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The distribution of the time elapsed before a random variable reaches a threshold value for the first

time, called the first passage time (FPT) distribution, is a fundamental characteristic of stochastic

processes. Here, by solving the standard macroscopic diffusion equation, we derive analytical

expressions for the FPT distribution of a diffusing particle hitting a spherical object in two

dimensions (2D) and three dimensions (3D) in the course of unrestricted diffusion in open space. In

addition, we calculate, analytically, the angular dependence of the FPT, known as the hit

distribution. The analytical results are also compared to simulations of the motions of a random

walker on a discrete lattice. This topic could be of wide pedagogical interest because the FPT is

important not only in physics but also in chemistry, biology, medicine, agriculture, engineering,

and finance. Additionally, the central equations often appear in physics and engineering with only

trivial variations, making the solution techniques widely applicable. # 2024 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://

creativecommons.org/licenses/by/4.0/).
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I. INTRODUCTION

First passage processes, which are concerned with a
threshold being reached for the first time by a stochastic vari-
able, are ubiquitous.1 The most well known example is a dif-
fusing particle reaching a threshold position, but other
examples include the formation of astronomical objects,2

chemical reactions,3 biological processes like neuron firing
or moth mating,4–7 rupture,8 timing precision in intracellular
events,9 random search,10–12 disease spreading,13 radiother-
apy planning,14 economics and finance,15,16 psychology17 as
well as reliability theory.18 A fundamental characteristic of
such processes is the distribution of the time t elapsed before
the threshold is reached for the first time, the so-called first
passage (FPT) distribution wðtÞ. Analytical expressions are
readily available in textbooks for wðtÞ in one-dimensional
(1D) diffusion processes1,2 and widely used.19,20 However,
the counterparts in higher dimensions, i.e., two-dimensional
(2D) and three-dimensional (3D), seem not readily available
in the physics literature. Arguably, these higher-dimensional
counterparts could be more useful, as the real world is rarely
1D, even under simplifications. Recent years have seen a
growing interest in these topics and analytical expressions
for wðtÞ, and its angular decomposition in higher dimensions
is, therefore, in high demand. The calculation of wðtÞ in
higher dimensions is not extremely difficult and can be per-
formed using techniques well known in heat conduction
theory.21,22 However, despite an extensive literature search,
we have not found a publication containing systematic and
detailed accounts of the results and derivation. We present

them here in order to make them more accessible to all who
need them.

Our main results include the analytical expressions for the
FPT and its angular dependence (i.e., the hitting location dis-
tribution) in 2D and 3D diffusion processes in open space.
The geometry is shown in Fig. 1. The target considered here
is a circle in the 2D case or a sphere in the 3D case. Such
processes are typical in, for example, intracellular matter
transport,6,23,24 e.g., the transport of proteins between the
cell cytoplasm and the interior of nucleus, and the collection
of photons arriving from outer space or the absorption of
photons by the Chlorophyll antenna of the photosynthetic
apparatus.25

The remainder of this paper is organized as follows. In
Sec. II, the standard diffusion equation is solved to establish
wðtÞ for diffusion processes in 2D and 3D. We also revisit
the result for 1D. Our derivations follow a similar method to
a closely related problem on heat conduction in a circular
cylinder.22 In Sec. III, we derive the angular dependence of
the FPT distribution and, therefore, obtain the hit distribu-
tion. The paper is concluded in Sec. IV. Two appendices are
provided. In Appendix A, the inverse Laplace transform
used for numerical calculations is discussed in detail to add
to the pedagogical value of the paper. In Appendix B, simu-
lations are conducted of random walkers moving on simple
lattices in 2D and 3D. The analytical results are shown to be
well reproduced by the simulations in the limit where the
discrete nature of the lattices becomes irrelevant, thereby
verifying the analytical results.
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II. FIRST PASSAGE TIME DISTRIBUTION

The quantity that serves as a starting point for us is the
probability density of a diffusing particle to be found at posi-
tion x from its initial position x0 in a time t, which we denote
by Gðx; x0; tÞ. For t! 0, the particle has not moved, mean-
ing that limt!0 Gðx; x0; tÞ ¼ ddðx� x0Þ, where d is the spa-
tial dimension and dd denotes the d-dimensional Dirac
function. The subsequent evolution of Gðx; x0; tÞ is governed
by the diffusion equation,

@tGðx; x0; tÞ þ @x � Jðx; x0; tÞ ¼ 0; (1)

J ¼ �D@xGðx; x0; tÞ; (2)

where D is the diffusion constant of the particle and J is the
probability flux density. Equation (1) is also called the equa-
tion of continuity, which expresses the conservation of total
probability, while Eq. (2) is known as Fick’s law.

We shall find Gðx; x0; tÞ by solving the aforementioned
diffusion equation. It is convenient to perform a Laplace
transform, defined as ~f ðsÞ ¼

Ð1
0

dt f ðtÞe�st for a general
function f(t), to the diffusion equation. After the transform,
Eq. (1) becomes1

s� D@2
x

� �
~Gðx; x0; sÞ ¼ dd x� x0ð Þ: (3)

Here, ~G is the Laplace transform of G. Note that the right-
hand side of this equation arises as the initial value of G,
which appears as a point source term in Eq. (3).

We aim to find the FPT distribution wðr; tÞ, whose
Laplace transform is, as we denote, ~wðr; sÞ. Physically,
wðr; tÞdt gives the probability that the particle initially
reaches a target centered a distance r away from its starting
position x0 during the time interval ½t; tþ dt�. As aforemen-
tioned, the target is a d-dimensional sphere of radius a< r,
as shown in Fig. 1. To get wðtÞ, one may solve Eq. (3) sub-
jected to the following boundary conditions:

~Gðx; x0; sÞ�!
jxj!1

0; (4)

~Gðx 2 @X; x0; sÞ ¼ 0; (5)

where @X denotes the surface of the target. Equation (5)
defines an absorbing boundary: any particles reaching the
surface are instantly removed so that no particles can diffuse
outward after having reached that location. Now wðr; tÞ
amounts to the total flux into the target and is given by an
integral of the flux density J over the target surface. We then
find

~wðr; sÞ ¼
ð
@X

~J � ds; ~J ¼ �D@x
~Gðx; x0; sÞ: (6)

Here, ds is the surface element (inwardly directed) of the tar-
get and ~J is the Laplace transform of J. In what follows, we
solve Eqs. (3)–(5) and obtain ~w for 2D and 3D.

Before we do this, however, it is instructive to revisit the
result for 1D. Equation (3) for d¼ 1 can be rewritten as

sD�1 � @2
x

� �
~Gðx; x0; sÞ ¼ D�1dðx� x0Þ: (7)

This is a linear ordinary differential equation with an inho-
mogeneous term on the right-hand side. The general solution
can, therefore, be written as the sum of a special solution and
a general solution to the homogeneous counterpart of the
equation. One may verify by direct substitution that

~Gðx; x0; sÞ ¼ �
1

2
ffiffiffiffiffiffi
sD
p e

ffiffiffiffiffiffi
s=D
p

jx�x0j
�

þAe
ffiffiffiffiffiffi
s=D
p

ðx0�xÞ þ Be
ffiffiffiffiffiffi
s=D
p

ðx�x0Þ
�
: (8)

Here, the first term represents the aforesaid special solution,
which describes the propagation of a particle from its initial
position in an infinite unbounded space (i.e., without the tar-
get), and the remaining terms give the general solution to the
homogeneous part of the equation, with A and B being coef-
ficients to be determined by boundary conditions. Now let us
place the center of the target, which is just a segment of
length 2a as shown in Fig. 1, at x¼ 0 and release the particle
at x ¼ x0 ¼ r > a. Then, no particles shall be found for x< a

due to the absorbing boundary. Requiring that ~G vanishes

for x!1, we find B¼ – 1. Requiring that ~G vanishes for

x¼ a gives ð1þ AÞe
ffiffiffiffiffiffi
s=D
p

ðx0�aÞ � e
ffiffiffiffiffiffi
s=D
p

ða�x0Þ ¼ 0. Hence

~Gðx; x0; sÞ ¼
e
ffiffiffiffiffiffi
s=D
p

ða�x0Þffiffiffiffiffiffiffiffi
4sD
p e

ffiffiffiffiffiffi
s=D
p

ðx�aÞ � e
ffiffiffiffiffiffi
s=D
p

ða�xÞ
� �

;

x0 > x > a: (9)

Now the flux density is

~J ¼ �D@x
~Gðx; x0; sÞ

¼ �e
ffiffiffiffiffiffi
s=D
p

ða�x0Þcosh

ffiffiffiffi
s

D

r
ðx� aÞ

 !
: (10)

Noting that the inward normal of the target surface is to the
negative x-axis, we obtain

~wðr; sÞ ¼ �~J jx¼a ¼ e
ffiffiffiffiffiffi
s=D
p

ða�x0Þ ¼ e
ffiffiffiffiffiffi
s=D
p

ða�rÞ: (11)

To get wðr; tÞ, we need to do an inverse Laplace transform,

wðr; tÞ ¼
Ð cþi1

c�i1 ðds=2piÞest ~wðr; sÞ, where c is some positive

Fig. 1. Geometry for the first passage processes. A diffusing particle or a ran-

dom walker starts at position x0, which is x0 ¼ r for 1D, ðr; 0Þ for 2D, and

ð0; 0; rÞ for 3D and disperses from there. The target is a segment of length 2a
in 1D, a circle of radius a in 2D, and a sphere of radius a in 3D. In all cases,

the target is centered at the origin. In the case of a random walker, the space-

time is discretized as usual: the space is a lattice, and time is counted in steps.
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number. This integral can be done analytically in various
ways.1 Here, we have opted to do it by means of contour
integration, since this technique is also applicable to higher
dimensions with the same contour; see Appendix A for
details. We get

wðr; tÞ ¼ r � affiffiffiffiffiffiffiffiffiffiffiffi
4pDt3
p exp �ðr � aÞ2

4Dt

� �
; (12)

which is the celebrated result for 1D. One may note that here
wðr; tÞ is just the product of the average diffusion speed
ðr � aÞ=t with the probability density Gðr; a; tÞ.

A. Results for 2D

In the 2D case, a particle is released at x0 ¼ ðr > a; 0Þ,
and the target is a circle of radius a centered about the origin,
see Fig. 1. The symmetry of the geometry suggests that
polar coordinates will be useful. We, thus, write x ¼ ðx; yÞ
¼ Rðcos h; sin hÞ, where R is the length of x and h is the
polar angle (i.e., the angle with the x-axis) lying between �p
and p. With @2

x ¼ @2
R þ ð1=RÞ@R þ ð1=R2Þ@2

h , Eq. (3) now
takes on the following form:

@2
R þ

1

R
@R þ

1

R2
@2

h � c2

� �
PðR; h; sÞ

¼ � 1

r
dðR� rÞdðhÞ; (13)

where c ¼
ffiffiffiffiffiffiffiffi
s=D

p
and PðR; h; sÞ ¼ D ~Gðx; x0; sÞ. Here, we

have also used that d2ðx� x0Þ ¼ ð1=rÞdðR� rÞdðhÞ. This
follows from the facts thatð

d2x �d2ðx�x0Þ � f ðxÞ¼
ð

dh
ð

dRR � 1
R

dðR�rÞdðhÞ � f ðxÞ;

valid for arbitrary function f ðxÞ, and that ð1=RÞdðR� rÞ
¼ ð1=rÞdðR� rÞ.

To make progress, we convert Eq. (13) into an ordinary
differential equation involving R only. To this end, we note
that dðhÞ is an even function and, hence, can be expanded as
a cosine series,

dðhÞ ¼ 1

p

X1
n¼0

1

1þ dn;0
cos ðnhÞ: (14)

Now, as dictated by the linearity of Eq. (13), PðR; h; sÞ can
also be expanded as a cosine series,

PðR; h; sÞ ¼ 1

p

X1
n¼0

PnðR; sÞ
cos ðnhÞ
1þ dn;0

; (15)

where PnðR; sÞ are the coefficients. The flux density along
the radial direction, given by ðx=RÞ � ~J ¼ �ðx=RÞ � @xP
¼ �@RP, now obtains as

JðR; h; sÞ ¼ 1

p

X1
n¼0

JnðR; sÞ
cos ðnhÞ
1þ dn;0

; (16)

where JnðR; sÞ ¼ �@RPnðR; sÞ. Integrating this over the
entire target yields

~wðr; sÞ ¼ �
ð2p

0

dh aJða; h; sÞ ¼ a@RP0ðR; sÞjR¼a: (17)

Here, the minus sign accounts for the fact that the inward
normal of the circle is oriented opposite to the radial unit
vector x=R. In Eq. (17), the integration averages out all the
contributions from higher-order harmonics. However,
the latter contains information regarding the distribution of
the hit location, which is to be discussed in Sec. III.

Substituting the expressions (14) and (15) into (13) and
equating the corresponding terms in the series, we find that
PnðR; sÞ satisfies the following ordinary differential
equation:

@2
R þ

1

R
@R �

n2

R2
� c2

� �
PnðR; sÞ ¼ �

1

r
dðR� rÞ; (18)

or, multiplying this by R2

R2@2
R þ R@R � ðn2 þ c2R2Þ

� �
PnðR; sÞ ¼ �rdðR� rÞ:

(19)

It may be pointed out that, with some trivial modifications,
this equation also describes the propagation of electromag-
netic waves and matter waves in quantum mechanics. Its
homogeneous part is known as the Bessel equation, to which
the general solutions are linear combinations of modified
Bessel functions.26 Since the inhomogeneous term vanishes
everywhere except for R¼ r, we may write down the solu-
tions separately for R> r and R< r. Namely,

PnðR; sÞ ¼
AInðcRÞ þ BKnðcRÞ; for R > r;

CInðcRÞ þ DKnðcRÞ; for R < r:

(
(20)

Here, A, B, C, and D are coefficients, while In and Kn are the
nth order modified Bessel functions of the first and second
kind, respectively. The coefficients are determined by the
following conditions:

(1) Continuity at R¼ r gives

AInðcrÞ þ BKnðcrÞ ¼ CInðcrÞ þ DKnðcrÞ: (21)

(2) In the limit R!1; InðcRÞ diverges, whereas KnðcRÞ
vanishes. By requiring PðR; h; sÞ to vanish in this limit,
one finds A¼ 0.

(3) Integrating Eq. (19) over a tiny section including R¼ r
results in a discontinuity in the radial flux density, which
reflects on the fact that the particle can diffuse either
toward the target or away from it. Explicitly,

P0nðr þ 0þ; sÞ � P0nðr � 0þ; sÞ ¼ �1=r:

Here, P0nðR; sÞ ¼ @RPnðR; sÞ and 0þ denotes the positive
infinitesimal. Explicitly, this gives

CI0nðcrÞ þ DK0nðcrÞ � BK0nðcrÞ ¼ 1=r; (22)

where the prime indicates the derivative to R.
(4) At the absorbing boundary at R¼ a, Pnða; sÞ ¼ 0, which

yields

CInðcaÞ þ DKnðcaÞ ¼ 0: (23)
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These conditions allow us to fully determine the coefficients.
Using the identity that

I0nðxÞKnðxÞ � K0nðxÞInðxÞ ¼ 1=x; (24)

and after some algebra, we obtain

PnðR;sÞ¼KnðcRÞKnðcrÞ InðcRÞ
KnðcRÞ�

InðcaÞ
KnðcaÞ

� �
; for R�r:

(25)

By using the aforementioned identity again, one may show
that

@RPnðR; sÞjR¼a ¼
KnðcrÞ

aKnðcaÞ : (26)

With this, we arrive at

~wðr; sÞ ¼
K0

ffiffiffiffiffiffiffiffi
s=D

p
r

� �
K0

ffiffiffiffiffiffiffiffi
s=D

p
a

� � : (27)

Now an inverse Laplace transform to this expression gives
wðr; tÞ. This is done by the technique of contour integration
in Appendix A, where we find

wðr; tÞ ¼ 1

p

ð1
0

dx e�xt
Y0 r

ffiffiffiffiffiffiffiffiffi
x=D

p� �
J0 a

ffiffiffiffiffiffiffiffiffi
x=D

p� �
� J0 r

ffiffiffiffiffiffiffiffiffi
x=D

p� �
Y0 a

ffiffiffiffiffiffiffiffiffi
x=D

p� �
Y2

0 a
ffiffiffiffiffiffiffiffiffi
x=D

p� �
þ J2

0 a
ffiffiffiffiffiffiffiffiffi
x=D

p� � : (28)

Here, J0 and Y0 are the zeroth-order Bessel functions of the
first and the second kind, respectively. The integral in Eq.
(28) can be readily carried out numerically.

For r ’ a, a simplification occurs to Eq. (28). Writing

Y0 r
ffiffiffiffiffiffiffiffiffi
x=D

p� �
� Y0 a

ffiffiffiffiffiffiffiffiffi
x=D

p� �
þ ðr � aÞ

ffiffiffiffiffiffiffiffiffi
x=D

p
Y00 r

ffiffiffiffiffiffiffiffiffi
x=D

p� �
and similarly for J0 r

ffiffiffiffiffiffiffiffiffi
x=D

p� �
and then using the property

that J0ðzÞY00ðzÞ � J00ðzÞY0ðzÞ ¼ ð2=pzÞ, we obtain

wðr � a; tÞ � 2ðr � aÞ
p2a

ð1
0

dx e�xt

� 1

Y2
0 a

ffiffiffiffiffiffiffiffiffi
x=D

p� �
þ J2

0 a
ffiffiffiffiffiffiffiffiffi
x=D

p� � � 1ffiffiffiffi
t3
p :

(29)

This roughly estimates the distribution of the time it takes
for the particle to return for the first time to the location
where it starts. Physically, for r � a, the target looks flat to
the particle, and, hence, the 1D result [c.f. Eq. (12)] is
recovered.

B. Results for 3D

In the 3D case, the particle is released at x0 ¼ ð0; 0;
r > aÞ, and the target is a sphere of radius a centered about
the origin, see Fig. 1. We then use spherical coordinates and
write x ¼ ðx; y; zÞ ¼ Rðsin h cos /; sin h sin /; cos hÞ, where
h 2 ½0; p� and / 2 ½0; 2pÞ are angles. The setup is rotation-
ally symmetric about the z-axis. Thus, we expect that
~Gðx; x0; sÞ does not depend on the azimuthal angle /. As in
the 2D case, we introduce PðR; h; sÞ ¼ D ~Gðx; x0; sÞ, which
satisfies

1

R2
@RR2@R þ

1

R2

1

sin h
@h sin h@h � c2

� �
PðR; h; sÞ

¼ � 1

2pR2 sin h
dðR� rÞdðhÞ; (30)

where c ¼
ffiffiffiffiffiffiffiffi
s=D

p
as before, and we have used

@2
x ¼ ð1=R2Þ@RR2@R þ ð1=R2Þð1=sin hÞ@h sin h@h and

d3ðx� x0Þ ¼
1

2pR2 sin h
dðR� rÞdðhÞ: (31)

This relation follows from the fact thatð
d3x � d3ðx� x0Þ � f ðxÞ ¼ 2p

ð
dh sin h

ð
dRR2

� 1

2pR2 sin h

� f ðxÞdðR� rÞdðhÞ

valid for arbitrary function f ðxÞ. Here, the factor 2p arises
from the integration over / due to rotational symmetry.

Since h 2 ½0; p�, there is a one-to-one correspondence
between q ¼ cos h and h. It turns out to be more convenient
to work with q instead of h directly. We shall hereafter write
pðR; q; sÞ ¼ PðR; h; sÞ. Now, the source term can be written
as

d3ðx� x0Þ ¼
1

2pR2
dðR� rÞdðq� 1Þ; (32)

where we have used dðq� 1Þ ¼ dðhÞ= sin h. Note that26

dðq� 1Þ ¼
X1
l¼0

2lþ 1

2
plðqÞplð1Þ; (33)

where plðqÞ are Legendre polynomials.26 In accord with the
linearity of Eq. (30), we expand

pðR; q; sÞ ¼
X1
l¼0

2lþ 1

2
PlðR; sÞplðqÞplð1Þ; (34)

where PlðR; sÞ are the coefficients satisfying an ordinary dif-
ferential equation (see later). Now, the radial flux density
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reads �@RpðR; q; sÞ, which is integrated over the target sur-
face to get

~wðr; sÞ ¼ 2pa2

ð1

�1

dq @RpðR; q; sÞjR¼a

¼ 2pa2@RP0ðR; sÞjR¼a: (35)

Here, we have used the following identity:26

1

2

ð1

�1

dq plðqÞ ¼ dl;0: (36)

Again, the angular information was erased by the integration
and will be recovered in Sec. III.

Substituting the expansions Eqs. (33) and (34) in Eq. (30)
and using (32),

1

R2
@RR2@R �

lðlþ 1Þ
R2

� c2

� �
PlðR; sÞ

¼ � 1

2pR2
dðR� rÞ: (37)

In obtaining this equation, we have also used26

1

sin h
@h sin h@hplðqÞð Þ ¼ �lðlþ 1ÞplðqÞ: (38)

Multiplying Eq. (35) by R2, we obtain

@RR2@R � lðlþ 1Þ � c2R2
� �

PlðR; sÞ ¼ �
1

2p
dðR� rÞ:

(39)

Note that this equation is also encountered when solving the
Schr€odinger’s equation for a particle moving in a central
potential in quantum mechanics. In particular, for l¼ 0

@RR2@R � c2R2
� �

P0ðR; sÞ ¼ �
1

2p
dðR� rÞ: (40)

This equation can readily be solved. Let P0 ¼ u=R. Then,
@RðR2@RP0Þ ¼ R@2

Ru, and the equation becomes

R @2
R � c2

� �
u ¼ � 1

2p
dðR� rÞ; (41)

or, dividing it by R

s

D
� @2

R

� �
u ¼ 1

2pr
dðR� rÞ: (42)

This is basically the same equation we have solved for d¼ 1.
The solution is then obtained as

P0ðR; sÞ ¼
1

2prR

ffiffiffiffi
D

s

r
e
ffiffiffiffiffiffi
s=D
p

ða�rÞsinh

ffiffiffiffi
s

D

r
ðR� aÞ

 !
;

for R < r; (43)

which is plugged in Eq. (35) to yield

~wðr; sÞ ¼ a

r
e
ffiffiffiffiffiffi
s=D
p

ða�rÞ: (44)

After an inverse Laplace transform,

wðr; tÞ ¼ a

r

r � affiffiffiffiffiffiffiffiffiffiffiffi
4pDt3
p exp �ðr � aÞ2

4Dt

� �
; (45)

which is the FPT distribution in 3D. The dependence on t is
exactly the same as in 1D. However, the probability that the
target could be reached at all, given by

Ð1
0

wðr; tÞdt, is unity
in 1D but less in 3D. Thus, in 3D, the diffusing particle may
never find the target, unlike in 1 and 2D where diffusion is
recurrent. This accords with the fact that in higher dimen-
sions, the particle has a much bigger space to explore. It may
be mentioned that the time-integrated probability can be
computed in any dimension in terms of elementary functions
by analogy with electrostatics.1

III. HIT DISTRIBUTION

While we have so far been focused on the FPT wðtÞ, which
only gives an angularly averaged picture of the FPT in 2D
and 3D, the results obtained in Sec. II also allow us to get
the distribution of the hitting location, which reveals the
angular dependence (i.e., the hit distribution) of the FPT and,
hence, may be more desirable in some applications. These
aspects are discussed in this section, where it is shown that
the target is hit by the particle mostly at the heading part of
the surface at short times but gradually spread out over the
whole surface.

Let us begin with the 2D case and decompose the corre-
sponding FPT distribution as

wðr; tÞ ¼
ð2p

0

dhwðr; h; tÞ;

where dtdhwðr; h; tÞ gives the probability of the circle being
hit where the polar angle lies in ½h; hþ dh� for the first time
by the particle in the time interval ½t; tþ dt�. The Laplace
transform of wðr; h; tÞ, denoted by ~wðr; h; sÞ, corresponds to
the flux through the arc spanning from h to hþ dh normal-
ized by dh, i.e., �aJða; h; sÞ with J being the radial flux den-
sity given by Eq. (16). Using Eq. (26),

~wðr; h; sÞ ¼ 1

p

X1
n¼0

KnðcrÞ
KnðcaÞ

cos ðnhÞ
1þ dn;0

: (46)

Performing an inverse Laplace transform to this expression
by means of the method described in Appendix A, one
obtains

wðr; h; tÞ ¼ 1

p

X1
n¼0

wnðr; tÞ cos ðnhÞ
1þ dn;0

; (47)

where wnðr; tÞ has the same form as Eq. (28) except that the
Bessel functions Y0 and J0 are replaced by Yn and Jn,
respectively.

Similarly, in 3D, we decompose

wðr; tÞ ¼
ðp

0

dh wðr; h; tÞ;

where dtdhwðr; h; tÞ now gives the probability of the sphere
being hit within a ribbon spanning from h to hþ dh for the
first time by the particle in the time interval ½t; tþ dt�.
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The Laplace transform of wðr; h; tÞ, which corresponds to the
flux through the ribbon normalized by the angular span,
reads

~wðr; h; sÞ ¼ 2pa2 sin h @RPðR; h; sÞjR¼a

¼ 2pa2 sin h
X1
l¼0

2lþ 1

2
P0lða; sÞplðcos hÞplð1Þ;

(48)

where P0lðR; sÞ ¼ @RPlðR; sÞ, and plðcos hÞ are Legendre pol-
ynomials defined before in Sec. II B. In Sec. II B, we have
shown that Pl satisfies the following equation:

@2
R þ

2

R
@R �

lðlþ 1Þ
R2

� c2

� �
PlðR; sÞ

¼ � 1

2pr2
dðR� rÞ: (49)

The solution to this equation, whose homogeneous part is
called the spherical Bessel function,26 can be found by writ-
ing down the general solutions for R> r and R< r and then
joining them at R¼ r, in an analogous manner to how we
solved Eq. (18). For R> r,

PlðR; sÞ ¼ AilðcRÞ þ BklðcRÞ;

while for R< r

PlðR; sÞ ¼ CilðcRÞ þ DklðcRÞ:

Here, il and kl are the lth order modified spherical Bessel
functions of the first and the second kind, respectively.26 The
coefficients A, B, C, and D are determined by the boundary
conditions,

PlðR!1; sÞ ¼ 0; Plða; sÞ ¼ 0;

Plðr þ 0þ; sÞ ¼ Plðr � 0þ; sÞ;

and the discontinuity at r

P0lðr þ 0þ; sÞ � P0lðr � 0þ; sÞ ¼ �
1

2pr2
;

where P0l ¼ @RPl, and 0þ denotes the positive infinitesimal
as before. Using the Wronskian

i0lðxÞklðxÞ � ilðxÞk0lðxÞ ¼
p

2x2
;

we find

PlðR < r; sÞ ¼ c

p2
klðcrÞklðcRÞ ilðcRÞ

klðcRÞ �
ilðcaÞ
klðcaÞ

	 

: (50)

Hence, using the Wronskian again,

P0lða; sÞ ¼
1

2pa2

klðcrÞ
klðcaÞ : (51)

It follows that

~wðr; h; sÞ ¼ sin h
X1
l¼0

2lþ 1

2

kl

ffiffiffiffiffiffiffiffi
s=D

p
r

� �
kl

ffiffiffiffiffiffiffiffi
s=D

p
a

� � plðcos hÞplð1Þ:

(52)

The inverse Laplace transform of this expression can be
done in the same manner as described in Appendix A. It suf-
fices to note that the inverse Laplace transform of

kl

ffiffiffiffiffiffiffiffi
s=D

p
r

� �
=kl

ffiffiffiffiffiffiffiffi
s=D

p
a

� �
, denoted by wlðr; tÞ, has the same

form as Eq. (28) except that the Y0 and J0 therein are
replaced by spherical Bessel functions yl and jl, respectively.
See that plð1Þ ¼ 1 regardless of l.

In Figs. 2 and 3, we display the hit distribution wðr; h; tÞ
and the cumulative hit distribution

Ð h
0

dh0 wðr; h0; tÞ (both nor-
malized by the total FPT) for 2D and 3D, respectively. When
calculating the cumulative hit distribution for 3D, we
have used the formula that plðxÞ ¼ ð1=2lþ 1Þd=dxðplþ1ðxÞ
�pl�1ðxÞÞ. For 2D, as seen on the left panel in Fig. 2, at short
times, most particles hit the target near the shortest point,
and the distribution is symmetric about h¼ 0. As time goes
by, particles start to hit the target from elsewhere, and the
distribution gets spread out. Such trend is also exhibited in
the cumulative distribution as shown on the right panel. For
3D, as shown in Fig. 3, at short times, most particles also hit
the target near the closest point, but the distribution is not
peaked at h¼ 0. Rather, wðr; h; tÞ vanishes at the pole h¼ 0;
this is so because the area of the ribbon is proportional to
sin ðhÞ [see the text above Eq. (48)] and so is the flux through
it [see also Eq. (52)]. For the same reason, the hit distribution
also vanishes at the other pole h ¼ p. This feature persists at
all times. So, unlike the 2D case, wðr; h; tÞ for 3D does not
peak at h¼ 0. Instead, as the time elapses, the position of the
peak shifts from small h toward the equator at h ¼ p=2.
Eventually, the peak dwells at the equator. This is so because
at long times, the flux density becomes evenly distributed
over the entire target, and the hit distribution is solely deter-
mined by the ribbon area, which maximizes at the equator.

IV. CONCLUSIONS

To summarize, we have derived analytical expressions for
the FPT distribution of a symmetric target (circle or sphere)
being hit by a diffusing particle in 2D and 3D and the corre-
sponding hitting location distribution as well. Our results
were derived with the particle released outside the target
region. However, it is easy to derive the results with the par-
ticle released inside the region by the same method. We shall
present these results elsewhere in connection with first

Fig. 2. Hit distribution wðr; h; tÞ (left panel) and cumulative hit distributionÐ h
0

dh0wðr; h0; tÞ (right panel), both normalized by wðr; tÞ ¼
Ð 2p

0
dh0wðr; h0; tÞ,

for 2D at various instants. Units of time and length are D=a2 and a, respec-

tively. r ¼ 10a.
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passage phenomena subjected to resetting, a topic that has
attracted lots of attention in recent years.11,27
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APPENDIX A: INVERSE LAPLACE TRANSFORM

(ILT) OF EQUATIONS (11) AND (27)

We first do the ILT of Eq. (11). This is done as follows.
With l ¼ r � a and c being some positive number,ðcþi1

c�i1
e�

ffiffiffiffiffiffi
s=D
p

lest ds

2pi
¼ D

l2

ðcþi1

c�i1
e�

ffiffi
s
p

esT ds

2pi
; (A1)

where T ¼ tD=l2 is the dimensionless time. To evaluate the
integral on the right-hand-side, let us consider the following
integral in the complex s-plane:þ

C

ds e�
ffiffi
s
p

esT : (A2)

Here, C is a contour shown in Fig. 4, where we have chosen
Arg ðsÞ 2 ð�p; p�, so that the branch cut of

ffiffi
s
p

lies on the
negative real axis. It is composed of six pieces, C1;…;C6,

• C1: the line s 2 ½c� iR; cþ iR� for some large value of R.

• C2: the circular arc of radius R from the top of C1 to just
above the negative real axis, plus the top straight segment
joining the arc to C1.

• C3: the line just above the negative real axis between
½�R;��� for some small �.

• C4: the circular arc of radius � about the origin.
• C5: the line just below the negative real axis between
½��;�R�.

• C6: the circular arc of radius R from just below the nega-
tive real axis to the bottom of C1, plus the bottom straight
segment joining the arc to C1.

Thanks to Jordan’s lemma,26 the integral vanishes on C2

and C6 in the limit R!1. One may also show that the inte-
gral vanishes on C4 for �! 0. Note that the integrand has no
poles inside C, and, hence, the integral (A2) vanishes accord-
ing to Cauchy’s theorem, yieldingð

C1

þ
ð

C3

þ
ð

C5

	 

ds e�

ffiffi
s
p

esT ¼ 0: (A3)

On C3, we parameterize by s ¼ eipx and haveð
C3

ds e�
ffiffi
s
p

esT ¼ �
ð0

1
dx e�i

ffiffi
x
p

e�xT : (A4)

On C5, we parameterize by s ¼ e�ipx and haveð
C5

ds e�
ffiffi
s
p

esT ¼ �
ð1

0

dx ei
ffiffi
x
p

e�xT : (A5)

Combining the aforementioned results,ð
C1

ds e�
ffiffi
s
p

esT ¼ 2i

ð1
0

dx e�xT sin
ffiffiffi
x
p
: (A6)

Dividing this by 2pi, we get the integral on the r.h.s. of Eq.
(A1), i.e.,ðcþi1

c�i1
e�

ffiffiffiffiffiffi
s=D
p

lest ds

2pi
¼ D

pl2

ð1
0

dx e�Tx sin
ffiffiffi
x
p
: (A7)

Fig. 3. Hit distribution wðr; h; tÞ (left panel) and cumulative hit distributionÐ h
0

dh0wðr; h0; tÞ (right panel), both normalized by wðr; tÞ ¼
Ð p

0
dh0wðr; h0; tÞ,

for 3D at various instants. Units of time and length are D=a2 and a, respec-

tively. r ¼ 10a.

Fig. 4. The contour in the complex-s plane used for doing the ILT.
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With x ¼ u2, the integral over x becomes

ð1
�1

du u e�Tu2

sin u: (A8)

To do this integral, let us introduce

IðlÞ ¼
ð1
�1

du e�Tu2

cos ðluÞ ¼
ð1
�1

du eilu�Tu2

¼
ffiffiffi
p
T

r
exp � l2

4T

� �
:

Then, the integral (A8) equals �I0ð1Þ, where I0ðlÞ ¼ dI=dl.
After some algebra, one recovers Eq. (11).

To evaluate the ILT of Eq. (27), we follow the same pro-
cedures. Now, we look at the following integral on the same
contour C,

þ
C

ds

2pi
est

K0 r
ffiffiffiffiffiffiffiffi
s=D

p� �
K0 a

ffiffiffiffiffiffiffiffi
s=D

p� � : (A9)

Again, the integrals on C2 and C6 as well as C4 vanish, for
K0ðzÞ � e�z=

ffiffi
z
p

for large argument z and K0ðzÞ � �ln z for
small argument. On C3, we get

þ
C3

ds

2pi
est

K0 r
ffiffiffiffiffiffiffiffi
s=D

p� �
K0 a

ffiffiffiffiffiffiffiffi
s=D

p� � ¼ 1

2pi

ð1
0

dx e�xt
K0 ir

ffiffiffiffiffiffiffiffiffi
x=D

p� �
K0 ia

ffiffiffiffiffiffiffiffiffi
x=D

p� � :
(A10)

On C5, we get

þ
C5

ds

2pi
est

K0 r
ffiffiffiffiffiffiffiffi
s=D

p� �
K0 a

ffiffiffiffiffiffiffiffi
s=D

p� �¼� 1

2pi

ð1
0

dxe�xt
K0 �ir

ffiffiffiffiffiffiffiffiffi
x=D

p� �
K0 �ia

ffiffiffiffiffiffiffiffiffi
x=D

p� �:
(A11)

By Cauchy’s theorem, we finally obtain the ILT of Eq. (27)
as

wðr; tÞ ¼ 1

2pi

ð1
0

dx e�xt

�
K0 �ir

ffiffiffiffiffiffiffiffiffi
x=D

p� �
K0 �ia

ffiffiffiffiffiffiffiffiffi
x=D

p� �� K0 ir
ffiffiffiffiffiffiffiffiffi
x=D

p� �
K0 ia

ffiffiffiffiffiffiffiffiffi
x=D

p� �
0
B@

1
CA;

(A12)

which, upon using K0ðikÞ ¼ �
�
p=2ÞðY0ðkÞ þ iJ0ðkÞÞ with J0

and Y0 being the Bessel functions of the first and second
kind, respectively, immediately reduces to Eq. (28).

The correctness of Eq. (28) has been directly verified
numerically. In Fig. 5, we compute the ILT of Eq. (27)
numerically using the method proposed by Abate and Whitt
(red line),28 which agrees nicely with the analytical result
Eq. (28) (dashed green line).

APPENDIX B: NUMERICAL SIMULATIONS

Here, we perform numerical simulations to verify the ana-
lytical results obtained in the main text. We simulate the
motion of a random walker on a simple lattice (square for
2D and cubic for 3D) with lattice constant b. Let p be the
probability that the walker moves to a neighboring site in a

Fig. 5. FPT distribution for 2D. Parameters: D¼ 0.025, a¼ 10, and r¼ 15,

all in arbitrary units.

Fig. 6. FPT distribution for 1D. Smooth curves stand for analytical results

and fluctuating ones for simulations (106 iterations).

Fig. 7. FPT distribution for 2D. Smooth curves stand for analytical results

and fluctuating ones for simulations (106 iterations). Parameters: r ¼ 2a and

p¼ 0.4.
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step, and, thus, 1� p is the probability it stays on the site
where it currently resides. Let s be the time interval for a
step. One may define � ¼ ðp=2dÞð1=sÞ as the attempt rate
for the walker to hop to an adjacent site. Note that 2d is the
coordinate number for the lattice. For �s	 1 and b smaller
than any other lengths in the system (i.e., the continuum
limit), the behaviors of the random walker are expected to be
the same as a diffusing particle with diffusion constant
D ¼ �b2.

In Figs. 6–8, we display the results for 1D, 2D, and 3D,
respectively. Here, time t corresponds to the number of steps.
The agreement between the analytical result, Eq. (12), and
the simulation is very good even for parameters for which
the analytical results were not intended (see the curve with
r � a ¼ 5b in Fig. 6). In 2D and 3D, the agreement is still
very good for all parameters at long t, but there is an obvious
discrepancy at short t for r and a comparable to b. Increasing
r and a improves the agreement, as is clear from Figs. 7
and 8. We have performed discrete-time random walks with
p	 1 to average out disparity between odd and even sites.
Alternatively, one can study values averaged over odd and
even time steps or perform continuous-time random walks,
and similar results are expected.

We are aware that the scripts for the simulations are likely
to be of interest to college education.
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