signal at different speeds. Only auditory stimuli were used in this experiment. 

Participants learned to rotate their heads at roughly equivalent speeds to the target speeds 

of the training sessions. The precisions of the image and non-image signals were calculated 

for each of the average head speeds investigated. Results showed that the auditory image 

signal precision was not affected by head rotation speed, whereas the non-image signal was 

affected by head rotations speed, with faster head rotations causing less precise non-image 

signals. The findings of this experiment corroborate with other relevant investigations into 

Weber’s law in motion perception. It was also clear that the auditory image signal was less 

precise than the non-image signal at all the measured speeds, a finding that cast some doubt 

on the current Bayesian explanations of self-movement compensation errors. As mentioned 

throughout this thesis, a standard Bayesian model needs the difference in precision to be the 

other way round to predict the self-movement compensation error that is found throughout 

Chapters 2-4. Again, the self-movement compensation error appeared to be quite constant 

in Chapter 3, this time within the same modality (audition) but across different speeds. 

Chapter 4 further investigated the finding from Chapter 3 that seems to contradict the 

predictions of the standard Bayesian model by replicating this result, this time across both 

visual and auditory modalities. This was done by introducing a third phase to the paradigm 

that allowed the speeds of the image and non-image signals to match when their precision 

was measured (this is important due to the effects of Weber’s law on the non-image signal). 

It was found in Chapter 4 that the precisions of the image and non-image signals were similar 

and this was the case for both the auditory and visual versions of the experiment. This is not 

a finding that can be explained by a standard Bayesian model. Then, a noise manipulation was 

introduced to create a key test of the Bayesian model in this context. In Bayesian modelling, 



there is an inherent link between the precision and accuracy of perception, with less precise 

sensory evidence causing greater shifts toward the prior. Introducing a dynamic stimulus 

width jitter to the intervals measuring image signal precision should therefore have caused 

the image signal to be less precise and the object movement to be perceived as slower than 

without the jitter. This would, in turn, decrease the self-movement compensation error. The 

dynamic stimulus width jitter was unsuccessful at decreasing the precision of the image signal 

significantly in either the auditory or visual versions of the experiment and the self-movement 

compensation error remained constant when the jitter was added. Overall, Chapter 4 

provided evidence that suggested that the standard Bayesian model needs to be updated to 

include biased sensory evidence, as the non-image signal is not less precise than the image 

signal. 

While it appears, from Chapter 4, that the standard Bayesian model may not be 

appropriate in the experiments presented throughout this thesis, it is still useful to derive a 

standard Bayesian model that can account for the additional external variability, identified in 

Chapter 2, due to the trial-by-trial variability of self-movement. This Bayesian model was 

derived in Chapter 5. The implementation created an opportunity to validate the qualitative 

arguments against the standard Bayesian model that were discussed in previous chapters 

with some quantitative evidence, by comparing the measurements of the precisions of the 

image and non-image signals in the psychometric model used in Chapters 2, 3 and 4, and the 

Bayesian model derived in Chapter 5. This comparison showed that the Bayesian model 

produced measurements of the image and non-image signal precisions which suggested that 

the non-image signal was less precise than the image signal, while the psychometric model 

had previously demonstrated that the image signal was less precise than the non-image 

signal. The goodness of fit of the psychometric functions generated in each case were 

compared and it was clear that the Bayesian model produced a significantly less good fit to 

the behavioural data than the psychometric model. It was speculated that this difference in 

the goodness of fit was due to the difference in the precisions of the signals, with the Bayesian 

model inflating the variability of the non-image signal in order to model the bias in the data. 

This caused the psychometric functions from the Bayesian model to be shallower than the 

ones from the psychometric model, which caused the difference in goodness of fit. 



Finally, Chapter 6 contained an investigation into auditory speed constancy, where we 

compensate for the distance between ourselves and an object when interpreting its 

movement. While speed constancy is well-documented in the visual literature, it had not been 

investigated in the auditory modality. An initial experiment showed that participants were 

able to distinguish between sounds presented at two distances using only auditory cues. 

Then, moving auditory stimuli were presented at two distinguishable distances with their 

movement being compared by participants. If the Point of Subjective Equality (PSE), where 

the participants would perceive two objects to be moving at the same speed, occurred when 

the angular velocities of the stimuli were equivalent, that would suggest that participants 

performed no speed constancy. In contrast, if the linear velocities of the stimuli matched at 

the PSE, then participants were correctly able to compensate for the difference between the 

presentation distances of the two stimuli when interpreting their movement. Overall, the 

data suggested that participants were able to perform some compensation but that the 

compensation was not complete, however, when individual participants were compared, it 

was clear that some participants performed near perfect speed constancy, while others 

performed almost no speed constancy. A link was suggested between the extent of the speed 

constancy performed and the ability of the participants to veridically perceive the distance 

between themselves and the auditory objects in the initial experiment. 

These experiments are all connected by the theme of compensation during movement 

perception. The main finding that trends throughout this thesis is that we make errors during 

compensation. The self-movement compensation error in Chapters 2, 3, and 4 is consistent 

across modality (auditory and visual), across different self-movement speeds, and both with 

and without a dynamic stimulus width jitter, while compensation is not complete during 

auditory speed constancy, in Chapter 6, either. Explaining why these compensation errors 

occur is more complicated than finding them, with evidence from this thesis suggesting that 

the current Bayesian model needs adaptation before it is appropriate in the situation of 

compensating for motion due to self-controlled head rotation. The findings of this thesis also 

create a focus on the external variance that is present during the presentation of stimuli based 

on variable self-movements, with an adapted psychometric function and Bayesian model 

derived to account for this additional variability. 



7.2 – RelaƟon to Previous Work 

It is not a novel finding that self-movement compensation errors exist. These errors 

include the Filehne illusion (Filehne, 1922) and the Aubert-Fleischl phenomenon (Aubert, 

1887; Fleischl, 1882), for example, and have been researched in many different contexts 

including eye movements (e.g., Aubert, 1887; Filehne, 1922; Fleischl, 1882); hand movements 

(Moscatelli et al., 2015); hearing during head rotations (Freeman et al., 2017); and passive 

observer rotation (Garzorz et al., 2018), and translation (Dyde & Harris, 2008). What had not 

been investigated before this thesis is the precisions of the signals used during compensation 

for self-controlled head rotation. Allowing participants to control their own movement 

decreases the amount of experimenter control over the stimulus, inviting the use of 

multiplicative gain values to allow some experimenter control over the movement of the 

stimuli. This method of stimulus manipulation is also not novel as it has been used in the 

Virtual Reality literature (Serafin et al., 2013; Steinicke et al., 2009). Where this thesis 

expanded on that previous work is in the recognition of an external variance source that is 

not accounted for in the standard psychometric function fits of previous studies. This external 

variability, due to the inconsistency of participant movements, should be taken into account 

during all psychometric function fits using stimuli that are based on participant movement. 

This includes when modelling behavioural data with Bayesian models. 

In an investigation into whether the image and non-image signals used to measure 

object movement during self-movement follow Weber’s law, it was found that the non-image 

signal does follow Weber’s law, while the auditory image signal does not. Both of these results 

echo previous findings that suggest that Weber’s law breaks down during auditory motion 

perception at slow speeds (Altman & Viskov, 1977), but holds during passive vestibular 

stimulation (Mallery et al., 2010)and the vestibulo-ocular reflex (Nouri & Karmali, 2018). The 

relevance of these previous works relies on the dependence of the non-image signal on 

vestibular cues, which may or may not be the case. 

In this thesis, all of the experiments were completed in a light-treated laboratory or 

with participants wearing blindfolds, meaning that the participants were unable to use 

reafferent image motion, such as retinal flow, to estimate their self-movement. Reafferent 

information like this is critical to some models of our perception of object movement during 

self-movement, such as the flow parsing hypothesis (e.g., Rushton & Warren, 2005; Warren 



& Rushton, 2008). Also, during head rotations, the only stimuli that were presented to the 

participants moved with their head rotation, further eliminating any image-based cue to head 

rotation. These experiment therefore isolated non-image signals encoding self-movement, 

including vestibular, motor and proprioceptive cues. The paradigm that was developed in 

Chapter 2 enabled the measurement of the precision of the combined non-image signal and 

the image signal during no self-movement. Measuring the precisions of these signals enabled 

the investigation of Bayesian models which allow for the interpretation of biases by assuming 

that accuracy is sacrificed for the sake of precision (e.g., Landy et al., 1995). 

A piece of research central to this thesis is the work of Freeman et al. (2010) who 

investigated the precision and bias of the image and non-image signals during fixation and 

smooth pursuit eye  movements. They proposed a Bayesian model that was adapted, in 

Chapter 5, to account for the paradigm that was used in this thesis. The results of their 

behavioural experiments supported the Bayesian model. They found more noise in the non-

image eye pursuit signal compared to the image signal, and consequent slowing of perceived 

speed during pursuit. While similar slowing of perceived object movement during head 

rotation (a self-movement compensation error) was found throughout this thesis, this was 

not accompanied by a non-image signal that was less precise than the image signal. This 

suggests that the Bayesian model proposed by Freeman et al does not generalise to other 

forms of self-movement. Our research is not the first to investigate the standard Bayesian 

model of motion perception and find a distinct lack of support. Investigations into the 

perceived speed of objects with differing luminance have found evidence that a standard 

Bayesian model with unbiased sensory evidence is unable to explain (Freeman & Powell, 

2022; Hassan & Hammett, 2015). The experiments in Chapters 3 and 4, and the quantitative 

test of the standard Bayesian model at the end of Chapter 5, add to this body of work. 

Finally, when interpreting the results of Chapter 6, to the author’s knowledge, the first 

investigation into auditory speed constancy, it is important to start with the initial 

investigation that determined that participants were able to perceived the difference 

between the distances of auditory objects. The results from this initial experiment matched 

those from previous studies showing a specific distance tendency (e.g., Anderson & Zahorik, 

2014; Gogel, 1969; Gogel & Tietz, 1973; Mershon & King, 1975; Zahorik et al., 2005). This 

specific distance tendency was at an object distance of around 2-2.1m where participants’ 



distance perception was nearly veridical. At closer and farther object distances, the perceived 

distance tended towards 2-2.1m. This finding has been shown to be more prominent in 

auditory distance perception than visual distance perception (Anderson & Zahorik, 2014), 

which may have interesting consequences for the experiments in Chapter 2-4. In the 

experiments in those chapters, the stimuli, auditory and visual, were presented at a distance 

of 1.2m from the participants. Despite these objects being presented at the same physical 

distance from the participants, it is likely that the perceived object distances of the auditory 

and visual objects were not the same. This speculation is supported by the findings of 

Anderson and Zahorik (2014), who fit functions of the perceived distance with respect to the 

target distance for the auditory, visual and audiovisual versions of their experiment. They 

include values for the fitted parameters, which allows us to calculate that at an object 

distance of 1.2m, the participants perceived the auditory stimulus to be at 1.61m (1.44 ∗

1.2.ଶ = 1.61) and the visual stimulus to be at 1.12m (0.94 ∗ 1.2.ଽହ = 1.12). Assuming that 

this was the case in our experiments, this difference in apparent object distance could explain 

the difference between the precisions of the non-image signals in the auditory and visual 

modalities.  

It was found in Chapter 2, and replicated in Chapter 4, that the non-image signal was 

less precise in the auditory version of the experiment, than the visual. It was speculated that 

this may be due to the number of conversions that need to be implemented to allow non-

image, and visual or auditory image signals to be compared. However, this potential 

difference in object distance perception offers another interesting explanation. Assuming 

that the precision of our motion perception is affected by perceived speed (rather than actual 

speed), which has been the finding of studies investigated adapted visual motion perception 

(Bex et al., 1999; Clifford & Wenderoth, 1999), it could be the case that the difference in 

precision between the non-image signals in the auditory and visual versions of the experiment 

is due to a difference in the perceived speeds of the auditory and visual objects in the 

experiments (due to Weber’s law, which was found to be relevant for non-image signals in 

Chapter 3). This difference in perceived speed could arise from the difference in perceived 

distance, due to speed constancy. If an auditory object is perceived to be further away from 

an observer than a visual object, and if the movement (and image motion) of the two objects 

is equivalent, the perceived 3D speed in the world of the auditory object would be greater 



than the perceived 3D speed of the visual object. Here, the finding of, albeit incomplete, 

auditory speed constancy in Chapter 6, along with the findings of Anderson and Zahorik 

(2014), with the auditory version replicated in Chapter 6, offer a potential explanation for the 

finding in Chapter 2 (replicated in Chapter 4) that the non-image signal is less precise in the 

auditory version of the paradigm than the visual version. 

The results of the second experiment in Chapter 6 suggest that some auditory speed 

constancy is present, with differences between the speed constancy employed by certain 

participants, and those differences being linked with the accuracy of perceived object 

distance. This is in contrast with visual speed constancy, that is almost complete (Brown, 

1931; Epstein, 1973; Rock et al., 1968). It appears likely that the completeness of speed 

constancy is dependent on the accuracy of distance perception, with marked changes in visual 

speed constancy when depth cues are limited (Distler et al., 2000; McKee & Welch, 1989), 

alongside the suggestion in Chapter 6 that participants who had more accurate distance 

perception performed more complete speed constancy. This may explain why auditory 

velocity constancy is not as complete, or as consistent, as visual velocity constancy as visual 

distance perception is more accurate and precise than auditory distance perception 

(Anderson & Zahorik, 2014). 

7.3 – Future DirecƟons 

Potential investigations that may stem from the work presented here on the precision 

of image and non-image signals during compensation for self-movement include investigating 

different types of self-movement. As mentioned earlier, the extent of self-movement 

compensation errors and the precisions of the signals involved have been investigated in 

difference movement contexts already (e.g., Aubert, 1887; Dyde & Harris, 2008; Filehne, 

1922; Fleischl, 1882; Freeman et al., 2017; Garzorz et al., 2018; Moscatelli et al., 2015), 

however, the paradigm used in Chapter 2-4 of this thesis gives a new opportunity to 

investigate the precision of our non-image and image signals during self-controlled self-

movements, allowing for future research to utilise different types of self-movement (e.g., 

walking). This paradigm and, importantly, the psychometric model that comes with it, can be 

used in conjunction with VR to investigate the perception of object and self-movement in 

even more different contexts. From the results presented in this thesis, predictions for these 



experiments would include: the modality of the stimuli used may have an effect on the 

measurement of the precision of the non-image signal; the non-image signal should follow 

Weber’s law, meaning that its precision decreases with increasing magnitude; and standard 

Bayesian models may not be able to account for the biases and precisions found. 

In the Bayesian model that was derived in this thesis, the external variability due to 

stimuli being driven by the variable self-movements of participants was accounted for. While 

the Bayesian model provided a less good fit than the psychometric model (derived in Chapter 

2), its derivation may prove useful for future research investigating Bayesian behaviour and 

utilising stimuli that move at speeds that are determined by participants’ self-movements. It 

would be interesting to see if a manipulation that has been shown to produce Bayesian 

behaviour, like luminance jitter (e.g., in experiment 4 of Freeman & Powell, 2022) also 

produces Bayesian behaviour in a situation where the stimuli are dependent on variable self-

movements. 

Another interesting direction for future research would be to further investigate 

auditory speed constancy. This could include investigating a wider range of object distances 

to see how auditory speed constancy differs as a function of the separation of the objects; 

investigating which auditory depth cues are the most important in determining the extent of 

auditory speed constancy; or further investigating the variation in speed constancy across 

individual participants that was evident in Chapter 6. There are many potential avenues of 

research in auditory speed constancy that have not yet been investigated. 

7.4 – Thesis Conclusions 

In this thesis, I have presented experiments that investigate perceptual compensation 

for self-movement and object distance in vision and hearing. In Chapters 2-4, the precisions 

of the non-image and image signals encoding self-movement and image motion were 

investigated. These investigations spanned three contexts. In Chapter 2, the paradigm that 

was used throughout these chapters was introduced and comparisons were made between 

the precisions of the non-image signals when visual or auditory stimuli were used. It was 

found that the non-image signal was less precise when auditory stimuli were used which, it 

was speculated, is due to the number of coordinate transformations that are necessary when 

comparing non-image signals to visual or auditory image signals. This chapter also introduced 



the concept that when stimuli are based on variable self-movements, there is an external 

source of variability that is not accounted for in standard psychometric function fitting 

routines, and a new routine that took this into account was derived. In Chapter 3, a test of 

Weber’s law was presented which showed that the precision of the non-image signal is 

dependent on the speed of self-movement, while the precision of the auditory image signal 

is not. In Chapter 4, a Bayesian model was evaluated and it was suggested that this model 

was not relevant in the context of object movement perception during self-controlled head 

rotations, as it could not explain the self-movement compensation error that persisted 

throughout these three chapters while simultaneously modelling the finding that the non-

image signal does not contain more noise than the image signal in either modality. This 

qualitative finding was quantitatively tested in Chapter 5, where a Bayesian model was 

derived, the first of its kind to account for the external variability due to stimuli being based 

on self-movements. The Bayesian model provided a significantly worse fit than the 

psychometric fitting routine developed in Chapter 2. The focus of Chapter 6 was then shifted 

to distance perception with an investigation into auditory speed constancy, the 

undocumented counterpart to visual speed constancy. While there was variation between 

participants, some who performed speed constancy and some who did not, overall, the 

results appeared to show that this kind of compensation is present but incomplete in the 

auditory system. Throughout Chapters 2-4, the auditory and visual stimuli were presented at 

the same distance from the participant, however the biases found in auditory depth 

perception in Chapter 6 could point to differences in the perceived distance of the stimuli, 

which may underlie the differences between the precisions of the non-image signal when 

compared to a visual, or an auditory, stimulus. When we perform self-movement, we must 

compensate for both the reafferent motion that is induced in our image signals and for the 

distance between us and objects so that we can interpret the world veridically. Investigation 

into how this is completed is ongoing, however this thesis provides methodology for further 

investigation, and insight into how compensation is performed. 

  



Thesis Appendix 
FitSMModel 
function [best_model, pse2, gof1, gof2] = fitSMmodel(gain1, gain2, P1, P2, pse1, 
n_per, H_mn, H_var, max_lapse, error_type, n_search, is_plot) 
% Inputs 
%   gain1,gain2 = motion gains used in experiment for Phase 1 and 2 
%   P1,P2 = probability choosing interval 2 moved more 
%   pse1 = pse from Phase 1 used to set standard in Phase 2, in motion gain units 
%   n_per = number of trials per motion gain level in pmf, assumed all the same 
%   H_mn = mean measured head velocity%   H_var = standard deviation 
%   max_lapse = typically < 0.06, as per wichman & hill 2001 
% error_type = error to minimise on; least-squares 'ls' or 'mle' 
% 
% Outputs: 
%   best_model = fitted model params: 
%       (1) = bias as a proportion of head signal, latter in units set by H_* (= 
degree of aubert, <1 classic, >1 reversed) 
%       (2) = h_var, head signal variance, again in units set by H_* 
%       (3) = i_var, image signal variance, ditto 
%       (4) = lapse_rate for phase 1 
%       (5) = lapse_rate for phase 2 
%   pse2 = pse of best fitting pmf in phase 2, in motion gain units 
%   gof1, gof2 = goodness-of-fit measures for Phase 1 and 2 [rms, deviance] 
% 
% Strategy: 
% Fit Phase 2 data first with pse, i_var and lapse_rate free to vary 
% Fit Phase 1 with bias, h_var and lapse_rate free to vary, but i_var now fixed by 
previous step. 
% 
% Avoid local minima using n_search to set granularity of search space per 
% free variable, with ranges based on educated guesses as defined below 
% 
% Tom Freeman, c.June 2023 
 
global max_lapse 
% from fitpmf: when error_type = 'mle', this get empirical Ps equal to 0 or 1 away 
from floor or 
% ceiling so log likelihood can be calculated without returning NaN 
tweak = 0.001; 
P1(P1==0) = tweak; 
P1(P1==1) = P1(P1==1)-tweak; 
P2(P2==0) = tweak; 
P2(P2==1) = P2(P2==1)-tweak; 
options = optimset('Display', 'off', 'FunValCheck', 'on'); 
try_var = logspace(0, 2, n_search); % either image or head signal 
try_lapse = linspace(0, max_lapse, n_search); 
try_bias = linspace(0.5, 1.5, n_search); 
% fit phase 2 first to get i_var 
err_1 = inf; 
params_phase2 = []; 
iii = 0; n = n_search^3; z = 4; zz = num2str(z); % merely for text output to 
command line to show how far its got 
mssg = 'phase 2: '; 
fprintf('%10s',mssg) 
for i = 1 : n_search 



for r = 1 : n_search 
for b = 1 : n_search 
iii=iii+1; fprintf(['%'zz 'i'],n-iii+1) 
start = [try_bias(b) try_var(i) try_lapse(r)]; 
[current_best, ~, exitflag] = fminsearch(@fitfunc_phase2, start, options, gain2, 
P2, n_per, pse1, H_mn, H_var, error_type); 
current_best = current_best.^2; % see fitfuncs 
err = error_metric(P2, n_per, pmf_phase2(current_best, gain2, pse1, H_mn, H_var), 
error_type); 
if exitflag && (err < err_1) 
err_1 = err; 
params_phase2 = current_best; 
end 
for s = 1 : z, fprintf('\b'), end 
end 
end 
end 
for s = 1 : 10, fprintf('\b'), end 
pse2 = params_phase2(1)*pse1; % i.e. convert into motion gain units, see 
pmf_phase2: this is for output and plotting only 
% Now fit phase 1 to get bias and h_var with i_var fixed by above 
gof1 = NaN; 
gof2 = NaN; 
best_model = NaN; 
mssg = 'phase 1: '; 
fprintf('%10s',mssg) 
if ~isempty(params_phase2) 
i_var = params_phase2(2); 
params_phase1 = []; 
err_1 = inf; 
iii = 0; 
for i = 1 : n_search 
for r = 1 : n_search 
for b = 1 : n_search 
iii=iii+1; fprintf(['%'zz 'i'],n-iii+1) 
start = [try_bias(b) try_var(i) try_lapse(r)]; 
[current_best, ~, exitflag] = fminsearch(@fitfunc_phase1, start, options, gain1, 
P1, n_per, H_mn, H_var, i_var, error_type);  
current_best = current_best.^2;err = error_metric(P1, n_per, 
pmf_phase1(current_best, gain1, H_mn, H_var, i_var), error_type); 
if exitflag && (err < err_1) 
err_1 = err; 
params_phase1 = current_best; 
end 
for s = 1 : z, fprintf('\b'), end 
end 
end 
end 
for s = 1 : 10, fprintf('\b'), end 
gof1(1) = error_metric(P1, n_per, pmf_phase1(params_phase1, gain1, H_mn, H_var, 
i_var), 'rms'); 
gof2(1) = error_metric(P2, n_per, pmf_phase2(params_phase2, gain2, pse1, H_mn, 
H_var), 'rms'); 
gof1(2) = error_metric(P1, n_per, pmf_phase1(params_phase1, gain1, H_mn, H_var, 
i_var), 'dev'); 
gof2(2) = error_metric(P2, n_per, pmf_phase2(params_phase2, gain2, pse1, H_mn, 
H_var), 'dev'); 
end 
 



if is_plot 
sz = 30; 
x0 = min([gain1 gain2]); 
x1 = max([gain1 gain2]); 
savefig = gcf; 
figure(101), clf 
subplot(211), hold on 
x = linspace(x0, x1, 100); 
pse = params_phase1(1); 
if isnan(params_phase1) 
plot(gain1, P1, 'rx') 
else 
plot(x, pmf_phase1(params_phase1, x, H_mn, H_var, i_var), 'k-') 
plot(gain1, P1, 'k.','markersize',sz) 
line([x0 pse], [0.5 0.5], 'linestyle',':','color','k') 
line([pse pse], [0.5 0], 'linestyle',':','color','k') 
end 
title('Phase 1') 
ylabel('P') 
ylim([0 1]) 
xlim([x0 x1]) 
subplot(212), hold on 
if isnan(params_phase2) 
plot(gain2, P2, 'rx') 
else 
pp = pmf_phase2(params_phase2, x, pse1, H_mn, H_var); 
plot(x, pp, 'k-') 
plot(gain2, P2, 'k.','markersize',sz) 
line([x0 pse2], [0.5 0.5], 'linestyle',':','color','k') 
line([pse2 pse2], [0.5 0], 'linestyle',':','color','k') 
end 
title('Phase 2') 
xlabel('gain') 
ylabel('P') 
ylim([0 1]) 
xlim([x0 x1]) 
figure(savefig.Number) 
end 
% reordered output for backwards compatibility with older local analyses scripts 
% pse2 returned separately as isn't really part of model 
best_model = [params_phase1(1:2) i_var params_phase1(3) params_phase2(3)];  
% bias, h_var, i_var, lapse_rate1,lapse_rate2 
 
function err = fitfunc_phase1(params, gain, P_data, n_per, H_mn, H_var, i_var, 
error_type) 
global max_lapse 
params = params.^2; % force values to be positive, but needs to square best_fit 
params outside to return correct values 
P_model = pmf_phase1(params, gain, H_mn, H_var, i_var); 
err = error_metric(P_data, n_per, P_model, error_type);  
if params(3)>max_lapse.^2+0.0001, err = inf; end% gets max_lapse = 0 working 
 
function P = pmf_phase1(params, gain, H_mn, H_var, i_var) 
bias = params(1); 
h_var = params(2); 
lapse_rate = params(3); 
mn_d = (gain-bias)*H_mn; 
sd_d = sqrt( (gain-bias).^2*H_var + h_var + i_var ); 
sd_d(sd_d==0) = 0.0001;% avoids /0 on next line 



z = mn_d./sd_d; 
P = lapse_rate/2 + (1-lapse_rate)*((1 + erf(z./sqrt(2)))/2); 
 
function err = fitfunc_phase2(params, gain, P_data, n_per, pse1, H_mn, H_var, 
error_type) 
global max_lapse 
params = params.^2; 
P_model = pmf_phase2(params, gain, pse1, H_mn, H_var); 
err = error_metric(P_data, n_per, P_model, error_type); 
if params(3)>max_lapse.^2+0.0001, err = inf; end% gets max_lapse = 0 working 
 
function P = pmf_phase2(params, gain, pse1, H_mn, H_var) 
alpha = params(1); % the pse for the pmf, as a proportion, see mn_d below; takes 
account of sampling error, button bias etc 
i_var = params(2); 
lapse_rate = params(3); 
mn_d = (gain-alpha*pse1)*H_mn; 
sd_d = sqrt( (gain-pse1).^2*H_var + 2*i_var );  
sd_d(sd_d==0) = 0.0001;% avoids /0 on next line 
z = mn_d./sd_d; 
P = lapse_rate/2 + (1-lapse_rate)*((1 + erf(z./sqrt(2)))/2);   
 
% deviance calculation from psignifit, Wichman & Hill 
function dev = deviance(y, n, p); 
n = round(n); 
r = round(n .* y); 
w = n -r; 
y = r ./ n; 
residuals = 2 * (xlogy(r, y) + xlogy(w, 1-y) -xlogy(r, p) -xlogy(w, 1-p)); 
residuals(residuals < 0) = 0; 
dev = sum(residuals, 2); 
 
function a = xlogy(x, y) 
k = (y==0); 
y(k) = nan; 
y(x==0 & k) = 1; 
a = x.*log(y); 
k = isnan(y); 
a(k) = -sign(x(k)) * inf; 
 
function err = error_metric(data, n, model, error_type) 
% log likelihood 
if strcmp(error_type, 'mle') 
err = sum( n.*data.*log(data./model) + n.*(1-data).*log( (1-data)./(1-model)) ); % 
from Klein (2001) 
% least-squares 
elseif strcmp(error_type, 'ls') 
err = sum( (data-model).^2 ) 
elseif strcmp(error_type, 'rms') 
err = sqrt(mean((data-model).^2)); 
elseif strcmp(error_type, 'dev') 
err = deviance(data, n, model); 
else 
error('**fitSMmodel: unknown error_type') 
end 
 
  



BayesianPh1Fit 
function [BestModel, best_val, gof1] = BayesianPh1Fit(GainValues, Headspeed, 
HeadspeedVariance, ImageSigVariance, SearchGridNonImageSigVariance, 
SearchGridPriorVariance, SearchGridExternalVariance, Data, plot1) 
% Inputs 
%   GainValues - the values for the motion gains of the test stimuli 
%   Headspeed - the mean headspeed calculated from the behavioural data 
%   HeadspeedVariance - the variance of the headspeed calculated from the 
%behavioural data 
%   ImageSigVariance - the variance of the image signal calculated from the 
%Phase 2 analysis 
%   SearchGridNonImageSigVariance - the search grid for the variance of the 
%non-image signal % [1 100] 
%   Same for Prior and External variance 
%   Data - the behavioural data (number of test chosen) 
%   plot1 - whether or not you want to plot (0 or 1) 
% 
% Outputs 
%   BestModel - best fitting values at the positions of the num_chosen 
%values for comparison 
%   best_val - best fitting values for the non-image signal variance, prior 
%variance, and external variance respectively 
%   gof1 - root mean square error and deviance respectively 
 
H = Headspeed; 
sdH = HeadspeedVariance; 
sdi = ImageSigVariance; 
g = GainValues; 
n_per = 10; 
Data = Data/n_per; 
error_type = 'mle'; 
iterationmax = 20; 
iteration = 1; 
SearchGridNonImageSigVariance = 
linspace(SearchGridNonImageSigVariance(1),SearchGridNonImageSigVariance(end),itera
tionmax); 
SearchGridPriorVariance = 
linspace(SearchGridPriorVariance(1),SearchGridPriorVariance(end),iterationmax); 
SearchGridExternalVariance = 
linspace(SearchGridExternalVariance(1),SearchGridExternalVariance(end),iterationma
x); 
options = optimset('Display', 'off'); 
err1 = inf; 
for a = 1:iterationmax 
    for b = 1:iterationmax 
        for c = 1:iterationmax 
            start = [SearchGridNonImageSigVariance(a) SearchGridPriorVariance(b) 
SearchGridExternalVariance(c)]; 
            [current_val,~,exitflag] = fminsearchbnd(@fitfunc_phase,start,[sdi 0 
0],[],options,g,H,sdH,sdi,Data,n_per,error_type); 
            err = fitfunc_phase(current_val,g,H,sdH,sdi,Data,n_per,error_type); 
            errors(iteration) = err; 
            iteration = iteration + 1; 
            if err<err1, err1 = err; best_val = current_val; end 
        end 
    end 
end 
sdh = best_val(1); 



sdp = best_val(2); 
sde = best_val(3); 
for j = 1:size(g) 
    mu_d(j) = H*sdp*(g(j)/(sdi+sde+sdp)-1/(sdh+sde+sdp)); 
    sd_d(j) = 
sqrt((sdH*g(j)^2+sdi)*(sdp/(sdi+sde+sdp))^2+(sdH+sdh)*(sdp/(sdh+sde+sdp))^2-
2*sdH*g(j)*sdp^2/((sdi+sde+sdp)*(sdh+sde+sdp))); 
    BestModel(j) = mu_d(j)/(sqrt(2)*sd_d(j)); 
end 
BestModel = (1/2)*(1+erf(BestModel)); 
 
gof1(1) = error_metric(BestModel, Data, n_per, 'rms'); 
gof1(2) = error_metric(BestModel, Data, n_per, 'dev'); 
 
if plot1 == 1 
    gfine = linspace(min(g),max(g),100); 
    Phase1 = Bayes_model(current_val,gfine,H,sdH,sdi); 
    figure 
    plot(gfine,Phase1) 
    hold on 
    plot(g,Data,'.') 
    savefig("C:\Users\Josh\OneDrive\Documents\Combined 
Fred\Experiments\Analysis\NonPMFanalysis\Noisy\figs\Chapter5Figs\BayesExample.fig"
) 
end 
end 
 
function err = fitfunc_phase(params,g,H,sdH,sdi,Data,n_per,error_type) 
sdh = params(1); 
sdp = params(2); 
sde = params(3); 
for i = 1:size(g) 
    mu_d(i) = H*sdp*(g(i)/(sdi+sde+sdp)-1/(sdh+sde+sdp)); 
    sd_d(i) = 
sqrt((sdH*g(i)^2+sdi)*(sdp/(sdi+sde+sdp))^2+(sdH+sdh)*(sdp/(sdh+sde+sdp))^2-
2*sdH*g(i)*sdp^2/((sdi+sde+sdp)*(sdh+sde+sdp))); 
    Phase1(i) = mu_d(i)/(sqrt(2)*sd_d(i)); 
end 
Phase1 = (1/2)*(1+erf(Phase1)); 
err = error_metric(Phase1,Data,n_per,error_type); 
if any(params > sdi*2.5), err = err^2; end 
end 
 
function Phase1 = Bayes_model(params,g,H,sdH,sdi) 
sdh = params(1); 
sdp = params(2); 
sde = params(3); 
for i = 1:100 
    mu_d(i) = H*sdp*(g(i)/(sdi+sde+sdp)-1/(sdh+sde+sdp)); 
    sd_d(i) = 
sqrt((sdH*g(i)^2+sdi)*(sdp/(sdi+sde+sdp))^2+(sdH+sdh)*(sdp/(sdh+sde+sdp))^2-
2*sdH*g(i)*sdp^2/((sdi+sde+sdp)*(sdh+sde+sdp))); 
    Phase1(i) = mu_d(i)/(sqrt(2)*sd_d(i)); 
end 
Phase1 = (1/2)*(1+erf(Phase1)); 
end 
 
function dev = deviance(y, n, p) 
n = round(n); 



r = round(n .* y); 
w = n - r; 
y = r ./ n; 
residuals = 2 * (xlogy(r, y) + xlogy(w, 1-y) - xlogy(r, p) - xlogy(w, 1-p)); 
residuals(residuals < 0) = 0; % can go negative due to (im)precision errors 
dev = sum(residuals, 2); 
end 
function a = xlogy(x, y) 
k = (y==0); 
y(k) = nan; 
y(x==0 & k) = 1; 
a = x.*log(y); 
k = isnan(y); 
a(k) = -sign(x(k)) * inf; 
end 
 
function err = error_metric(model, data, n_per, error_type) 
% log likelihood 
if strcmp(error_type, 'mle') 
    data(data==0) = 0.0001; 
    data(data==1) = 0.9999; 
    err = sum( n_per.*data.*log(data./model) + n_per.*(1-data).*log( (1-data)./(1-
model)) ); % from Klein (2001) 
% least-squares 
elseif strcmp(error_type, 'ls') 
    err = sum( (data-model).^2 ); 
elseif strcmp(error_type, 'rms') 
    err = sqrt(mean((data-model).^2)); 
elseif strcmp(error_type, 'dev') 
    err = deviance(data, n_per, model); 
else 
    error('**fitSMmodel: unknown error_type') 
end 
end 
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