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Abstract

Existing wearable motion capture methods typically de-
mand tight on-body fixation (often using straps) for reliable
sensing, limiting their application in everyday life. In this
paper, we introduce Loose Inertial Poser, a novel motion
capture solution with high wearing comfortableness, by in-
tegrating four Inertial Measurement Units (IMUs) into a
loose-wear jacket. Specifically, we address the challenge
of scarce loose-wear IMU training data by proposing a
Secondary Motion AutoEncoder (SeMo-AE) that learns to
model and synthesize the effects of secondary motion be-
tween the skin and loose clothing on IMU data. SeMo-
AE is leveraged to generate a diverse synthetic dataset of
loose-wear IMU data to augment training for the pose es-
timation network and significantly improve its accuracy.
For validation, we collected a dataset with various sub-
jects and 2 wearing styles (zipped and unzipped). Exper-
imental results demonstrate that our approach maintains
high-quality real-time posture estimation even in loose-
wear scenarios. Our dataset and code are available at:
https://github.com/ZuoCX1996/Loose-Inertial-Poser.

1. Introduction
Wearable motion capture enjoys its advantages in terms
of portability, privacy friendliness and robustness against
extreme lighting/occlusion compared to vision-based ap-
proaches. Recent works achieve posture estimation with a
sparse number (3-6) of IMUs [13, 16, 33, 54, 55]. However,
these methods still require the IMU sensors to be tightly at-
tached to the body for stable measurement, which inevitably
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Figure 1. Loose Inertial Poser (LIP) achieves real-time upper-body
motion capture through a loose-wear jacket equipped with 4 IMUs.

produces uncomfortable wearing experiences. Ideally, if
motion capture can be achieved with our daily (mostly
loose) clothes, the burden on users could be largely reduced,
benefiting applications such as chronic disease monitoring
and ubiquitous body-centric interaction.

The use of loose-wear clothes leads to the challenge that
the secondary motion between clothes and human bodies
degrades the quality of IMU readings for measurements of
body orientation and acceleration. One direct approach to
handle this data fluctuation is to train the model with a large
volume of data that covers all possible secondary motions.
Naively, such data can be collected by simulating IMU-
attached clothing on existing human pose datasets. Nev-
ertheless, in the case of loose wearing, IMU data simulation
should encompass various body types and dressing styles,
meaning that data simulation must cover a wide range of
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scenarios. Even with the use of deep learning-based cloth-
ing simulation [37] (approximately 1,000 times faster than
physical simulation), it remains infeasible to simulate all
wearing conditions within an acceptable timeframe.

In this paper, we introduce Loose Inertial Poser (LIP),
which achieves real-time and accurate pose estimation with
sparse IMUs attached to a loose-wear jacket (Fig. 1). To
handle the aforementioned data scarcity challenge, we pro-
pose Secondary Motion AutoEncoder (SeMo-AE) to model
and synthesize the effects of secondary motion between
the skin and loose clothing on IMU data. Our SeMo-AE
consists of two novel techniques. First, we propose noise-
guided latent space learning, where we learn a latent space
under the assumption that i) the IMU signal and the effects
of secondary motion follow an additive relationship in the
latent space and ii) the latent representation of the secondary
motion (i.e., noise) follows a Gaussian distribution. The
key insight of our approach is that limited secondary mo-
tion samples in the simulated data pose a challenge in pro-
viding sufficient constraints for an additional generator net-
work. Thus, it is more effective to leverage an autoencoder
already well-constrained by reconstruction losses to meet
an additional Gaussian prior, thereby effectively mitigating
the data-hungry problem.

Second, we proposed a temporal coherence scheme to
model the dependency of secondary motion in successive
frames, resulting in less jittering and more realistic results.
This scheme is based on our key observation that loose-wear
IMU signals tend to deform smoothly over time, exhibiting
local temporal coherence. After training, we concatenate
our SeMo-AE with the pose estimation network to provide
an unlimited supply of simulated ad-hoc data for training
the network to estimate poses in loose-wear clothing.

To validate the effectiveness of our approach, we col-
lected a real-world testing dataset covering different users
and wearing styles. Extensive experimental results demon-
strated that our method can effectively adapt to different
wear conditions, achieving a mean joint rotation error of
less than 20 degrees. Our main contributions include:
• We propose a real-time and accurate approach for human

motion capture using loose-wear clothes embedded with a
sparse number of IMU sensors, which guarantees a com-
fortable user experience.

• We propose a novel Secondary Motion AutoEncoder
(SeMo-AE) network for synthesizing loose-wear IMU
data. SeMo-AE models secondary motion as additive
Gaussian noise in the latent space, enabling it to gener-
ate synthetic IMU data with novel secondary motions by
sampling the Gaussian noise distribution using a very lim-
ited simulation dataset.

• We propose a temporal coherence scheme to model local
temporal coherence of secondary motion, thereby reduc-
ing jittering and producing more realistic results.

2. Related Works

2.1. Motion Capture

Here we roughly categorized motion capture methods into
vision-based and non-vision-based ones [10, 30].

Vision-based Methods. Traditional optical motion capture
systems utilize multiple cameras and marker points [5, 9,
22], as seen in commercial systems like OptiTrack [39]. In
recent years, the advancement of deep learning has opened
new possibilities for markerless motion capture [41].
Single-camera 2D/3D pose estimation methods such as HR-
Net [45], SMAP [59], PARE [20], ViTPose[51] and oth-
ers [23, 51, 52, 58] have had remarkable progress on hu-
man pose estimation. Additionally, approaches using RGB-
D data [17, 56, 63] or multiple-view images [49, 53, 57] not
only enhance accuracy but also mitigate challenges posed
by the absence of depth information in images.

Non-vision-based Methods. These methods often use
wearable sensors to capture human movement [11]. Iner-
tial sensors, primarily comprising accelerometers and gy-
roscopes, provide an effective alternative for vision-based
motion capture systems [21]. Commercial inertial motion
capture systems, such as Xsens [38] and Noitom [35], fix
multiple Inertial Measurement Units at various joints of the
body to achieve accurate pose estimation.

A key focus of current research is exploring methods to
configure sparse IMUs, aiming to reduce costs and inva-
siveness while preserving the accuracy of motion capture.
In this work, we follow this direction and use 4 IMUs for
upper body motion capture.

As an emerging direction, sparse inertial motion capture
reconstructs the motion information with limited sensing in-
puts. Researchers attempt to address this issue using statis-
tical optimization or deep learning approaches. Marcard et
al. [46] utilized data from six IMUs to reconstruct human
motion. However, due to its optimization-based nature, this
method requires a considerable amount of time to process
the entire sequence. In contrast, deep learning methods can
learn to predict the current motion state with a small number
of past frames, trading off for lower latency to achieve near
real-time effects. For instance, Huang and colleagues [13]
achieved real-time human motion capture with sparse IMUs
through bidirectional RNN, but this approach is limited to
estimating human body pose, overlooking body displace-
ment. Another work, TransPose [54], further advanced
sparse IMUs motion capture by integrating multi-stage pose
estimation and a blended global displacement estimation,
incorporating a module for physical dynamics optimization
in subsequent work [55]. Jiang et al. [16] introduced Trans-
former into sparse inertial motion capture, simultaneously
considering human motion in non-planar scenarios. Build-
ing upon this, they accomplished the task of motion capture



and generated topographic height maps for human motion
trajectories. In practical application domains [4, 15, 48],
Ponton and his team [40] utilized 6 six-degrees-of-freedom
VR trackers, incorporating a convolutional autoencoder and
a learning-based inverse kinematics adjustment component
for real-time full-body pose reconstruction. Additionally,
some studies have integrated sparse IMUs with other forms
of information [1, 7, 34, 47, 60]. For instance, Pan et al. [36]
fused signal inputs from images and sparse IMUs to obtain
more robust motion capture results.

Although using a sparse set of sensors, current ap-
proaches predominantly fix IMUs with straps at specific po-
sitions. This provides relatively accurate information, but
compromises user experience since the fixation introduces
noticeable sensation of rigid on-body gadgets.

2.2. Motion Capture on Clothing

Instead of treating wearable sensors as attachable items, an-
other solution explores integrating the capability of motion
capture into clothing [6]. Mainstream approaches include
fixing marker points or inertial sensors at key joint loca-
tions in tight-wear garments, such as the TESLASUIT [44]
motion capture clothing, which integrates 14 IMUs on its
tight-wear garment. Another work [2] implemented end-
to-end motion capture on tight-wear garments with sparse
spatio-temporally synchronized infrared depth cameras and
optical markers. In the field of smart clothing, flexible fab-
ric sensors have also garnered attention [12, 26, 42]. For
instance, Chen et al. [3] utilized six flexible stretchable sen-
sors on the elbow pad to predict joint bending angles. Liang
and his team [24] crafted garments using pressure-sensitive
fabric material, identifying specific body postures based on
the pressure distribution applied by users to the clothing.
A recent work [64] proposed an adaptive motion tracking
model to address the challenge of data offset resulting from
unknown displacements in flexible sensors during motion.

Although the aforementioned studies primarily use tight-
wear garments to obtain accurate data, loose-wear cloth-
ing is more aligned with consumer preferences and comfort
considerations in daily situations. Some recent works made
progress in studying human body poses based on loose-
wear clothing [8, 29, 50]. For example, Zhou et al. [61]
integrated a multi-channel capacitive sensor into a jacket,
utilizing a deep regressor to predict upper body joint coor-
dinates from 16-channel fabric capacitive sensors. Lorenz
et al. [28] explored mapping motion data from loose-wear
to tight-wear clothing using multiple IMUs, but with lim-
ited generalization capability. While some studies have em-
ployed IMUs attached to clothing for activity recognition
tasks [14, 25, 31, 43], the challenge of sparse inertial sens-
ing on loose-wear clothing is still under-explored.

Figure 2. Prototype demonstration of the loose-wear jacket em-
bedded with IMU sensors and the circuit board for data collection.

3. Hardware

Fig. 2 shows the prototype of the loose-wear jacket con-
structed for upper body motion tracking. Without loss of
generality, we select the upper body to demonstrate the ef-
fectiveness of our method. With appropriate modification to
our device and procedure, our approach can also be effec-
tively applied to the scenario of lower body. The clothing
is made of 100% polyester and is designed in a standard
size of XL. The garment is fabricated using an unaltered
pattern of a commercial outdoor jacket. The typical param-
eters of body girths include shoulder (52 cm), breast (106
cm), waist (110 cm) and wrist (28 cm), suitable for subject
with height range (170-185 cm) and weight range (60-85
kg). The close-up view of the cuff position visually demon-
strates the loose-wear feature (Fig. 2).

For upper body pose estimation, the loose-wear jacket
is equipped with four IMU sensors. The IMU sensor is
Xsens MTI-3. The IMUs are positioned on the left fore-
arm, right forearm, back (integrated with the sensor reading
board), and waist, respectively. All IMUs are connected to
the sensor reading board with flexible cables, which are hot-
pressed onto the garment and seamlessly integrated with the
clothes. The board collects data from each IMU at a rate of
30Hz and transmits wirelessly to the computer via Blue-
tooth. The complete electronics system is powered by a
Lithium battery with a capacity of 1000mAh (equivalently
5 hours for one charge). This multi-IMU setup allows us to
capture upper body motion by fusing the orientation mea-
surements from all four sensor locations.

Challenge 1 (Hardware) Although significantly increas-
ing the wearing comfort, the loose coupling between the
garment and skin induces secondary motion that acts as a
complex disturbance to the IMU measurements. This is in
contrast to previous works that focus on tight-wear wear-
ables [13, 16, 33, 54, 55] where the garment moves in
sync with the underlying body segments, resulting in cleaner
IMU signals.
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Figure 3. Overview of Loose Inertial Poser. (a) The training process of SeMo-AE and how it generates loose-wear IMU data from tight-
wear IMU data. (b) The training of the pose estimation model and how it performs pose estimation. We generate diverse loose-wear IMU
data using SeMo-AE and Temporal Coherence Scheme to train the pose estimation model, making it suitable for our loose-wear jacket.

4. Background and Problem Definition
Pose Estimation with IMUs. Let θ(t) ∈ RJ×3 be the
3D rotation angles at time t defined on J joints. The in-
garment IMU sensor network consists of M IMUs located
at sm,m = 1, ...,M . Each IMU m measures accelerations
am(t) ∈ R3 and rotation Rm(t) ∈ R3×3. We employ a
two-stage pipeline to learn the mapping between joint po-
sitions p(t) ∈ RJ×3, θ(t) and IMU signals IMU(t) =
({a1(t),a2(t), ...,am(t)}, {R1(t),R2(t), ...,Rm(t)}):

p(t) = LSTM(IMU(t),H),

θ(t) = LSTM(p(t), IMU(t),H),
(1)

where H denotes the LSTM-encoded motion history, and
we use J = 10 to represent upper body joints. Note that
due to the loose-wear nature, the rotation measurement of
the waist IMU cannot be directly used as the pelvis rotation.
Consequently, our model incorporates a separate pelvis ro-
tation estimate, which is different from the tight-wear situ-
ation.

Pose Estimation with loose-wear IMUs. As aforemen-
tioned, loose-wear IMUs induce secondary motion which
adds disturbances δ(t) to the ideal tight-wear IMU signals
IMU(t), resulting in ÎMU(t):

ÎMU(t) = f(IMU(t), δ(t)), (2)

where f is an unknown function; δ(t) is determined by var-
ious factors such as the user pose, body shape, and clothing

fit, exhibiting complex and nonlinear dynamics with ele-
ments of randomness that are difficult to model analytically.
Although challenging, both f and δ(t) can be estimated in
a data-driven way using Eq. 1, under the assumption that
there is abundant motion data collected from loose-wear
IMUs. However, this assumption is difficult to satisfy due
to the aforementioned various factors affecting δ(t). Thus,
we have:

Challenge 2 (Software) While deep learning provides a
viable solution for pose estimation from loose-wear IMUs,
it relies on the availability of abundant training data. How-
ever, the collection of diverse real-world motion capture
data across user poses, body shapes, clothing fit and ran-
domness poses a practical data scarcity challenge.

Therefore, there is a critical need for a synthetic data gener-
ation approach capable of producing realistic and diverse
loose-wear IMU signals to train pose estimation models,
which can be formulated as:

ÎMU(t, z) = G(IMU(t), z), (3)

where G denotes a deep generative model, z denotes the
noise vectors (usually sampled from a standard normal dis-
tribution) used in G that capture the randomness of δ(t).

5. Secondary Motion AutoEncoder
5.1. Noise-guided Latent Space Learning

We propose a novel autoencoder framework for secondary
motion modeling and synthetic loose-wear IMU data gen-



eration (Fig. 3), with E denotes its encoder, D denotes its
decoder. Our key idea is to utilize the universal approxi-
mation capability of deep neural networks to learn a latent
space in which:
• δ(t) is captured by E(ÎMU(t, z))− E(IMU(t)) = z;
• z follows a normal distribution, i.e., z ∼ N (µ, σ2);
then we can model secondary motion as Gaussian noise in
the latent space. Unlike the naive approach that learns the
distribution of z in a given latent space, we reverse the idea
to learn a latent space where the distribution of z is pre-
defined, thus calling it noise-guided latent space learning.

Training. Given training data IMU(t) and ÎMU(t), we
feed them into the encoder E , and implement our noise-
guided latent space learning with the reparameterization
method [19] and a Maximum Mean Discrepancy (MMD)
loss Lmmd [27], which measures the distributional distance
between batch normalized E(ÎMU(t, z))− E(IMU(t)) and
a standard normal distribution:

Lmmd = MMD(BN(E(ÎMU(t, z))− E(IMU(t))), (4)

where BN denotes a batch normalization layer. Our motiva-
tion of employing batch normalization differs from its con-
ventional use in training optimization. In our case, batch
normalization addresses the challenge that directly impos-
ing E(ÎMU(t, z))−E(IMU(t)) on a specific parameterized
Gaussian distribution (e.g., each dimension with µ = 0,
σ = 1) could otherwise constrain the solution space and
impede the model from converging to potentially better so-
lutions. Therefore, we incorporate batch normalization into
Lmmd, ensuring that any parameterized Gaussian distribu-
tion of E(ÎMU(t, z))− E(IMU(t)) minimizes Lmmd.

Together with the standard MSE reconstruction losses
used in autoencoders:

Lrecon =
1

n

n∑
t=1

||D(E(IMU(t)))− IMU(t)||22

+||D(E(ÎMU(t)))− ÎMU(t)||22,

(5)

we train our model with the overall loss function:

L = Lrecon + Lmmd. (6)

Inference. After training, we can generate diverse synthetic
loose-wear IMU data by:

ÎMU(t, z) = D(E(IMU(t)) + z), (7)

where z ∼ N (µ, σ2), µ and σ are obtained from the batch
normalization layer.

We omit z as it denotes the training data without the synthesis process

Data Extrapolation. To enable generating synthetic data
with increased levels of secondary motion, we introduce a
controllable looseness parameter η (η > 1) into z (Eq. 7):

z∗ ∼ N (µ, (ησ)2). (8)

We use η = 2 during inference of SeMo-AE. Empirically,
we show that such extrapolated data improves the training
of our pose estimation model (see supplementary material).

5.2. Temporal Coherence Scheme

Although effective, Eq. 7 neglects the temporal coherence
of secondary motions between successive frames in a mo-
tion sequence. To address this issue, we propose a Temporal
Coherence Scheme as a heuristic to linearly interpolate the
noise z to z(t) and have:

z(t) = (1− t

n
) · z(1) + t

n
· z(n), (9)

where z(1), z(n) ∼ N (µ, (ησ)2), n is a user-specified
hyper-parameter controlling the length of the interpolation
over the motion sequence. Intuitively, larger n produces
smoother synthetic IMU signals. Accordingly, we have:

ÎMU(t, z(t)) = D(E(IMU(t)) + z(t)). (10)

It is worth noting that when n = 2, Eq. 10 will degener-
ate to Eq. 7. We use n = 128 in our work, based on the
autocorrelation analysis of the noise vector sequence z (see
supplementary material).

6. Experiments
6.1. Dataset and Metrics

Simulation Dataset. This dataset, consisting of paired
loose-wear and tight-wear simulated IMU data DSsim

Loose

and DSsim
Tight, is used to train the proposed SeMo-AE:

• DSsim
Loose: First, we utilized the TailorNet [37] to simu-

late the corresponding clothing models required for vari-
ous poses within the AMASS dataset [54], which consists
of over 9 million frames. TailorNet can rapidly simulate
topologically consistent clothing given SMPL pose and
body shape, meeting the requirements for IMU data sim-
ulation. We selected the Shirt model from the ones pro-
vided by the authors, which is most similar to our loose
jacket. Additionally, we configured the SMPL model’s
physique as Tall Thin to ensure that greater space between
the clothing and the skin. This configuration results in a
more accurate representation of a loosely worn scenario.
Overall, this single simulation required approximately 4
days to complete using an NVIDIA RTX 4080 graphics
card. Then, to simulate an IMU, we selected 4 nearby
vertices on the simulated clothing based on their positions



in our jacket to describe 2 axis directions, then calculated
the third axis direction through cross-products to simulate
orientation measurement. Additionally, we used the geo-
metric center of these four vertices as the position of the
IMU for acceleration simulation.

• DSsim
Tight: We simulate tight-wearing IMU signals by di-

rectly placing the virtual IMUs, using the method de-
scribed above, on the human body mesh obtained from
the AMASS dataset [54]. Notably, we adapted the joint
and mesh vertex settings to match our upper body IMU
setup (left forearm, right forearm, back and waist).

Synthetic Dataset (On-demand). We synthesize novel
loose-wear IMU data, denoted as DSgen

Loose, using the pro-
posed SeMo-AE on-demand to provide training data for the
pose estimation network.

Testing Dataset (Real). We recruited a total of five indi-
viduals with varying body shapes and collected a real-world
dataset, denoted as DSreal

Loose, for evaluation using the loose-
wear jacket integrated with four IMUs. All participants
were informed of the experiment purpose and signed the
consent agreement for participation. Their body size fits the
designed garment. More information on participants’ body
characteristics can be found in the supplementary materi-
als. Each participant was instructed to perform data collec-
tion in two different wearing styles: zipped and unzipped.
During data collection, participants were asked to perform
five predefined actions, including walking, running, jump-
ing, boxing, and ping-pong, as well as five times of free-
form movements. Each action lasted for one minute. For
ground truth pose, we used the Perception Neuron 3 system
[35] to capture upper body poses using 11 tight-wear IMUs.
Overall, we collected 212,496 frames of 30 fps data, with a
total duration of about 2 hours.

Metrics. Following TransPose [54], we measure the accu-
racy of pose estimation using the following 2 metrics: 1)
angular error, which measures the mean rotation error of
10 upper body joints in degrees; 2) positional error, which
measures the mean Euclidean distance error of 12 upper
body joint endpoints in centimeters. Note that in practice,
we only calculate the positional error of 11 joint endpoints
as the position of the pelvis joint is kept at [0, 0, 0].

6.2. Training Details

IMU Data Format. We utilize the acceleration and rotation
measurements of IMU as the input for all models. Follow-
ing TransPose [54], we applied normalization to the IMU
data, transforming the acceleration and rotation measure-
ments of the left, right, and back IMUs into relative values
to the waist IMU. To facilitate the training of the pose esti-
mation network, we convert the IMU rotation readings into
their corresponding 6D representation [62]. As a result, we

Figure 4. Qualitative results on the testing dataset DSreal
Loose. Our

approach mitigates the disturbance in IMU data caused by sec-
ondary motion, achieving accurate motion capture.

define IMU data as I ∈ R36, which is obtained by concate-
nating three-axis accelerations and 6D rotation of 4 IMUs,
i.e., (3 + 6)× 4 = 36.

Training Settings. All our experiments run on a com-
puter with an Intel(R) Core(TM) i7-13700KF CPU and an
NVIDIA RTX 4080 GPU. The model is implemented using
PyTorch 1.12.1 with CUDA 11.3.
• Training SeMo-AE. The SeMo-AE was trained with

paired DSsim
Loose and DSsim

Tight, utilizing a batch size of
512. We employed the Adam [18] optimizer with a learn-
ing rate of lr = 1× 10−3 during training.

• Training Pose Estimation Network. The pose estimation
network was trained with DSgen

Loose, utilizing a batch size
of 256. We employed the Adam optimizer with a learning
rate of lr = 5× 10−4 during training.

Please refer to the supplementary material for the detailed
SeMo-AE and pose estimation network structure.

6.3. Comparison with SOTA Methods

Quantitative Results. We compared our method with state-
of-the-art (SOTA) methods in sparse inertial motion cap-
ture, including DIP [13], IMUPoser [33], TransPose [54],
TIP [16], and PIP [55] on the testing dataset DSreal

Loose.
Since these SOTA methods are designed for tight-wear
IMUs with different sensor numbers and installation posi-
tions, we followed the official code provided by the authors
and retrained the models using DSsim

Loose, and reported the
angular and positional errors on DSreal

Loose. As shown in
Table 1 and Table 2, SOTA methods are much less effec-
tive for motion capture using loose-wear IMUs due to the
low diversity of DSsim

Loose. In addition, we observed that
PIP, the best-performing SOTA method, produces abnormal



Table 1. Experimental results of angular error (unit: degree) on five participants. The s1 indicates the subject with ID=1.

ID DIP IMUPoser TransPose TIP PIP Ours

s1 25.63 ± 6.06 25.90 ± 6.33 24.60 ± 6.31 25.50 ± 6.93 23.34 ± 6.02 19.91 ± 5.86
s2 25.16 ± 5.44 23.19 ± 5.07 22.99 ± 5.37 21.78 ± 6.35 19.97 ± 3.89 18.10 ± 4.55
s3 30.31 ± 7.20 29.87 ± 7.50 28.51 ± 6.92 29.42 ± 8.53 26.35 ± 6.89 23.72 ± 7.54
s4 26.20 ± 7.78 26.09 ± 7.49 26.75 ± 7.65 25.63 ± 8.42 22.05 ± 6.68 19.62 ± 7.98
s5 24.62 ± 5.99 23.20 ± 5.76 23.17 ± 6.13 22.64 ± 6.99 19.78 ± 5.01 17.81 ± 5.84

zipped 25.20 ± 6.54 24.59 ± 6.40 24.63 ± 6.44 24.05 ± 7.54 21.62 ± 6.08 18.74 ± 6.28
unzipped 27.57 ± 6.92 26.67 ± 7.29 25.73 ± 7.19 25.87 ± 8.23 22.95 ± 6.39 20.98 ± 6.93

all 26.38 ± 6.85 25.63 ± 6.94 25.18 ± 6.85 24.97 ± 7.94 22.28 ± 6.28 19.83 ± 6.79

Table 2. Experimental results of positional error (unit: cm) on five participants. The s1 indicates the subject with ID=1.

ID DIP IMUPoser TransPose TIP PIP Ours

s1 16.85 ± 6.84 17.75 ± 6.57 17.69 ± 6.26 16.47 ± 6.47 17.01 ± 7.68 10.23 ± 5.12
s2 15.19 ± 5.88 15.58 ± 5.16 15.50 ± 5.54 14.36 ± 6.31 13.83 ± 6.70 9.08 ± 4.80
s3 16.95 ± 6.63 18.63 ± 6.38 16.72 ± 6.26 16.17 ± 6.95 15.33 ± 6.62 11.21 ± 6.17
s4 20.10 ± 7.99 20.67 ± 7.39 20.40 ± 7.36 19.06 ± 7.60 19.62 ± 9.33 12.67 ± 7.87
s5 14.99 ± 6.39 16.45 ± 5.34 14.96 ± 5.78 15.19 ± 7.09 13.23 ± 6.76 9.86 ± 6.41

zipped 16.91 ± 7.00 17.99 ± 6.58 17.58 ± 6.40 16.63 ± 7.38 16.61 ± 8.22 10.19 ± 6.08
unzipped 16.61 ± 6.99 17.56 ± 6.29 16.41 ± 6.63 15.78 ± 6.71 14.87 ± 7.25 10.98 ± 6.56

all 16.77 ± 7.00 17.78 ± 6.44 17.00 ± 6.54 16.20 ± 7.07 15.74 ± 7.80 10.58 ± 6.24

joint position estimates, impeding the proper functioning of
its physics-aware motion optimizer. In contrast, our method
outperforms all SOTA methods including PIP, demonstrat-
ing a clear advantage in robustness to secondary motion.

Qualitative Results. In Fig. 4, we qualitatively compare
our method with SOTA ones w.r.t. the ground truth on five
distinct actions. It can be observed that secondary motions
introduce significant errors in the results of SOTA methods,
especially for the first two actions involving large move-
ment amplitudes. In contrast, our approach maintains stable
and accurate motion capture across all actions, demonstrat-
ing clear superiority in handling secondary motion.

6.4. Ablation Study

Generator Err Ang (deg) Err Pos (cm)

SeMo-AE 19.83 ± 6.79 10.58 ± 6.24
CGAN 25.06 ± 7.18 16.47 ± 7.24
None 24.18 ± 7.38 18.61 ± 6.53

Table 3. Comparison of SeMo-AE and cGAN.
Quantitative Results. Since our loose-wear IMU data syn-
thesis is essentially a conditional generation task (Eq. 2,
IMU(t) is the condition), we compare our SeMo-AE with
conditional GAN (cGAN) [32]. To facilitate a fair com-

parison, we train cGAN using the same data (Dsim
Tight as its

condition and Dsim
Loose as its output) and latent noise distri-

bution as our SeMo-AE. As Table 3 shows, the loose-wear
IMU data generated by cGAN provides little improvement
over using no synthetic data (“None”, training directly on
DSsim

Loose), demonstrating much inferior performance com-
pared to SeMo-AE.

Case NLSL TCS Err Ang (deg) Err Pos (cm)

1 + + 19.83 ± 6.79 10.58 ± 6.24
2 + - 21.46 ± 7.19 12.11 ± 7.23
3 - + 21.54 ± 6.52 11.91 ± 6.33
4 - - 21.71 ± 7.01 12.14 ± 6.99

Table 4. Ablation study on Noise-guided Latent Space Learning
(NLSL) and Temporal Coherence Scheme (TCS) in our SeMo-AE.

In more details, we show the effectiveness of the pro-
posed noise-guided latent space learning and the Temporal
Coherence Scheme in Table 4. Note that in cases 3 and 4,
we obtain µ and σ of the additive Gaussian noise in the la-
tent space by the statistics of E(ÎMU) − E(IMU) over the
entire dataset. The results demonstrate that both of the two
proposed techniques are necessary to achieve the best per-
formance.
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Figure 5. Qualitative results of ablation study. For each case, we visualize two data sequences from DSsim
Loose (“loose” in the figure) and

DSsim
Tight (“tight” in the figure), respectively, along with three random samples of DSgen

Loose (“gen loose” in the figure), using PCA. NLSL:
Noise-guided Latent Space Learning; TCS: Temporal Coherence Scheme.

Qualitative Results. As Fig. 5 shows, i) removing the
proposed noise-guided latent space learning (NLSL) results
in abnormal spatial patterns in the synthesized loose-wear
IMU data DSgen

Loose; ii) removing the proposed Temporal
Coherence Scheme (TCS) transforms DSgen

Loose into a noise-
like signal, significantly different from DSsim

Loose; iii) the
DSgen

Loose generated by cGAN exhibits minimal diversity, in-
dicating that it ignores the input noise and fails to model the
effects of secondary motion.

6.5. Live Demo

We have implemented a real-time pose estimation visual-
ization system using Python and Unity. Once the user has
dresses up the clothes as common, a single T-Pose calibra-
tion (5 seconds) is performed to initiate the system. Dur-
ing operation, the system continuously receives real-time
IMU data, processes it using calibration and normalization
methods similar to TransPose [54], feeds it into the pose es-
timation model, and displays the real-time motion capture
results.

Through the live demo, we can observe that our system
seamlessly combines the convenience and comfort of loose
clothes with accurate motion capture capabilities. It main-
tains stability even during vigorous activities such as fast
running and jumping, demonstrating its reliability and suit-
ability for a wide range of applications. Please see our sup-
plementary video for demonstration.

7. Limitations and Future Work

Limitations. On the hardware side. Due to cost constraints,
we have currently produced only one garment. Although
we have conducted comparisons with different users, the
impact of clothing sizes and fabric materials on accuracy
remains to be explored. Beside, the circuits integrated into
the jacket and the sensors have not been waterproofed, ren-
dering the jacket unable to undergo regular washing like
conventional clothing. Additionally, as our jacket is worn
loosely, the twisting of the arms causes minimal changes
in IMU readings, making it difficult to accurately mea-

sure rotation in this degree of freedom. On the software
side. While SeMo-AE significantly enhances the richness
of loose-wear IMU data, due to the limited wearing styles
simulation in it’s training data, the generated data can not
comprehensively cover different ways of wearing. Conse-
quently, this limitation results in increased pose estimation
errors, particularly evident in the unzipped wearing.

Future Work. Our work explores the use of loose clothes
as the vehicle for the purpose of motion capture. This align-
ment with ordinary clothes in people’s daily life prioritizes
user comfort over other factors such as accuracy. It is worth
exploring collecting a significantly large database for con-
tinuous (24x7) human motion on a large scale (expected
over 100 participants). More efforts are needed to inves-
tigate the human motion pattern considering different vari-
ations in terms of body sizes and garment types. This could
enable future applications such as long-term health moni-
toring on the population level.

8. Conclusion

In this paper, we proposed Loose Inertial Poser (LIP), a
novel network to achieve real-time, accurate pose estima-
tion using only sparse inertial sensors on loose clothing.
Our key innovation is the Secondary Motion AutoEncoder
(SeMo-AE), which can synthesize realistic IMU data ex-
hibiting diverse secondary motion effects from limited sim-
ulation data. SeMo-AE employs two novel techniques: i)
noise-guided latent space learning that models secondary
motion as additive Gaussian noise in the latent space, and ii)
temporal coherence modeling that captures the smoothness
of secondary motion over time. We show SeMo-AE’s ef-
fectiveness by training a pose estimation network on SeMo-
AE’s simulated IMU data. Extensive experiments show that
our method adapts effectively across varying body shapes
and motions, significantly outperforming state-of-the-art
with under 20 degrees of mean joint rotation error.
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