
 ORCA – Online Research @ Cardiff

This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/16 7 4 1 6/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

Ca min a d a, M a r tin a n d H a rik rish n a n, S ri 2 0 2 4. Trac t a ble algo ri t h m s for s t ro n g

a d missibili ty. Argu m e n t a n d Co m p u t a tion

P u blish e r s p a g e:

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting, for m a t ting

a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e d efini tive ve r sion of

t his p u blica tion, ple a s e r efe r to t h e p u blish e d sou rc e . You a r e a dvis e d to cons ul t t h e

p u blish e r’s ve r sion if you wis h to ci t e t his p a p er.

This ve r sion is b eing m a d e av ailabl e in a cco r d a nc e wi th p u blish e r policies. S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s for

p u blica tions m a d e av ailabl e in ORCA a r e r e t ain e d by t h e copyrigh t hold e r s .

Argument & Computation 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Tractable Algorithms for Strong

Admissibility

Martin Caminada a,∗ and Sri Harikrishnan b

a Cardiff University, United Kingdom

E-mail: CaminadaM@cardiff.ac.uk
b Vienna University of Economics and Business, Austria

E-mail: Sri.Harikrishnan@wu.ac.at

Abstract. Much like admissibility is the key concept underlying preferred semantics, strong admissibility is the key concept
underlying grounded semantics, as membership of a strongly admissible set is sufficient to show membership of the grounded
extension. As such, strongly admissible sets and labellings can be used as an explanation of membership of the grounded
extension, as is for instance done in some of the proof procedures for grounded semantics. In the current paper, we present two
polynomial algorithms for constructing relatively small strongly admissible labellings, with associated min-max numberings,
for a particular argument. These labellings can be used as relatively small explanations for the argument’s membership of the
grounded extension. Although our algorithms are not guaranteed to yield an absolute minimal strongly admissible labelling for
the argument (as doing so would have implied an exponential complexity), our best performing algorithm yields results that
are only marginally larger. Moreover, the runtime of this algorithm is an order of magnitude smaller than that of the existing
approach for computing an absolute minimal strongly admissible labelling for a particular argument. As such, we believe
that our algorithms can be of practical value in situations where the aim is to construct a minimal or near-minimal strongly
admissible labelling in a time-efficient way.

Keywords: Abstract Argumentation, Strong Admissibility, Algorithms

1. Introduction

In formal argumentation, one would sometimes like to show that a particular argument is (credulously)

accepted according to a particular argumentation semantics, without having to construct the entire ex-

tension the argument is contained in. For instance, to show that an argument is in a preferred extension,

it is not necessary to construct the entire preferred extension. Instead, it is sufficient to construct a set

of arguments that is admissible. Similarly, to show that an argument is in the grounded extension, it is

not necessary to construct the entire grounded extension. Instead, it is sufficient to construct a set of

arguments that is strongly admissible.

The concept of strong admissibility was introduced by Baroni and Giacomin [1] as one of the proper-

ties to describe and categorise argumentation semantics. It was subsequently studied by Caminada and

Dunne [4, 7] who further developed strong admissibility in both its set and labelling form. In particular,

the strongly admissible sets (resp. labellings) were found to form a lattice with the empty set (resp. the

all-undec labelling) as its bottom element and the grounded extension (resp. the grounded labelling) as

its top element [4, 7].

*Corresponding author. E-mail: CaminadaM@cardiff.ac.uk.

1946-2166/$35.00 © 0 – IOS Press. All rights reserved.

2 M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

As a strongly admissible set (labelling) can be used to explain that a particular argument is in the

grounded extension (for instance, by using the discussion game of [5]) a relevant question is whether

one can identify an expanation that is minimal. That is, given an argument A that is in the grounded

extension, how can one obtain:

(1) a strongly admissible set that contains A, of which the number of arguments is minimal among all

strongly admissible sets containing A, and

(2) a strongly admissible labelling that labels A in, of which the number of in and out labelled

arguments (its size, cf. [8]) is minimal among all strongly admissible labellings that label A in.

It has been found that the problem of computing (1) is NP-hard [12, Theorem 2]1 whereas the verifi-

cation problem of (2) is co-NP-complete [8, Theorem 2].2 Moreover, it has also been observed that even

computing a c-approximation for the minimum size of a strongly admissible set for a given argument is

NP-hard for every c ⩾ 1 [12]. This is in sharp contrast with the complexity of the general verification

problem of strong admissibility (i.e. verifying whether a set/labelling is strongly admissible, without the

constraint that it also has to be minimal) which has been found to be polynomial [7].

The complexity results related to minimal strong admissibility pose a problem when the aim is to

provide the user with a relatively small explanation of why a particular argument is in the grounded

extension. For this, one can either apply an algorithmic approach that yields an absolute minimal expla-

nation, but has a worst-case exponential runtime, or one can apply an algorithmic approach that has a

less than exponential runtime, but does not come with any formal guarantees of how close the outcome

is to an absolute minimal explanation [12]. The former approach is taken in [12]. The latter approach is

taken in our current paper.

In the absence of a dedicated algorithm for strong admissibility, one may be tempted to simply apply

an algorithm for computing the grounded extension or labelling instead (such as [13, 14]) if the aim is

to do the computation in polynomial time. Still, from the perspective of minimality, this would yield the

absolute worst outcome, as the grounded extension (labelling) is the maximal strongly admissible set

(labelling). In the current paper we therefore introduce an alternative algorithm which, like the grounded

semantics algorithms, runs in polynomial time but tends to produce a strongly admissible set (resp.

labelling) that is significantly smaller than the grounded extension (resp. labelling). As the complexity

results from [12] prevent us from giving any theory-based guarantees regarding how close the outcome

of the algorithm is to an absolute minimal strongly admissible set, we will instead assess the performance

of the algorithm using a wide range of benchmark examples.

The remaining part of the current paper is structured as follows. First, in Section 2 we give a brief

overview of the formal concepts used in the current paper, including that of a strongly admissible set

and a strongly admissible labelling. In Section 3 we then proceed to provide the proposed algorithm,

including the associated proofs of correctness. Then, in Section 4 we assess the performance of our

approach, and compare it with the results yielded by the approach in [12] both in terms of outcome and

runtime. We round off with a discussion of our findings in Section 5.

1Theorem 2 of [12] states that “Computing a c-approximation for the minimal size of a strongly admissible set for a given
argument is NP-hard for every c ⩾ 1.” Trivially, this also holds when c = 1.

2Theorem 2 of [8] assumes that it has already been verified that the labelling in question is strongly admissible and that
the only thing that still needs to be verified is that it is also minimal strongly admissible. However, the problem of verifying
whether a set of arguments is strongly admissible is polynomial [7] (which carries over also to the problem of verifying whether
an argument labelling is strongly admissible) including this check does not affect the co-NP-completeness of the overall problem
of verifying minimal strong admissibility.

M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

2. Preliminaries

In the current section, we briefly restate some of the basic concepts in formal argumentation the-

ory, including strong admissibility. For current purposes, we restrict ourselves to finite argumentation

frameworks.

Definition 1. An argumentation framework is a pair (Ar, att) where Ar is a finite set of entities, called

arguments, whose internal structure can be left unspecified, and att is a binary relation on Ar. For any

x, y ∈ Ar we say that x attacks y iff (x, y) ∈ att.

As for notation, we use lower case letters at the end of the alphabet (such as x, y and z) to denote

variables containing arguments, upper case letters at the end of the alphabet (such as X, Y and Z) to

denote program variables containing arguments, and upper case letters at the start of the alphabet (such

as A, B and C) to denote concrete instances of arguments.
When it comes to defining argumentation semantics, one can distinguish the extension approach and

the labelling approach [6]. We start with the extensions approach.

Definition 2. Let (Ar, att) be an argumentation framework, x ∈ Ar and Args ⊆ Ar. We define x+ as

{y ∈ Ar | x attacks y}, x− as {y ∈ Ar | y attacks x}, Args+ as
⋃
{x+ | x ∈ Args}, and Args− as⋃

{x− | x ∈ Args}. Args is said to be conflict-free iff Args ∩ Args+ = ∅. Args is said to defend x iff

x− ⊆ Args+. The characteristic function F : 2Ar → 2Ar is defined as F(Args) = {x | Args defends x}.

Definition 3. Let (Ar, att) be an argumentation framework. Args ⊆ Ar is

• an admissible set iff Args is conflict-free and Args ⊆ F(Args)
• a complete extension iff Args is conflict-free and Args = F(Args)
• a grounded extension iff Args is the smallest (w.r.t. ⊆) complete extension

• a preferred extension iff Args is a maximal (w.r.t. ⊆) complete extension

As mentioned in the introduction, the concept of strong admissibility was originally introduced by

Baroni and Giacomin [1]. For current purposes we will apply the equivalent definition of Caminada
[4, 7].

Definition 4. Let (Ar, att) be an argumentation framework. Args ⊆ Ar is strongly admissible iff every

x ∈ Args is defended by some Args′ ⊆ Args \ {x} which in its turn is again strongly admissible.

HG

A

D

B

E F

C

Fig. 1. An example of an argumentation framework.

As an example (taken from [7]), in the argumentation framework of Figure 1 the strongly admissible

sets are ∅, {A}, {A,C}, {A,C, F}, {D}, {A,D}, {A,C,D}, {D, F}, {A,D, F} and {A,C,D, F}, the latter

also being the grounded extension. The set {A,C, F} is strongly admissible as A is defended by ∅, C is

4 M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

defended by {A} and F is defended by {A,C}, each of which is a strongly admissible subset of {A,C, F}
not containing the argument it defends. Please notice that although the set {A, F} defends argument C

in {A,C, F}, it is in its turn not strongly admissible (unlike {A}). Hence the requirement in Definition 4

for Args′ to be a subset of Args \ {A}. We also observe that although {C,H} is an admissible set, it is

not a strongly admissible set, since no subset of {C,H} \ {H} defends H.

It can be shown that each strongly admissible set is conflict-free and admissible [7]. The strongly

admissible sets form a lattice (w.r.t. ⊆), of which the empty set is the bottom element and the grounded

extension is the top element [7].

The above definitions essentially follow the extension based approach as described in [11]. It is also

possible to define the key argumentation concepts in terms of argument labellings [2, 9].

Definition 5. Let (Ar, att) be an argumentation framework. An argument labelling is a function Lab :
Ar → {in,out,undec}. An argument labelling is called an admissible labelling iff for each x ∈ Ar it

holds that:

• if Lab(x) = in then for each y that attacks x it holds that Lab(y) = out

• if Lab(x) = out then there exists a y that attacks x such that Lab(y) = in

Lab is called a complete labelling iff it is an admissible labelling and for each x ∈ Ar it also holds that:

• if Lab(x) = undec then there is a y that attacks x such that Lab(y) = undec, and for each y that

attacks x such that Lab(y) ̸= undec it holds that Lab(y) = out

As a labelling is essentially a function, we sometimes write it as a set of pairs. Also, if Lab is a

labelling, we write in(Lab) for {x ∈ Ar | Lab(x) = in}, out(Lab) for {x ∈ Ar | Lab(x) = out} and

undec(Lab) for {x ∈ Ar | Lab(x) = undec}. As a labelling is also a partition of the arguments into

sets of in-labelled arguments, out-labelled arguments and undec-labelled arguments, we sometimes

write it as a triplet (in(Lab),out(Lab),undec(Lab)).

Definition 6 ([10]). Let Lab and Lab′ be argument labellings of argumentation framework (Ar, att). We

say that Lab ⊑ Lab′ iff in(Lab) ⊆ in(Lab′) and out(Lab) ⊆ out(Lab′).

Definition 7. Let Lab be a complete labelling of argumentation framework (Ar, att). Lab is said to be

• the grounded labelling iff Lab is the (unique) smallest (w.r.t. ⊑) complete labelling

• a preferred labelling iff Lab is a maximal (w.r.t. ⊑) complete labelling

We refer to the size of a labelling Lab as |in(Lab)∪out(Lab)|. We observe that if Lab ⊑ Lab′ then

the size of Lab is smaller or equal to the size of Lab′, but not necessarily vice versa. In the remainder

of the current paper, we use the terms smaller, bigger, minimal and maximal in relation to the size of the

respective labellings, unless stated otherwise.

The next step is to define a strongly admissible labelling. In order to do so, we need the concept of a

min-max numbering [7].

Definition 8. Let Lab be an admissible labelling of argumentation framework (Ar, att). A min-max

numbering is a total function MMLab : in(Lab) ∪ out(Lab) → N ∪ {∞} such that for each x ∈
in(Lab) ∪ out(Lab) it holds that:

M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

• if Lab(x) = in then MMLab(x) = max({MMLab(y) | y attacks x and Lab(y) = out}) + 1
(with max(∅) defined as 0)

• if Lab(x) = out then MMLab(x) = min({MMLab(y) | y attacks x and Lab(y) = in}) + 1
(with min(∅) defined as∞)

It has been proved that every admissible labelling has a unique min-max numbering [7]. A strongly

admissible labelling can then be defined as follows [7].

Definition 9. A strongly admissible labelling is an admissible labelling whose min-max numbering

yields natural numbers only (so no argument is numbered∞).

As an example (taken from [7]), consider again the argumentation framework of Figure 1. Here, the

admissible labelling Lab1 = ({A,C, F,G}, {B, E,H}, {D}) has min-max numbering {(A : 1), (B :
2), (C : 3), (E : 4), (F : 5), (G : ∞), (H : ∞)}, which means that it is not strongly admissible. The

admissible labelling Lab2 = ({A,C,D, F}, {B, E}, {G,H}) has min-max numbering {(A : 1), (B :
2), (C : 3), (D : 1), (E : 2), (F : 3)}, which means that it is strongly admissible.

It has been shown that the strongly admissible labellings form a lattice (w.r.t. ⊑), of which the all-

undec labelling is the bottom element and the grounded labelling is the top element [7].

The relationship between extensions and labellings has been well-studied [3, 9]. A common way to

relate extensions to labellings is through the functions Args2Lab and Lab2Args. These translate a

conflict-free set of arguments to an argument labelling, and an argument labelling to a set of arguments,

respectively. More specifically, given an argumentation framework (Ar, att), and an associated conflict-

free set of arguments Args and a labellingLab, Args2Lab(Args) is defined as (Args,Args+,Ar\(Args∪
Args+)) and Lab2Args(Lab) is defined as in(Lab). It has been proven [9] that if Args is an admissible

set (resp. a complete, grounded or preferred extension) then Args2Lab(Args) is an admissible labelling

(resp. a complete, grounded or preferred labelling), and that if Lab is an admissible labelling (resp. a

complete, grounded or preferred labelling) then Lab2Args(Lab) is an admissible set (resp. a complete,

grounded or preferred extension). It has also been proven [7] that if Args is a strongly admissible set then

Args2Lab(Args) is a strongly admissible labelling, and that if Lab is a strongly admissible labelling

then Lab2Args(Lab) is a strongly admissible set.

3. The Algorithms

In the current section, we present an algorithmic approach for computing a relatively small3 strongly

admissible labelling. For this, we provide three different algorithms. The first algorithm (Algorithm 1)

basically constructs a strongly admissible labelling bottom-up, starting with the arguments that have no

attackers and continuing until the main argument (the argument for which one want to show membership

of a strongly admissible set) is labelled in. The second algorithm (Algorithm 2) then takes the output

of the first algorithm and tries to prune it. That is, it tries to identify only those in and out labelled

arguments that are actually needed in the strongly admissible labelling. The third algorithm (Algorithm

3) then combines Algorithm 1 (which is used as the construction phase) and Algorithm 2 (which is used

as the pruning phase). Overall, we assume that it has already been established that the main argument is

in the grounded extension and that the aim is merely to find a (relatively small) explanation for this.

3Small with respect to the size of the labelling.

6 M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

3.1. Algorithm 1

The basic idea of Algorithm 1 is to start constructing the grounded labelling bottom-up, until we
reach the main argument (that is, until we reach the argument that we are trying to construct a strongly
admissible labelling for; this argument should hence be labelled in). As such, the idea is to take an
algorithm for computing the grounded labelling (e.g. [13] or [14]) and modify it accordingly. We have
chosen the algorithm of [14] for this purpose, as it has been proved to run faster than some of the
alternatives (such as [13]). We had to adjust this algorithm in two ways. First, as mentioned above, we
want the algorithm to stop once it hits the main argument, instead of continuing to construct the entire
grounded labelling. Second, we want it to compute not just the strongly admissible labelling itself, but
also its associated min-max numbering.

Obtaining the min-max numbering is important, as it can be used to show that the obtained admissible
labelling is indeed strongly admissible, through the absence of ∞ in its min-max numbering. Addi-
tionally, the min-max numbering is also needed for some of the applications of strong admissibility, in
particular the Grounded Discussion Game [5] where the combination of a strongly admissible labelling
and its associated min-max numbering serves as a roadmap for obtaining a winning strategy.

Instead of first computing the strongly admissible labelling and then proceeding to compute the min-
max numbering, we want to compute both the strongly admissible labelling and the min-max numbering
in just a single pass, in order to achieve the best performance.

To see how the algorithm works, consider again the argumentation framework of Figure 1. Let C be
the main argument. At the start of the first iteration of the while loop (line 21) it holds that Lab =
({A,D}, ∅, {B,C, E, F,G,H}),MMLab = {(A : 1), (D : 1)} and unproc_in = [A,D]. At the first
iteration of the while loop, the argument in front of unproc_in (A) is selected (line 22). This then
means that B gets labelled out and C gets labelled in. Hence, the algorithm hits the main argument (C)
at line 33 and terminates. This yields a labelling Lab = ({A,C,D}, {B}, {E, F,G,H}) and associated
min-max numberingMMLab = {(A : 1), (B : 2), (C : 3), (D : 1)}.

We now proceed to prove some of the formal properties of the algorithm. The first property to be
proved is termination.

Theorem 1. Let AF = (Ar, att) be an argumentation framework and A be an argument in the grounded

extension of AF. Let both AF and A be given as input to Algorithm 1. It holds that the algorithm termi-

nates.

Proof. As for the first loop (the for loop of lines 9-18) we observe that it terminates as the number of
arguments in Ar is finite.

As for the second loop (the while loop of lines 21-37) we first observe that no argument can be added
to unproc_in more than once (that is, once an argument has been added to unproc_in, it can never
be added again). This is because for an argument to be added, it has to be labelled undec (line 27)
whereas after adding it, it will be labelled in (line 31). Moreover, once an argument is labelled in, it
will never be labelled undec again and therefore cannot be added to unproc_in again. Given that
(1) there is only a finite number of arguments in Ar, (2) each argument can be added to unproc_in at
most once, and (3) each iteration of the while loop removes an argument from unproc_in, it follows
that the loop has to terminate. □

Next, we need to show that the algorithm is correct. That is, we need to show that the algorithm yields
a strongly admissible labelling Lab that labels A in, together with its associated min-max numbering

M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Algorithm 1 Construct a strongly admissible labelling that labels A in and its associated min-max

numbering.

Input: An argumentation framework AF = (Ar, att),
an argument A ∈ Ar that is in the grounded extension of AF.

Output: A strongly admissible labelling Lab where A ∈ in(Lab),
the associated min-max numberingMMLab.

1: // We start with the type definitions

2: Lab : Ar → {in,out,undec}
3: MMLab : in(Lab) ∪ out(Lab)→ N ∪ {∞}
4: undec_pre : Ar → N

5: unproc_in : [X1, ...Xn] (Xi ∈ Ar for each 1 ⩽ i ⩽ n) // list of arguments

6:

7: // Next, we initialize and process the arguments that have no attackers

8: unproc_in← []
9: for each X ∈ Ar do

10: Lab(X)← undec

11: undec_pre(X)← |X−|
12: if undec_pre(X) = 0 then

13: add X to the rear of unproc_in

14: Lab(X)← in

15: MMLab(X)← 1
16: if X = A then return Lab andMMLab

17: end if

18: end for

19:

20: // We proceed to process the arguments that do have attackers

21: while unproc_in is not empty do

22: let X be the argument at the front of unproc_in

23: remove X from unproc_in

24: for each Y ∈ X+ with Lab(Y) ̸= out do

25: Lab(Y)← out

26: MMLab(Y)←MMLab(X) + 1
27: for each Z ∈ Y+ with Lab(Z) = undec do

28: undec_pre(Z)← undec_pre(Z)− 1
29: if undec_pre(Z) = 0 then

30: add Z to the rear of unproc_in

31: Lab(Z)← in

32: MMLab(Z)←MMLab(Y) + 1
33: if Z = A then return Lab andMMLab

34: end if

35: end for

36: end for

37: end while

38:

39: // If we get here, A is not in the grounded extension,

40: // so we may want to print an error message

8 M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

MMLab. In order to do so, we first need to state and prove a number of lemmas. We start with showing

that Lab is admissible in every stage of the algorithm.

Lemma 2. Let AF = (Ar, att) be an argumentation framework and A be an argument in the grounded

extension of AF. Let both AF and A be given as input to Algorithm 1. It holds that during any stage in

the algorithm, Lab is an admissible labelling.

Proof. Consider the value of Lab at an arbitrary point during the execution of Algorith 1. According

to the definition of an admissible labelling (Definition 5) we need to prove two things, for an arbitrary

argument x ∈ Ar:

(1) if Lab(x) = in then for each y that attacks x it holds that Lab(y) = out

Suppose Lab(x) = in. We distinguish two cases:

(a) x was labelled in at line 14. This implies that und_pre(x) = 0 in line 12, which implies that

x has no attackers. Therefore, trivially Lab(y) = out for each y ∈ Ar that attacks x.

(b) x was labelled in at line 31. This implies that undec_pre(x) = 0 in line 29, which implies

that each attacker y of x has been relabelled to out. To see that this is the case, let n be the

number of attackers of x (that is, n = |x−|). It follows that undec_pre(x) is initially n (line

11) and at least 1 (otherwise x would have been labelled in at line 14 instead of at line 31). In

order for undec_pre(x) to have fallen to 0 (line 29) it will need to have decremented (at line

28) n times (as no other line changes the value of undec_pre(x)). Each time this happens at

line 28, an attacker of x that wasn’t previously labelled out (line 24) is labelled out (line 25).

Therefore, by the time undec_pre(x) became 0, it follows that all attackers of x have become

labelled out.

(2) if Lab(x) = out then there exists a y that attacks x such that Lab(y) = in

Suppose Lab(x) = out. This implies that x was labelled out at line 25, which implies that an

attacker y of x was an element of unproc_in. This means that at some point, argument y was

added to unproc_in. This could have happened at line 13 or 30. In both cases, it follows that

(line 14 and 31) y is labelled in.

□

The next lemma presents an intermediary result that will be needed further on in the proofs.

Lemma 3. Let AF = (Ar, att) be an argumentation framework and A be an argument in the grounded

extension of AF. Let both AF and A be given as input to Algorithm 1. It holds that for each argument x

that is added to unproc_in,MMLab(x) ⩾ 1

Proof. We prove this by induction over the number of arguments that are added to unproc_in during

the execution of the while loop of lines 21-37.

BASIS (n=0) Suppose the while loop has not yet added any arguments to unproc_in. This means

that any argument x that was added to unproc_in was added by the for loop (lines 9-18). This

could only have been done at line 13. Line 15 then implies that MMLab(x) = 1 so trivially

MMLab(x) ⩾ 1.

M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

STEP Suppose that at a particular point, the while loop has added n (⩾ 0) arguments to unproc_in

and that for each argument x that has been added to unproc_in (either by the while loop of lines

21-37 or by the for loop of lines 9-18) it holds thatMMLab(x) ⩾ 1. We distinguish two cases:

• x was added to unproc_in previously. From the induction hypothesis it follows that

MMLab(x) ⩾ 1 at the moment x was added. As Algorithm 1 does not change any value

ofMMLab once it is assigned, it follows thatMMLab(x) ⩾ 1 still holds at the current point.

• x is the argument that is currently being added to unproc_in (so x = Z at line 30). This

implies that Z is labelled in at line 31 and is numbered MMLab(Y) + 1 at line 32. Fol-

lowing line 26, it holds that MMLab(Y) = MMLab(X) + 1, with X being an in labelled

attacker of Y that was added to unproc_in previously. We can therefore apply the induction

hypothesis and obtain that MMLab(X) ⩾ 1, which together with the earlier observed facts

thatMMLab(Z) =MMLab(Y) + 1 (line 32) andMMLab(Y) =MMLab(X) + 1 (line 26)

implies thatMMLab(Z) ⩾ 3 which trivially implies thatMMLab(Z) ⩾ 1. Hence (as x = Z)

we obtain thatMMLab(x) ⩾ 1.

□

Algorithm 1 (especially line 22 and line 30) implements a FIFO queue for the in labelled arguments

it processes. This is an important difference with the algorithm of [14], which uses a set for this purpose.

Using a set is fine if the aim is merely to compute a strongly admissible labelling (as is the case for [14]

where the aim is to compute the grounded labelling). However, if the aim is also to compute the asso-

ciated min-max numbering, having a set as the basic data structure could compromise the algorithm’s

correctness.

As an example, consider again the argumentation framework of Figure 1. Let F be the main ar-

gument. Now suppose that unproc_in is a set instead of a queue. In that case, at the start of

the first iteration of the while loop (line 21) it holds that Lab = ({A,D}, ∅, {B,C, E, F,G,H}),
MMLab = {(A : 1), (D : 1)} and unproc_in = {A,D}. At the first iteration of the while loop,

an argument X from unproc_in is selected (line 22). Suppose A is the selected argument (so X = A).

This then means that B gets labelled out and C gets labelled in. Hence, at the end of the first iter-

ation of the while loop (and therefore at the start of the second iteration of the while loop) it holds

that Lab = ({A,C,D}, {B}, {E, F,G,H}), MMLab = {(A : 1), (B : 2), (C : 3), (D : 1)} and

unproc_in = {C,D}. At the second iteration of the while loop, the fact that a set has no order

would make it possible to select C (so X = C). This means that E gets labelled out and F gets labelled

in. Hence, at the moment the algorithm hits the main argument (F, at line 33) and terminates, it holds

that Lab = ({A,C,D, F}, {B, E}, {G,H}) and MMLab = {(A : 1), (B : 2), (C : 3), (D : 1), (E :
4), (F : 5)}. UnfortunatelyMMLab is incorrect. This is because out labelled argument E is numbered

4, whereas its two in labelled attackers C and D are numbered 3 and 1, respectively, so the correct

min-max number of E should be 2 instead of 4, which implies that the correct min-max number of F

should be 3 instead of 5.

One of the conditions of a min-max numbering is that the min-max number of an out labelled ar-

gument should be the minimal value of its in labelled attackers, plus 1. This seems to require that the

min-max number of the in labelled attackers is already known, before assigning the min-max number of

the out labelled argument. At the very least, it would seem that the min-max number of an out labelled

argument would potentially need to be recomputed each time the min-max number of one of its in la-

belled attackers becomes known. Yet, Algorithm 1 does none of this. It determines the min-max number

10 M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

of an out labelled argument as soon as the min-max number of its first in labelled attacker becomes

known (line 26) without waiting for the min-max number of any other in labelled attacker to become

available. Yet, Algorithm 1 still somehow manages to always yield the correct min-max numbering.

The key to understanding how Algorithm 1 manages to always yield the correct min-max numbering

is that the in labelled arguments are processed in the order of their min-max numbers. That is, once an

in labelled attacker is identified, any subsequently identified in labelled attacker will have a min-max

number greater or equal to the first one and will therefore not change the minimal value (in the sense of

Definition 8, first bullet point). This avoids having to recalculate the min-max number of an out labelled

argument once more of its in labelled attackers become available, therefore speeding up the algorithm.

To make sure that arguments are processed in the order of their min-max numbers, we need to apply a

FIFO queue instead of the set that was applied by [14]. The following two lemmas (Lemma 4 and Lemma

5) state that the in labelled arguments are indeed added and removed to the queue in the order of their

min-max numbers. These properties are subsequently used to prove the correctness of the computed

min-max numbering (Lemma 6 and Theorem 10).

Lemma 4. Let AF = (Ar, att) be an argumentation framework and A be an argument in the grounded

extension of AF. Let both AF and A be given as input to Algorithm 1. The order in which argu-

ments are added to unproc_in is non-descending w.r.t. MMLab. That is, if argument x1 is added

to unproc_in before argument x2 is added to unproc_in, thenMMLab(x1) ⩽MMLab(x2).

Proof. We first observe that this property is satisfied just after finishing the for loop of lines 9-18. This

is because the for loop makes sure that for each argument x,MMLab(x) = 1 (line 15) so it is trivially

satisfied that if x1 is added before x2, then MMLab(x1) ⩽ MMLab(x2). We proceed the proof by

induction over the number of arguments added by the while loop (lines 21-37).

BASIS (n=0) Suppose no arguments have yet been added to unproc_in by the while loop. In that

case, all arguments that have been added to unproc_in were added by the for loop (lines 9-18)

for which we have observed that the property holds.

STEP (n+1) Suppose the property holds after n arguments have been added to unproc_in by the

while loop. We now show that if the while loop adds another argument (n+1) to unproc_in, the

property still holds. In the while loop, only line 30 adds an argument to unproc_in. Let Znew be

the argument (n+1) that is currently added and let Zold be an argument that was previously added.

We distinguish two cases:

(1) Zold has been added by the while loop (so at a previous run of line 30). Let Ynew be the out

labelled attacker of Znew at line 25 and Yold be the out labelled attacker of Zold at line 25. Let

Xnew be the in labelled attacker of Ynew at line 22 and let Xold be the in labelled attacker of

Yold at line 22. It holds that either

(a) Xold was added to unproc_in before Xnew (at a previous iteration of the while loop, in

which case it follows from our induction hypothesis thatMMLab(Xold) ⩽MMLab(Xnew),
or

(b) Xnew = Xold, in which case it trivially holds thatMMLab(Xold) ⩽MMLab(Xnew).

In either case, we obtain thatMMLab(Xold) ⩽MMLab(Xnew). Furthermore, as it holds that

MMLab(Yold) =MMLab(Xold) + 1 (line 26)

MMLab(Ynew) =MMLab(Xnew) + 1 (line 26)

M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

MMLab(Zold) =MMLab(Yold) + 1 (line 32)

MMLab(Znew) =MMLab(Ynew) + 1 (line 32)

it follows thatMMLab(Zold) ⩽MMLab(Znew).
(2) Zold has been added by the for loop of lines 9-18. In that case, it holds thatMMLab(Zold) = 1

(line 15). As MMLab(Znew) ⩾ 1 (Lemma 3) it directly follows that MMLab(Zold) ⩽

MMLab(Znew).

□

Lemma 5. Let AF = (Ar, att) be an argumentation framework and A an argument in the grounded

extension of AF. Let both AF and A be given as input to Algorithm 1. The order in which arguments are

removed from unproc_in is non-descending w.r.t.MMLab. That is, if argument x1 is removed from

unproc_in before argument x2 is removed from unproc_in, thenMMLab(x1) ⩽MMLab(x2).

Proof. This follows directly from Lemma 4, together with the fact that additions to and removals from

unproc_in are done according to the FIFO (First In First Out) principle. □

We proceed to show the correctness ofMMLab in an inductive way. That is, we show thatMMLab

is correct at the start of each iteration of the while loop. We then later need to do a bit of additional

work to state thatMMLab is still correct at the moment we jump out of the while loop using the return

statement.

Lemma 6. Let AF = (Ar, att) be an argumentation framework and A an argument in the grounded

extension of AF. Let both AF and A be given as input to Algorithm 1. At the start of each iteration of the

while loop, it holds thatMMLab is a correct min-max numbering of Lab.

Proof. We prove this by induction over the number of loop iterations.

As for the basis of the induction (n=1), let us consider the first loop iteration. This is just after the for

loop of lines 9-18 has finished. We need to prove thatMMLab is a correct min-max numbering of Lab

According to the definition of a min-max numbering (Definition 8) we need to prove that for every x in

Ar:

(1) if Lab(x) = in thenMMLab(x) = max({MMLab(y)|y attacks x and Lab(y) = out}) + 1
Suppose Lab(x) = in. This means that x has been labelled in by the for loop of lines 9-18,

which implies that x does not have any attackers and is numbered 1. That is,MMLab(x) = 1 and

max({MMLab(y)|y attacks x and Lab(y) = out}) = 0 (by definition). ThereforeMMLab(x) =
max({MMLab(y)|y attacks x and Lab(y) = out}) + 1

(2) if Lab(x) = out thenMMLab(x) = min({MMLab(y)|y attacks x and Lab(y) = in}) + 1
This is trivially the case, as at the end of the for loop (lines 9-18) no argument is labelled out.

As for the induction step, suppose that at the start of a particular loop iteration,MMLab is a correct

min-max numbering of Lab. We need to prove that if there is a next loop iteration, then at the start of

this next loop iteration it is still the case thatMMLab is a correct min-max numbering of Lab. For this,

we need to prove that at the end of the current loop iteration, for any x ∈ Ar it holds that:

(1) if Lab(x) = in thenMMLab(x) = max({MMLab(y)|y attacks x and Lab(y) = out}) + 1
We distinguish two cases:

12 M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(a) x was already labelled in at the start of the current loop iteration. Then, asLab is an admissible
labelling at each point of the algorithm (Lemma 2) each attacker y of x is labelled out by Lab.
These attackers are still labelled out at the end of the current loop iteration (once an argument is
labelled out, it stays labelled out). Also, the valueMMLab(y) of these out labelled attackers
remains unchanged. Hence, from the fact that MMLab(x) = max({MMLab(y)|y attacks x

and Lab(y) = out}) + 1 at the start of the current iteration, it follows that MMLab(x) =
max({MMLab(y)|y attacks x and Lab(y) = out}) + 1 at the end of the current iteration.

(b) x became labelled in during the current loop iteration. In that case, x was labelled in at line
31 (with Z = x). So Z = x in MMLab(Z) = MMLab(Y) + 1 (line 32). We therefore need
to show thatMMLab(Y) = max({MMLab(y)|y attacks Z and Lab(y) = out}). As Y is an
out labelled attacker of Z, we already know that max({MMLab(y)|y attacks Z and Lab(y) =
out}) will be at leastMMLab(Y). We now proceed to show that max({MMLab(y)|y attacks
Z and Lab(y) = out}) will be at mostMMLab(Y). That is, for each out labelled attacker y

of Z we show thatMMLab(y) ⩽MMLab(Y). Let Y ′ be an arbitrary out labelled attacker of
Z. Let X be the in labelled attacker of Y (line 22 of the current loop iteration) and let X′ be the
in labelled attacker of Y ′ (line 22 of the current or a previous loop iteration). We distinguish
two cases:

• X′ = X

In that case, from the fact thatMMLab(Y) =MMLab(X)+1 (line 26) andMMLab(Y
′) =

MMLab(X
′)+1 (line 26) it follows thatMMLab(Y

′) =MMLab(Y) so (trivially) also that
MMLab(Y

′) ⩽MMLab(Y).
• X′ ̸= X

As X was removed from unproc_in during the current loop iteration, it follows that X′

was removed from unproc_in during one of the previous loop iterations. This means
that X′ was removed from unproc_in before X was removed from unproc_in, which
implies (Lemma 5) that MMLab(X

′) ⩽ MMLab(X). From the fact that MMLab(Y) =
MMLab(X) + 1 (line 26) and MMLab(Y

′) = MMLab(X
′) + 1 (line 26) it follows that

MMLab(Y
′) ⩽MMLab(Y).

As we now observed thatMMLab(x) is the correct min-max number of x at the moment it was
assigned (line 32) we can use similar reasoning as at the previous point (point (a)) to obtain that
it is still the correct min-max number at the end of the current loop iteration.

(2) if Lab(x) = out thenMMLab(x) = min({MMLab(y)|y attacks x and Lab(y) = in}) + 1
We distinguish two cases:

(a) x was already labelled out at the start of the current loop iteration. In that case, our induction
hypothesis that the min-max numbers are correct at the start of the current loop iteration implies
that MMLab(x) = min({MMLab(y)|y attacks x and Lab(y) = in}) + 1 at the start of the
current loop iteration. As the current loop iteraton does not change the value of MMLab(x)
(once a value forMMLab(x) is assigned, the algorithm never changes it) this value will still be
the same at the end of the current loop iteration. We therefore only need to verify that this value
is still correct at the end of the current loop iteration. For this, we need to be sure that any newly
in labelled argument (that is, an argument that became labelled in during the current loop
iteration) does not change the value of min({MMLab(y)|y attacks x and Lab(y) = in}). Let
Z be a newly in labelled attacker of x (line 31). Then Z was added to the rear of unproc_in
(line 30). Let Z′ be an arbitrary in labelled attacker of x. We distinguish two cases:

M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

• Z′ = Z

In that case, it directly follows that MMLab(Z
′) = MMLab(Z) so (trivially) also that

MMLab(Z
′) ⩽MMLab(Z).

• Z′ ̸= Z

In that case, it follows that Z′ was added to unproc_in before Z was added to unproc_in.

Lemma 4 then implies thatMMLab(Z
′) ⩽MMLab(Z).

In both cases, we obtain thatMMLab(Z
′) ⩽MMLab(Z). This means that whenever x gets a

new in labelled attacker min({MMLab(y)|y attacks x and Lab(y) = in}) does not change.

Therefore, the value ofMMLab(x) is still the correct min-max number of x at the end of the

current loop iteration.

(b) x became labelled out during the current loop iteration. This can only have happened at line

25, so x = Y .MMLab(Y) is then assignedMMLab(X)+1 at line 26. In order forMMLab(Y)
to be a correct min-max number, we need to verify that MMLab(X) = min({MMLab(y)|y
attacks Y and Lab(y) = in}). This is the case because at line 25, X is the only in labelled

attacker of Y (otherwise Y would have been labelled out before). As we have observed that

MMLab(Y) is the correct min-max value at the moment it was assigned, we can use similar

reasoning as at the previous point (point (a)) to obtain that it is still the correct min-max number

at the end of the current loop iteration.

□

In order for a labelling to be strongly admissible, its min-max numbering has to contain natural num-

bers only (no ∞). We therefore proceed to show the absence of ∞ in an inductive way. That is, we

show the absence of∞ at the start of each iteration of the while loop. We then later need to do a bit of

additional work to show the absence of∞ at the moment we jump out of the while loop using the return

statement.

Lemma 7. Let AF = (Ar, att) be an argumentation framework and let A be an argument in the grounded

extension of AF. Let both AF and A be given as input to Algorithm 1. At the start of each iteration of the

while loop at lines 21-37, it holds that for each in or out labelled argument x ∈ Ar,MMLab(x) is a

natural number (no∞)

Proof. We prove this by induction over the number of iterations of the while loop at lines 21-37.

As for the basis of induction(n=1), let us consider the first loop iteration. This is just after the for loop at

lines 9-18 has finished. We need to prove that for each in or out labelled argument x ∈ Ar,MMLab(x)
is a natural number. We therefore need to prove that:

(1) if Lab(x) = in thenMMLab(x) ̸=∞
Let x be labelled in by the for loop at lines 9-18. This can only have happened at line 14. According

to line 15, it then follows thatMMLab(x) = 1. HenceMMLab(x) ̸=∞.

(2) if Lab(x) = out thenMMLab(x) ̸=∞
This is trivially the case as the end of the for loop at lines 9-18, no argument is labelled out.

As for the induction step, suppose that at the start of a particular loop iteration, for each in or out

labelled argument x ∈ Ar,MMLab(x) is a natural number. We therefore need to prove that by the end

of the iteration (and therefore also at the start of the next loop iteration) it holds that:

14 M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(1) if Lab(x) = in thenMMLab(x) ̸=∞
We distinguish two cases:

• x was already labelled in at the start of the current loop iteration. From the induction hypothesis

it follows that MMLab(x) ̸= ∞ at the start of the current iteration. As Algorithm 1 does not

change any values ofMMLab once these have been assigned, it follows thatMMLab(x) ̸=∞
will hold at the end of the current loop iteration.

• x became labelled in during the current loop iteration. In the case x was labelled in at line

31 (with Z = x). Following line 32, MMLab(X) = MMLab(Y) + 1. According to line

26, MMLab(Y) = MMLab(X) + 1 with X being an attacker of Y that became labelled in

during a previous iteration of the while loop. From our induction hypothesis it follows that

MMLab(X) ̸= ∞. As MMLab(Y) = MMLab(X) + 1 it follows that MMLab(Y) ̸= ∞.

As MMLab(Z) = MMLab(Y) + 1 it follows that MMLab(Z) ̸= ∞. That is (as x = Z)

MMLab(x) ̸=∞.

(2) if Lab(x) = out themMMLab(x) ̸=∞
We distinguish two cases:

• x was already labelled out at the start of the current loop iteration. From the induction hypothe-

sis it follows thatMMLab(x) ̸=∞ at the start of the current iteration. As Algorithm 1 does not

change any values ofMMLab once these have been assigned, it follows thatMMLab(x) ̸=∞
will hold at the end of the current loop iteration.

• x became labelled out during the current loop iteration. This can only have happened at line 25

(with x = Y).MMLab(Y) is then assignedMMLab(X)+1 at line 26, with X being an attacker

of Y that became labeled in during a previous iteration of the while loop. From the induction

hypothesis, it follows thatMMLab(X) ̸= ∞. AsMMLab(Y) =MMLab(X) + 1 (line 26) it

follows thatMMLab(Y) ̸=∞. That is (as x = Y)MMLab(x) ̸=∞.

□

Although most of our results so far are about the algorithm itself, we also need an additional theoretical

property of grounded semantics, stated in the following lemma.

Lemma 8. Let AF = (Ar, att) be an argumentation framework. It holds that the grounded labelling of

AF is the only argument labelling that is both strongly admissible and complete.

Proof. First of all, it has been observed that the grounded labelling is both strongly admissible [7] and

complete (Definition 7). We proceed to prove that it is also the only argument labelling that is both

strongly admissible and complete. Let Lab be an argument labelling that is both strongly admissible and

complete. From the fact that the grounded labelling (Labgr) is the unique biggest strongly admissible

labelling [7] it follows that Lab ⊑ Labgr. From the fact that the grounded labelling is the unique smallest

complete labelling (Definition 7) it follows that Labgr ⊑ Lab. Together, this implies that Lab = Labgr.

□

If we would not finish the algorithm after hitting the main argument and instead continued to exe-

cute the algorithm until unproc_in is empty, we would be computing the grounded labelling with its

associated min-max numbering as stated by the following lemma.

M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Lemma 9. If in Algorithm 1 one would comment out line 16 and line 33 and add the following line (line

41) at the end:

return Lab andMMLab

then the output of the thus modified algorithm would be the grounded labelling Lab of AF, together with

its min-max numberingMMLab.

Proof. We first observe that Lab is a strongly admissible labelling. This follows from the facts that

(1) Lab is an admissible labelling

This can be proved in a similar way as Lemma 2.

(2) MMLab is a correct min-max numbering of Lab

This can be proved in a similar way as Lemma 6.

(3) MMLab does not contain∞ (natural numbers only)

This can be proved in a similar way as 7.

We proceed to show that Lab is also a complete labelling. For this, we first show the following two

properties:

(1) if Lab(y) = out for each attacker y of x then Lab(x) = in

Suppose Lab(y) = out for each attacker of x. This means that at the end of the algorithm, it holds

that undec_pre(x) = 0 which implies that x became labelled in (either at line 14 or at line 31)

at the moment when undec_pre(x) became 0 (at either line 11 or line 28)

(2) if Lab(y) = in for some attacker y of x then Lab(x) = out

Suppose Lab(y) = in for some attacker y of x. At the end of the algorithm, it holds that

unproc_in is empty. As each in labelled argument inLab (such as y) was added to unproc_in

when it became labelled in, this implies that each in labelled argument in Lab (in particular y)

was subsequently removed from unproc_in. This removal can only have happened at line 23,

which implies (line 24 and 25) that each argument that is attacked by y (in particular x) is labelled

out.

Suppose Lab(x) = undec. From point 1 and the fact that Lab(x) ̸= in we obtain that (3) there is an

attacker y of x such that Lab(y) ̸= out. From point 2 and the fact that Lab(x) ̸= out we obtain that

(4) there is no attacker y of x such that Lab(y) = in. From point (3) and (4) it follows that

• if Lab(x) = undec then there is a y that attacks x such that Lab(y) = undec and for each y that

attacks x such that Lab(y) ̸= undec it holds that Lab(y) = out

This, together with the fact that Lab is an admissible labelling implies that Lab is a complete labelling

(Definition 5).

From the thus obtained facts that Lab is both a strongly admissible labelling and a complete labelling

it follows (Lemma 8) that Lab is the grounded labelling. □

Using the above lemmas, we now proceed to show the correctness of the algorithm.

Theorem 10. Let AF = (Ar, att) be an argumentation framework and let A be an argument in the

grounded extension of AF. Let both AF and A be given as input to Algorithm 1. Let Lab andMMLab

be the output of the algorithm. It holds that Lab is a strongly admissible labelling that labels A in and

hasMMLab as its min-max numbering.

16 M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Proof. We first observe that as A is in the grounded extension of AF, the modified algorithm of Lemma

9 would have produced the grounded labelling, which labels A in. This implies that at some moment in

Algorithm 1, line 16 or line 33 is triggered, meaning that Lab as returned by Algorithm 1 labels A in.

At the moment the return statement of line 16 or 33 is triggered, it holds that:

(1) Lab is an admissible labelling.

This follows directly from Lemma 2.

(2) MMLab is a correct min-max numbering of Lab.

To see that this is the case, we distinguish two cases:

(a) The return statement that was triggered was the one at line 16. In that case, MMLab is the

correct min-max numbering of Lab. The proof is similar to the first half of the proof of Lemma

6.

(b) The return statement that was triggered was the one at line 33. In that case, Lemma 6 tells

us that the value of MMLab at the start of the last iteration of the while loop was a correct

min-max numbering of the value of Lab at the start of the last iteration of the while loop. We

then need to show that the value of MMLab at the time of the return statement (line 33) is

still a correct min-max numbering of the value of Lab at the time of the return statement (line

33). This can be proved in a similar way as is done in the second half of the proof of Lemma

6 (instead of going until the end of the loop iteration, one goes until the moment the return

statement of line 33 is triggered).

(3) MMLab numbers each in or out labelled argument with a natural number (no∞).

To see that this is the case, we distinguish two cases:

(a) The return statement that was triggered is the one at line 16. In that case, for each in or out

labelled argument x it holds that MMLab(x) ̸= ∞. The proof is similar to the first half (the

basis) of the proof of Lemma 7.

(b) The return statement that was triggered is the one at line 33. In that case, Lemma 7 tells us

that at the start of the last iteration of the while loop, MMLab(x) ̸= ∞ for each argument x

that was labelled in or out. We need to show that this is still the case at the time of the return

statement (line 33). This can be proved in a similar was as is done in the second half of the proof

of Lemma 7 (instead of going until the end of the loop iteration, the idea is to go until the return

statement of line 33 is triggered).

□

It turns out that the algorithm runs in polynomical time (more specific, in cubic time).

Theorem 11. Let AF = (Ar, att) be an argumentation framework and let A be an argument in the

grounded extension of AF. Let both AF and A be given as input to Algorithm 1. Let Lab andMMLab

be the output of the algorithm. It holds that Algorithm 1 computes Lab andMMLab in O(n3) time.

Proof. Let n be the number of arguments in AF (that is, n = |Ar|). The for loop (lines 9-18) can have at

most n iterations. The while loop (lines 21-37) can also have at most n iterations. This is because each

iteration of the while loop removes an argument from unproc_in, which can be done n times at most,

given that no argument can be added to unproc_in more than once (this follows from line 31 and line

27). For each iteration of the while loop, the outer for loop (lines 24-36) will run at most n times. Also,

M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

for each iteration of the outer for loop, the inner for loop (lines 27-35) will run at most n times. This

means that the total number of instructions executed by the while loop is of the order n3 at most. This,

combined with the earlier observed fact that the for loop of lines 9-18 runs at most n times brings the

total complexity of Algorithm 1 to O(n + n3) = O(n3). □

3.2. Algorithm 2

The basic idea of Algorithm 2 is to prune the part of the strongly admissible labelling that is not

needed, by identifying the part that actually is needed. This is done in a top-down way, starting by

including the main argument (which is labelled in), then including all its attackers (which are labelled

out), for each of which a minimally numbered in labelled attacker is included, etc. The idea is to keep

doing this until reaching the (in labelled) arguments that have no attackers. Each argument that has

not been included by this process is unnecessary for the strongly admissible labelling and can be made

undec, resulting in a labelling that is smaller or equal to the strongly admissible labelling one started

with.

To see how the algorithm works, consider again the argumentation framework of Figure 1. Let C be

the main argument. Suppose the input labelling LabI is ({A,C,D}, {B}, {E, F,G,H}) and its associated

input labelling numbering MMLabO is {(A : 1), (B : 2), (C : 3), (D : 1)}.4 At the start of the first

iteration of the while loop, it holds that LabO = ({C}, ∅, {A, B,D, E, F,G,H}),MMLabO = {(C : 1)}
and unproc_in = [C]. The first iteration of the while loop then removes C from unproc_in (line

14), labels its attacker B out (line 16), numbers B with 2 (line 17), adds A to unproc_in (line 20),

labels A in (line 21) and numbers A with 1 (line 22). The second iteration of the while loop then removes

A from unproc_in (line 14). However, as A does not have any attackers, the for loop (lines 15-24) is

skipped. As unproc_in is now empty, the while loop is finished and the algorithm terminates, with

LabO = ({A,C}, {B}, {D, E, F,G,H}) andMMLabO = {(A : 1), (B : 2), (C : 3)} being its results.

We now proceed to prove some of the formal properties of the algorithm. The first property to be

proved is termination.

Theorem 12. Let AF = (Ar, att) be an argumentation framework, A be an argument in the grounded

extension of AF, LabI be a strongly admissible labelling where A is labelled in and MMLabI be the

associated min-max numbering. Let AF, A, LabI and MMLabI be given as input to Algorithm 2. It

holds that the algorithm terminates.

Proof. At the while loop of lines 12-25, we observe that only a finite number of arguments can be

added to unproc_in. This is because there are only a finite number of arguments in the argumentation

framework, and because no argument can be added to unproc_in more than once. The latter can be

seen as follows. Following line 18, only arguments that are not already labelled in by LabO can be

added to unproc_in. Also, if an argument is labelled in by LabO, it will stay labelled in by LabO

as there is nothing in the algorithm that will change it. Following line 14, at each iteration of the while

loop, an argument is removed from unproc_in. From the fact that only a finite number of arguments

can be added to unproc_in, it directly follows that only a finite number of arguments can be removed

from unproc_in. Hence, the while loop can run only a finite number of times before unproc_in is

empty. Hence, Algorithm 2 terminates. □

4The reader may have noticed that this was the output of Algorithm 1 for the example that was given in Section 3.1.

18 M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Algorithm 2 Prune a strongly admissible labelling that labels A in and its associated min-max number-

ing.

Input: An argumentation framework AF = (Ar, att),
an argument A ∈ Ar that is in the grounded extension of AF, A strongly admissible labelling LabI

where A ∈ in(LabI), the associated min-max numberingMMLabI .

Output: A strongly admissible labelling LabO ⊑ LabI where A ∈ in(LabO),
the associated min-max numberingMMLabO.

1: // We start with the type definitions

2: LabO : Ar → {in,out,undec}
3: MMLabO : in(LabO) ∪ out(LabO)→ N ∪ {∞}
4: unproc_in : [X1, ...Xn] (Xi ∈ Ar for each 1 ⩽ i ⩽ n) // list of arguments

5: // Initialize LabO and include the main argument

6: LabO ← (∅, ∅,Ar) // LabO becomes the all-undec labelling

7: unproc_in← [A]
8: LabO(A)← in

9: MMLabO(A)←MMLabI(A)
10:

11: // Next, process the other arguments in a top-down way

12: while unproc_in is not empty do

13: let X be the argument at the front of unproc_in

14: remove X from unproc_in

15: for each attacker Y of X do

16: LabO(Y)← out

17: MMLabO(Y)←MMLabI(Y)
18: if there is no minimal (w.r.t MMLabI) in labelled (w.r.t LabI) attacker of Y that is also

labelled in by LabO then

19: Let Z be a minimal (w.r.tMMLabI) in labelled (w.r.t LabI) attacker of Y

20: Add Z to the rear of unproc_in

21: LabO(Z)← in

22: MMLabO(Z)←MMLabI(Z)
23: end if

24: end for

25: end while

Next, we prove that the labelling that is yielded by the algorithm is smaller or equal to the labelling

the algorithm started with.

Theorem 13. Let AF = (Ar, att) be an argumentation framework, A be an argument in the grounded

extension of AF, LabI be a strongly admissible labelling where A is labelled in andMMLabI be the

associated min-max numbering. Let AF, A, LabI and MMLabI be given as input to Algorithm 2. Let

LabO andMMLabO be the output of Algorithm 2. It holds that LabO ⊑ LabI

Proof. In order to prove that LabO ⊑ LabI , we must show:

M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(1) in(LabO) ⊆ in(LabI)
Let x be an arbitrary argument that is labelled in by LabO. We distinguish two cases:

• x became labelled in at line 8. Therefore, it follows x is main the argument (with x = A).

Therefore, A is also labelled in by LabI . That is, x is also labelled in by LabI

• x became labelled in at line 21. According to line 19, x is a minimal in labelled attacker of

some out labelled argument y w.r.t LabI . Therefore, x is also labelled in within LabI .

(2) out(LabO) ⊆ out(LabI)
Let y be an arbitrary out labelled argument within LabO. It follows that y must have been labelled

out at line 16 (so y = Y). From line 15, it follows that Y attacks X, which was removed from

unproc_in at line 14. This means that X at some point was added to unproc_in, which could

only have happened at line 7 or line 20. In either case, it holds that LabO(X) = in (line 8 or 21,

respectively). From point 1 above, we infer that LabI(X) = in. As LabI is an admissible labelling,

it follows that each attacker of X (such as Y) is labelled out by LabI . As y = Y it directly follows

that y is labelled out by LabI .

□

Next, we prove that the output of the algorithm is at least admissible (the fact that it is also strongly

admissible is proved further on).

Theorem 14. Let AF = (Ar, att) be an argumentation framework, A be an argument in the grounded

extension of AF, LabI be a strongly admissible labelling where A is labelled in andMMLabI be the

associated min-max numbering. Let AF, A, LabI and MMLabI be given as input to Algorithm 2. Let

LabO and MMLabO be the output of Algorithm 2. It holds that LabO is an admissible labelling that

labels A in.

Proof. The fact that LabO labels A in follows from line 8. In order to prove that LabO is an admissible

labelling, we must show that it satisfies the following two properties (Definition 5):

(1) if LabO(x) = in, then for each y that attacks x it holds that LabO(y) = out

Let x be an arbitrary in labelled argument within LabO. This means that x became in at line 8 or

line 21. In either case, x has been added to unproc_in (at line 7 or line 20, respectively). Once

the algorithm is terminated, unproc_in has to be empty. This means that at some point, x must

have been removed from unproc_in. This can only have happened at line 14, which implies that

(lines 15 and 16) each attacker y of x is labelled out by LabO.

(2) if LabO(x) = out, then there exists a y that attacks x such that LabO(y) = in

Let x be an arbitrary out labelled argument within LabO. It follows that x has been labelled out

at line 16 (x = Y). According to Theorem 13, Y is also labelled out by LabI . Since LabI is an

admissible labelling of AF, at least one of Y’s attackers is labelled in by LabI . Following lines

18-21, a minimal (w.r.tMMLabI) in labelled attacker of Y (w.r.t LabI), y has been labelled in

by LabO. That is, there exists a y that attacks x such that LabO(y) = in.

□

Next, we prove that the algorithm does not change the min-max values of the arguments it labels in

or out.

20 M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Lemma 15. Let AF = (Ar, att) be an argumentation framework, A be an argument in the grounded

extension of AF, LabI be a strongly admissible labelling where A is labelled in andMMLabI be the

associated min-max numbering. Let AF, A, LabI and MMLabI be given as input to Algorithm 2. Let

LabO andMMLabO be the output of Algorithm 2. It holds that for each argument x that is labelled in

or out by LabO,MMLabO(x) =MMLabI(x).

Proof. This follows from Theorem 13 and lines 9, 17 and 22 of Algorithm 2. □

Next, we prove that the output numbering is actually the correct min-max numbering of the output

labelling.

Theorem 16. Let AF = (Ar, att) be an argumentation framework, A be an argument in the grounded

extension of AF, LabI be a strongly admissible labelling where A is labelled in and MMLabI be

the associated min-max numbering. Let AF, A, LabI and MMLabI be given as input to Algorithm 2.

Let LabO andMMLabO be the output of Algorithm 2. It holds thatMMLabO is the correct min-max

numbering of LabO.

Proof. Since LabO has been shown to be admissible (Theorem 14), we need to show that (Definition 8):

(1) if LabO(x) = in thenMMLabO(x) = max({MMLabO(y) | y attacks x and LabO(y) = out})+
1
Let x be an arbitrary in labelled argument within LabO. From the fact that LabO(x) = in and that

LabO ⊑ LabI (Theorem 13) it follows that LabI(x) = in. SinceMMLabI is the correct min-max

numbering of LabI ,MMLabI(x) = max({MMLabI(y) | y attacks x and LabI(y) = out}) + 1.

From the fact that MMLabO(x) = MMLabI(x) (Lemma 15) it follows that MMLabO(x) =
max({MMLabI(y) | y attacks x and LabI(y) = out})+1. As both LabI and LabO are admissible

labellings, it holds that in both labellings, all attackers of x are labelled out. It follows that {y | y

attacks x and LabI(y) = out} = {y | y attacks x and LabO(y) = out}. From Lemma 15,

it then follows that {MMLabI(y) | y attacks x and LabI(y) = out} = {MMLabO(y) | y

attacks x and LabO(y) = out}. Therefore, from the earlier observed fact that MMLabO(x) =
max({MMLabI(y) | y attacks x and LabI(y) = out}) + 1 we obtain that MMLabO(x) =
max({MMLabO(y) | y attacks x and LabO(y) = out}) + 1.

(2) ifLabO(x) = out thenMMLabO(x) = min({MMLabO(y) | y attacks x andLabO(y) = in})+1
Let x be an arbitrary out labelled argument within LabO. From the fact that LabO(x) = out

and that LabO ⊑ LabI (Theorem 13) it follows that LabI(x) = out. As MMLabI is the

correct min-max numbering of LabI it holds that MMLabI(x) = min({MMLabI(y) | y at-

tacks x and LabI(y) = in}) + 1. As MMLabO(x) = MMLabI(x) (Lemma 15), it follows

that MMLabO(x) = min({MMLabI(y) | y attacks x and LabI(y) = in}) + 1. The fact that

LabO(x) = outmeans that x must have become labelled out at line 16. From lines 18-22, it follows

that LabO will also contain a minimal (w.r.t.MMLabI) in labelled attacker (w.r.t. LabI). This im-

plies that min({MMLabI(y) | y attacks x and LabI(y) = in}) = min({MMLabO(y) | y attacks x

andLabO(y) = in}). So from the earlier obtained fact thatMMLabO(x) = min({MMLabI(y) | y
attacks x and LabI(y) = in}) + 1, it follows thatMMLabO(x) = min({MMLabO(y) | y attacks

x and LabO(y) = in}) + 1.

□

M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

We are now ready to state one of the main results of the current section: the output labelling is strongly
admissible.

Theorem 17. Let AF = (Ar, att) be an argumentation framework, A be an argument in the grounded

extension of AF, LabI be a strongly admissible labelling where A is labelled in andMMLabI be the

associated min-max numbering. Let AF, A, LabI and MMLabI be given as input to Algorithm 2. Let

LabO andMMLabO be the output of Algorithm 2. It holds that LabO is a strongly admissible labelling

of AF.

Proof. In order to show that LabO is strongly admissible, we need to show that LabO is an admissible
labelling for which the min-max numbering does not contain any∞ (Definition 4). First, we observe that
LabO is an admissible labelling of AF (Theorem 14) withMMLabO as its correct min-max numbering
(Theorem 16). AsLabI is a strongly admissible labelling of AF, its min-max numbering does not contain
∞. This, together with the fact that LabO ⊑ LabI (Theorem 13) and the fact that for each in or
out labelled argument x by LabO, x is assigned the same min-max numbering by MMLabO as by
MMLabI (Lemma 15) implies thatMMLabO does not contain any ∞. Hence, we observe that LabO

is an admissible labelling whose min-max numberingMMLabO does not contain∞. That is, LabO is a
strongly admissible labelling of AF. □

It turns out that the algorithm runs in polynomial time (more specific, in cubic time).

Theorem 18. Let AF = (Ar, att) be an argumentation framework, A be an argument in the grounded

extension of AF, LabI be a strongly admissible labelling where A is labelled in and MMLabI be the

correct min-max numbering of LabI . Let AF, A, LabI andMMLabI be given as input to Algorithm 2.

Let LabO and MMLabO be the output of Algorithm 2. It holds that Algorithm 2 computes LabO and

MMLabO in O(n)3 time.

Proof. Let n be the number of arguments in AF (that is, n = |Ar|). The while loop (lines 12-25) can
have at most n iterations. This is because each iteration of the while loop removes an argument from
unproc_in, which can be done n times at most, given that no argument can be added to unproc_in
more than once (this follows from lines 18-21). For each iteration of the while loop, the for loop (lines
15-24) will run at most n times. In addition, for each iteration of the for loop, a sequential search (lines
18-19) will run at most n times. This means that the total number of instructions executed by the while
loop is of the order n3 at most. Therefore, Algorithm 2 computes LabO in O(n)3 time. □

3.3. Algorithm 3

The idea of Algorithm 3 is to combine Algorithm 1 and Algorithm 2, by running them in sequence.
That is, the output of Algorithm 1 is used as input for Algorithm 2.

As an example, consider again the argumentation framework of Figure 1. Let C be the main argu-
ment. Running Algorithm 1 yields a labelling ({A,C,D}, {B}, {E, F,H,H}) with associated numbering
{(A : 1), (B : 2), (C : 3), (D : 1)} (as explained in Section 3.1). Feeding this labelling and numbering
into Algorithm 2 then yields an output labelling ({A,C}, {B}, {D, E, F,G,H}) with associated output
numbering {(A : 1), (B : 2), (C : 3)} (as explained in Section 3.2).

Given the properties of Algorithm 1 and Algorithm 2, we can prove that Algorithm 3 terminates,
correctly computes a strongly admissible labelling and its associated min-max numbering, and runs in
polynomial time (more specific, in cubic time).

22 M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Algorithm 3 Construct a relatively small strongly admissible labelling that labels A in and its associated

min-max numbering.

Input: An argumentation framework AF = (Ar, att),
an argument A ∈ Ar that is in the grounded extension of AF.

Output: A strongly admissible labelling Lab where A ∈ in(Lab),
the associated min-max numberingMMLab.

1: run Algorithm 1

2: LabI ← Lab

3: MMLabI ←MMLab

4: run Algorithm 2

5: Lab← LabO

6: MMLab ←MMLabO

Theorem 19. Let AF = (Ar, att) be an argumentation framework and A be an argument in the grounded

extension of AF. Let both AF and A be given as input to Algorithm 3. It holds that the algorithm termi-

nates.

Proof. This follows from Theorem 1 and Theorem 12. □

Theorem 20. Let AF = (Ar, att) be an argumentation framework and let A be an argument in the

grounded extension of AF. Let both AF and A be given as input to Algorithm 3. Let Lab andMMLab

be the output of the algorithm. It holds that Lab is a strongly admissible labelling that labels A in and

hasMMLab as its min-max numbering.

Proof. This follows from Theorem 10, Theorem 14, Theorem 16 and Theorem 17. □

Theorem 21. Let AF = (Ar, att) be an argumentation framework and let A be an argument in the

grounded extension of AF. Let both AF and A be given as input to Algorithm 3. Let Lab andMMLab

be the output of the algorithm. It holds that Algorithm 3 computes Lab andMMLab in O(n3) time.

Proof. This follows from Theorem 11 and Theorem 18. □

Theorem 22. Let AF = (Ar, att) be an argumentation framework, A be an argument in the grounded

extension of AF. Let AF and A be given as input to Algorithm 1 and Algorithm 3. Let LabI andMMLabI

be the output of Algorithm 1 and let Lab3 and MMLab3 be the output of Algorithm 3. It holds that

Lab3 ⊑ LabI .

Proof. This follows from Theorem 13, together with Theorem 10 and the way Algorithm 3 is defined
(by successively applying Algorithm 1 and Algorithm 2). □

4. Empirical Results

Now that the correctness of our algorithms has been proved and their computational complexity has
been stated, the next step is to empirically evaluate their performance. For this, we compare both their
runtime and output with that of other computational approaches.

M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

4.1. Minimality

Although Algorithm 3 aims to find a relatively small strongly admissible labelling, it is not guaranteed

to find an absolute smallest. This is because the problem of finding the absolute smallest admissible

labelling is coNP-complete, whereas Algorithm 3 is polynomial (Theorem 21). In essence, we have given

up absolute minimality in order to achieve tractability. The question, therefore, is how much we had to

compromise on minimality. That is, how does the outcome of Algorithm 3 compare with what would

have been an absolute minimal outcome? In order to make the comparison, we apply the ASPARTIX

ASP encodings of [12] to determine the absolute minimal strongly admissible labelling.

Apart from comparing the strongly admissible labelling yielded by our algorithm with an absolute

minimal strongly admissible labelling, we also compare it with the absolute maximal strongly admis-

sible labelling. That is, we compare it with the grounded labelling. The reason for doing so is that the

grounded semantics algorithms (e.g. [13, 14]) are to the best of our knowledge currently the only poly-

nomial algorithms for computing a strongly admissible labelling (in particular, for the maximal strongly

admissible labelling) that have been stated in the literature. As Algorithm 3 is also polynomial (Theorem

21) this raises the question of how much improvement is made regarding minimality.

For queries, we considered the argumentation frameworks in the benchmark sets of ICCMA’17, IC-

CMA’19 and ICCMA’21.5 For each of the argumentation frameworks we generated a query argument

that is in the grounded extension (provided the grounded extension is not empty). We used the queried

argument when one was provided by the competition (for instance, when considering the benchmark

examples of the Admbuster class, we took ’a’ to be the queried argument as this was suggested by the

authors of this class). After considering 994 argumentation frameworks, we found that 277 argumenta-

tion frameworks yielded a grounded extension that is not empty (meaning they could used for current

purposes).

We conducted our experiments on a MacBook Pro 2020 with 8GB of memory and an Intel Core i5

processor. To run the ASPARTIX system we used clingo v5.6.2. We set a timeout limit of 1000 seconds

and a memory limit of 8GB per query.

For each of the selected benchmark examples, we have assessed the following:

(1) the size of the grounded labelling (determined using the modified version of Algorithm 1 as de-

scribed in Lemma 9)

(2) the size of the strongly admissible labelling yielded by Algorithm 1

(3) the size of the strongly admissible labelling yielded by Algorithm 3

(4) the size of the absolute minimal strongly admissible labelling (yielded by the approach of [12])

We start our analysis with comparing the output of Algorithm 1 and Algorithm 3 with the grounded

labelling regarding the size of the respective labellings. We found that the size of the strongly admissible

labelling yielded by Algorithm 1 tends to be smaller than the size of the grounded labelling. More

specifically, the strongly admissible labelling yielded by Algorithm 1 is smaller than the size of the

grounded labelling in 63% of the 277 examples we tested for. In the remaining 37% of the examples,

their sizes are the same.

Figure 2 provides a more detailed overview of our findings, in the form of a bar graph. The rightmost

bar represents the 37% of the cases where the output of Algorithm 1 has the same size as the grounded

labelling (that is, where the size of the output of Algorithm 1 is 100% of the size of the grounded

5See http://argumentationcompetition.org/

24 M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

1% 1%

4% 4%

8%

9% 9% 9%

10%

7%

37%

0%

5%

10%

15%

20%

25%

30%

35%

40%

0%-9% 10%-19% 20%-29% 30%-39% 40%-49% 50%-59% 60%-69% 70%-79% 80%-89% 90%-99% 100%

%
 o

f
ex

am
p

le
s

Algorithm 1 Output size (as % of grounded labelling size)

Fig. 2. The size of output of Algorithm 1 (as a percentage of the grounded labelling).

labelling). The bars on the left of this are for the cases where the size of the output of Algorithm 1 is less
than the size of the grounded labelling. For instance, it was found that in 10% of the examples, the size
of output of Algorithm 1 is 80% to 89% of the size of the grounded labelling. On average, we found that
the size of the output of Algorithm 1 is 76% of the size of the grounded labelling.

43%

22%

6%

8%

4% 4%

1%
0% 0% 0%

12%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0%-9% 10%-19% 20%-29% 30%-39% 40%-49% 50%-59% 60%-69% 70%-79% 80%-89% 90%-99% 100%

%
 o

f
ex

am
p

le
s

Algorithm 3 Output size (as % of grounded labelling size)

Fig. 3. The size of output of Algorithm 3 (as a percentage of the grounded labelling).

As for Algorithm 3, we found an even bigger improvement in the size of it’s output labelling compared
to the grounded labelling. More specifically, the size of the strongly admissible labelling yielded by

M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Algorithm 3 is smaller than the grounded labelling in 88% of the 277 examples we tested for. Figure 3

provides a more detailed overview of our findings in a similar way as we previously did for Algorithm

1. On average, we found that the output of Algorithm 3 has a size that is 25% of the size of the grounded

labelling.

Fig. 4. The size of output of Algorithm 1 compared to the output Algorithm 3 (as a percentage of the size of the grounded
labelling).

Apart from comparing Algorithm 1 and Algorithm 3 with the grounded labelling, it can also be in-

sightful to compare the two algorithms with each other. In Figure 4, each dot represents one of the 277

examples.6 The horizontal axis represents the size of the output of Algorithm 1, as a percentage of the

size of the grounded labelling. The vertical axis represents the size of the output of Algorithm 3 as a

percentage of the size of the grounded labelling. For easy reference, we have included a dashed line

indicating the situation where the output of Algorithm 1 has the same size as the output of Algorithm

3. Any dots below the dashed line represent the cases where Algorithm 3 outperforms Algorithm 1, in

that it yields a smaller strongly admissible labelling. Any dots above the dashed line represents the cases

where Algorithm 3 under performs Algorithm 1 in that it yields a bigger strongly admissible labelling.

Unsurprisingly, there are no such cases as Theorem 22 states that the output of Algorithm 3 cannot be

bigger than the output of Algorithm 1. We found that for 95% of the examples, Algorithm 3 produces

a smaller labelling than Algorithm 1. Moreover, we found that on average, the output of Algorithm 3 is

32% smaller than output of Algorithm 1.

6Please be aware that some of the dots overlap each other.

26 M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Fig. 5. The size of output of Algorithm 3 compared to a smallest strongly admissible labelling (as a percentage of the size of
the grounded labelling).

The next question is how the output of our best performing algorithm (Algorithm 3) compares with
what would have been the ideal output. That is, we compare the size of the output of Algorithm 3
with the size of a minimal strongly admissible labelling for the main argument, as computed using the
ASPARTIX encodings of [12]. The results are shown in Figure 5.

We found that in 91% of the 277 examples, the output of Algorithm 3 is of the same size as the smallest
strongly admissible labelling for the output of the main argument. For the other 9% of the examples, the
output of Algorithm 3 has a bigger size. On average, we found that the output of Algorithm 3 is 3%
bigger than the smallest strongly admissible labelling for the main argument. Figure 6, provides a more
detailed overview of how much bigger the output of Algorithm 3 is compared to the smallest strongly
admissible labelling for the main argument.

4.2. Runtime

The next thing to study is how the runtime of our algorithms compares with the runtime of some of the
existing computational approaches. In particular, we compare the runtime of Algorithm 1 and Algorithm
3 with the runtime of the ASPARTIX-based approach of [12].

We first compare the runtime of Algorithm 3 to the runtime of the modified version of Algorithm 3
of [14] for computing the grounded labelling. It turns out that the runtimes of these algorithms are very
similar. On average, Algorithm 3 of [14] took 0.02 seconds (3%) more than Algorithm 3 to solve the test
instances. These runtime results of Algorithm 3 and Algorithm 3 of [14] are shown in Figure 7.

The next question is how does the runtime of computing Algorithm 3 compare to the runtime of the
ASPARTIX encoding for minimal strongly admissibility. It was observed that the runtime of ASPARTIX

M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

91%

8%

1%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100% 101%-151% 151%-171%

%
 o

f
ex

am
p

le
s

Algorithm 3 output size (as % of smallest strongly admissible labelling size)

Fig. 6. The size of output of Algorithm 3 compared to a smallest strongly admissible labelling.

0

10

20

30

40

50

60

0 10 20 30 40 50 60

G
ro

u
n

d
ed

 L
ab

el
li

n
g

 (
ru

n
ti

m
e

in
 s

ec
o

n
d

s)

Algorithm 3 (runtime in seconds)

Fig. 7. The runtime of Algorithm 3 compared to the runtime of computing the grounded labelling using Algorithm 3 of [14].

28 M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Fig. 8. The runtime of computing a smallest admissible labelling using the ASPARTIX encodings compared with the runtime
of Algorithm 3.

encoding is significantly longer than the runtime of Algorithm 3. A detailed overview of the difference

in runtimes of Algorithm 3 and the ASPARTIX encoding on minimal strong admissibility is shown in

Figure 8. On average, the ASPARTIX framework took 12.5 seconds (907%) more than Algorithm 3 to

solve the test instances.

5. Discussion

In the current paper, we provided two algorithms (Algorithm 1 and Algorithm 3) for computing a

relatively small strongly admissible labelling for an argument that is in the grounded extension. We

proved that both algorithms are correct in the sense that each of them returns a strongly admissible

labelling (with associated min-max numbering) that labels the main argument in (Theorem 10 and 20).

Moreover, each algorithm runs in polynomial (cubic) time (Theorem 11 and Theorem 21). It was also

shown that the strongly admissible labelling yielded by Algorithm 3 is smaller than or equal to the

strongly admissible labelling yielded by Algorithm 1 (Theorem 13).

The next question we examined is how small the output of Algorithm 1 and Algorithm 3 is compared to

the smallest strongly admissible for the main argument. Unfortunately, previous findings make it difficult

to provide formal theoretical results on this. This is because the c-approximation problem for strong

admissibility is NP-hard, meaning that a polynomial algorithm (such as Algorithm 1 and Algorithm 3)

cannot provide any guarantees of yielding a result within a fixed parameter c from the size of the absolute

smallest strongly admissible labelling for the main argument.

M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility 29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Hence, instead of developing theoretical results, we decided to approach the issue of minimality in
an empirical way, using a number of experiments. These experiments were based on the benchmark
examples that were submitted to ICCMA’17, ICCMA’19 and ICCMA’21. We compared the output of
Algorithm 1 and Algorithm 3 with both the biggest and the smallest strongly admissible set for the main
argument (the biggest was computed using Algorithm 3 described in [14] and the smallest was computed
using the ASPARTIX based approach on computing minimal strong admissibility in [12]). Overall, we
found that Algorithm 3 yields results that are only marginally bigger than the smallest strongly admis-
sible labelling, with a run-time that is a fraction of the time that would be required to find this smallest
strongly admissible labelling. The outputs of both algorithms return a strongly admissible labelling that
is significantly smaller than the biggest strongly admissible labelling (the grounded labelling), with the
output of Algorithm 3 on average being only 25% of the size of the biggest strongly admissible labelling.

Although our Algorithm 3 tends to yield good results in most cases (obtaining an absolute small-
est strongly admissible labelling in 91% of the examples we tested for) there are some argumentation
frameworks where it will not perform well. An example of such an argumentation framework is shown
in Figure 9.

B

E FC D

A

G

H

I J

K L

M N

Fig. 9. An example of an argumentation framework where Algorithm 3 yields a strongly admissible labelling that is not minimal.

For the argumentation framework of Figure 9, Algorithm 3 will yield the strongly admissible la-
belling ({A,H, J, L,N}, {B, I,K,M}, {C,D, E, F,G}) with associated min-max numbering {(A : 5), (B :
4), (H : 3), (I : 2), (K : 2), (M : 2), (J : 1), (L : 1), (N : 1)}. However, this labelling is not minimal, as
the minimal strongly admissible labelling is ({A,C, E,G}, {B,D, F}, {H, I, J,K, L,M,N}) with associ-
ated min-max numbering {(A : 7), (B : 6), (C : 5), (D : 4), (E : 3), (F : 2), (G : 1)}.

To understand how such a suboptimal result was produced, it is important to realise that Algoritm
2, when chosing an in-labelled attacker of an out-labelled argument (e.g. Algorithm 2 arriving at
argument B and having to choose between C and H) makes this choice based on which of those attackers
have the smallest min-max number (line 19 of Algorithm 2). In the case of the argumentation framework
of Figure 9, Algorithm 2 will choose H instead of C, even though C would have been a better choice.
This is because even though the branch starting with C is longer, it does not have the same fan-out as the
branch starting with H, resulting in fewer arguments that need to be labelled in and out. In general,
the heuristic of choosing the attacker with the smallest min-max number can be suboptimal,7 especially

7A small performance improvement could perhaps be made by altering line 19 of Algorithm 2. The current algorithm chooses
argument Z in a non-deterministic way if there is more than one in-labelled attacker with minimal min-max number. This could
be changed to select the attacker with the lowest fan-out among the attackers with minimal min-max number. This would not
help for the argumentation framework of Figure 9. However, it would help in case arguments F and G were removed from the
argumentation framework. This would result in C and H having equal min-max numbers. The modified algorithm would then
choose argument C over argument H as C has the lower fan-out (number of attackers).

30 M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

for argumentation frameworks where shorter branches tend to have a higher fan-out. It is likely to still

perform quite reasonable when the fan-out is spread more or less equally among branches of different

length. The fact that our Algorithm 3 manages to yield an absolute smallest strongly admissible labelling

in 91% of cases, based on the ICCMA’17, ICCMA’19 and ICCMA’21 benchmark sets, indicates that the

kind of argumentation frameworks where our algorithm performs poorly are perhaps not very common.

Algorithm 1 requires that the main argument (argument A) is in the grounded extension. At first

sight, this would seem to require some additional computation before our algorithms are run, in order to

determine whether this is indeed the case. However, it would not be difficult to modify Algorithm 1 to

provide an answer to this as well.8 This could be done by not only returning a labelling and its associated

min-max numbering, but by also returning a flag that indicates whether argument A is actually part of

the grounded extension. This flag would be set to true if Lab andMMLab are returned at line 16 or line

33. The idea is to return false if the algorithm reaches line 39 (instead of printing an error message). In

the latter case, one could additionally return Lab andMMLab, which would be the grounded labelling

and its associated min-max numbering (the proof of this would be similar to that of Lemma 9). This

grounded labelling and associated min-max numbering would provide evidence that argument A is not

part of the grounded extension. It can easily be verified that Theorem 1 as well as Lemma 2, 3, 4, 5,

6, 7 still hold in such a case, as none of these depend on argument A being in the grounded extension.

Moreover, the complexity of the algorithm would remain cubic.

Algorithm 2 could to some extent be optimised by adding an extra condition to line 15, so that the

for-loop only runs for attackers that are not yet labelled out.9 Without such a condition, lines 16 and

17 could run unnecessary, as the two assignments may already have been done previously. However, in

such a case the if-statement of line 18 will never have its condition fulfilled, hence putting a limit in the

advantages of implementing the extra condition in line 15.

The research of the current paper fits into our long-term research agenda of using argumentation theory

to provide explainable formal inference. In our view, it is not enough for a knowledge-based system to

simply provide an answer regarding what to do or what to believe. There should also be a way for this

answer to be explained. One way of doing so is by means of (formal) discussion. Here, the idea is that

the knowledge-based system should provide the argument that is at the basis of its advice. The user

is then allowed to raise objections (counterarguments) which the system then replies to (using counter-

counter-arguments), etc. In general, we would like such a discussion to be (1) sound and complete for the

underlying argumentation semantics, (2) not be unnecessarily long, and (3) be close enough to human

discussion to be perceived as natural and convincing

As for point (1), sound and complete discussion games have been identified for grounded, preferred,

stable and ideal semantics [5]. As for point (2), this is what we studied in the current paper, as well as in

[4, 7]. As for point (3), this is something that we are aiming to report on in future work.

For future research, it is possible to conduct a similar sort of analysis (as in this paper) on minimal

admissible labellings. It was reported obtaining an absolute minimal admissible labelling for a main

argument is also of coNP-complete complexity [4, 7] therefore, it would be interesting to look into

developing an algorithm that generates a small admissible labelling in polynomial time complexity.

Similarly, it would also be interesting to look at the complexity and empirical results on generating

minimal ideal sets.

8We thank one of the anonymous reviewers for pointing this out.
9We thank one of the anonymous reviewers for pointing this out

M. Caminada and S. Harikrishnan / Tractable Algorithms for Strong Admissibility 31

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

References

[1] P. Baroni and M. Giacomin. On principle-based evaluation of extension-based argumentation semantics. Artificial Intel-
ligence, 171(10-15):675–700, 2007.

[2] M.W.A. Caminada. On the issue of reinstatement in argumentation. In M. Fischer, W. van der Hoek, B. Konev, and
A. Lisitsa, editors, Logics in Artificial Intelligence; 10th European Conference, JELIA 2006, pages 111–123. Springer,
2006. LNAI 4160.

[3] M.W.A. Caminada. On the issue of reinstatement in argumentation. Technical Report UU-CS-2006-023, Institute of
Information and Computing Sciences, Utrecht University, 2006.

[4] M.W.A. Caminada. Strong admissibility revisited. In S. Parsons, N. Oren, C. Reed, and F. Cerutti, editors, Computational
Models of Argument; Proceedings of COMMA 2014, pages 197–208. IOS Press, 2014.

[5] M.W.A. Caminada. A discussion game for grounded semantics. In E. Black, S. Modgil, and N. Oren, editors, Theory and
Applications of Formal Argumentation (proceedings TAFA 2015), pages 59–73. Springer, 2015.

[6] M.W.A. Caminada, P. Baroni, and M. Giacomin. Abstract argumentation frameworks and their semantics. In Handbook
of Formal Argumentation, volume 1. College Publications, 2018.

[7] M.W.A. Caminada and P.E. Dunne. Strong admissibility revised: theory and applications. Argument & Computation,
10:277–300, 2019.

[8] M.W.A. Caminada and P.E. Dunne. Minimal strong admissibility: a complexity analysis. In H. Prakken, S. Bistarelli,
F. Santini, and C. Taticchi, editors, Proceedings of COMMA 2020, pages 135–146. IOS Press, 2020.

[9] M.W.A. Caminada and D.M. Gabbay. A logical account of formal argumentation. Studia Logica, 93(2-3):109–145, 2009.
Special issue: new ideas in argumentation theory.

[10] M.W.A. Caminada and G. Pigozzi. On judgment aggregation in abstract argumentation. Autonomous Agents and Multi-
Agent Systems, 22(1):64–102, 2011.

[11] P.M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming
and n-person games. Artificial Intelligence, 77:321–357, 1995.

[12] W. Dvořák and J. Wallner. Computing strongly admissible sets. In H. Prakken, S. Bistarelli, F. Santini, and C. Taticchi,
editors, Proceedings of COMMA 2020, pages 179–190. IOS Press, 2020.

[13] S. Modgil and M.W.A. Caminada. Proof theories and algorithms for abstract argumentation frameworks. In I. Rahwan
and G.R. Simari, editors, Argumentation in Artificial Intelligence, pages 105–129. Springer, 2009.

[14] S. Nofal, K. Atkinson, and P.E. Dunne. Computing grounded extensions of abstract argumentation frameworks. The
Computer Journal, 64:54–63, 2021.

	Introduction
	Preliminaries
	The Algorithms
	Algorithm 1
	Algorithm 2
	Algorithm 3

	Empirical Results
	Minimality
	Runtime

	Discussion
	References

