Tropical field stations yield high conservation return on investment


Timothy M. Eppley, Kim E. Reuter, Timothy M. Sefczek, and Jen Tinsman contributed equally to this work.

Patricia C. Wright and Russell A. Mittermeier contributed equally to this work.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2024 The Authors. Conservation Letters published by Wiley Periodicals LLC.

Correspondence
Timothy M. Eppley, Wildlife Madagascar, Antananarivo, Madagascar.
Email: eppleyti@gmail.com

Abstract
Conservation funding is currently limited; cost-effective conservation solutions are essential. We suggest that the thousands of field stations worldwide can play key roles at the frontline of biodiversity conservation and have high intrinsic...
value. We assessed field stations’ conservation return on investment and explored the impact of COVID-19. We surveyed leaders of field stations across tropical regions that host primate research; 157 field stations in 56 countries responded. Respondents reported improved habitat quality and reduced hunting rates at over 80% of field stations and lower operational costs per km² than protected areas, yet half of those surveyed have less funding now than in 2019. Spatial analyses support field station presence as reducing deforestation. These “earth observatories” provide a high return on investment; we advocate for increased support of field station programs and for governments to support their vital conservation efforts by investing accordingly.

KEYWORDS
biodiversity, climate change, conservation funding, field stations, pandemic, primate-range countries, protected areas, return on investment, sustainability

INTRODUCTION

Funding for global biodiversity conservation, already a finite commodity, has been impacted by the COVID-19 pandemic (Gibbons et al., 2022). Despite trillions of USD mobilized in pandemic economic recovery, government resources to address the biodiversity and climate crises remain constrained, even though increased investment is urgently required (Mallapaty et al., 2022). In this context, governments and other funding agencies should adopt policies that must consider not just the quantum of biodiversity and climate finance mobilized, but also their conservation return on investment (CROI): a quantitative, and sometimes also qualitative, conservation outcome measured against the fiscal cost of providing that outcome (Cho et al., 2019).

Thousands of field research stations worldwide are at the forefront of biodiversity conservation, supporting significant advances in conservation, education, and research. Despite monitoring and reporting on critical ecosystem services, their value to national and international biodiversity conservation efforts is often not recognized (Eppley et al., 2022; NRC, 2014; Wyman et al., 2009). This lack of recognition of field stations is evidenced by reduced investment and funding cuts in the conservation sector since the COVID-19 pandemic began (Gibbons et al., 2022; Likens & Wagner, 2021; McCleery et al., 2020).

Field stations may be susceptible to funding cuts because the CROI of these entities is not well-understood or documented, and therefore difficult to assess. For example, conservation and research initiatives, particularly at field stations, are usually interdisciplinary, yielding a broad array of direct and indirect knowledge and data benefits that are often only realized over long time scales, making CROI multifaceted and more complex than typical cost–benefit analyses can capture (Boyd et al., 2015; Field & Elphick, 2019; Kujala et al., 2018). CROI analyses often focus on the cost of protecting a given, measurable area (Kujala et al., 2018), yet field stations in these areas enact a multiplicity of qualitative initiatives, including research, education, and public engagement, that have long-term objectives and little immediately measurable cost–benefit value (Tydecks et al., 2016). It is this foundation of difficult-to-quantify conservation outcomes that field stations need to use to demonstrate their true benefit-to-cost ratio (Cho et al., 2019).

Focusing on field stations in primate-range countries, we take stock of field stations’ CROI and explore the impact of the pandemic on their work. Specifically, we assess the real and perceived impact of the pandemic on field stations across the global tropics and subtropics, while also quantitatively evaluating the importance of these sites to biodiversity conservation. We use both traditional measures of CROI, that is, forest area protected and species biodiversity incorporated, and nonquantitative measures of conservation success, such as variation in patronage of field stations, variability in research programs, job creation, and development of long-term datasets, to demonstrate the cost-effectiveness of conservation investment in field stations.

METHODS

We defined field stations as sites with permanent structure(s) owned, rented, or occupied by an institution or research group. Our field station definition was
intentionally broad as we aimed to incorporate a wide range of field stations, including large, well-established multifunction institutions, to small sites managed by an individual research team.

Given the lack of an existing database for field stations (cf. Tydecks et al., 2016), we targeted field research stations in primate-range countries. Primates are a well-studied and diverse taxonomic order distributed throughout ~90 countries (Mittermeier et al., 2013) and are often considered important species critical to tropical ecosystem function (Chapman et al., 2017; Estrada et al., 2017). As such, using established primate research networks provided a suitable forum for surveying a range of field stations across a large number of tropical countries.

**Questionnaire survey**

We recruited individuals with leadership roles (e.g., Director/Manager; Principal Investigator; long-term personnel at the site) at field stations via direct email contact. We used several email lists and publicly available contact information, including (1) current or former members of the IUCN SSC Primate Specialist Group (PSG), a group of more than 700 experts across the world, and members of primatological societies affiliated with the International Primatological Society; (2) contact points for Herbariums (https://sweetgum.nybg.org/science/ih/); (3) contact points for field stations on the Association for Tropical Biology and Conservation website; and (4) contact points for field stations with membership in the International Organization of Biological Field Stations.

The survey was conducted between late March and early June 2022 and was available in English, French, and Spanish. The 70-question survey solicited both objective (e.g., location) and subjective (e.g., risks to field stations’ perpetuity, likelihood of closure, impact of conservation programs) information about field stations (see Appendices S1 and S2 for survey background and questionnaire).

Finally, we present an estimated median annual cost for operating field stations. Assuming a 5-km radius of direct field station effect on biodiversity (Campbell et al., 2011; Wintle et al., 2019), each field station impacts 78.54 km² of habitat. We divided the median annual budget of field stations surveyed by this assumed area of direct impact. As with any social survey extrapolation, these data should be treated as estimates of the quantified benefits and costs of field stations, particularly as the scale of “direct field station effect” can vary across different contexts and species.

**Spatial analysis**

To quantify the impact of field stations on species conservation, we estimated the number of species ranges intersecting field stations using IUCN Red List for Threatened Species range maps (version 2022.1; IUCN, 2022) for all terrestrial tetrapods assessed as threatened (i.e., Critically Endangered, Endangered, or Vulnerable), non-threatened (Least Concern, Near Threatened), and data deficient. We calculated the number of species per taxon covered by field stations in different continents and by Red List category, while accounting for duplicates across field sites. This approach leads to an overestimate of species occurring at each site since geographic range maps can include unsuitable habitats for the species (Rondinini et al., 2006). However, this problem is likely mitigated by the aggregation of data across many field stations covering diverse habitats (i.e., a species not occurring in one field station can be present in others within its range). This analysis serves as a coarse estimate of the proportion of species with a threatened or data deficient status over the total (including non-threatened species) intersecting with the field stations in our study.

To evaluate whether field stations prevent forest cover loss, we documented changes in forest cover loss over time both at field stations and at similar, nearby areas outside of field stations’ influence (i.e., control points). We randomly sampled these potential control points from a donut-shaped band at least 5 km from the field station, but not farther than 50 km (Figure S1). From these potential control points, we selected the 10 points that were most similar to the field station with respect to several environmental and anthropogenic conditions: initial tree cover, protection status, temperature, precipitation, human population density, anthropogenic modification, and road density, using statistical matching (Andam et al., 2008; Joppa & Pfaff, 2011; Stuart et al., 2011; Sze et al., 2022). See Appendix S3 for full methods, variable names, and sources. We then used the Global Forest Change index v1.8 (Hansen et al., 2013) to quantify differences in forest cover loss between field stations and the mean of their 10 matched controls, weighted to increase the contributions of the control points most similar to the field station, over time (Appendix S3). This satellite-derived forest cover loss data are available for the years 2000–2020 (Hansen et al., 2013). Thus, we measured the total forest cover loss between the field station’s specific founding year or from 2000, whichever was later, and until 2020, that is, the most recent year available.
RESULTS

Respondents provided information on 157 field stations in 56 countries, representing 62% of the 90 countries in which primates naturally occur. Each major geographic region where primates occur was represented: 28% of these field stations were in Central and South America, 52% in Africa, and 20% in Asia. Eighty-five percent of all field stations (n = 145) were located in, or adjacent to, a formally protected area. At the time of the survey, most field stations (93% of n = 145) were still operating and had been in existence for an average of 22 ± 2.4 years (mean ± 95% confidence interval, range: 0–97 years, n = 154 stations).

Conservation, livelihoods, and research supported by field stations

Most survey respondents were of the opinion that, in comparison to other areas of the country where there were no field stations, the presence of a field station improved the habitat quality of the surrounding area (83% of n = 153 stations), reduced rates of hunting (86% of n = 147 stations), and improved enforcement of the law with regard to wildlife use/extraction (67% of n = 148 stations; Figure 1a–c). Almost all field stations surveyed had at least one full-time staff member (93% of n = 149 stations), with nearly half having between 5 and 75 staff (Figure 1e). Furthermore, 93% of field stations (n = 144 stations) hired locals. Almost all (98%) of the field stations were used by researchers (n = 151 stations; Figure 1f). In a normal (pre-COVID-19) year, the field stations were collectively used by ~725–3315 researchers, with most field stations hosting researchers from two to five countries. Field stations were also used by students (83%), volunteers (60%), trainees or apprentices (47%), tourists and the general public (36%), and patrol guards, rangers, or other park authorities (11%). In a typical year, the field stations (n = 142) surveyed here received a total of ~11,055–18,950 visitors from the general public, excluding outliers (i.e., a few field stations were on sites receiving tens of thousands of visitors per year; Figure 1g). The total number of scientific articles published across 150 of the field stations in a typical year ranged from ~330 to 1255 papers (Figure 1h).

Almost all field stations surveyed (97% of n = 141 stations) collected long-term data (Figure 1d), with one out of five (19% of n = 142 stations) sharing all their long-term datasets publicly and another 11% sharing some datasets publicly. In addition to primate research, field stations hosted research on 4.2 ± 0.3 other taxonomic groups or ecological disciplines (n = 140 stations; Figure 1i).

The effect of field stations on biodiversity and forest cover

Based on our 5-km radius, the field stations in our study potentially overlapped with the IUCN Red List geographic ranges of 1215 terrestrial vertebrates that are listed as either threatened (1045) or data deficient (170), including 156 amphibians, 218 reptiles, 366 birds, and 475 mammals (169 of which are primates). The majority of these species were found in Africa (499), followed by Asia (377) and the Neotropics (342). An average of 13 threatened or data deficient species were covered by the field stations in Asia, 6.8 in the Neotropics, and 5.9 in Africa (Figure 2).

We successfully matched 153 field stations to control points that were similar climatically and with regard to the level of anthropogenic influence they face and their starting forest cover (Appendix S3). Though global deforestation rates have increased over time, when we assessed the effect of each field station location against their matched control points, we found that forest cover loss was significantly less near field stations (p < 0.05), showing 17.6% less deforestation overall (Figure 3). This trend was mainly driven by field stations throughout Africa (22.0% less deforestation at field stations, p < 0.05). Nevertheless, the average forest cover was also less near field stations in the Neotropics and Asia, with 13.2% (p = 0.16) and 12.0% (p = 0.26) less deforestation, respectively.

Field stations’ CROI and the impact of COVID-19

Typical operating budgets (in a non-COVID-19 year) were often small, with half of the field stations running on less than US$50,000 (55% of n = 118 stations; interquartile range: US$200,000). Assuming a 5-km radius of direct field station impact on biodiversity (Wintle et al., 2019), the associated median annual cost is ~US$637/km². Forty percent of field stations had budgets between US$50,000 and US$500,000. These budgets were often sourced from three or fewer different funding sources, and one-quarter (23%) had only one type of funding source. Three-quarters of field stations (76% of n = 140 stations) relied partially or exclusively on one-off grants for funding, half (49%) relied partially or exclusively on earned income, and just one-third (34%) had secured streams of income or endowments.

The COVID-19 pandemic caused half of the field stations (48% out of n = 128 stations) to close partially or completely from March 2020 to June 2022. At the time of the survey, almost one quarter (22% of n = 156 stations) remained partially or completely closed due to COVID-19.
Figure 1: Selected results from our field stations survey. Compared to areas without field stations, survey respondents provided their perception of the impacts of field stations on (a) habitat quality, (b) hunting rates, and (c) law enforcement. Many field stations reported having (d) long-term datasets, some of which are publicly available. Each field station provided general information, so we present the total annual (e) staff employed, (f) researchers, (g) visitors, and (h) publication output of surveyed field stations. In addition to primate-related studies, (i) other research themes were common at many field stations.

Figure 2: Percentage of threatened (i.e., Critically Endangered, Endangered, and Vulnerable) and data deficient species per taxonomic group categorized by geographic region, as listed on the IUCN Red List of Threatened Species (IUCN, 2022). The species list is obtained by intersecting all available species range maps for the different taxonomic groups with the 157 field stations across 56 countries. Percentages are calculated over the total number of species present (including Least Concern and Near Threatened species). The absolute number of threatened and data deficient species per taxonomic group is indicated above each bar.
FIGURE 3 Map of field station locations surveyed (n = 157) across the global distribution of primates (Jenkins et al., 2013), indicated by the darker gray. Field station color indicates the change in forest cover loss for each site compared to its matched control points since 2000 or the founding of the field station, whichever was most recent. Sites with white dots (NA) are ones for which suitable matched points could not be located (n = 4). The density plots show that field stations reduce deforestation globally (64% of field stations exhibited less forest cover loss than the surrounding area). This trend is driven by less forest loss at field stations in Africa (69% of field stations) and the Neotropics (60%), but less so in Asia (58%), perhaps due to the smaller sample size.

Most respondents (72% of n = 143 stations) had been able to visit the field station at some point after the global onset of the COVID-19 pandemic in March 2020, and most stations (76% of n = 143 stations) had put adaptive measures in place to mitigate the impact of the pandemic on work at those sites. Since March 2020, half (50% of n = 131 field stations) had less or much less funding, compared to 9% with more funding.

Looking forward, just under half of the field stations (46% of n = 137 stations) anticipated being able to continue 76%–100% of the work they would have done before COVID-19. Furthermore, 15% of field stations said they expected to continue only 0%–25% of their work.

DISCUSSION

Field stations are viewed to deter illegal natural resource extraction and defaunation (Figure 1) and reduce deforestation in regions that are not on track to meet their forest protection goals (i.e., Neotropics, Africa; Figure 3; FDAP, 2022). These benefits to biodiversity cost a median US$637/km², assuming a 5-km radius of effect (e.g., Campbell et al., 2011; Wintle et al., 2019). This gives field research stations a strong positive CROI, similar to the proposed budgets in the Africa Park Network for effective management (Lindsey et al., 2018). Indeed, most surveyed field stations reported operating budgets that are half—or even less—of the global mean budget for protected areas, US$1,689/km², adjusted for inflation (James et al., 1999). Like protected areas, these conservation sentinels would yield an even greater CROI with reliable and increased funding.

Field stations also benefit conservation efforts in a variety of other ways: they support the production of scientific articles, training and awareness, local economic expansion, and maintenance of irreplaceable, multidecadal climate and biodiversity datasets (e.g., Chapman et al., 2017; NRC, 2014; Sharma et al., 2022). The field stations we surveyed estimated they cumulatively produce ~1255 scientific articles annually. The amount of published research stemming from these locations provides a critical contribution to conservation initiatives: continually updating and improving essential information used for evidence-based decisions in a cross-discipline field (Christie et al., 2021; Kareiva & Marvier, 2012). Field stations also provide a hub for intergenerational and international collaboration and learning. Field station respondents reported hosting up to 3315 researchers each year, including students, scientists, conservation professionals, and community members, with a further ~18,950 visitors annually. Given the evidence that conservation messaging to ecotourists is
strongly influenced by interactions between visitors and researchers/professionals (Fernández-Llamazares et al., 2020; NRC, 2014), field stations represent a unique con-

vocation of these disparate biodiversity enthusiasts. Furthermore, 93% of field stations incentivized conservation initiatives by hiring from local communities, improving both local livelihoods and the success of their conservation programs (Wali et al., 2017). In fact, the involvement of local nationals in management positions, and in some cases ownership, is what allowed over half of the field stations surveyed to remain at least partially operational during the pandemic.

Unfortunately, it is evident from our study and others that field stations, like the biodiversity they protect, are at risk (Likens & Wagner, 2021). Half the surveyed field sta-
tions had budgets reduced from their 2020 numbers and are now facing global inflation. With each global crisis, the resilience of field stations decreases (Schubel, 2015), and current events foreshadow years of difficulty for these institutions. Recent global crises have triggered higher energy prices, increased human population densities, and increased food insecurity across many high-biodiversity countries (Benton et al., 2022) and have led to increased natural resource extraction (Rawtani et al., 2022). Likewise, the threat of global recession (IMF, 2022) is impacting field station budgets, which cannot accommodate rising inflation.

Most field stations typically function autonomously, perhaps explaining why few studies have explored the aggregate impact of their work (cf. NRC, 2014; Tydecks et al., 2016; Wyman et al., 2009). Despite this, our study suggests that field stations cumulatively make a substantial contribution to conservation. Conservation science relies on quantitative evidence collected at field stations to provide foundational knowledge for designing effective strategies (Kareiva & Marvier, 2012), and while those strategies tend to be focused regionally, their shared expertise can inspire solutions globally (NRC, 2014).

While field stations alone cannot ensure the persistence of species, we found that they are more successful at protecting local wildlife populations, among other clear and quantifiable conservation benefits at a relatively low cost. Meanwhile, countries throughout the Neotropics and Africa struggle to meet forest protection goals (FDAP, 2022), and global protected area personnel numbers and capacity are insufficient for effectively safeguarding biodiversity (Appleton et al., 2022; Maxwell et al., 2020). Though our approach was mostly limited to tropical field stations hosting primate research, we would expect comparable positive impacts of field stations globally. Accordingly, failing to include field stations in international policy frameworks that address the global biodiversity crisis represents a profound missed opportunity (Strier et al., 2021; Wyman et al., 2009). We urge funders to reverse their declining support of long-term field station programs and increase investment beyond prepandemic levels. Similarly, we encourage governments and universities, both in the tropics and elsewhere, to recognize field stations as crucial, high-CROI tools for meeting conservation targets and to adopt policies that will promote the establishment and growth of field stations. These policies should incorporate strategies/contingencies to ensure long-term conservation and research activities, including through crisis periods, such as occurred during the COVID pandemic.

**AFFILIATIONS**

1Wildlife Madagascar, Antananarivo, Madagascar
2Department of Anthropology, Portland State University, Portland, Oregon, USA
3Conservation Science and Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido, California, USA
4IUCN SSC Primate Specialist Group, Gland, Switzerland
5Lemur Love Inc., San Diego, California, USA
6College of Arts and Sciences, University of San Diego, San Diego, California, USA
7School of Global Integrative Studies, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
8Center for Conservation and Research, Omaha’s Henry Doorly Zoo and Aquarium, Omaha, Nebraska, USA
9Center for Tropical Research, University of California, Los Angeles, Los Angeles, California, USA
10Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
11Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
12Neotropical Primate Conservation, Seaton, UK
13Asociación Neotropical Primate Conservation Perú, Moyobamba, Perú
14Department of Anthropology, University of Texas at Austin, Austin, Texas, USA
15Estación de Biodiversidad Tiputini, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
16Department of Anthropology, Durham University, Durham, UK
17Department of Anthropology, University of Wisconsin–Madison, Madison, Wisconsin, USA
18Wildlife Conservation Society, Calabar, Nigeria
19Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
20Ebo Forest Research Project, Douala, Cameroon
21Wildlife Research and Conservation Unit, Nature Conservation Management, Dhaka, Bangladesh
22HUTAN-KOCP, Kota Kinabalu, Malaysia
23Sabah Wildlife Department, Kota Kinabalu, Malaysia
24Madagasikara Voakajy, Antananarivo, Madagascar
25Mandai Nature, Singapore, Singapore
89 Suisse de Recherches Scientifique, Abidjan, Côte d’Ivoire
90 Sabah Wildlife Department, Danau Girang Field Centre, Kota Kinabalu, Malaysia
91 Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff, UK
92 Laboratório de Biologia da Conservação, Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
93 CREATE-NEO Project, University of Texas Medical Branch, Galveston, Texas, USA
94 Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto Biósfera, Laboratorio de Biología Evolutiva, Universidad San Francisco de Quito, Quito, Ecuador
95 Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
96 Conservation Bridges, Bogotá, Colombia
97 Save the Chimps, Inc., Fort Pierce, Florida, USA
98 Tonkolili Chimpanzee Project, Loxahatchee, Florida, USA
99 Biology Department, University of North Georgia, Dahlonega, Georgia, USA
100 Kibale Chimpanzee Project, Kibale National Park, Fort Portal, Uganda
101 Metropolitan Community College, Kansas City, Missouri, USA
102 Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
103 Department of Zoology, University of Venda, Thohoyandou, South Africa
104 Centre for Ecology and Conservation, University of Exeter, Penryn, UK
105 Conservation International-Cambodia, Phnom Penh, Cambodia
106 Ecole de Foresterie et Gestion de la Faune, Université Nationale d’Agriculture, Porto Novo, Benin
107 Wildlife Research Center, Kyoto University, Inuyama, Japan
108 SW/Niger Delta Forest Project, Abuja, Nigeria
109 Wildlife Conservation Society, Bronx, New York, USA
110 Department of Anthropology, Northern Illinois University, DeKalb, Illinois, USA
111 ONG SADABE, Antananarivo, Madagascar
112 Department of Experimental Psychology, University of São Paulo, São Paulo, Brazil
113 Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros, Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio/CPB), Floresta Nacional da Restinga de Cabedelo, Cabedelo, Brazil
114 Conservation Through Public Health (CTPH), Entebbe, Uganda
115 Center of Excellence in Biodiversity and Natural Resource Management, University of Rwanda, Huye, Rwanda
116 School for the Environment, University of Massachusetts Boston, Boston, Massachusetts, USA
117 Department Sociobiology and Anthropology, University of Göttingen, Göttingen, Germany
118 Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
119 Department of Anthropology, Boston University, Boston, Massachusetts, USA
120 Gunung Palung Orangutan Conservation Program, West Kalimantan, Indonesia
121 Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
122 Ape Behaviour & Ecology Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
123 Estación Biológica Corrientes - Centro de Ecología Aplicada del Litoral (CECOAL-CONICET-UNNE), Corrientes, Argentina
124 Institut Supérieur du Tourisme, Goma, Democratic Republic of Congo
125 Centre for Wildlife Studies, Bangalore, India
126 Trans-Disciplinary University, Bangalore, India
127 Fauna & Flora International - Vietnam Programme, Hanoi, Vietnam
128 Ankoatsifaka Research Station, Kirindy Mitea National Park, Menabe, Madagascar
129 Fauna & Flora International, Myanmar Programme, Yangon, Myanmar
130 Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
131 Fundación Proyecto Primates, Bogotá, Colombia
132 Fundación Pro-Conservación de los Primates Panameños, Panamá City, Republic of Panama
133 Departamento de Sueños y Aguas, Facultad de Ciencias Agropecuarias, Universidad de Panamá, Sede Chiriquí, Republic of Panama
134 Forestry Development Authority, Whein Town, Paynesville, Liberia
135 Madagascar Biodiversity Partnership, NGO, Antananarivo, Madagascar
136 Global Conservation Program, Wildlife Conservation Society, Bronx, New York, USA
137 Faculty of Natural Sciences, University of Stirling, Stirling, UK
138 National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, Thailand
139 Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
140 Solusi University, Bulawayo, Zimbabwe
141 Wilder Institute/Calgary Zoo, Calgary, Alberta, Canada
142 Department of Anthropology, The Ohio State University, Columbus, Ohio, USA
143 Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
144 Department of Wildlife and Ecotourism Management, Bahir Dar University, Bahir Dar, Ethiopia
145 Grupo de Investigación de Primatología de la Universidad de Panamá (GIP-UP), Bella Vista, Republic of Panama
146 Centre for Research in Anthropology (CRIA – NOVA FCSH), Lisbon, Portugal
147 Department of Anthropology, School of Social Sciences and Humanities, NOVA University of Lisbon, Lisbon, Portugal
148 Bioko Biodiversity Protection Program, Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
149 Fundación Reserva Tesoro Escondido, Quito, Ecuador
150 Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, Illinois, USA
151 Bioko Biodiversity Protection Program, Malabo, Equatorial Guinea
Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar, Senegal

Nocturnal Primate Research Group, School of Social Sciences, Oxford Brookes University, Oxford, UK

Little Fireface Project, Cipanganti, Indonesia

Oxford Wildlife Trade Research Group, Oxford Brookes University, Oxford, UK

Institut Congolais pour la Conservation de la Nature, Kinshasa, Democratic Republic of Congo

Grupo de Investigación en Genética Aplicada (GIGA), Instituto de Biología Subtropical (IBS), Universidad Nacional de Misiones y Consejo Nacional de Investigaciones Científicas y Técnicas (UNAM-CONICET), Posadas, Argentina

Neotropical Primate Conservation Argentina, Puerto Iguazu, Argentina

Yayasan Konservasi Ekosistem Alam Nusantara (KIARA), Komplek Laladon Indah, Bogor, Indonesia

Javan Gibbons Research and Conservation Project, Bogor, Indonesia

Department of Behavioral Ecology, University of Goettingen, Goettingen, Germany

Prime Social Evolution Group, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany

Kibale Chimpanzee Project, Makerere University Biological Field Station, Fort Portal, Uganda

Kibale Forest Schools Program, Fort Portal, Uganda

Department of Anthropology, University of California, Los Angeles, California, USA

Department of Anthropology, Texas State University, San Marcos, Texas, USA

Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA

Research Group on Primate Biology and Conservation, Mamirauá Institute for Sustainable Development, Tefé, Brazil

Universidad de los Andes, Bogota, Colombia

Association Européenne pour l’Etude et la Conservation des Lémuriens, Antananarivo, Madagascar

Groupe d’Etude et de Recherche sur les Primates (GERP), Antananarivo, Madagascar

Département Agroécologie, Biodiversité et Changement Climatique, ESSA, Université d’Antananarivo, Antananarivo, Madagascar

IMPACT Madagascar, Antananarivo, Madagascar

Mention Anthropobiologie et Développement Durable, Faculté des Sciences, Université d’Antananarivo, Antananarivo, Madagascar

Department of Integrative Biology, University of California, Berkeley, California, USA

School of Anthropology, University of Oxford, Oxford, UK

Budongo Conservation Field Station, Masindi, Uganda

Department of Biology, Faculty of Sciences, Andalas University, Padang, Indonesia

Programa de Conservación Ateles de la Asociación Territorios Vivos El Salvador, San Salvador, El Salvador

Organización para la Conservación de la Naturaleza y Desarrollo Comunitario, Cobán, Guatemala

Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, USA

Wildlife Conservation Society, Congo Program, Brazzaville, Democratic Republic of Congo

Department of Geography and Environmental Studies, Carleton University, Ottawa, Ontario, Canada

Proyecto Titi, Inc., Orlando, Florida, USA

Biology Department, Regis University, Denver, Colorado, USA

Laboratory of Ecology and Ecotoxicology, Department of Zoology and Animal Biology, University of Lomé, Lomé, Togo

Togolese Society for Nature Conservation (AGBO-ZEGUE NGO), Lomé, Togo

Instituto de Ecología A.C., Xalapa, México

SwararaOwa, Coffee and Primate Conservation Project, Java, Indonesia

Zoological Society of Trinidad and Tobago, Port of Spain, Trinidad

Zoological Association of America, Punta Gorda, Florida, USA

Unit of Evolutionary Biology and Ecology (EBE), Département de Biologie des Organismes, Université Libre de Bruxelles, Brussels, Belgium

Department of Biology, Purdue University Fort Wayne, Fort Wayne, Indiana, USA

Bioko Marine Turtle Program, Malabo, Equatorial Guinea

Fundación Para La Tierra, Pilar, Paraguay

ConMonoMaya A.C., Chemax, Mexico

Department of Anthropology, University College London, London, UK

Uaso Ngiro Baboon Project, Nairobi, Kenya

Department of Anthropology, University of California, San Diego, La Jolla, California, USA

Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA

Departamento de Ciencias Ambientales, Laboratoire d’Écologie et Conservation de la Nature et du Programme Analyse Ambienet Integrada, Universidade Federal de São Paulo, São Paulo, Brazil

Pró-Muriqui Institute, São Paulo, Brazil

Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium

Projet Grands Singes, Yaoundé, Cameroon

Center for Anthropology, Venezuelan Institute for Scientific Research, Caracas, Venezuela

Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, Brazil

Rede de Pesquisa para Estudos sobre Diversidade, Conservação e Uso da Fauna na Amazônia (RedeFauna), Manaus, Brazil

Department of Anthropology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA

Center for Human Evolutionary Studies, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA

Wildlife Conservation Society, Bolivia Program, La Paz, Bolivia

Casokwa-Kityeko Forest Project, Masindi, Uganda

Barbary Macaque Awareness and Conservation, Tetouan, Morocco

Institute for Cognitive Sciences, CNRS, University of Lyon, Lyon, France

Tai Chimpanzee Project, Suisse de Recherches Scientifique, Abidjan, Côte d’Ivoire
ACKNOWLEDGMENTS
The origin of this paper was inspired by a keynote lecture from Lifetime Achievement Award recipient, Professor Vernon Reynolds, at the 2022 meeting of the International Primatological Society in Quito, Ecuador. This study is dedicated to the late Christophe Boesch, who suddenly passed on January 14, 2024. He founded the ongoing Taï Chimpanzee Project in 1979 and his vision for long-term field research has galvanized and supported many field sites around the globe. His passion for science and conservation has inspired all of us. He will be truly missed.

CONFLICT OF INTEREST STATEMENT
All authors are affiliated with one or more field stations; thus, the perception of multiple conflicts of interest exists.

DATA AVAILABILITY STATEMENT
Due to our IRB ethics approval, we are unable to provide any individual/field station identifying information; however, anonymized data and statistical codes used to support this study can be found in the following repository: https://github.com/SHoeks/FieldStationConservation.

FUNDING INFORMATION
None.

ORCID
Timothy M. Eppley https://orcid.org/0000-0003-1456-6948
Timothy M. Sefczek https://orcid.org/0000-0003-3612-3216
Jen Tinsman https://orcid.org/0000-0003-2452-4573
Luca Santini https://orcid.org/0000-0002-5418-3688
Selwyn Hoeks https://orcid.org/0000-0001-5619-3233
Sam Shane https://orcid.org/0000-0001-5573-6208
Anthony Di Fiore https://orcid.org/0000-0001-8893-9052
Joanna M. Setchell https://orcid.org/0000-0002-5782-1235
Karen B. Strier https://orcid.org/0000-0003-2520-9110
Aini Hasanah Abd Mutalib https://orcid.org/0000-0002-3862-237X
Tanvir Ahmed https://orcid.org/0000-0002-0590-9104
Marc Ancrenaz https://orcid.org/0000-0003-2325-2879
Raphali R. Andriantsimanarilafy https://orcid.org/0000-0002-9897-9434
Andie Ang https://orcid.org/0000-0001-5667-3106
Filippo Aureli https://orcid.org/0000-0002-0671-013X
Louise Barrett https://orcid.org/0000-0003-1841-2997
Jacinta C. Beehner https://orcid.org/0000-0001-6566-6872
Marcela E. Benitez https://orcid.org/0000-0001-7425-9507
Bruna M. Bezerra https://orcid.org/0000-0003-3039-121X
Júlio César Bica-Marques https://orcid.org/0000-0002-5400-845X
Dominique Bikaba https://orcid.org/0000-0002-4066-9484
Robert Bitariho https://orcid.org/0000-0002-3461-0013
Christophe Boesch https://orcid.org/0000-0001-9538-7858
Laura M. Bolt https://orcid.org/0000-0002-8275-6543
Ramesh Boonratana https://orcid.org/0000-0002-8589-4984
Gustavo R. Canale https://orcid.org/0000-0002-3932-282X
Susana Carvalho https://orcid.org/0000-0003-4542-3720
Colin A. Chapman https://orcid.org/0000-0002-8827-8140
Dilip Chetry https://orcid.org/0000-0002-0590-7352
Susan M. Cheyne https://orcid.org/0000-0002-9180-3356
Marina Cords https://orcid.org/0000-0001-1976-6362
Fanny M. Cornejo https://orcid.org/0000-0002-1989-6762
Liliana Cortés-Ortiz https://orcid.org/0000-0002-1197-6362
Camille N. Z. Coudrat https://orcid.org/0000-0002-6093-2462
Margaret C. Crofoot https://orcid.org/0000-0002-0566-7950
Drew T. Cronin https://orcid.org/0000-0002-1618-1091
Emmanuel Danquah https://orcid.org/0000-0002-8305-5706
Tim R. B. Davenport https://orcid.org/0000-0001-9640-1922
Yvonne A. de Jong https://orcid.org/0000-0002-8677-3738
Stella de la Torre https://orcid.org/0000-0002-1627-2751
Andrea Dempsey https://orcid.org/0000-0001-8627-8086
Giuseppe Donati https://orcid.org/0000-0002-4803-0642
Alejandro Estrada https://orcid.org/0000-0002-6107-9109
WILEY

Martha M. Robbins https://orcid.org/0000-0002-6037-7542

Melissa E. Rodriguez https://orcid.org/0000-0002-7965-1812

Dipto Sarkar https://orcid.org/0000-0003-2254-049X

Anne Savage https://orcid.org/0000-0002-4738-8490

Amy L. Schreier https://orcid.org/0000-0002-0379-3750

Oliver Schülke https://orcid.org/0000-0003-0288-9425

Gabriel H. Segniagbeto https://orcid.org/0000-0002-4697-3671

Juan Carlos Serio-Silva https://orcid.org/0000-0002-0582-2041

Arif Setiawan https://orcid.org/0000-0002-6090-906X

Felipe E. Silva https://orcid.org/0000-0002-1315-0847

Rebecca L. Smith https://orcid.org/0000-0002-0278-9071

Denise Spaan https://orcid.org/0000-0002-6876-1194

Fiona A. Stewart https://orcid.org/0000-0002-4929-4711

Shirley C. Strum https://orcid.org/0000-0001-8819-8493

Martin Surbeck https://orcid.org/0000-0003-2910-2927

Magdalena S. Svensson https://orcid.org/0000-0002-6149-0192

Mauricio Talebi https://orcid.org/0000-0001-6783-2715

Luc Roscelin Tédonzong https://orcid.org/0000-0002-9347-8630

Bernardo Urbani https://orcid.org/0000-0001-5392-9751

João Valsecchi https://orcid.org/0000-0002-9138-0381

Natalie Vasey https://orcid.org/0000-0002-0384-954X

Eri R. Vogel https://orcid.org/0000-0001-6304-5423

Robert B. Wallace https://orcid.org/0000-0001-7411-6338

Siân Waters https://orcid.org/0000-0001-9261-3629

Roman M. Wittig https://orcid.org/0000-0001-6490-4031

Richard W. Wrangham https://orcid.org/0000-0003-0435-2209

Patricia C. Wright https://orcid.org/0000-0002-9443-383X

Russell A. Mittermeier https://orcid.org/0000-0002-8002-826X

REFERENCES


**SUPPORTING INFORMATION**

Additional supporting information can be found online in the Supporting Information section at the end of this article.