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Abstract

In this paper, we propose Image Downscaling Assessment
by Rate-Distortion (IDA-RD), a novel measure to quantita-
tively evaluate image downscaling algorithms. In contrast to
image-based methods that measure the quality of downscaled
images, ours is process-based that draws ideas from rate-
distortion theory to measure the distortion incurred during
downscaling. Our main idea is that downscaling and super-
resolution (SR) can be viewed as the encoding and decoding
processes in the rate-distortion model, respectively, and that
a downscaling algorithm that preserves more details in the
resulting low-resolution (LR) images should lead to less dis-
torted high-resolution (HR) images in SR. In other words,
the distortion should increase as the downscaling algorithm
deteriorates. However, it is non-trivial to measure this distor-
tion as it requires the SR algorithm to be blind and stochastic.
Our key insight is that such requirements can be met by re-
cent SR algorithms based on deep generative models that can
find all matching HR images for a given LR image on their
learned manifolds. Extensive experimental results show the
effectiveness of our IDA-RD measure. Our code is available
at: https://github.com/Byronliang8/ IDA-RD

1. Introduction
Image downscaling is a fundamental problem in image pro-
cessing and computer vision. To address the diverse appli-
cation scenarios, various digital devices with different reso-
lutions, such as smartphones, iPads, and desktop monitors,
co-exist, which makes this problem even more important. In
contrast to image super-resolution (SR), which aims to “add”
information to low-resolution (LR) images, image downscal-
ing algorithms focus on “preserving” information present in
the high-resolution (HR) images, which is especially impor-
tant for applications and devices with limited screen spaces.

Traditional image downscaling algorithms low-pass filter
an image before resampling it. While this prevents aliasing in
the downscaled LR image, important high-frequency details
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of the HR image are removed simultaneously, resulting in
a blurred or overly-smooth LR image. To improve the qual-
ity of downscaled images, several sophisticated approaches
have been proposed recently, including remapping of high-
frequency information [12], optimization of perceptual im-
age quality metrics [29], using L0-regularized priors [23],
and pixelizing the HR image [13, 15, 20, 37]. Nevertheless,
research in image downscaling algorithms has significantly
slowed down due to the lack of a quantitative measure to
evaluate them. Specifically, standard distance measures (e.g.,
L1, L2 norms) and full-reference image quality assessment
(IQA) methods are not applicable here due to the absence of
ground truth LR images; existing No-Reference IQA (NR-
IQA) metrics [7, 27, 28] cannot be applied either as they rely
on the “naturalness” of HR images, which is not present in
LR images (we will verify this in our experiments).

In this paper, we propose a new quantitative measure
for image downscaling based on Claude Shannon’s rate-
distortion theory [5], namely Image Downscaling Assess-
ment by Rate-Distortion (IDA-RD). The main idea of our
IDA-RD measure is that a superior image downscaling algo-
rithm would try to retain as much information as possible in
the LR image, thereby reducing the distortion when being up-
scaled (a.k.a. super-resolved) to the size of the original HR
image. However, such an upscaling method is non-trivial as,
for our purpose, it must satisfy two challenging requirements:
i) blindness, i.e., it must apply to all kinds of downscaling al-
gorithms without knowing them in advance; ii) stochasticity,
i.e., it must be able to generate a manifold of HR images that
captures the conditional distribution of the super-resolution
process. Our key insight is that both such requirements can
be satisfied by the recent success of deep generative models
in blind and stochastic super-resolution. To demonstrate the
flexibility of our IDA-RD measure, we show that it can be
successfully implemented with two mainstream generative
models: Generative Adversarial Networks [26] and Normal-
izing Flows [24]. Extensive experiments demonstrate the
effectiveness of our IDA-RD measure in evaluating image
downscaling algorithms. Our contributions include:

• Drawing on Shannon’s rate-distortion theory [5], we
propose the Image Downscaling Assessment by Rate-
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Figure 1. Illustration of the proposed IDA-RD measure. Given a downscaling method fds to be evaluated, i) we first use it to downscale
several HR images; ii) then, we upscale them back to the original resolution with fus and measure the distortion from the corresponding HR
images. Such an upscaling method leverages the recent success in deep generative models and thus can i) apply to arbitrarily down-scaled
images and ii) output a manifold of HR images that captures the conditional distribution given a downscaled image.

Distortion (IDA-RD) measure to quantitatively evaluate
image downscaling algorithms, which fills a gap in image
downscaling research.

• We demonstrate the effectiveness of our IDA-RD measure
with extensive experiments on both synthetic and real-
world image downscaling algorithms.

2. Related Work
Image Downscaling has a long history and its traditional
methods (e.g., bicubic) have now become the standard for im-
age processing and computer vision software, making it diffi-
cult to trace their origins. To this end, we only review recent
attempts in developing better image downscaling algorithms.
For example, Gastal and Oliveira [12] conducted a discrete
Gabor frequency analysis and propose to remap the high-
frequency information of HR images to the representable
range of the downsampled spectrum, thereby preserving
high frequency details in image downscaling. Oeztireli and
Gross [29] model image downscaling as an optimization
problem and minimize a perceptual metric (SSIM) between
the input and downscaled image. However, the limitations
of SSIM are also carried over to their approach. DPID [44]
preserves small details by assigning higher weights to the
input pixels whose color deviates from their local neighbor-
hood within the convolutional filter. Liu et al. [23] propose
an optimization framework using two L0 regularized pri-
ors that addresses two issues of image downscaling, i.e.,
salient feature preservation and downscaled image construc-
tion. Image thumbnailing, a special case of image down-
scaling, has been studied by Sun and Ling [38]. Their two-
component thumbnailing framework, named as Scale and
Object Aware Thumbnailing (SOAT) focuses on saliency
measure and thumbnail cropping. Li et al. [21] term image
downscaling as image Compact Resolution (CR) and address
it with a Convolutional Neural Network (CNN). Inspired by
the success of CNNs in image super-resolution (SR), they in-
troduce the CNN-CR model for image downscaling that can
be jointly trained with any CNN-SR model. Although their
CNN-CR model results in better reconstruction quality than
other downscaling algorithms, they only demonstrate results

for small downscaling factors (×2). However, the majority
of both image downscaling and super-resolution algorithms
tend to focus on larger scaling factors (e.g., ×8). Despite
the aforementioned works, there does not exist a good quan-
titative measure for the evaluation of image downscaling
methods, which impedes the research on them.

Image Quality Assessment (IQA) can be subjective or ob-
jective. Subjective methods rely on the visual inspection by
human assessors while objective methods resort to quantita-
tive measures, e.g., image statistics. Examples of the most
commonly used objective IQA metrics include Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index Measure
(SSIM), Multi-Scale SSIM (MS-SSIM) [42] and Learned
Perceptual Image Patch Similarity (LPIPS) [49]. However,
such IQA metrics are not applicable in the evaluation of
image downscaling algorithms as there are no ground truth
LR images for comparison. Please note that we do not con-
sider the LR images captured by cameras to be ground truth,
as they rely on the particular camera used and can thus be
viewed as being captured by “hardware” downscaling meth-
ods that can also be assessed by our IDA-RD measure. Thus,
most researchers rely on subjective evaluation of downscaled
images, which is costly and time-consuming.

No-Reference Image Quality Assessment (NR-IQA) ad-
dresses IQA in the absence of a reference (i.e., ground truth)
image. For example, Mittal et al. [27] propose BRISQUE, an
NR-IQA metric that uses the natural scene statistics (NSS) to
quantify loss of “naturalness” in distorted images. Using lo-
cally normalized luminances, BRISQUE models a regressor
which maps the feature space to image quality scores. Based
on their NSS, Mittal et al. [28] further devised an Opinion
Unaware (OU) and Distortion Unaware (DU) model for blind
NR-IQA, which is named as NIQE. Bosse et al. [7] follow
a data-driven approach for NR-IQA. Inspired by Siamese
networks, they train a deep neural network for feature extrac-
tion and regression in an end-to-end manner. However, due
to the lack of a large enough training dataset, their model
does not generalize well. However, such NQ-IQA metrics
are also not applicable, as the “naturalness” they rely on
exists only in HR but not LR images. To this end, we bor-



row ideas from Claude Shannon’s rate-distortion theory and
propose a new measure called Image Downscaling Assess-
ment by Rate-Distortion (IDA-RD). Our IDA-RD measure
leverages the recent success in deep generative models and
shows promising results in the quantitative evaluation of
image downscaling methods.
Deep Generative Models. We refer interested readers to [6]
for a detailed survey on deep generative modeling. Here, we
review the two deep generative models used in our work,
i.e., Generative Adversarial Networks (GANs) and normal-
izing flows. Since the pioneering work by Goodfellow et
al. [14], GANs have experienced significant improvements.
For example, Radford et al. [33] proposed DCGAN, which
incorporates convolutional neural networks for better image
synthesis. Arjovsky et al. [4] addressed the notorious instabil-
ity of GAN training by employing a novel loss function, i.e.,
the Wasserstein distance loss. To date, the StyleGAN series
[16–18] developed by Nvidia has shown impressive results
in high-resolution and high-quality image synthesis, leading
to various applications in image processing and manipula-
tion [1, 2, 50]. In this paper, we follow [26] and implement
our measure with a StyleGAN generator pre-trained on por-
trait images. Nevertheless, normalizing flows [19, 31, 34]
that construct complex distributions by transforming a prob-
ability density function through a series of invertible map-
pings have attracted increasing attention in the past several
years. In this paper, we employ the SRFlow [24] model to im-
plement our measure, which directly learns the conditional
distribution of the HR output given the LR input.

3. Our Approach
In this section, we first introduce the definition of our met-
ric derived from Shannon’s rate-distortion theory [5], and
then detail how deep generative models help to sidestep the
data scarcity challenge that impedes the application of the
proposed metric.

3.1. Metric Definition

We create a proxy task, namely the lossy compression prob-
lem underpinned by Claude Shannon’s rate-distortion the-
ory [5], and formulate image downscaling as its encoding
process:

inf
Qf (x̂|x)

E[DQ(X, X̂)] s.t. IQ(X; X̂) ≤ R (1)

where X is the set of input high-resolution images, X̂ is
the set of output reconstructed images, R is a rate constraint
determined by the downscaling process1, Qf (x̂|x) or Q for
short is the probability density function (PDF) of recon-
structed HR images x̂ conditioned on an input HR image x

1Note that in image downscaling, this constraint on R is always satisfied
as the downscaled images are of a fixed resolution defined by users.

with respect to a given lossy image reconstruction function f
that x̂ = f(x) = fus(fds(x)), where fus and fds denote im-
age upscaling and downscaling functions respectively, DQ is
a distortion metric between two image sets where the image
correspondence is determined by Q. Thus, we propose to
use the expectation of the distortion as an evaluation metric
for image downscaling:

S(fds) = E[DQ(X, X̂)] = Ex{Ex̂|x[D(x, x̂)]}, (2)

where x ∈ X , x̂ ∈ X̂ , D is a distortion metric between
two images, e.g., LPIPS [49]. The lower S, the better the
downscaling algorithm fds. Although straightforward, the
application of such a metric remained a challenge as it re-
quires a strong upscaling function fus that can:
• Reconstruct the input image x regardless of the input

downscaling algorithm fds.
• Generate a conditional distribution of reconstructed im-

ages x̂|x for each x.
Between them, the first is commonly known as blind image
super-resolution that is essentially a many-to-one mapping
problem that aims to map different distorted downscaled
images to the same high-resolution image; the second is
commonly known as one-to-many super-resolution due to
its ill-posed nature caused by the information loss during
downscaling [24].

Data Scarcity Challenge. Combining the above two re-
quirements makes the desired fus an extremely challenging
many-to-many mapping problem that has remained unsolved
for decades. Specifically, the numerous kinds of distorted
downscaled images and the corresponding countless high-
resolution images for each of them makes it infeasible to
collect sufficient data for supervised learning methods:

fus = argmin
fθ

EILR
(EIHR

||IHR − fθ(ILR)||) (3)

where IHR and ILR denote the high-resolution (HR) and
low-resolution (LR) training images respectively, EIHR

in-
dicates that there are many IHR corresponding to the same
ILR, EILR

indicates that there are many ILR obtained by
different image downscaling methods fds.

3.2. Evaluation with Deep Generative Models

Our key insight is that the above-mentioned data scarcity
challenge (Eq. 3) can be overcome by the recent successes in
deep generative modeling [4, 14, 16–19, 31, 33, 34]. In deep
generative modeling, a neural network model is trained to
learn a manifold of natural and high-resolution (HR) images
from samples in the training dataset. This has been success-
fully applied to various image processing tasks [1, 2, 50].
To demonstrate the flexibility of our metric, we show its
two implementations using two mainstream deep generative
models: i) Generative Adversarial Networks (GANs) and ii)
Normalizing Flows respectively as follows.



Table 1. IDA-RD scores for synthetic image downscaling with different types and levels of degradations (a), (b); with mixed degradations (c).
The numbers in parentheses denote degradation parameters. As a reference, the IDA-RD score for the bicubic-downscaled image without
degradation is 0.11±0.145. It is best to Zoom In to view the examples of downscaled images with different types and levels of degradations.
ρ: Spearman’ rank coefficient between our IDA-RD metric and levels of degradations, where 1/-1 means that they are monotonically
correlated (positive or negative); Gauss. : Gaussian; Contrast Inc.: Contrast increase; Contrast Dec.: Contrast decrease. Please see Sec. 3 of
the supplementary material for results on more types of degradation.

Gauss. Blur Gauss. Noise Contrast Inc.
(1.0) 0.320±0.048 (0.05) 0.482±0.051 (1.5) 0.231±0.042
(2.0) 0.434±0.057 (0.10) 0.640±0.052 (2.0) 0.317±0.041
(4.0) 0.579±0.065 (0.20) 0.659±0.052 (2.5) 0.462±0.043

(a) ρ = 1 (Monotonic Increasing).

Quantization Contrast Dec.
(15) 0.164±0.002 (0.75) 0.330±0.047
(10) 0.205±0.003 (0.50) 0.644±0.074

(5) 0.463±0.064 (0.25) 0.669±0.034
(b) ρ = −1 (Monotonic Decreasing).

Gauss. Blur (1) 0.320±0.048
+ Gauss. Noise (0.05) 0.585±0.062
+ Contrast Dec. (0.75) 0.664±0.046
+ Quantization (10) 0.795±0.063

(c) Mixed Degradations.

Table 2. IDA-RD scores for synthetic image downscaling methods with different scaling factors. (·): the resolution of downscaled images.
Bicubic: bicubic-downscaled image without degradation. G.B.: Gaussian Blur. The 32× super-resolution is achieved by a concatenation of
a 8× and a 4× upscaling implemented by pretrained SRFlow models.

S.F. Bicubic G.B. (σ = 1.0) G.B. (σ = 2.0) G.B. (σ = 4.0)
4× (256 × 256) 0.058±0.142 0.146±0.032 0.269±0.043 0.412±0.055
8× (128 × 128) 0.110±0.145 0.320±0.048 0.434±0.057 0.579±0.065
32× (32 × 32) 0.228±0.056 0.614±0.068 0.680±0.066 0.741±0.065

Implementation with a Pre-trained GAN generator. Sim-
ilar to [26], we implement the upsampling function fus
in our metric using an optimization-based GAN inversion
method [1, 2]. Leveraging the power of a pre-trained Style-
GAN [16] generator G, we define our GAN-based fus
(Eq. 2) as locating the optimized StyleGAN latent code z∗i
so that its corresponding HR image G(z∗i ) synthesized by
G shares the same downscaled image as an input LR image
ILR = fds(x):

fus(ILR, i) = G(z∗i ) = argmin
G(zi)

||ILR − fds(G(zi))|| (4)

where ILR = fds(x) denotes the input LR image down-
scaled by fds, zi denotes the i-th randomly initialized latent
code to be optimized to get the i-th sample from x̂|ILR (i.e.,
G(z∗i )), i = 1, 2, 3, ... is the index. It can be observed that i)
our fus sidesteps the data scarcity challenge (Eq. 3) by using
a StyleGAN generator that is trained with HR images only
(i.e., without any many-to-many LR-HR training pairs); ii)
it relocates the supervision to downscaling (i.e., enforcing
different HR images to be downscaled to the same LR image)
and thus outputs high quality HR images G(z∗i ) that applies
to an arbitrary choice of fds; iii) it is inherently stochastic
given the random choices of zi.
Implementation with a Pre-trained Flow model. We use
a pre-trained SRFlow model [24] that implements the fus

in our metric with a conditional invertible neural network.
Leveraging its invertible nature, fus is trained to explicitly
learn the conditional distribution x̂|ILR by minimizing the
negative log-likelihood:

fus = argmin
fθ

− log pz(fθ(x|ILR)) (5)

where ILR = fbicubic
ds (x) is a bicubic downscaled image

of HR input x, z denotes a random latent variable whose
distribution encodes x̂|ILR with a ‘reparameterization trick’.
Although trained with only bicubic downscaling, surpris-
ingly, we observed that the resulting fus can also be applied
to evaluate other downscaling methods.

We use SRFlow in the final version of our metric as it
shares similar performance as the GAN-based implementa-
tion but has a much lower time cost.

4. Experiments
To validate the effectiveness of our IDA-RD measure, we
first test it with synthetic image downscaling methods whose
performance are known beforehand (Sec. 4.2). Specifically,
we simulate different types and levels of downscaling dis-
tortions by adding controllable degradations (e.g., Gaussian
Blur, Contrast Change) to bicubic-downscaled images. In
principle, the heavier the degradation, the worse the results



Table 3. (a) IDA-RD scores for real-world image downscaling methods (4×) on DIV2K [3], Flickr30k [46] and RealSR [8] datasets. N.N.:
Nearest Neighbour. L0-reg.: L0-regularized. UD: “unknown downscaled” images provided by DIV2K. Camera: LR images “downscaled”
by a camera provided by RealSR. (b) IDA-RD scores for real-world image downscaling methods with different scaling factors. S.F.: Scaling
Factor, the resolutions of downscaled images (e.g., 512×512 for 2×, 64×64 for 16×), are omitted for simplicity. Note that the relatively
large standard deviations in some cases (especially when the scaling factors are small) indicate the algorithmic biases of image downscaling
methods against individual images, e.g., flat images with large color blocks may suffer less from information loss. The 32× super-resolution
is achieved by a concatenation of a 8× and a 4× upscaling implemented by pretrained SRFlow models.

Bicubic Bilinear N.N. DPID Perceptual L0-reg. Camera UD
DIV2K 0.157±0.073 0.129±0.089 0.374±0.079 0.216±0.057 0.336±0.068 0.226±0.072 — 0.355±0.128
Flickr30K 0.263±0.102 0.239±0.112 0.452±0.105 0.357±0.097 0.367±0.080 0.364±0.103 — —
RealSR 0.116±0.052 0.114±0.055 0.389±0.102 0.224±0.079 0.341±0.083 0.264±0.075 0.047±0.125 —

(a) IDA-RD scores for real-world image downscaling methods (4×).

S.F. Bicubic Bilinear N.N. DPID Perceptual L0-reg.
4× 0.058±0.142 0.031±0.053 0.335±0.310 0.122±0.234 0.388±0.321 0.136±0.251
8× 0.110±0.145 0.090±0.067 0.512±0.340 0.127±0.294 0.398±0.337 0.213±0.301
32× 0.228±0.056 0.272±0.056 0.601±0.163 0.291±0.076 0.514±0.152 0.307±0.050

(b) IDA-RD scores for real-world image downscaling methods with different scaling factors.

of downscaling, and the higher our measure should be. We
also validate the effectiveness of our IDA-RD measure across
different scaling factors. Then, we show that our measure
can also be used to evaluate real-world image downscaling
methods like Bicubic, Bilinear, Nearest Neighbour, and state-
of-the-art downscaling methods like L0-regularized [23],
Perceptual [29] and DPID [44] (Sec. 4.3). Please see Sec. 2
of the supplement for examples of downscaled images.

4.1. Experimental Setup

Dataset Unless specified, we use a balanced subset of 900
images from the FFHQ dataset [16], including face images at
1024×1024 resolution, as the set of input high-resolution im-
ages X in Eq. 2 for our IDA-RD measure. Please see Sec. 4
of the supplementary materials for more details on how we
construct balanced subsets of images from FFHQ. We also
use real-world datasets that contain images for all domains,
including DIV2K [3], Flickr2K2 and RealSR [8], for the eval-
uation. However, observing that SRFlow is unstable on them
(Sec. 8 in supplementary material), we only use real-world
datasets for the 4× downscaling assessment in Sec. 4.3 and
use domain-specific datasets for other experiments.
Image Upscaling Algorithms We use SRFlow [24] as the
fus in Eq. 2. Specifically, we used the models provided
by the authors for 4× and 8× super resolution that are
pre-trained on DIV2K [3] and Flickr2K datasets. Unless
specified, we use the 8× model for all experiments. For
PULSE [26], we use the same StyleGAN generator pre-
trained with FFHQ [16]. This model generates face images
of size 1024×1024. We use a learning rate of 0.4, and stop
the optimization for each image after 200 steps of spheri-
cal gradient descent. The noise signals of the StyleGAN
generator were kept fixed.

2https://github.com/andreas128/SRFlow

Hyperparameters Unless specified, we use i) NQ = 5 as
the number of images upscaled from a single downscaled
image for the estimation of Q in Eq. 2; ii) LPIPS [49] as the
distortion measure D in Eq. 2; iii) NX = 900 as the number
of images in the set of high-resolution image X in Eq. 2.

4.2. Test with Synthetic Downscaling Methods

In this section, we demonstrate the effectiveness of our IDA-
RD measure by testing its performance on synthetic down-
scaling methods. Without loss of generality, we simulate
the effects of different downscaling methods by adding con-
trollable degradations after bicubic downscaling, whose ra-
tionale is justified in Sec. 9 of the supplementary materials
where we show that applying degradations before and after
downscaling yield similar results.

4.2.1 Effectiveness across Degradation Types

As detailed below, we test our IDA-RD measure with four
sets of synthetic downscaling methods that apply different
types and levels of degradations to bicubic-downscaled im-
ages respectively and compute the Spearman coefficients ρ
between levels of degradations and our IDA-RD metrics to
assess their correlations.

Gaussian Blur. We apply Gaussian blur to the bicubic-
downscaled images. The standard deviation of the blur ker-
nel σ is chosen from {1.0, 2.0, 4.0}. The kernel size was set
as 3. The results are shown in Table 1 (a).

Gaussian Noise. We add Gaussian noise to the bicubic-
downscaled images. The standard deviation σ of the noise is
chosen from {0.05, 0.1, 0.2} (for reference, the mean inten-
sity range of bicubic-downscaled images is [0.022, 0.964]).
The results are shown in Table 1 (a).

https://github.com/andreas128/SRFlow


Table 4. Ablation study of NX for IDA-RD implemented with PULSE. Synthetic image downscaling methods with Contrast Decrease with
σ = 0.75 (DG1); Gaussian Noise with σ = 0.05 (DG2); mixed noise consisting of Gaussian Blur with σ = 1.0, Contrast Decrease with
σ = 0.75, and Gaussian Noise with σ = 0.05 (DG3); are used in the experiments.

NX 30 300 600 900 1200 1500
DG1 0.351±0.014 0.342±0.019 0.343±0.012 0.339±0.022 0.339±0.021 0.339±0.023
DG2 0.361±0.011 0.383±0.011 0.374±0.012 0.351±0.023 0.353±0.022 0.352±0.021
DG3 0.471±0.011 0.483±0.012 0.391±0.013 0.293±0.019 0.289±0.022 0.291±0.021

Table 5. Ablation study of fus, the image upscaling algorithms. PULSE [26] and SRFlow [24] have similar results but those of SRFlow are
more distinguishable. Please see Sec. 5 of the supplementary materials for the results when using fus based on stable diffusion.

Bicubic Bilinear N.N. DPID Perceptual L0-reg.
PULSE 0.171±0.015 0.164±0.015 0.254±0.018 0.179±0.016 0.223±0.017 0.205±0.016
SRFlow 0.110±0.145 0.090±0.067 0.512±0.340 0.127±0.294 0.398±0.337 0.213±0.301

Contrast Change. We apply contrast change to bicubic-
downscaled images. To increase the contrast, we select the
scale factor from {1.5, 2.0, 2.5} in Table 1 (a). Note that
such scaling can cause degradation due to the clipping of
extreme intensity values. Similarly, to decrease the contrast,
we select the contrast parameter from {0.25, 0.50, 0.75} in
Table 1 (b).

Quantization. We apply pixel quantization to bicubic-
downscaled images and select the number of color thresholds
from {5, 10, 15}. Specifically, we apply Otsu’s multilevel
thresholding algorithm [30] to the graylevel histogram which
is derived from the color image, and then apply these thresh-
olds uniformly to each of the RGB color channels. The
results are shown in Table 1 (b).

Mixed Degradations. In addition to single degradations
mentioned above, we also demonstrate the effectiveness of
our IDA-RD measure on their mixtures. The results are
shown in Table 1 (c).

It can be observed that our IDA-RD measure works as
expected (i.e., the stronger the degradation, the worse the
downscaling algorithm, and the higher the IDA-RD) for all
synthetic image downscaling methods, which demonstrates
its effectiveness. In addition, we investigate the minimum
degradation that causes differences in IDA-RD values in
Sec. 10 of the supplementary materials, which justifies the
effectiveness of IDA-RD in assessing small degradations.

4.2.2 Effectiveness across Scale Factors

We further demonstrate the effectiveness of our IDA-RD
measure on synthetic downscaling algorithms across differ-
ent scaling factors. As Table 2 shows, we test our IDA-RD
on synthetic downscaling algorithms of different levels of
Gaussian Blur degradation as mentioned above. It can be
observed that: i) the larger the scaling factor, the more the

information loss, and the higher the IDA-RD; ii) the stronger
the degradation, the worse the downscaling algorithm, and
the higher the IDA-RD; which justifies the validity of our
IDA-RD measure.

4.3. Evaluating Existing Downscaling Methods

We apply our method to compare six existing downscaling
algorithms, consisting of three traditional methods: Bicubic,
Bilinear, Nearest Neighbor (N.N.), and three state-of-the-art
methods: DPID [44], L0-regularized downscaling [23], and
Perceptual [29] downscaling. Please see Sec. 12 of the sup-
plementary materials for a visualization of the six downscal-
ing methods. We conduct experiments on both real-world
datasets, i.e., DIV2K, Flickr30k and RealSR, which contain
images for all domains, and FFHQ. As mentioned above in
Sec. 4.1, we use FFHQ for the evaluation against different
scaling factors as it is more stable. The results are shown
in Table 3. For Table 3a, it can be observed that: i) when
applied to classical downscaling algorithms (i.e., Bicubic, Bi-
linear, and N.N.), our IDA-RD measure identifies the quality
of these algorithms in the correct order (Bilinear > Bicubic
> N.N.), although the difference between the results of Bicu-
bic and Bilinear downscaling is not significant as expected;
ii) our method can also evaluate the “unknown downscaling”
in DIV2K and camera-captured LR images, which shows
that camera-captured LR images do lose less information;
iii) when applied to SOTA ones, the common belief is that
these algorithms should perform better than Bilinear down-
scaling. However, none of these methods achieve a better
IDA-RD, suggesting that although SOTA image downscaling
methods excel in perceptual quality, they actually lose more
information than Bilinear downscaling3. Nevertheless, it

3Note that our results do not contradict previous perception-based evalu-
ations, but rather provide a new, objective and orthogonal dimension, i.e.,
the extent to which they retain the information of their corresponding HR
images.



Table 6. Ablation study of NX , the number of images in test dataset X in Eq. 2 in the main paper. Synthetic image downscaling methods
with Contrast Decrease with σ = 0.75 (DG1); Gaussian Noise with σ = 0.05 (DG2); mixed noise consisting of Gaussian Blur with σ = 1.0,
Contrast Decrease with σ = 0.75, and Gaussian Noise with σ = 0.05 (DG3); are used in the experiments.

NX 30 300 600 900 1200 1500
DG1 0.320±0.026 0.321±0.047 0.321±0.046 0.330±0.047 0.325±0.047 0.329±0.047
DG2 0.501±0.055 0.473±0.051 0.481±0.050 0.482±0.051 0.483±0.051 0.484±0.051
DG3 0.483±0.088 0.312±0.048 0.321±0.045 0.320±0.048 0.321±0.047 0.322±0.048

can be observed that DPID and L0-regularized methods are
slightly better than Perceptual downscaling on our IDA-RD
measure, which is consistent with previous understanding.
These indicate that our IDA-RD measure is a useful comple-
ment to visual inspection, i.e., a good image downscaling
algorithm should be both visually satisfying and achieve a
low IDA-RD score, which further validates the role of our
measure in providing new insights into image downscaling
algorithms. For Table 3b, it can be observed that the larger
the scaling factor, the more the information loss, and the
higher the IDA-RD, which is consistent with the observation
of synthetic results. Please see Sec. 13 of the supplemen-
tary materials for a qualitative comparison and Sec. 6 of the
supplementary materials for validation of our IDA-RD using
“camera” images.

4.4. Time Complexity

Sec. 1 of the supplementary materials shows the running
times of our IDA-RD measure using PULSE and SRFlow as
fus (Eq. 2 in the main paper) on an Nvidia RTX3090 GPU,
respectively. It can be observed that the SRFlow implemen-
tation runs much faster, which justifies our choice of using it
in our IDA-RD measure.

4.5. Ablation Study

In this experiment, we justify the algorithmic choices of our
IDA-RD measure, i.e., fus, D, the number of images used
to estimate Q and in X , and the content of X in Eq. 2, by
performing a thorough ablation study on them.

Table 7. Ablation study of the contents of dataset X in Eq. 2 in the
main paper. (1) Bicubic (2) Bilinear (3) Nearest Neighbor (N.N.)
(4) DPID (5) Perceptual (6) L0-regularized.

FFHQ NPRportrait 1.0 AFHQ-Cat
(1) 0.110±0.145 0.119±0.166 0.107±0.029
(2) 0.090±0.067 0.100±0.101 0.091±0.033
(3) 0.512±0.340 0.329±0.292 0.277±0.103
(4) 0.127±0.294 0.119±0.099 0.152±0.047
(5) 0.398±0.337 0.391±0.231 0.289±0.067
(6) 0.213±0.301 0.166±0.234 0.211±0.025

Choice of fus. As Table 5 shows, both PULSE [26] and
SRFlow [24] have similar results when used as fus in our

IDA-RD measure, i.e., N.N. > Perceptual > L0-regularized
> DPID > Bicubic > Bilinear. However, since SRFlow
yields more distinguishable results and runs much faster
(Table 1 in Sec. 1 of the supplementary materials), we use
it in our IDA-RD measure. Nevertheless, our IDA-RD is
very flexible (i.e., not restricted to PULSE or SRFlow) and
will benefit from future progresses of blind and stochastic
super-resolution methods. The invalidity of non-blind or
non-stochastic SR methods is discussed in Sec. 5.

Number of Images in X . As Table 6 shows, we investigate
how many images are required in the test dataset X consist-
ing of high-resolution images to achieve a robust estimation
of IDA-RD, namely NX . It can be observed that the results
become stable when NX ≥ 900, so we choose NX = 900
for our IDA-RD measure. We also justify this choice on the
PULSE version of our measure. As Table 4 shows, we also
investigate how many images are required in the test dataset
X consisting of high-resolution images to achieve a robust
estimation of IDA-RD implemented with PULSE [26]. Sim-
ilarly, it can be observed that the results become stable when
NX ≥ 900, which further justifies our choice of NX = 900
for IDA-RD.

The Content of X . As Table 7 shows, in addition to
FFHQ [16], we test our IDA-RD measure on another two
datasets: the NPRportrait 1.0 benchmark set [35] and AFHQ-
Cat [10]. Between them, we use all 60 images at around
800×1024 resolution from the NPRportrait 1.0 benchmark
set as X , which was carefully constructed so as to include a
controlled diversity of gender, age and ethnicity; we use a
random sample of 900 images at 512×512 resolution from
the AFHQ-Cat dataset as X . We test them with 4× image
downscaling. It can be observed that our conclusions hold
for all datasets, which further verifies the flexibility of our
method against the content of X . Without loss of generality,
we use FFHQ in our IDA-RD measure.

Number of Images used to Estimate Q. As Table 8 shows,
for a downscaled image, we investigate how many images
are required to be upscaled from it (by fus) to achieve a
robust estimation of the conditional distribution Q and thus
our IDA-RD, namely NQ. It can be observed that the results
become stable when NQ ≥ 5, so we choose NQ = 5 for our
IDA-RD measure.



Table 8. Ablation study of NQ, the number of images required for a robust estimation of Q in Eq. 2 in the main paper.

NQ 1 3 5 10 15
Bicubic 0.103±0.141 0.109±0.142 0.110 ±0.145 0.111±0.145 0.110±0.145
Bilinear 0.090±0.069 0.090±0.067 0.090 ±0.067 0.090±0.067 0.090±0.067
N.N. 0.513±0.341 0.512±0.340 0.512 ±0.340 0.512±0.340 0.511±0.340

Table 9. Ablation study of D, the distortion measure in Eq. 2 of the main paper. Dec.: Decrease. Param.: Parameter.

Param. PSNR SSIM MS-SSIM LPIPS
0.75 22.137±4.020 0.834±0.159 0.881±0.101 0.330±0.047

Contrast Dec. 0.50 17.814±2.148 0.714±0.087 0.819±0.080 0.644±0.074
0.25 14.790±1.461 0.578±0.072 0.579±0.028 0.669±0.034

Contrast Inc.
1.50 16.641±4.019 0.603±0.223 0.772±0.150 0.231±0.042
2.00 13.450±3.539 0.482±0.192 0.693±0.131 0.317±0.041
2.50 11.032±2.893 0.357±0.159 0.602±0.120 0.462±0.043

Gaussian Noise
0.05 20.784±0.160 0.597±0.004 0.648±0.071 0.482±0.051
0.10 18.121±1.713 0.563±0.029 0.576±0.066 0.640±0.052
0.20 16.120±1.751 0.520±0.029 0.376±0.066 0.659±0.052

Gaussian Blur
1.00 25.159±1.999 0.744±0.059 0.929±0.017 0.320±0.048
2.00 22.365±1.875 0.646±0.073 0.849±0.033 0.434±0.057
4.00 19.738±1.739 0.558±0.080 0.715±0.051 0.579±0.065

Choice of D. As Table 9 shows, we test different choices of
D including multiple image distortion metrics: Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index Measure
(SSIM) [43], MS-SSIM (Multi-Scale SSIM), and LPIPS [49].
Experimental results demonstrate a similar trend across all
of them, indicating the flexibility of our IDA-RD measure.
Nevertheless, since LPIPS is a more advanced metric that has
been shown to be more consistent with human perception,
we use it in the final version of our IDA-RD measure.

5. Motivation Justification
Invalidity of Non-blind and Non-stochastic SR method
As Table 11 from Sec. 11 of supplementary materials shows,
non-blind or non-stochastic SR methods i) ESRGAN [40],
BSRGAN [48], and Real-ESRGAN [41] fail to distinguish
among image downscaling algorithms; ii) SR3 [36] and
RSR [9] are slightly better but still not comparable to SR-
Flow; which justifies the choice of blind and stochastic SR
methods in our IDA-RD.

Invalidity of NR-IQA Metrics As Table 12 from Sec. 11 of
supplementary materials shows, existing NR-IQA metrics,
such as NIQE [28] and BRISQUE [27], MANIQA4 [45] and
CONTRIQUE [25], are not suitable for the image down-
scaling problem, especially extreme downscaling. It can be
observed that i) NIQE struggles to calculate proper scores
at all resolutions below 128×128; ii) BRISQUE does not
provide the correct scores at a resolution of 32×32; iii)
MANIQA and CONTRIQUE also rely on the “naturalness”

4Please note that MANIQA won the first place in the NTIRE2022
Perceptual Image Quality Assessment Challenge Track 2 No-Reference
competition. https://github.com/IIGROUP/MANIQA

of HR images that is not present in LR images, thus cannot
distinguish between images with relatively high degradations
(e.g.σ = 2.0 and σ = 4.0). Also, both MANIQA and CON-
TRIQUE are biased in terms of image resolutions: MANIQA
is trained with 224× 224 images and thus achieves higher
scores with 256× 256 images; CONTRIQUE is trained with
500×500 images and achieves higher scores with 512×512
images. In contrast, our measure correctly shows that the
higher the downscaling factor (i.e., the lower the resolution),
the greater the information loss (i.e., the lower the quality).

6. Conclusion
In this paper, we presented Image Downscaling Assessment
by Rate Distortion (IDA-RD), a quantitative measure for the
evaluation of image downscaling algorithms. Our measure
circumvents the requirement of a ground-truth LR image
by measuring the distortion in the HR space, which is en-
abled by the recent success of blind and stochastic super-
resolution algorithms based on deep generative models. We
validate our approach by testing various synthetic down-
scaling algorithms, simulated by adding degradations, on
various datasets. We also test our measure on real-world im-
age downscaling algorithms, which further validates the role
of our measure in providing new insights into image down-
scaling algorithms. Please see Sec. 14 of the supplementary
materials for Limitation and Future Work.
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1. Time Complexity

Table 1. Running times of our IDA-RD with PULSE and SRFlow
as fus (Eq. 2 in the main paper) respectively. NX : the number of
images in test dataset X in Eq. 2 in the main paper.

NX 300 600 900
PULSE 3h08min 6h10min 9h08min
SRFlow 18min 35min 55min

Table 1 shows the running times of our IDA-RD measure us-
ing PULSE and SRFlow as fus (Eq. 2 in the main paper) on
an Nvidia RTX3090 GPU, respectively. It can be observed
that the SRFlow implementation runs much faster, which
justifies our choice of using it in our IDA-RD measure.

2. Examples of Downscaled Images used in our
experiments

Table 6 and Table 7 show examples of images downscaled by
synthetic and real-world image downscaling methods used
in our experiments, respectively.

3. Additional Results for Different Types of
Degradations

As Table 2 shows, we tested our IDA-RD using BSRGAN’s
more complex Type IV degradations. It can be observed
that our IDA-RD remains effective across these additional
degradation types.

Table 2. IDA-RD scores for synthetic image downscaling methods
used in BSRGAN. The random degradation parameters for [G.N.
levels, blur σ, JPEG noise] are: Random-1: [0.667, 0.026, 48];
Random-2: [0.824, 1.233, 75]; Random-3: [0.283, 1.719, 49];
Random-4: [0.404, 0.233, 35]; and Random-5: [0.771, 1.902, 50].

Random-1 Random-2 Random-3 Random-4 Random-5
Type IV 0.537±0.002 0.820±0.004 0.410±0.001 0.0480±0.001 0.548 ±0.001

4. Balancing FFHQ into Age-, Gender-, and
Race-Balanced Subsets

We balance the FFHQ dataset [16] into subsets (i.e., X in
Eq. 2 in the main paper) that are balanced in age, gender and
ethnicity for a fair evaluation of our IDA-RD measure. For

the gender and age labels of FFHQ images, we use those of-
fered by the FFHQ-features-dataset5; for the ethnicity labels
of FFHQ images, we use the recognition results of Deep-
Face6. According to the above, we define i) four age groups:
Minors (0-18), Youth (19-36), Middle Aged (36-54) and Se-
niors (54+); ii) three major ethnic groups: Asian, White and
Black; iii) two gender groups: Male and Female. We apply
K-means to cluster FFHQ images in 24 (4×3×2) groups and
select images from them evenly to generate the subsets used
in our experiments. As Table 8 shows, the subsets used in
our experiments are highly-balanced in terms of age, gender
and ethnicity.

5. IDA-RD Based on Stable Diffusion (SD)
As Table 3 shows, implementing our IDA-RD metric with
SD models produces the same ranking as PULSE and SR-
Flow, further validating the effectiveness of our method.

6. Validation Using “Camera” Images
The results in Table 4 show the same ranking of image down-
scaling algorithms by our IDA-RD metric, further validating
the correctness of our approach. Notably, our method is
superior as it does not require any reference images (e.g.,
“camera” images).

7. IDA-RD Results on Lanczos Algorithm
As Table 4 and Table 5 show, the Lanczos algorithm loses
slightly more information than the Bicubic and Bilinear algo-
rithms, but less than the SOTA methods. This reflects a trend
to sacrifice some information preservation for improved per-
ceptual quality in image downscaling.

8. Results of SRFlow (8×) on Real-world
Datasets (Unstable)

As Fig. 1 shows, SRFlow becomes unstable for a scaling
factor of 8×. For stable uses of SRFlow, we intentionally
used domain-specific datasets in the main paper. Note that all
state-of-the-art image downscaling methods (i.e., Perceptual,
L0-regularized, DPID) used in our experiments are general
ones that are applicable to all domains (i.e., not tuned for
specific domains).

5https://github.com/DCGM/ffhq-features-dataset
6https://github.com/serengil/deepface

https://github.com/DCGM/ffhq-features-dataset
https://github.com/serengil/deepface


Table 3. Results of IDA-RD implementations using three SD-based methods: ResShift [47] and Diffbir [22], StableSR [39].

Bicubic Bilinear N.N. DPID Perceptual L0-reg.
ResShift(×100) 0.349±0.081 0.343±0.097 0.553±0.329 0.356±0.086 0.537±0.201 0.483±0.129
Diffbir(×100) 0.340±0.167 0.333±0.163 0.703±0.353 0.313±0.136 0.681±0.217 0.437±0.192
StableSR(×100) 0.680±0.243 0.650±0.226 0.773±0.341 0.697±0.252 0.739±0.274 0.698±0.187

Figure 1. SRFlow becomes unstable for a scaling factor of 8× on real-world datasets, e.g., DIV2K (Row 1), while such cases never happen
for domain-specific datasets, e.g., FFHQ (Row 2). From the left to right, the method to down scaling are N.N., DPID, Perceptual and L0-reg.
separately.

happen domain-speci

(a) N.N. (b) DPID (c) Perceptual (d) L0-reg.

(e) N.N. (f) DPID (g) Perceptual (h) L0-reg.

Table 4. Comparison of image downscaling algorithms on the
RealSR dataset using its “camera” images as the “ground truth”.

SSIM↑ PSNR↑ LPIPS↓
Bicubic 0.900 ± 0.046 29.870 ± 2.857 0.167 ± 0.070
Bilinear 0.922 ± 0.036 30.163 ± 2.907 0.132 ± 0.059
Lanczos 0.886 ± 0.053 28.072 ± 2.837 0.191 ± 0.079
N.N. 0.827 ± 0.078 25.713 ± 2.881 0.247 ± 0.105
L0-reg. 0.858 ± 0.071 26.278 ± 2.901 0.228 ± 0.099
DPID 0.869 ± 0.065 26.964 ± 2.838 0.225 ± 0.098
Perceptual 0.840 ± 0.085 25.842 ± 2.795 0.239 ± 0.102

9. Test with Synthetic Downscaling Methods -
Degradation Applied Before Downscaling

As Table 9 shows, it can be observed that applying degra-
dation before downscaling yields similar results to applying

Table 5. Additional experiments of the Lanczos algorithm. (a)(b):
extension to Table 7 of the main paper; (c) extension to Table 3(a)
of the main paper.

(a) FFHQ (b) AFHQ-Cat (c) RealSR
Lanczos 0.121±0.287 0.142±0.045 0.120±0.133

degradation after downscaling. We therefore conclude that
either approach yields valid synthetic downscaling methods.

10. Minimum Degradation that Causes Differ-
ences in IDA-RD Values

As Table 10 shows, the minimum degradations that cause
differences in IDA-RD values (e.g., for Gauss. Blur,
when the degradation parameter changes from 0.0001 to
0.0005, the IDA-RD slightly increases from 0.111±0.034 to



Table 6. Examples of images downscaled by synthetic image downscaling methods, i.e., those adds controllable degradations to bicubic-
downscaled images (Sec. 4.2 in the main paper). The numbers below images are the degradation parameters. LR: bicubic-downscaled
images, Dec.: decrease, Inc.: increase, Gauss.: Gaussian.

Guass. Blur

LR σ = 1.0 σ = 2.0 σ = 4.0
Contrast Dec.

LR 0.75 0.5 0.25
Contrast Inc.

LR σ = 1.5 σ = 2.0 σ = 2.5
Gauss. Noise

LR 0.05 0.1 0.2
Quantization

LR 15 10 5
Mixed Degradations

LR +Contrast Dec. +Gauss. Noise +Quantization
+Gauss. Blur

0.112±0.034), indicating that our IDA-RD is stable against
small degradations. Note that the baseline IDA-RD, i.e., no
degradation, is 0.110.

11. Motivation Justification

As Table 11 shows, non-blind or non-stochastic SR methods
are slightly better but still not comparable to SRFlow.

As Table 12 shows, existing NR-IQA metrics are not suit-
able for the image downscaling problem, especially extreme



Table 7. Examples of images downscaled by real-world image downscaling methods. N.N.: Nearest Neighbour; L0-reg.: L0-regularized.

Bicubic Bilinear N.N. DPID Perceptual L0-reg.

Table 8. Statistics of our balanced FFHQ subsets. MI: Minors, Y: Youth, MA: Middle Aged, S: Senior; A: Asian, W: White, B: Black; M:
Male, F: Female. J.E.: Joint Entropy, which measures the extent to which a subset is balanced. As a reference, a fully-balanced subset has a
joint entropy of −24 ∗ (1/24) ∗ log2(1/24) ≈ 4.5850.

Size Age Ethnicity Gender J.E.
MI Y MA S A W B M F

30 6 9 7 8 10 10 10 15 15 4.2817
300 76 75 70 79 102 100 98 150 150 4.4998
600 168 142 141 149 200 194 206 329 271 4.5245
900 222 227 215 236 304 295 301 452 448 4.5343

1200 445 442 453 460 608 591 601 902 898 4.5375
1500 684 664 673 679 909 887 904 1352 1348 4.5386

downscaling.

12. Visualization of Existing Downscaling Meth-
ods

As Fig. 2 shows, state-of-the-art (SOTA) image downscaling
methods improve the perceptual quality by selectively “en-
hancing” image features (DPID explicitly mentioned that it
“assigns larger weights to pixels that deviate more from their
local image neighborhood” [44]), e.g., the glasses frames and
clothes patterns in Fig. 2 (i-c,d,e,f); the tessellation gaps in
Fig. 2 (ii-c,d,e,f); the hair and watermelon seeds (clothes pat-
tern) in Fig. 2 (iii-c,d,e,f). Nevertheless, selectively “enhanc-
ing” perceptually-important features means downweighting
all other features, resulting in higher uncertainty (i.e., in-
formation loss) when reconstructing other features during
SR. Since the number of perceptually-important features is
typically less than the number of other features, SOTA im-
age downscaling methods lose more information, resulting
in higher IDA-RD scores. Please note that N. N. shares a
similar idea but uses a very simple “selection” method, thus
losing a large amount of information as well.

13. Qualitative Evaluation of Existing Down-
scaling Methods

As Fig. 3 shows, state-of-the-art image downscaling methods
achieve better perceptual quality by “exaggerating” percep-
tually important features in the original image (e.g., building
lights, water reflections), thus leading to over-exaggeration

in the upscaled images. As a result, they have lower IDA-RD
scores than bicubic and bilinear downscaling.

14. Limitation and Future Work
Limitations. Since our measure makes use of GAN- and
Flow-based super-resolution (SR) models, the limitations of
these models are carried over as well. First of all, we cannot
use test data beyond the learnt distribution of the SR model.
For example, unlike the SRFlow [24] model trained on gen-
eral images that are used in the main paper, our GAN-based
implementation uses a StyleGAN generator pre-trained on
portrait images, which only allows for the use of portrait face
images to evaluate downscaling algorithms. Also, although
highly unlikely to occur, we cannot evaluate downscaling
algorithms whose output images are of higher quality than
those generated by the SR model (i.e., no distortion).

Future work. Our framework still requires a ground truth
HR image. However, we believe the distortion can be calcu-
lated without such a ground truth image. To further validate
our IDA-RD measure, in the future we will we use the meta-
measure methodology [11, 32], in which secondary, easily
quantifiable measures are constructed to quantify the perfor-
mance of a less easily quantifiable measure.



Table 9. IDA-RD scores for synthetic image downscaling with different types and levels of degradations (degradation applied before
downscaling). The numbers in parentheses denote degradation parameters.

Gauss. Blur Gauss. Noise Contrast Inc. Contrast dec. Quantization
(1.0) 0.321±0.048 (0.05) 0.480±0.031 (1.5) 0.234±0.042 (0.75) 0.330±0.047 (15) 0.162±0.015
(2.0) 0.432±0.050 (0.10) 0.64±0.052 (2.0) 0.317±0.043 (0.50) 0.644±0.070 (10) 0.205±0.013
(3.0) 0.579±0.055 (0.20) 0.658±0.052 (2.5) 0.462±0.043 (0.25) 0.669±0.034 (5) 0.464±0.054

Spear. 1.000 1.000 1.000 -1.000 -1.000

Table 10. The minimum degradations that cause differences in IDA-RD values. The numbers in parentheses denote degradation parameters.

Gauss. Blur Gauss. Noise Contrast Inc. Contrast dec. Quantization
(0.0001) 0.111±0.034 (0.0001) 0.110±0.029 (1.001) 0.111±0.034 (0.999) 0.111±0.034 (19) 0.111±0.035
(0.0005) 0.112±0.034 (0.0005) 0.110±0.029 (1.005) 0.111±0.034 (0.995) 0.111±0.034 (18) 0.182±0.038
(0.0010) 0.113±0.035 (0.0010) 0.118±0.054 (1.010) 0.115±0.029 (0.990) 0.112±0.031 (17) 0.193±0.041
(0.0050) 0.113±0.035 (0.0030) 0.118±0.062 (1.050) 0.120±0.032 (0.950) 0.113±0.032 —-
(0.0100) 0.113±0.036 (0.0040) 0.203±0.062 (1.100) 0.126±0.029 (0.900) 0.119±0.032 —-
(0.0500) 0.114±0.034 (0.0050) 0.291±0.062 (1.150) 0.126±0.029 (0.850) 0.123±0.031 —-
(0.1000) 0.118±0.042 (0.0100) 0.318±0.061 (1.200) 0.130±0.029 (0.800) 0.131±0.032 —-
(0.2500) 0.202±0.043 —- —- —- —-
(0.3000) 0.214±0.044 —- —- —- —-
Spear. 0.983 0.982 0.982 -0.991 -1.000

Table 11. Invalidity of using ESRGAN, SR3, BSRGAN, RSR and Real-ESRGAN in our IDA-RD measure.

Bicubic Bilinear N.N. DPID Perceptual L0-reg.
ESRGAN 0.022±0.012 0.017±0.006 0.058±0.016 0.025±0.009 0.024±0.004 0.024±0.007
BSRGAN 0.010±0.008 0.011±0.008 0.024±0.022 0.013±0.011 0.025±0.018 0.011±0.008
Real-ESRGAN 0.014±0.010 0.015±0.011 0.026±0.022 0.016±0.012 0.026±0.017 0.017±0.013
SR3 0.169±0.048 0.164±0.047 0.179±0.040 0.171±0.044 0.172±0.043 0.171±0.049
RSR 0.231±0.071 0.208±0.095 0.423±0.132 0.288±0.099 0.379±0.123 0.231±0.071

Table 12. Results of NIQE, BRISQUE, MANIQA and CONTRIQUE at higher resolutions.

Resolution LR σ = 1.0 σ = 2.0 σ = 4.0
1024×1024 3.700 4.158 5.173 6.471

512×512 2.406 3.959 5.574 6.299
256×256 3.047 4.611 7.133 6.792
128×128 18.873 18.872 18.870 18.869

64×64 18.872 18.872 18.870 18.869
32×32 18.873 18.869 18.870 18.867

(a) NIQE scores (lower is better)

Resolution LR σ = 1.0 σ = 2.0 σ = 4.0
1024×1024 26.792 32.827 48.971 59.043

512×512 19.536 33.391 57.447 63.144
256×256 28.582 39.282 55.747 65.990
128×128 16.045 34.423 47.017 55.166

64×64 41.360 42.417 43.346 54.344
32×32 43.458 43.458 44.015 43.668

(b) BRISQUE scores (lower is better)

Resolution LR σ = 1.0 σ = 2.0 σ = 4.0
1024×1024 0.513 0.481 0.475 0.475

512×512 0.624 0.614 0.612 0.612
256×256 0.679 0.676 0.6762 0.676

(c) MANIQA scores (higher is better)

Resolution LR σ = 1.0 σ = 2.0 σ = 4.0
1024×1024 54.989 33.965 32.037 32.114

512×512 64.600 52.143 49.588 49.588
256×256 57.145 55.847 55.538 55.538
128×128 50.782 50.595 50.557 50.557

64×64 55.608 55.591 55.577 55.577
32×32 54.569 54.572 54.568 54.568

(d) CONTRIQUE scores (higher is better)



Figure 2. Examples of images (×8) from FFHQ, DIV2K and Flickr30K datasets downscaled by real-world image downscaling methods. (a)
Bicubic (b) Bilinear (c) Nearest Neighbor (N.N.) (d) DPID (e) Perceptual (f) L0-regularized

Original

(a) (b) (c)

(d) (e) (f)

(i) Example from FFHQ

Original

(a) (b) (c)

(d) (e) (f)

(ii) Example from DIV2K

Original

(a) (b) (c)

(d) (e) (f)

(iii) Example from Flickr30K



Figure 3. Qualitative evaluation of existing image downscaling methods. Original: the input HR image; LR: the downscaled LR image; SR1,
SR2, SR3: three instances of upscaled images; MD1, MD2, MD3: difference map visualizations of (SR1, Original), (SR2, Original), and
(SR3, Original), respectively. The white numbers on the left-top corners: the corresponding LPIPS scores of the difference map visualizations.
State-of-the-art image downscaling methods (DPID, Perceptual and L0-reg.) achieve better perceptual quality by “exaggerating” perceptually
important features in the original image (e.g., building lights, water reflections), thus leading to over-exaggeration in the upscaled images
and lower IDA-RD scores.
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