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DETECTING ALGEBRA OBJECTS FROM NIM-REPS IN POINTED,

NEAR-GROUP AND QUANTUM GROUP-LIKE FUSION CATEGORIES

SAMUEL HANNAH AND ANA ROS CAMACHO, WITH AN APPENDIX WITH DEVI YOUNG

Abstract. In this article we study the possible Morita equivalence classes of algebras in three

families of fusion categories (pointed, near-group and pA1, lq 1

2

) by studying the Non-negative Integer

Matrix representations (NIM-reps) of their underlying fusion ring, and compare these results with

existing classification results of algebra objects. Also, in an appendix we include a test of the

exponents conjecture for modular tensor categories of rank up to 4.
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1. Introduction

The study of fusion rings and their associated non-negative integer matrix representations (or

NIM-reps, for short) has stimulated a rich production in the literature, see e.g. [BPPZ00,DFZ90,

EP21, Gan02, Gan05]. A good reason behind this is the connection of NIM-reps to boundary

rational conformal field theory (or D-branes in string theory): in particular, finding NIM-reps is

equivalent to solving Cardy’s equation in these cases. Some recent papers have continued this work

[CRSS23,YZL1806], showing that this interest keeps up after time.

Given a rational, c2-cofinite vertex operator algebra describing the chiral symmetries of a rational

conformal field theory, its category of representations is a modular tensor category [Hua08,HLZ].

In this paper we go for a slightly more general setting than modular and focus on the study and
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2 SAMUEL HANNAH AND ANA ROS CAMACHO

classification of NIM-reps for two different families of fusion categories, pointed and near-group. We

also include the case of the modular tensor category pA1, lq 1

2

, thus covering a certain amount of

modular tensor categories known to date (see e.g. [BGN`20,BNRW16,BOM18,BPRZ21,Bru16,

NRWW23, RSW09], more recently [NRW], and references thereof). Our main motivation for

undertaking this work is to test the potential of NIM-reps as a detection tool for families of algebra

objects in fusion categories that represent their corresponding module categories. In this way, we

generalise the results of [BD12] for any pointed fusion category (recovering the expected group

algebras as described by [Nat17,Ost03b]), extend results outlined in [Ost15, Appendix A] and our

understanding of algebra objects in near-group categories as discussed in [MM12,Gal12]; and recover

the results outlined by [EK9503] for Z`-modules and by [Ost03a] for algebra objects in pA1, lq 1

2

.

Furthermore, there is an interesting conjecture relating the exponents of NIM-reps and those of the

modular invariants of the category they live on. In an appendix, we test explicitly this conjecture

for unitary modular tensor categories up to rank 4 (which by [RSW09] include examples of the three

families of categories considered in this paper for which we compute their respective NIM-reps).

The structure of the paper is as follows. In Section 2 we introduce all the necessary background

on fusion and module categories as well as algebra objects, and also on Z`-modules and NIM-reps.

In Section 3 we compute the NIM-reps for each category, and also the algebra objects derived from

those. Appendix A includes the calculations testing the exponents conjecture for modular tensor

categories of rank up to 4.

Acknowledgements. SH is supported by the Engineering and Physical Sciences Research Council.

ARC is supported by Cardiff University. Devi Young’s contribution was supported by the Cardiff

University On-Campus Internship Scheme 21/22. The authors would like to especially thank an

anonymous referee for their helpful comments and suggestions.

2. Preliminaries

Throughout this paper, we fix ❦ to be an algebraically closed field. In this section, we collect

some basic definitions necessary for our work.

2.1. Group Actions. Here we recall several standard definitions and well-known results on group

actions, e.g. see [Arm10,Cam99].

Definition 2.1. Let G be a group and S a set. A G-action on S is a binary operation ˚ : GˆS Ñ S

such that, for all s P S,

e ˚ s “ s, and pg ¨ hq ˚ s “ g ˚ ph ˚ sq,

where e P G is the group identity element. A set with such an action is called a G-set.

Definition 2.2. Let S be a G-set, and s P S.

- The orbit of G through s is the subset of S defined by

Orbpsq “ tg ˚ s|g P Gu.

- The G-action on S is called transitive if Orbpsq “ S.

- The stabiliser of s is the subgroup of G defined by

Stabpsq “ tg P G|g ˚ s “ su.
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For two elements s, t P S, the orbits Orbpsq,Orbptq are either equal or disjoint. Hence the set

S can be partitioned into a collection of transitive G-sets. The following results can be found at

[Cam99, Theorem 1.3].

Proposition 2.3. Let S be a G-set, and take s P S. There is an isomorphism of G-sets between

the orbit Orbpsq and the set of left cosets G{Stabpsq, where G acts on the set of left cosets by

left-translation.

Proposition 2.4. Two left coset G-sets G{H,G{K are isomorphic as G-sets if and only if H,K

are conjugate as subgroups of G.

As a result of these propositions, we can study all G-sets by studying the G-sets of left cosets for

all conjugacy classes of subgroups in G.

2.2. Fusion Categories. In this subsection we follow [EGNO15].

A monoidal category C consists of a tuple pC,b,✶, α, l, rq where C is a category, b : C ˆ C Ñ C

is a bifunctor, ✶ P Ob pCq, αX,Y,Z : pX b Y q b Z Ñ X b pY b Zq is a natural isomorphism for

each X,Y, Z P Ob pCq, and lX : ✶ bX Ñ X and rX : X b ✶ Ñ X are natural isomorphisms for all

X P Ob pCq, satisfying coherence axioms (pentagon and triangle).

A monoidal category is called rigid if it comes equipped with left and right dual objects — that

means, for every X P Ob pCq there exists respectively an object X˚ P Ob pCq with evaluation and

coevaluation maps evX : X˚ bX Ñ ✶ and coevX : ✶ Ñ X bX˚, as well as an object ˚X P Ob pCq

with evaluation and coevaluation maps revX : X b ˚X Ñ ✶ and ĆcoevX : ✶ Ñ ˚X bX satisfying in

both cases the usual conditions.

A ❦-linear abelian category C is locally finite if, for any two objects V,W P Ob pCq, HomC pV,W q

is a finite-dimensional ❦-vector space and every object has a finite filtration by simple objects.

Further, we say C is finite if there are finitely many isomorphism classes of simple objects. A tensor

category is a locally finite, rigid, monoidal category such the the tensor product is ❦-linear in each

slot and the monoidal unit is a simple object of the category.

At this point, it is useful to introduce the following notion. Given an abelian category C, the

Grothendieck group Gr pCq of C is the free abelian group generated by isomorphism classes Xi of

simple objects in C. If X and Y are objects in C such that Y is simple then we denote as rX : Y s

the multiplicity of Y in a Jordan-Hölder series of X. To any object X in C we can canonically

associate its class rXs P Gr pCq given by the formula:

rXs “
ÿ

i

rX : XisXi.

A monoidal category C is called braided if it comes equipped with natural isomorphisms cX,Y : Xb

Y Ñ Y b X, for all X,Y P Ob pCq, called the braiding, that are compatible with the monoidal

structure of the category. This means, the braiding satisfies the so-called hexagon identities for any
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three objects X,Y, Z P Ob pCq:

X b pY b Zq
cX,Y bZ

// pY b Zq bX
αY,Z,X

((

pX b Y q b Z

αX,Y,Z

66

cX,Y bIdZ ((

Y b pZ bXq

pY bXq b Z
αY,X,Z

// Y b pX b Zq

IdY bcX,Z

66

pX b Y q b Z
cXbY,Z

// Z b pX b Y q
α´1

Z,X,Y

((

X b pY b Zq

α´1

X,Y,Z

66

IdXbcY,Z ((

pZ bXq b Y

X b pZ b Y q
α´1

X,Z,Y
// pX b Zq b Y

cX,ZbIdY

66

A ribbon category is a braided tensor category C together with a ribbon twist, i.e., a natural

isomorphism θX : X Ñ X which satisfies

θXbY “ pθX b θY qcY,XcX,Y , θ1 “ Id1, pθXq˚ “ θX˚ .

In order to define modular tensor categories, we require the notion of non-degeneracy of a braided

category. We say that an object X centralises another object Y of C if

cY,XcX,Y “ IdXbY .

A braided finite tensor category C is non-degenerate if the only objects X that centralise all objects

of C are of the form X “ 1
‘n [EGNO15, Section 8.20]. Equivalently, C is non-degenerate if and

only if it is factorisable, i.e., there is an equivalence of braided monoidal categories ZpCq » Crev ⊠ C,

where Crev is C as a tensor category, but with reversed braiding given by the inverse braiding [Shi19].

If C is a fusion category (i.e., a semi-simple finite tensor category) with a ribbon structure, then the

above notion of non-degeneracy is equivalent to the commonly used condition that the S-matrix is

non-singular.

Definition 2.5 ([KL01,Shi19]). A braided finite tensor category is modular if it is a non-degenerate

ribbon category.

2.3. Z`-Rings. In this subsection we continue following [EGNO15]. Denote as Z` the semi-ring of

positive integers with zero.

Definition 2.6. Let R be a ring which is free as a Z-module.

(1) A Z`-basis of R is a basis B “ tbiuiPI , where I is an indexing set, such that bibj “
ř
kPI

ckijbk,

where ckij P Z`.
(2) A Z`-ring is a ring with a fixed Z`-basis and with an identity 1 which is a non-negative

linear combination of the basis elements. If 1 is a basis element, then it is called a unital

Z`-ring.
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(3) Given a Z`-ring pR,Bq, a Z`-module is an R-module T with a fixed Z-basis M “ tmlulPL
such that for any ml P M , bi P B, then bi ▷ ml “

ř
kPL

aki,lmk, where a
k
i,l P Z`.

Example 2.7. For C a fusion category with Xi the representatives of the isomorphism classes of

simple objects, the tensor product on C induces a natural multiplication on Gr pCq defined by the

formula:

XiXj :“ rXi bXjs “
ÿ

kPI
rXi bXj : XksXk

where i, j P I. This multiplication is associative, and thus Gr pCq is a Z`-ring with unit r1s. Gr pCq

is called the Grothendieck ring of C.

Let pR,Bq be a Z`-ring, and let i P I0 Ă I such that bi appears in the decomposition of 1. Then,

let τ : R Ñ Z denote the group homomorphism defined by:

τ pbiq “

#
1 i P I0,

0 i R I0.

Definition 2.8. A Z`-ring pR,Bq is called a based ring if there exists an involution pq˚ : I Ñ I,

i ÞÑ i˚ of the label set I such that the induced map

a “
ÿ

iPI
aibi ÞÑ a˚ “

ÿ

iPI
aibi˚ ,

where ai P Z, is an anti-involution of the ring R and

τ pbibjq “

#
1 i “ j˚,

0 i ‰ j˚.

Proposition 2.9 (Proposition 3.1.6, [EGNO15]). In any based ring, the number ck
˚

i,j is invariant

under cyclic permutations of i,j,k.

We arrive to one of the main definitions of this paper:

Definition 2.10. A fusion ring is a unital, based ring of finite rank.

In order to later introduce the NIM-reps, it is convenient to observe the following property:

Proposition 2.11. (Rigidity property) A fusion ring pR,Bq can be equipped with a symmetric

bilinear form p´,´q : R ˆR Ñ Z satisfying pbibj , bkq “ pbj , bi˚ ¨ bkq.

Proof. Let p´,´q be the symmetric bilinear form defined by the condition pbi, bjq “ δi,j . Then the

property of τpbibjq “ δi,j˚ can be reformulated as

p1, bibjq “ pbi, bj˚q “ pbi˚ , bjq

It is clear that p1, pbibjqbkq “ τppbibjqbkq “ ck
˚

ij , and that p1, pbibjqbkq “ p1, bipbjbkqq by associativity.

Thus, we find that

ppbibjq
˚, bkq “ pbj˚bi˚ , bkq “ pbi˚ , bjbkq

where the first equality uses that the induced map is an anti-involution. Relabelling of the indices

gives the stated result. □
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Notation 2.12. Whenever clear from the context, we may refer to a fusion ring simply as R instead

of pR,Bq.

Example 2.13. Let C be a semi-simple rigid monoidal category. Then the Grothendieck ring is

a fusion ring, with the simple objects acting as the basis. The involution is then taking the dual

of an object and the symmetric bilinear form is pX,Y q “ dim❦ pHomC pX,Y qq, for simple objects

X,Y P Ob(C).

The following explicit examples will be studied in detail in later Sections.

Example 2.14 (Group rings). Take a finite group G, and construct the group ring ZG where

addition is linear and multiplication is given by the group operation. Then pZG,Gq is a fusion ring

with involution g˚ “ g´1.

Example 2.15 (Ising fusion ring). Let B “ t1, X, Y u, and R the integer span ZB with addition

defined linearly and multiplication given by the fusion rules

X2 “ 1 ` Y, Y 2 “ 1 XY “ Y X “ X.

pZB,Bq is a fusion ring with the self-dual involution X˚ “ X,Y ˚ “ Y.

2.4. NIM-Reps. In this subsection we introduce the main character of this article, following

[BPPZ00,BPRZ21,Gan02,Gan05,Gan06].

Definition 2.16. Let pR,Bq be a fusion ring. A non-negative integer matrix representation

(NIM-rep for short) of pR,Bq is a Z`-module pT,Mq that satisfies the following condition;

- (Rigidity condition): let T have a symmetric bilinear form p´,´q :M ˆM Ñ Z defined by

pml,mkq “ δl,k

for any l, k P L. Then we must have, for any i P I, l, k P L

pbi ▷ ml,mkq “ pml, bi˚ ▷ mkq.

Remark 2.17. In this definition, unlike Proposition 2.11, rigidity is a condition, not a property.

Example 2.18. A fusion ring can always be considered as a NIM-rep of itself, with the module

action simply the ring multiplication.

Remark 2.19. Note that, for t P T,ml P M , the symmetric bilinear form pt,mlq counts the

multiplicity of ml in the basis decomposition of t. We then immediately see that pt, tq “ 1 if and

only if t P M .

Viewed as Z`-modules, it is straightforward to define the direct sum of NIM-reps: given two

NIM-reps pT,Mq, pT 1,M 1q over a fusion ring pR,Bq the direct sum of NIM-reps is the R-module

T ‘ T 1 with a distinguished basis M ‘M 1. Other basic notions like sub-NIM-rep are defined in a

similar way.

Definition 2.20 ([EGNO15] Section 3.4, [Ost03a] Lemma 2.1.). A NIM-rep is called irreducible if

it has no proper sub-NIM-reps1.

1One can also have the notion of indecomposable NIM-rep, meaning one which is not isomorphic to a non-trivial

direct sum of NIM-reps. Since we are working over fusion rings, these two notions are equivalent.
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Remark 2.21. Suppose we have a NIM-rep pT,Mq over a fusion ring pR,Bq that satisfies bi ▷ mj “

0R for some bi P B,mj P M . The rigidity condition then imposes that mj “ 0R P M . However, the

only way 0R appears in the NIM-rep basis is if t0Ru “ M , (i.e this NIM-rep is the trivial NIM-rep).

We shall remove this NIM-rep from future considerations.

Definition 2.22 ([BD12]). Let pT,Mq, pT 1,M 1q be two NIM-reps over a fusion ring pR,Bq. A

NIM-rep morphism is a function ψ : M Ñ M 1 inducing a Z-linear map between the modules. If ψ is

a bijection, and the induced map is an isomorphism of R-modules, then we say that the NIM-reps

are equivalent.

Notation 2.23. Unlike the case of a fusion ring, since we will be working mostly with the basis of

the NIM-rep, we may refer to a NIM-rep simply as M instead of pT,Mq.

We can visually express the data of a NIM-rep in the following way. For a given NIM-rep pT,Mq

over a fusion ring pR,Bq, a NIM-graph (sometimes also called in the literature ‘fusion graphs’ ) is

constructed with a node for each element of the basis M , and a directed arrow with source ml

and target mk, labelled by an element bi P B, for every copy of mk in bi ▷ ml. Every node in a

NIM-graph will have a self-loop labelled by the ring identity, which we omit for simplicity.

Example 2.24. If we consider the Ising fusion ring from Example 2.15 as a NIM-rep over itself,

the corresponding NIM-graph is given by;

m1 mX

mY

X

Y X

Y

Remark 2.25. - The NIM-graph allows us to visualise irreducibility of the corresponding

NIM-rep, as a NIM-rep is irreducible if and only if the NIM-graph is connected.

- In [Gan05,Gan06], NIM-reps are defined equivalently as an assignment of a matrix with non-

negative integer entries to each element in ObpCq, satisfying several compatibility conditions.

We will not use this description in the main text but it will be useful in Appendix A.

2.5. Module Categories, Algebra Objects and NIM-Reps. In this section, unless specified

C “ pC,b,✶, α, l, rq is a fusion category.

Definition 2.26. An algebra in C is a triple pA,m, uq, with A P Ob pCq, and m : A b A Ñ A

(multiplication), u : ✶ Ñ A (unit) being morphisms in C, satisfying unitality and associativity

constraints:

mpmb IdAq “ mpIdA bmqαA,A,A, mpub IdAq “ lA, mpIdA b uq “ rA.

Example 2.27. Let C be a tensor category, then 1 is an algebra. In fact, for any X P ObpCq the

object A “ X bX˚ has a natural structure of an algebra with unit u “ coevX and multiplication

m “ IdX b evX b IdX˚ .

Definition 2.28. (a) An algebra A in C is indecomposable if it is not isomorphic to a direct

sum of non-trivial algebras in C.
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(b) An algebra A in C is separable if there exists a morphism ∆1 : A Ñ A b A in C so that

m∆1 “ IdA as maps in C with

pIdA bmqαA,A,A

`
∆1 b IdA

˘
“ ∆1m “ pmb IdAqα´1

A,A,A

`
IdA b ∆1˘ .

Just like in abstract algebra, one can construct the related notion of a module over an algebra in

the following way.

Definition 2.29. Take A :“ pA,m, uq, an algebra in C. A right A-module in C is a pair pM,ρM q,

where M P ObpCq, and ρM :“ ρAM : M bA Ñ M is a morphism in C so that

ρM pρM b IdAq “ ρM pIdM bmqαM,A,A and rM “ ρM pIdM b uq.

A morphism of right A-modules in C is a morphism f : M Ñ N in C so that fρM “ ρN pf b IdAq.

Right A-modules in C and their morphisms form a category, which we denote by ModC ´A. The

categories A´ ModC of left A-modules and A´ BimodC of A-bimodules in C are defined likewise.

We want to relate these categories of modules to the following notion:

Definition 2.30. Let C be a monoidal category. A left module category over C is a category M

equipped with an action (or module product) bifunctor b : C ˆ M Ñ M and natural isomorphisms

mX,Y,M : pX b Y q bM Ñ X b pY bMq ,

called the module associativity constraint and

λM : 1 bM Ñ M,

called the module unit constraint, such that both pentagon diagram:

ppX b Y q b Zq bM
aX,Y,ZbIdM

tt

mXbY,Z,M

**

pX b pY b Zqq bM

mX,Y bZ,M

��

pX b Y q b pZ bMq

mX,Y,ZbM

��

X b ppY b Zq bMq
IdXbmY,Z,M

// X b pY b pZ bMqq

and the triangle diagram:

pX b 1q bM
mX,1,M

//

rXbIdM ''

X b p1 bMq

IdXbλMww

X bM

are commutative @X,Y, Z P ObpCq and M P ObpMq.

In a similar way, one defines a right C-module category.

A tensor category is the simplest example: it is a module category over itself. A convenient, less

trivial example for us is the following:

Proposition 2.31 (Proposition 7.8.10, [EGNO15]). ModC ´A is a left C-module category.

In fact, given certain conditions one can go one step further.
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Lemma 2.32 (Proposition 7.8.30, [EGNO15]). Let A be a separable algebra in a fusion category C.

Then the category ModC ´A of right A-modules in C is also semisimple.

Example 2.33. (Follow-up from Definition 2.13) If we take a semi-simple module category M over

C, then the Grothendieck group GrpMq is a NIM-representation of GrpCq, with the isomorphism

classes of simple objects acting as the basis. The NIM-rep action of GrpMq on GrpCq is induced

from the module category action of M on C.

In particular, if C is a fusion category, we note that by Lemma 2.32 every separable algebra A in

C gives rise to a NIM-rep over GrpCq.

We now describe how to detect potential algebra objects from certain NIM-reps. We state the

following theorem using results from [EGNO15, Section 7.10]:

Theorem 2.34. Let C be a fusion category, M an indecomposable semisimple C-module category,

and N P Ob pMq such that rN s generates GrpMq as a based Z`-module over GrpCq. Then there is

an equivalence M » ModC ´A of C-module categories, where A “ HompN,Nq.

We now translate this to the language of NIM-reps;

Lemma 2.35. Suppose we are in the setup of Theorem 2.34. Then the basis element rN s of the

NIM-rep GrpMq satisfies the condition that, for all other basis elements rNis, there exists a basis

element rXis in GrpCqsuch that rXis ▷ rN s “ rNis.

Proof. This follows straightforwardly from the conditions in Theorem 2.34, as the class rN s generates

GrpMq as a Z`-module. This condition restricted to the basis elements gives the result. □

Definition 2.36. We shall call a NIM-rep pT,Mq over the fusion ring pR,Bq admissible if there

exists an element m0 P M such that, for every other element mi P M , there exists an element bj P B

that satisfies bj ▷ m0 “ mi.

Proposition 2.37. Let pT,Mq be an admissible NIM-rep over the fusion ring GrpCq. If it is

the underlying NIM-rep of an indecomposable semisimple C-module category, as in the setup of

Theorem 2.34, then the decomposition of the algebra A “ HompN,Nq is given by
À

iPI aibi, where
ai is the number of self-loops of m0 labelled by bi in the NIM-graph of pT,Mq.

Proof. Using the isomorphism from [EGNO15, Equation 7.21] applied to the algebra A, we have

that

HomCpX,Aq – HomMpX ▷ N,Nq.

By Schur’s Lemma, if we restrict X to the simple objects of C, then X appears in the decomposition

of A if and only if N is in the decomposition of X ▷ N . But by restricting to the NIM-reps picture,

and the identification of m0 with N , we see that this occurs exactly when X labels a self-loop on

m0. This gives the result. □

Example 2.38. Consider the Ising fusion ring as NIM-rep over itself. By looking at the NIM-graph

from Example 2.24, we see that this is admissible by setting m0 “ m1, as X ▷ m1 “ mX and

Y ▷ m1 “ mY .

As every NIM-rep that can be constructed from an irreducible separable algebra is necessarily

admissible, we now have a criteria that allows us to capture all possible object structures of these

separable algebras.
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3. NIM-Representations

In the following subsections we compute explicitly the NIM-reps of fusion rings associated to

relevant examples of families of modular and fusion categories. We also extract from these any

algebra objects and compare to existing results.

From now on, we refer to NIM-reps pT,Mq simply as M for the sake of clarity.

3.1. Group Rings. Let G be a finite group. In this section, we will focus on classifying all possible

NIM-reps over the group fusion rings RpGq :“ pZG,Gq described in Example 2.14.

Proposition 3.1. Let M be a NIM-rep over the fusion ring RpGq. The NIM-rep module action

restricts to a group action on M .

Proof. The NIM-rep module action will restrict to a group action on M if every element g ▷ ml is

in the basis of M . This can be seen as

pg ▷ ml, g ▷ mlq “ pml, g
´1

▷ pg ▷ mlqq “ pml,mlq “ 1

and so g ▷ ml is in the basis of M by Remark 2.19. □

If we restrict ourselves to irreducible NIM-reps, we get the following result.

Proposition 3.2. Irreducible NIM-reps of the group fusion ring RpGq correspond to transitive

group actions of G.

Proof. If a NIM-rep M over RpGq is not irreducible, then its corresponding group action will always

be partitioned into G-orbits by restricting the action to the NIM-reps that sum to give M . Thus

the group action is transitive only if the NIM-rep is irreducible.

Conversely, if the group action is not transitive, then we can write it as the sum of some finite

combination of G-actions ▷i: GˆMi Ñ Mi. It is easy to see that each Mi is a Z-basis for another

NIM-rep over RpGq. Hence the NIM-rep is irreducible only if the group action is transitive. □

We can thus explicitly describe the structure of such NIM-reps of RpGq. By Proposition 2.3, the

basis elements of an irreducible NIM-rep M are parametrised by the left cosets of H in G, for some

subgroup H Ď G i.e if we let tgiu1ďiď|G:H| be a set of coset representatives, thenM “ tmgiu1ďiď|G:H|.
The NIM-rep action is then given by the induced G-action on this set of left cosets,

Y ▷ mgi “ mgj , Y P G,

where Y gi P gjH. We shall write MpHq for such a NIM-rep.

Proposition 3.3. Two NIM-reps MpHq,MpKq over RpGq are isomorphic if and only if H,K are

conjugate subgroups of G.

Proof. This follows immediately by combining Proposition 2.4 and Proposition 3.2. □

Example 3.4. (NIM-reps of RpZ2 ˆ Z2q)

The Klein-four group has presentation

Z2 ˆ Z2 “ ta, b, c|a2 “ b2 “ c2 “ abc “ eu

There are 3 isomorphism classes of subgroups in Z2 ˆ Z2;
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‚ Z2 ˆ Z2 as a subgroup of itself; Then MpZ2 ˆ Z2q has a single basis element corresponding

to the single coset representative e. The NIM-rep graph is given by

me

a

b c

‚ Isomorphism class of Z2; There are 3 conjugacy classes of subgroups in this case; H1 “

te, au, H2 “ te, bu, H3 “ te, cu. The NIM-reps MpH1q,MpH2q,MpH3q have two basis

elements parameterised by coset representatives te, bu, te, cu, te, au respectively.

me mb, me mc, me ma

a

b
c

a b

a

c

b c

b

a

c

‚ The trivial subgroup H “ teu; The basis elements of MpHq are simply parameterised by

elements of Z2 ˆ Z2.

me ma

mb mc

a

b bc

a

Example 3.5. (NIM-reps of RpD3q)

Consider the dihedral group D3, with presentation

D3 “ tx, a | x2 “ a3 “ e, xa “ a´1xu

There are four conjugacy classes of subgroups of D3, giving four isomorphism classes of NIM-reps;

‚ D3 as a subgroup of itself. This NIM-graph simply consists of a single basis element, with

each group ring element acting trivially.

me

x

a

xa2xa

a2

‚ The isomorphism class of Z3, given by H “ te, a, a2u.

me mx

a

a2

x

xa

xa2

a

a2

‚ The isomorphism class of Z2 is given by 3 conjugate subgroups, H “ te, xu, te, xau, te, xa2u.

This gives one NIM-graph, up to isomorphism of NIM-reps. We shall label our graph using

the subgroup H “ te, xu;
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me ma

ma2

x
xa2

a

a2

xa

a2

a
x

a2

a
xa

xa2

‚ The trivial subgroup H “ teu. The basis elements are parameterised by the elements of D3;

ma

me ma2

mx mxa2

mxa

a

a2

x

xa2 xaa

a2

x

xa

xa2

a

xa2

xa

a2

x

a2

a

a2

aa
a2

3.2. Near-Group Fusion Rings. In this subsection, we shall focus on another class of fusion rings

that can be formed from a finite group G.

Definition 3.6 ([Ost15,Sie03]). Let G be a finite group and α P Z`. The near-group fusion ring is

the fusion ring constructed by taking the integer span of the set GY tXu, with multiplication of

the group elements as the group operation, and with the element X as:

Xg “ gX “ X,

X2 “
ÿ

gPG
g ` αX

for g P G. The element X is self-dual, i.e X˚ “ X. This is a fusion ring, which we shall denote by

KpG,αq.

Example 3.7. [EGNO15, Example 4.10.5] The case α “ 0 is known as the Tambara-Yamagami

fusion ring. Notice that this ring is categorifiable if and only if G is abelian.

The action ofKpG,αq on a NIM-repM consists of the action of the group G and the non-invertible

element X. By the results of Section 3.1, we know that the NIM-action of the group component

will correspond to some G-action on the NIM-rep basis. However, unlike Section 3.1, we cannot
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guarantee that this G-action is transitive on the basis M , due to the action of the non-invertible

element X. This can be seen in the following example:

Example 3.8. (NIM-rep over KpZ2, 0q) The Ising fusion ring from Example 2.15 can be viewed

as the near-group fusion ring KpZ2, 0q. Viewed as a NIM-rep over itself, using the notation

from Example 2.24, the NIM-basis can be partition into G-orbits, M “ tm1,mY u Y tmXu, with

stabiliser groups teu and Z2 respectively. The two orbits are connected by the action of X, with

X ▷ m1 “ X ▷ mY “ mX , X ▷ mX “ m1 `mY .

From this example, we see that the NIM-rep basis M can be partitioned into G-orbits, which are

connected to each other by the action of X. We will write this partition as

M “
pď

i“1

tmi
lu1ďlď|G:Hi|,

where the i-label counts the p distinct orbits, each defined by a stabiliser subgroup tHiu. The

l-label denotes the individual elements in each orbit. Hence, a NIM-rep M over KpG,αq consists ofřp
i“1 |G : Hi| basis elements, with the NIM-rep action of the group part of KpG,αq having already

been covered in Section 3.1. Thus, we now need to focus only on the action of the non-invertible

element X.

Proposition 3.9. Let M be an irreducible NIM-rep over KpG,αq. For a fixed group orbit label i in

the partition of M , we have that X ▷ mi
l1

“ X ▷ mi
l2

for all 1 ď l1, l2 ď |G : Hi|.

Proof. As mi
l1
and mi

l2
are in the same G-orbit, there is a group element g P G such that mi

l1
“ g ▷

mi
l2
. Then, using the module action and the fusion rules in Definition 3.6, we have that

X ▷ mi
l1

“ X ▷ pg ▷ mi
l2

q “ pXgq ▷ mi
l2

“ X ▷ mi
l2
.

□

Notation 3.10. We shall write ci,j :“ pX ▷ mi
l,m

j
kq. It is clear from Proposition 3.9 that varying

the l, k labels has no effect. Additionally, note that by the rigidity condition of the NIM-rep, we

have ci,j “ cj,i.

Remark 3.11. Irreducibility of a NIM-rep over KpG,αq implies that the group orbits are connected

to each other by the non-invertible element X.

From now on, we shall denote the action of X on an element mi
l by

(3.2.1) X ▷ mi
l “

pÿ

j“1

ci,j

|G:Hj |ÿ

k“1

m
j
k.

If we act on both sides of Equation (3.2.1) with X, using the fusion rules in Definition 3.6 along

with Proposition 3.9, we find that

|Hi|

|G:Hi|ÿ

k“1

mi
k ` αX ▷ mi

l “
pÿ

j“1

ci,j |G : Hj |X ▷ m
j
l .
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By counting in this equation the multiplicities of the orbit labelled with i, and one labelled by q ‰ i

respectively, we get that

|Hi| ` αci,i “
pÿ

j“1

c2i,j |G : Hj |,(3.2.2)

αci,q “
pÿ

j“1

ci,jcj,q|G : Hj |.(3.2.3)

Remark 3.12. Should our NIM-rep partition contain only one G-orbit, then we would only have

one equation of the form of Equation (3.2.2) as we clearly can pick no q such that q ‰ i.

To classify all NIM-reps over a near-group fusion ring, we thus need to find solutions for this set

of equations. To better visualise this problem, we can think of these equations in terms of matrices.

By setting C :“ tci,ju, the matrix that determines the action of X, and B “diagt|G : Hi|u, the

action of X is thus governed by the matrix equation

(3.2.4) CBC “ α ¨ C ` |G| ¨B´1.

We are thus seeking to find choices of subgroups tHiu such that there is an non-negative integer-valued

symmetric matrix C satisfying Equation (3.2.4).

As the matrix B is invertible, we obtain a quadratic matrix equation in the variable CB;

pCBq2 “ α ¨ pCBq ` |G| ¨ I,

where I is the identity matrix. As all of the coefficient matrices commute with each other, we can

solve via the quadratic equation, giving us

(3.2.5) CB “
1

2
α ¨ I ˘

c
p
α2

4
` |G|q ¨ I “

1

2
α ¨ I ˘

c
p
α2

4
` |G|q ¨ Y,

where Y is a square root of the identity matrix I. As all the elements in CB are non-negative, the

non-diagonal elements of Y must all have the same sign. As both Y and ´Y are square roots of the

identity matrix, only one can provide a valid solution for CB, so we can always take the sign in

Equation (3.2.5) to be positive.

Remark 3.13. As the elements of CB are integers, the non-diagonal elements of Y must be divisible

by pα
2

4
` |G|q´1{2.

Hence, the problem of classifying NIM-reps over KpG,αq comes down to finding suitable square

roots of identity matrices. We do this in full detail for p “ 1, 2 in the following propositions.

Proposition 3.14. NIM-reps over KpG,αq consisting of one group orbit are parametrised by pairs

pH, c1,1q, where H Ď G a subgroup and c1,1 P Z`, such that α “ c1,1|G : H| ´ |H|
c1,1

, c1,1 divides |H|

and pc1,1q2|G : H| ě |H|.

Proof. As p “ 1, Y “ 1 is the only possible choice that leads to a valid solution. Let H be the

subgroup of G that governs this orbit. The action of the non-invertible element X is given by a

single non-negative integer c1,1 P Z`. By Remark 2.21, this integer is in fact strictly positive.

If we switch to the element-wise notation, Equation (3.2.5) can be written as
c
α2

4
` |G| “ c1,1|G : H| ´

1

2
α.
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By squaring both sides,

α2

4
` |G| “ pc1,1q2|G : H|2 ´ αc1,1|G : H| `

α2

4
.

Rearranging this for α gives the required equation, with the other conditions following from the

condition that α must be a non-negative integer. □

Proposition 3.15. All irreducible NIM-reps over KpG,αq consisting of two group orbits are

parametrised by tuples pH1, H2, c1,1, c2,2q, where H1, H2 Ď G are subgroups and c1,1, c2,2 P Z`, such

that α “ c1,1|G : H1| ` c2,2|G : H2|, |G| divides |H1||H2|, and p |H1||H2|
|G| ` c1,1c2,2q is a square number.

Proof. It is well known that all square roots Y of the 2-by-2 identity matrix are either diagonal

matrices whose non-zero elements are from the set t´1, 1u, or have the form

(3.2.6) Y “

ˆ
y1,1 y1,2
y2,1 ´y1,1

˙
where y21,1 ` y1,2y2,1 “ 1, y1,2, y2,1 ‰ 0.

It is clear by Remark 3.11 that irreducible NIM-reps can only come from square root matrices of

the form in Equation (3.2.6).

Let H1, H2 be subgroups of G that govern the group orbits in the NIM-rep, and C “ tci,ju1ďi,jď2

the matrix governing the NIM-action of X. By inputting this data into Equation (3.2.5), we get the

following system of equations:

c1,1|G : H1| “
1

2
α `

c
α2

4
` |G|y1,1,

c2,2|G : H2| “
1

2
α ´

c
α2

4
` |G|y1,1,

c1,2|G : H2| “

c
α2

4
` |G|y1,2,

c1,2|G : H1| “

c
α2

4
` |G|y2,1.

By adding the first two equations, we get that α “ c1,1|G : H1| ` c2,2|G : H2|. By multiplying

the first two equations together and the last two equations together, we obtain

c1,1c2,2|G : H1||G : H2| “
α2

4
´

˜
α2

4
` |G|

¸
py1,1q2,

pc1,2q2|G : H1||G : H2| “

˜
α2

4
` |G|

¸
y1,2y2,1.

By using the defining relation in Equation (3.2.6), and rearranging to solve for pc1,2q2, we find that

pc1,2q2 “
|H1||H2|

|G|
` c1,1c2,2.

Hence we can always obtain c1,2 from the other input data. The remaining conditions come from

the fact that c1,2 must be a positive integer.
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Hence, a two-orbit NIM-rep over KpG,αq has input data of pH1, H2, c1,1, c2,2q satisfying the above

conditions, and explicit X-action given by

X ▷ m1
i “ c1,1

|G:H1|ÿ

k“1

m1
k `

d
|H1||H2|

|G|
` c1,1c2,2

|G:H2|ÿ

k“1

m2
k,

X ▷ m2
i “

d
|H1||H2|

|G|
` c1,1c2,2

|G:H1|ÿ

k“1

m1
k ` c2,2

|G:H2|ÿ

k“1

m2
k.

□

While this only completes the classification for NIM-reps consisting of two group orbits, this is

sufficient to completely classify irreducible NIM-reps over the Tambara-Yamagami fusion rings.

Corollary 3.16. All irreducible NIM-reps over the Tambara-Yamagami fusion ring KpG, 0q consist

of at most two group orbits.

Proof. By setting α “ 0 in Equation (3.2.4), we easily see that the matrix CBC must be diagonal.

Element-wise, this means that

pCBCqi,j “
pÿ

k“1

ci,kck,j |G : Hi| “ 0,

for all i ‰ j. However, by Remark 3.11, there always exist a choice of i ‰ j such that both

ci,k, ci,j ‰ 0 when p ě 3. Thus, as C is symmetric, the result follows. □

Example 3.17. (NIM-reps over the Ising fusion ring)

Recall Example 2.15. The Ising fusion ring can be viewed as the Tambara-Yamagami fusion ring

KpZ2, 0q. So by Corollary 3.16, we only need to check for 1 and 2-orbit NIM-reps.

When p “ 1, we must have c1,1|Z2 : H| “ |H|{c1,1 by Proposition 3.14. But as the only choices

for H are the trivial group and Z2, both of which lead to non-integer values for c1,1, we see that

there are no 1-orbit NIM-reps over KpZ2, 0q.

For p “ 2, by Proposition 3.15 we must have 0 “ c1,1|G : H1| ` c2,2|G : H2|, which only occurs

when c1,1 “ c2,2 “ 0. Hence, we see that pc21,2q “ |H1||H2|
|G| , which must be an square number. The

only possible choice of subgroups is H1 – t1u, H2 – Z2 (or vice versa, which gives an equivalent

NIM-rep). In this case, c1,2 “ 1.

Thus, there is only one irreducible NIM-rep over the Ising fusion ring, given by the tuple

pt1u,Z2, 0, 0q.

For p ě 3, there is not an explicit classification of square roots of the identity matrix. For instance,

it is still unknown whether there exists a Hadamard matrix of order 4k for every positive integer k.

So, in what follows we will detail some relevant examples.

Example 3.18. A Hadamard matrix of order n satisfies HnHn “ nIn, and rows are mutually

orthogonal and the matrix contains only `1 and ´1, so clearly 1?
n
Hn is a square root of the identity.

However, Hn contains exactly npn ´ 1q{2 elements that are ´1, which contradicts the fact all

non-diagonal elements of Y must be non-negative, of which there are npn´ 1q. So the only value

valid is n “ 1, which is the trivial case.



DETECTING ALGEBRAS FROM NIM-REPS 17

Example 3.19. (NIM-rep over KpZq, q ´ 1q, q prime)

Consider the p-by-p matrix that has ´1
2
α as its diagonal elements, and 1 for all off-diagonal

elements;

(3.2.7) Zp “

¨
˚̊
˚̊
˝

´1
2
α 1 . . . 1

1
. . .

. . .
...

...
. . .

. . . 1

1 . . . 1 ´1
2
α

˛
‹‹‹‹‚

If there is a NIM-rep that corresponds to this matrix, it must have ci,i “ 0 for all i by looking

Equation (3.2.5)

We want to find values of α and G such that this matrix is a square root of pα
2

4
` |G|q ¨ Ip. It is

easily verified that that

pZ2
pqi,i “

α2

4
` p´ 1, pZ2

pqi,j “ p´ 2 ´ α, i ‰ j.

Thus, the matrix Zp may give a NIM-rep via Equation (3.2.5) only if α “ p ´ 2 and |G| “ p ´ 1.

Thus Zp may give a NIM-rep over KpG, p´ 2q, where |G| “ p´ 1. The existence of such a NIM-rep

depends on the particular choice of group, but we can provide the case such that p “ q ` 1, where q

is prime.

The only group of order q is the cyclic group Zq, so Zq`1 defines a NIM-rep only over KpZq, q´1q.

By putting Equation (3.2.7) into Equation (3.2.5), it is clear that ci,j |G : Hj | “ 1 for all i ‰ j. As

the only subgroups of Zq are the trivial subgroup and the group itself, the only choice that leads to

an integer value of ci,j is if Hj – Zq for all j. This gives ci,j “ 1.

Thus, for q prime, we have a NIM-rep M over KpZq, q´1q where the M consists of q`1 elements

tmiu1ďiďq`1, the Zq-action on M is trivial, and the action of the non-invertible element X is given

by

X ▷ mi “
q`1ÿ

j“1
j‰i

mj .

Note that to look at the possible case that a NIM-rep over KpG,αq can be partitioned into three

or more orbits, one would need to find symmetric integer matrix solutions to the matrix equation.

We can use the following result to reduce the options in some circumstances.

Proposition 3.20. A NIM-rep over KpG,αq consists of an odd number of group orbits if and onlyb
α2

4
` |G| is a rational number.

Proof. As the matrix CB contains only integers, from Equation (3.2.5) we see that the matrixb
pα

2

4
` |G|q ¨ Y contains only rational numbers. Its determinant is then rational. But Y is a square

root of the identity matrix, that has determinant ˘1. Hence, the determinant of
b

pα
2

4
` |G|q ¨ Y

is equal to pα
2

4
` |G|qp{2. The result is then immediate, as the rational numbers are closed under

multiplication, so this determinant is rational if and only if pα
2

4
` |G|q1{2 is rational. □

We can also express α in terms of elements of C and B:
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Corollary 3.21. Suppose M is an irreducible NIM-rep over Kpg, αq that can be partitioned into p

G-orbits.

If p “ 1, then α “ c1,1|G : H1| ´ |H1|{c1,1.

If p ě 2. Then α “
řp

j“1
ci,jcj,q
ci,q

|G : Hj | for any orbit labels i ‰ q where ci,q ą 0.

Proof. For the p “ 1 case, we simply rearrange Equation (3.2.2) for α. The p “ 2 case is just as

immediate, instead rearranging Equation (3.2.3). Using the fact ci,1 is non-zero by Remark 3.11, we

always have at least one choice of matrix elements to write α in this form. □

We conclude this section with some concrete examples.

Example 3.22. An example of such a NIM-rep is given by the tuple pZ75,Z75, 5, 5q over the fusion

ring KpZ75, 10q. As the two subgroups that govern the partition of the NIM-rep are the whole

group, these orbits consist of one NIM-element each, so M “ tm,nu.

By the found formulas, c1,1 “ c2,2 “ 5, c1,2 “ 10 and so the NIM-rep has the following structure;

g ▷ m “ m , g ▷ n “ n @g P Z75,

X ▷ m “ 5m` 10n , X ▷ n “ 10m` 5n.

We note that by [Ost15, Theorem A.14], this instance is not a categorifiable one as Z75 is abelian.

However, if we let G “ pZ5 ˆ Z5q ⋊ Z3, which has order 75 but is not abelian, then the NIM-rep

pG,G, 5, 5q with the same structure as above is a NIM-rep over KpG, 10q. Note that this case can

admit a categorification.

Example 3.23. KpZ175, 62q has a NIM-rep corresponding to pZ35,Z25, 11, 1q. Labelling the two

group orbits by tmiu1ďiď5, tnju1ďjď7, the explicit structure of the non-invertible element is given

by

X ▷ mi “ 11
5ÿ

l“1

ml ` 4
7ÿ

k“1

nk , X ▷ nj “ 4
5ÿ

l“1

ml `
7ÿ

k“1

nk.

Note that by [Ost15, Theorem A.6], this fusion ring is not categorifiable.

3.3. Admissible NIM-Reps and Algebra Objects for Pointed and Near-Group Fusion

Categories. Finally, we extract algebra objects from the NIM-reps we have computed. While

we cannot read out explicit algebra morphisms, we still are able to recover a collection of familiar

results.

Proposition 3.24. (Admissible NIM-reps for group rings) All irreducible NIM-reps over a group

fusion rings RpGq are admissible.

Proof. Let MpHq be a NIM-rep over RpGq. Recall that the basis elements are parametrised by the

left cosets G{H. For any two NIM-basis elements mgi , mgj , we have that pgjg
´1
i q ▷ mgi “ mgj .

Hence any NIM-basis element can take the role of m0 in Lemma 2.35, thus MpHq is admissible. □

Remark 3.25. The algebra object associated to a NIM-rep MpHq over RpGq is then given byÀ
hPH bh. It is clear from Examples 3.4 and 3.5 that this object can be seen by counting the self-loops

present in the NIM-graph. This agrees with the classification of algebras in pointed categories given

in [Nat17,Ost03b].
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Proposition 3.26. An admissible irreducible NIM-rep over a near-group fusion ring consists of either

one group orbit, parameterised by pH, c1,1q, or two group orbits, parametrised by pH1, H2, 0, c2,2q.

Proof. For a NIM-rep consisting of one orbit, we can argue in the same way as Lemma 2.35 that

any NIM-basis element can be set as m0 in Lemma 2.35.

For a NIM-rep consisting of more than one group orbit, the only way to have an m0 that connects

to the orbits it does not lie in is via the non-invertible element X. So for n P M , where n is not in

the same orbit as m0, we must have X ▷ m0 “ n. But then by the fusion rules

X ▷ n “ X2
▷ m0 “

ÿ

iPG¨m0

mi ` αX ▷ m0 “
ÿ

iPG¨m0

mi ` αn

From this we see that the group orbits of m0 and n are only connected to each other, so by the

irreducibility of the NIM-rep it only contains two group orbits.

If we label the orbit containing m0 by 1, and the one containing n by 2, we note that the condition

X ▷ m0 “ n implies c1,1 “ 0. This gives the result. □

Remark 3.27. We thus have two forms of algebra objects arising in categories associated to

near-group fusion rings.

‚ For a NIM-rep paramatrised by pH, c1,1q, the algebra is given as an object by ‘hPHbh‘c1,1X.

‚ For a NIM-rep parametrised by pH1, H2, 0, c2,2q, the algebra object is given by ‘hPH1
bh, i.e

it is of the form of a group algebra object.

Algebra objects representing module categories over near-group categories have been studied

previously at [MM12,Gal12]: in the case of non-group theoretical Tambara-Yamagami categories

with abelian G we have twisted group algebras, see [Gal12, Proposition 5.7]. [MM12, Section 8 and

9] proceed in a slightly more general way, for G-graded fusion categories with G not necessarily

abelian. Only for the case of Tambara-Yamagami (see [MM12, Section 9]) they recover the same

two families of algebras we observe.

3.4. pA1, lq 1

2

Fusion Rings and its Admissible NIM-Reps and Algebra Objects. Following

[NWZ22] (other useful references are [EP21,FK93]), we can construct a modular tensor category

pA1, lq from a quantum group of type A1 at level l P Z`. The Grothendieck ring GrppA1, lqq has

basis tViuiPr0,ls, and the fusion coefficients of ViVj “
řl

k“0 c
k
i,jVk are given by:

(3.4.1) cki,j “

#
1, if |i´ j| ď k ď minpi` j, 2k ´ i´ jq and k ” i` j mod 2,

0, else.

We note here that, as seen by the fusion rules, GrppA1, lqq is commutative.

Definition 3.28. For an object Vi P GrppA1, lqq, we define the length of Vi to be lengthpViq :“
lř

k“0

cki,i.

When l is a positive odd integer, we can define a modular subcategory pA1, lq 1

2

by taking the full

subcategory with simple objects

IrrppA1, lq 1

2

q “

#
V2i | 0 ď i ď

l ´ 1

2

+
.
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Remark 3.29. In the fusion ring GrppA1, lq 1

2

q, it is simple to check using the fusion rules that

Vi ‰ Vj if and only if lengthpViq ‰ lengthpVjq.

We shall now focus on finding the admissible NIM-reps of GrppA1, lq 1

2

q. As l “ 1 results in

the trivial ring, we shall assume l ě 3. Recall from Lemma 2.35 that an admissible NIM-rep M

over a fusion ring has a distinguished basis element m0. We have seen in Section 3.3 that in the

case of group and near-group fusion rings, we can have objects in the ring basis bi, bj such that

bi ▷ m0 “ bj ▷ m0, due to the invertibility of the group parts of these fusion rings. This is not the

case when working with GrppA1, lq 1

2

q.

Lemma 3.30. Let M be an admissible NIM-rep over GrppA1, lq 1

2

q, and Vi ‰ Vj P GrppA1, lq 1

2

q such

that Vi ▷ m0, Vj ▷ m0 P M . Then Vi ▷ m0 ‰ Vj ▷ m0.

Proof. If we assume that Vi ▷ m0 “ Vj ▷ m0, then as the fusion ring is commutative, we have that

V 2
i ▷ m0 “ V 2

j ▷ m0. But by Remark 3.29, lengthpViq ‰ lengthpVjq, and so the only way that

V 2
i ▷ m0 “ V 2

j ▷ m0 is if some Vk in the decomposition of V 2
i or V 2

j (whichever has larger length),

satisfies Vk ▷ m0 “ 0. This has been ruled out by Remark 2.21. □

Remark 3.31. If we have objects Vi, Vj P GrppA1, lq 1

2

q such that lengthpViq ą lengthpVjq, then it

is easily verified using the fusion rules in Equation (3.4.1) that pV 2
i ▷ mp,mpq ą pV 2

j ▷ mp,mpq.

Thus, if Vi ▷ mp P M , then we immediately have that Vj ▷ mp P M . In the case of an admissible

NIM-rep M over GrppA1, lq 1

2

q, if the basis M has cardinality d, we immediately get that the objects

Vj that satisfy Vj ▷ m0 P M are exactly those of lengthpVjq ď d.

Proposition 3.32. In any NIM-rep M over the fusion ring GrppA1, lq 1

2

q, pVl´1 ▷ mp,mqq ď 1 for

all mp,mq P M .

Proof. If we assume that pVl´1 ▷ mp,mqq “ a
q
l´1,p ě 2, we can use the fusion rules in Equation (3.4.1)

to obtain

mp ` V2 ▷ mp “ V 2
l´1 ▷ mp “ a

q
l´1,pVl´1 ▷ mq `

ÿ

kPL
k‰q

akl´1,pVl´1 ▷ mk

Applying the form p´,mpq, and using the rigidity condition of the NIM-rep, we find that

(3.4.2) pV2 ▷ mp,mpq ě a
q
l´1,ppVl´1 ▷ mq,mpq ´ 1 ě 3

The fusion rules in Equation (3.4.1) give that when l ě 3, V2jV2 “ V2j´2 ` V2j ` V2j`2, when

1 ď j ď l´3
2
, and V2Vl´1 “ Vl´3 ` Vl´1. We let hi,p :“

ř
kPL a

k
i,p, which counts the number of

NIM-basis elements in the decomposition of Vi ▷ mp. Applying the fusion rules to V2jV2 ▷ mp “ř
kPL a

k
2,pV2j ▷ mk, we obtain

V2j´2 ▷ mp ` V2j`2 ▷ mp “ pap2,p ´ 1qV2j ▷ mp `
ÿ

kPL
k‰p

ak2,pV2j ▷ mk, 1 ď j ď
l ´ 3

2

Vl´3 ▷ mp “ pap2,p ´ 1qVl´1 ▷ mp `
ÿ

kPL
k‰p

ak2,pVl´1 ▷ mk
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By noting that hi,p ą 1 for all choices of i, p, and ap2,p ě 3 by Equation (3.4.2), when we count the

NIM-basis elements on each side we obtain the following inequalities;

h2j´2,p ` h2j`2,p ě 2h2j,p ` h2,p ´ 3, 1 ď j ď
l ´ 3

2
,

hl´3,p ě hl´1,p ` h2,p ´ 3

By taking the inequality for each 1 ď j ď l´1
2

and summing them together, we obtain

1 ` h2,p ` 2h4,p ` ...` 2hl´3,p ` hl´1,p ě 2h2,p ` 2h4,p ` ...` 2hl´1,p `
l ´ 1

2
ph2,p ´ 3q

ùñ
3l ´ 1

2
ě
l ` 1

2
h2,p ` hl´1,p ě

l ` 1

2
h2,p ` 2

ùñ
3l ´ 5

l ` 1
ě h2,p

where the last inequality in the second line follows due to our initial assumption. However, the

last inequality cannot be satisfied as the fraction on the left-hand side is strictly less than 3 for all

values of l, which contradicts pV2 ▷ mp,mpq “ a
p
2,p ě 3. Hence we have a contradiction, and so,

pVl´1 ˚mp,mqq ď 1, for all mp,mq P M . □

Lemma 3.33. In any NIM-rep M over GrppA1, lq 1

2

q, pV 2
l´1 ▷ mp,mpq ď 3 for all mp,mq P M .

Proof. If we assume that pV 2
l´1 ▷ mp,mpq ą 4, then by Proposition 3.32, we have that hl´1,p “

pV 2
l´1 ▷ mp,mpq ą 4. By the fusion rules in Equation (3.4.1), we have that pV2 ▷ mp,mpq ě 3. We

are in a very similar setup to the proof of Proposition 3.32, which if we follow through results in the

inequality
3l ´ 9

l ` 1
ě h2,p.

This fraction is also strictly less than 3, so we obtain the desired contradiction. □

Proposition 3.34. Let M be an admissible NIM-rep over GrppA1, lq 1

2

q. Then there exists no

mk P M such that pV 2
l´1 ▷ mk,mkq “ 3.

Proof. Assume there exists some mk P M such that pV 2
k´1 ▷ mk,mkq “ 3. By Lemma 3.33, we can

write

Vk´1 ▷ mk “ mx `my `mz,

where mx,my,mz P M are distinct NIM-basis elements. The fusion rule of V 2
l´1 gives us that

pV2 ▷ mk,mkq “ 2.

As the NIM-rep is admissible and mx,my,my are distinct NIM-basis elements, the cardinality of

the NIM-basis M is at least 3, so by Remark 3.31 we know that V2 ▷ m0, Vl´1 ▷ m0 P M . We also

know that there exists a Vj P pA1, lq 1

2

such that Vj ▷ m0 “ mk. Using the fusion rules, we find that

Vl´1 ▷ mk “ Vl´1Vj ▷ m0 “ Vl´1´j ▷ m0 ` Vl`1´j ▷ m0.

Acting with Vl´1 again on both sides and then using the form p´,mkq, we have

mk ` V2 ▷ mk “ V 2
k´1 ▷ m0 “ Vj ▷ m0 ` 2Vj`2 ▷ m0 ` Vj`4 ▷ m0

ùñ V2 ▷ mk “ 2Vj`2 ▷ m0 ` Vj`4 ▷ m0.(3.4.3)
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A second way to calculate V2 ▷ mk is as follows:

(3.4.4) V2 ▷ mk “ V2Vj ▷ m0 “ Vj´2 ▷ m0 ` Vj ▷ m0 ` Vj`2 ▷ m0.

By applying the form p´,mkq to both Equation (3.4.3) and Equation (3.4.4), we have that

2 “ 2pVj`2 ▷ m0,mkq ` pVj`4 ▷ m0,mkq,(3.4.5)

1 “ pVj´2 ▷ m0,mkq ` pVj`2 ▷ m0,mkq.(3.4.6)

By the fusion rules Equation (3.4.1) and Remark 3.31, it is clear that we can only satisfy Equa-

tion (3.4.5) when j ď l˘1
2
, where the sign is determined by l ” ¯1 mod 4. But then we immediately

have that pVj´2 ▷ mk,m1q “ 0 by Remark 3.31, so the above equations give us that

(3.4.7) pVj`2 ▷ m0,mkq “ 1, and pVj`4 ▷ m0,mkq “ 0.

If we calculate the fusion rules, we see that the only term that appears in the expansion of

pVj`2Vj ▷ m0,m0q and not in that of pVj`4Vj ▷ m0,m0q is pV2 ▷ m0,m0q. But as V2 ▷ m0 P M

and V2 is non-invertible, this term must always be 0. Hence we can never satisfy Equation (3.4.7),

giving a contradiction. Thus we must have pV 2
l´1 ▷ m0,m0q ď 2 for all mk P M . □

Proposition 3.35. Up to isomorphism, there is only one admissible NIM-rep over GrppA1, lq 1

2

q.

Proof. Suppose we have an admissible NIM-rep M over GrppA1, lq 1

2

q where M has cardinality d.

Then there exists a Vj P GrppA1, lq 1

2

q where lengthpVjq “ d and Vj ▷ m0 P M . Acting with Vl´1 we

get that

Vl´1Vj ▷ m0 “ Vl´1´j ▷ m0 ` Vl`1´j ▷ m0.

Using the fusion rules from Equation (3.4.1) and Definition 3.28, if j ă l˘1
2
, (where the sign depends

on k ” ¯1 mod 4), then lengthpVl`1´jq “ d`1 and so Vl´1´j ▷ m0 R M , by Remark 3.31. Similarly,

if j ą l˘1
2
, then Vl`1´j ▷ m0 R M . In both cases, this leads to

pV 2
l´1Vj ▷ m0, Vj ▷ m0q ě pVl´1´j ▷ m0, Vl´1´j ▷ m0q ` pVl`1´j ▷ m0, Vl`1´j ▷ m0q “ 3.

This contradicts Vj ▷ m0 P M by Proposition 3.34, and so we must have that j “ l˘1
2
. All other

objects Vi have length less than Vj , and so every mk P M is of the form Vi ▷ m0 P M . This gives

that the full NIM-rep structure is simply generated by the fusion rules. □

Remark 3.36. The algebra object corresponding to this single admissible NIM-rep over GrppA1, lq 1

2

q

is the monoidal unit object 1.

Now that we have all admissible NIM-reps over GrppA1, lq 1

2

q, we turn our attention back to pA1, lq.

We can form a second full subcategory pA1, lqpt by taking the simple objects IrrppA1, lqptq “ tV0, Vlu.

Lemma 3.37 ([NWZ22] Section 4). There is an equivalence of modular tensor categories pA1, lq »

pA1, lq 1

2

⊠ pA1, lqpt

On the level of Grothendieck rings, this equivalence tells us that the basis set of GrppA, lqq is

equivalent to the direct product of basis sets of GrppA1, lq 1

2

q and GrppA1, lqptq “ RpZ2q, with the ring

structure induced component-wise from the ring structures of GrppA1, lq 1

2

q and RpZ2q respectively.

If we have a NIM-rep M over GrppA1, lqq, we immediately gain a NIM-rep over both GrppA1, lq 1

2

q

and RpZ2q by restricting along the natural embedding. NIM-reps over the Grothendieck ring



DETECTING ALGEBRAS FROM NIM-REPS 23

GrppA1, lqq have been classified in [EK9503] and are in one-to-one correspondence with simply laced

Dynkin diagrams with Coxeter number h “ l` 2. In the case that l is an odd integer, this gives the

only NIM-rep as GrppA1, lqq viewed as a NIM-rep over itself. The restriction of this NIM-rep to

GrppA1, lq 1

2

q is exactly the single admissible NIM-rep found in Proposition 3.35.
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Appendix A. Modular Invariants and the Exponents Conjecture for Low Rank

Modular Tensor Categories, joint with Devi Young

Here we would like to test a conjecture that relates NIM-reps of modular tensor categories and

their so-called modular invariants. Let us first introduce several notions.

Definition A.1. Let C be a modular tensor category of rank k with modular data S and T . A

modular invariant is a square matrix Z, with rows and columns labeled by Ob pCq, satisfying:

MI1: ZS “ SZ and ZT “ TZ;

MI2: Zab P N, @a, b P Ob pCq; and

MI3: Z00 “ 1.

The easiest example of a modular invariant is the identity matrix. Indeed, the most interesting

ones would be different ones than this one.

Definition A.2. Given a modular invariant Z associated to a modular tensor category C of rank

k with Ob pCq “ t1, X1, X2, . . . , Xk´1u, the exponent of Z is the multi-set EZ where a P Ob pCq

appears with multiplicity Zaa. We will denote the exponent as: EZ “
´
1
Z00 , XZ11

1 , . . . , X
Zk´1k´1

k´1

¯
.

Given a certain NIM-rep M in a modular tensor category, observed in the sense of [Gan05,Gan06]

described in Remark 2.25, the matrices Ma can be simultaneously diagonalised by a unitary matrix.

Each eigenvalue of Ma equals Sa,b{S0,b, for some b P Ob pCq. Each eigenvalue corresponds to at

most one element in Ob pCq. This allows us to introduce a second, seemingly different notion of an

exponent attached to the modular data:

Definition A.3. Let M be a NIM-rep associated to a modular tensor category of rank k with

Ob pCq “ t1, X1, X2, . . . , Xk´1u. The multiset associated to the assignment a ÞÑ Ma is defined to

be Ea pMq “
`
1
n
0 , X

n1

1 , ..., X
nk´1

k´1

˘
, where nb P t0, 1u is the multiplicity of Sa,b{S0,b corresponding

to an eigenvalue in Ma. This multiset is independent of a, so we define the exponent of M to be

E pMq :“ Ea pMq.

These two notions seem to be related in the following way:

Conjecture A.4. Consider a rational conformal field theory described by a modular tensor category

C. Then, for every modular invariant Z there is a NIM-rep N satisfying that:

E pMq “ EZ .

There is certain evidence that this conjecture is not true in general, see e.g. [Gan02]. Still, it is

an interesting question to see up to which point it holds, and why it is the case. In what follows we

test this conjecture for all unitary modular tensor categories of rank less or equal 4 as classified

in [RSW09]. For this, we use the NIM-reps we have computed in the present article since they all

fall into the families we have classified. Tables 1, 2, 3, 4, and 5 contain the modular invariants and

NIM-reps associated to each of these categories, as well as their respective associated exponents.

Here, note that the fusion rings of the Ising and pA1, 4q MTCs, are the same. As the NIM-reps do

not carry any of the modular data beyond this, the NIM-reps for each of these pair of categories are

the same. For the Ising and pA1, 2q pair, the remaining modular data is so similar that we cannot

even distinguish them using their modular invariants. This is not the case for the toric and pD1, 4q

pair.
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What we see is that for rank 2,3 MTCs each modular invariant has a corresponding NIM-rep,

and the correspondence is true. However, at rank 4 it already starts breaking down: the Z4 MTC

has a NIM-rep that does not correspond to a modular invariant, and the toric and pD4, 1q MTCs

each having two modular invariants associated to a single NIM-rep.

Category Modular Exponent NIM-rep Exponent

invariant

Semion Id
`
1
1, X1

1

˘
X1 ÞÑ

ˆ
0 1

1 0

˙ `
1
1, X1

1

˘

Fibonacci Id
`
1
1, X1

1

˘
X1 ÞÑ

ˆ
0 1

1 1

˙ `
1
1, X1

1

˘

Table 1. Modular invariants, NIM-reps and their respective exponents for rank 2

modular tensor categories

MTC Modular invariant Exponent NIM-rep Exponent

Z3 Id
`
1
1, X1

1 , X
1
2

˘
X1 ÞÑ

¨
˝
0 1 0

0 0 1

1 0 0

˛
‚,

`
1
1, X1

1 , X
1
2

˘

X2 ÞÑ

¨
˝
0 0 1

1 0 0

0 1 0

˛
‚

¨
˝
1 0 0

0 0 1

0 1 0

˛
‚ `

1
1, X0

1 , X
0
2

˘
X1, X2 ÞÑ p1q

`
1
1, X0

1 , X
0
2

˘

Ising/pA1, 2q Id
`
1
1, X1

1 , X
1
2

˘
X1 ÞÑ

¨
˝
0 1 0

1 0 0

0 0 1

˛
‚,

`
1
1, X1

1 , X
1
2

˘

X2 ÞÑ

¨
˝
0 0 1

0 0 1

1 1 0

˛
‚

pA1, 5q1{2 Id
`
1
1, X1

1 , X
1
2

˘
X1 ÞÑ

¨
˝
0 1 0

1 0 1

0 1 1

˛
‚,

`
1
1, X1

1 , X
1
2

˘

X2 ÞÑ

¨
˝
0 0 1

0 1 1

1 1 1

˛
‚

Table 2. Modular invariants, NIM-reps and their respective exponents for rank 3

modular tensor categories
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MTC Modular invariant Exponent NIM-rep Exponent

Z4 Id
`
1
1, X1

1 , X
1
2 , X

1
3

˘
X1 ÞÑ

¨
˚̊
˝

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

˛
‹‹‚,

`
1
1, X1

1 , X
1
2 , X

1
3

˘

X2 ÞÑ

¨
˚̊
˝

0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

˛
‹‹‚,

X3 ÞÑ

¨
˚̊
˝

0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0

˛
‹‹‚

¨
˚̊
˝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

˛
‹‹‚

`
1
1, X1

1 , X
0
2 , X

0
3

˘
X1 ÞÑ

ˆ
1 0

0 1

˙
,

`
1
1, X1

1 , X
0
2 , X

0
3

˘

X2, X3 ÞÑ

ˆ
0 1

1 0

˙

X1, X2, X3 ÞÑ p1q ,
`
1
1, X0

1 , X
0
2 , X

0
3

˘

pA1, 7q1{2 Id
`
1
1, X1

1 , X
1
2 , X

1
3

˘
X1 ÞÑ

¨
˚̊
˝

0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 1

˛
‹‹‚,

`
1
1, X1

1 , X
1
2 , X

1
3

˘

X2 ÞÑ

¨
˚̊
˝

0 0 1 0

0 1 0 1

1 0 1 1

0 1 1 1

˛
‹‹‚,

X3 ÞÑ

¨
˚̊
˝

0 0 0 1

0 0 1 1

0 1 1 1

1 1 1 1

˛
‹‹‚

Table 3. Modular invariants, NIM-reps and their respective exponents for rank 4

modular tensor categories, Z4 and pA1, 7q1{2 cases
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MTC Modular invariant Exponent NIM-rep Exponent

Toric Id
`
1
1, X1

1 , X
1
2 , X

1
3

˘
X1 ÞÑ

¨
˚̊
˝

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

˛
‹‹‚,

`
1
1, X1

1 , X
1
2 , X

1
3

˘

X2 ÞÑ

¨
˚̊
˝

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

˛
‹‹‚,

X3 ÞÑ

¨
˚̊
˝

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

˛
‹‹‚

¨
˚̊
˝

1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

˛
‹‹‚

`
1
1, X1

1 , X
0
2 , X

0
3

˘
X1 ÞÑ

ˆ
1 0

0 1

˙
,

`
1
1, X1

1 , X
0
2 , X

0
3

˘

X2, X3 ÞÑ

ˆ
0 1

1 0

˙

¨
˚̊
˝

1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

˛
‹‹‚

`
1
1, X0

1 , X
1
2 , X

0
3

˘
X2 ÞÑ

ˆ
1 0

0 1

˙
,

`
1
1, X0

1 , X
1
2 , X

0
3

˘

X1, X3 ÞÑ

ˆ
0 1

1 0

˙

¨
˚̊
˝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

˛
‹‹‚

`
1
1, X0

1 , X
0
2 , X

1
3

˘
X3 ÞÑ

ˆ
1 0

0 1

˙
,

`
1
1, X0

1 , X
0
2 , X

1
3

˘

X1, X2 ÞÑ

ˆ
0 1

1 0

˙

¨
˚̊
˝

1 1 0 0

0 0 0 0

1 1 0 0

0 0 0 0

˛
‹‹‚

`
1
1, X0

1 , X
0
2 , X

0
3

˘
X1, X2, X3 ÞÑ p1q

`
1
1, X0

1 , X
0
2 , X

0
3

˘

¨
˚̊
˝

1 0 1 0

1 0 1 0

0 0 0 0

0 0 0 0

˛
‹‹‚

`
1
1, X0

1 , X
0
2 , X

0
3

˘
– –

Table 4. Modular invariants, NIM-reps and their respective exponents for rank 4

modular tensor categories, toric case
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MTC Modular invariant Exponent NIM-rep Exponent

(D4, 1) Id
`
1
1, X1

1 , X
1
2 , X

1
3

˘
X1 ÞÑ

¨
˚̊
˝

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

˛
‹‹‚,

`
1
1, X1

1 , X
1
2 , X

1
3

˘

X2 ÞÑ

¨
˚̊
˝

0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

˛
‹‹‚,

X3 ÞÑ

¨
˚̊
˝

0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0

˛
‹‹‚

¨
˚̊
˝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

˛
‹‹‚

`
1
1, X1

1 , X
0
2 , X

0
3

˘
X1 ÞÑ

ˆ
1 0

0 1

˙
,

`
1
1, X1

1 , X
0
2 , X

0
3

˘

X2, X3 ÞÑ

ˆ
0 1

1 0

˙

¨
˚̊
˝

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

˛
‹‹‚ (11, X0

1X
1
2 , X

0
3 ) X2 ÞÑ

ˆ
1 0

0 1

˙
,

`
1
1, X0

1 , X
1
2 , X

0
3

˘

X1, X3 ÞÑ

ˆ
0 1

1 0

˙

¨
˚̊
˝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

˛
‹‹‚ (11, X0

1 , X
0
2 , X

1
3 ) X3 ÞÑ

ˆ
1 0

0 1

˙
,

`
1
1, X0

1 , X
0
2 , X

1
3

˘

X1, X2 ÞÑ

ˆ
0 1

1 0

˙

¨
˚̊
˝

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

˛
‹‹‚ (11, X0

1 , X
0
2 , X

0
3 ) X1, X2, X3 ÞÑ p1q

`
1
1, X0

1 , X
0
2 , X

0
3

˘

¨
˚̊
˝

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

˛
‹‹‚ (11, X0

1 , X
0
2 , X

0
3 ) – –

Table 5. Modular invariants, NIM-reps and their respective exponents for rank 4

modular tensor categories, (D4, 1) case
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