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A Survey of Object Goal Navigation
Jingwen Sun, Jing Wu, Ze Ji, and Yu-Kun Lai

Abstract—Object Goal Navigation (ObjectNav) refers to an
agent navigating to an object in an unseen environment, which is
an ability often required in the accomplishment of complex tasks.
Though it has drawn increasing attention from researchers in the
Embodied AI community, there has not been a contemporary
and comprehensive survey of ObjectNav. In this survey, we give
an overview of this field by summarizing more than 70 recent
papers. First, we give the preliminaries of the ObjectNav: the
definition, the simulator, and the metrics. Then, we group the
existing works into three categories: 1) end-to-end methods that
directly map the observations to actions, 2) modular methods
that consist of a mapping module, a policy module, and a path
planning module, and 3) zero-shot methods that use zero-shot
learning to do navigation. Finally, we summarize the performance
of existing works and the main failure modes and discuss the
challenges of ObjectNav. This survey would provide comprehen-
sive information for researchers in this field to have a better
understanding of ObjectNav.

Note to Practitioners—This work was motivated by the in-
creased interest in real-world applications of mobile robots.
Object Goal Navigation (ObjectNav), which is an important task
in these applications, requires an agent to find an object in
an unseen environment. To accomplish that, the agent needs to
be equipped with the capability to move in the environment,
decide where to go, and recognize the object categories. So
far, most works on ObjectNav have been done in a simulation
environment. We present an overview of the existing works in
ObjectNav and introduce them in three categories. Additionally,
we analyze the current performance of ObjectNav and the
challenges for future research. This paper provides researchers
and practitioners with a comprehensive overview of the developed
methods in ObjectNav, which can help them to have a good
understanding of this task and develop suitable solutions for
applications in the real world.

Index Terms—Object Goal Navigation, Semantic Navigation,
Embodied AI

I. INTRODUCTION

INDOOR robots operating autonomously in unseen real-

world environments are in increasing demand in various

practical applications, such as rescuing, disabled assistance,

and vacuum cleaning [1], [2]. A fundamental requirement

of such a robot is the ability to search for an object and

navigate to it. Such a task is defined as Object Goal Navigation

(ObjectNav) [3]. As shown in Fig. 1, the robot is given the

label of a target object (e.g., a bed) and it has to explore the

unseen environment to find the object.
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Observations: 

RGB-D images

Target: Bed

Shortest Path

Agent Path

Fig. 1. A Typical ObjectNav Task. The agent is initialized at the start position,
the gray point. It is asked to find the target in the light green box, “Bed”. We
illustrate the shortest path and the agent path with green and yellow lines.

Classical navigation tasks usually focus on navigating to a

point goal with a pre-built map. Such methods would usually

require decomposing a task into several sub-components, such

as mapping, localization, path planning, and local motion

control. For the case in an unseen environment, such navi-

gation usually combines a simultaneous localization and map-

ping (SLAM) module, a heuristics exploration strategy (e.g.,

frontier-based exploration [4]), and a path planner to reach the

point goal. With the advances in computer vision and deep

learning, navigating to an object instead of a point became

doable by integrating an object detection module. Moreover,

with the shift from “Internet AI”, where agents learn from

image and text datasets to “Embodied AI”, where agents learn

through interaction with the environment, various simulators

have been built to support Embodied AI tasks [5]. At the

same time, learning-based navigation was proposed to learn

the whole navigation system in such simulation environments.

After the Habitat Challenge was released in 2019 [6] and

consistent definition and evaluation metrics were proposed,

ObjectNav has drawn increasing research attention.

In early ObjectNav research, end-to-end methods were

proposed [7]–[46], which directly map the observation to

actions. Most of these works focus on visual representations

of observations for better policy decisions. However, these

methods require significant computational resources and time,

and to cope with these, modular methods [47]–[64] were

proposed. Modular methods integrate the advantages of the

classical pipeline with learning-based methods to somehow

reduce the resources and time requirements. Modular methods

consist of a mapping module representing the environment, a
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Fig. 2. Paper Structure. The main body of the paper is organized into
three sections: Section II discusses the ObjectNav definition, simulators, and
evaluation metrics. Section III introduces different methods used in ObjectNav.
Section IV discusses the challenges and future directions.

policy to generate a long-term goal, and a path planner to

navigate to the goal. Because modular methods inherit from

classical navigation, some works directly use the framework

without learning [49], [59]. Later, zero-shot methods [65]–

[72] were proposed to solve problems when new objects are

encountered in real-world applications. Some works [73]–[77]

also apply Large Language Models (LLMs) in such methods.

There have been some summary works on ObjectNav. Li et

al. [78] and Wang et al. [79] are the most relevant. They

discuss end-to-end and map-based ObjectNav, which are also

important parts of our work. Lin et al. [80] summarize the

applications of Large Language Models (LLMs) in Embodied

Navigation. They discuss the crucial functions of LLMs in

zero-shot navigation carefully, which is also discussed in

our work. Some researchers give a review on Embodied

Visual Navigation [81]–[83], which covers a larger scope,

including Visual Exploration, Point Navigation (PointNav),

Object Goal Navigation (ObjectNav), Vison-and-Language

Navigation (VLN). In this paper, we focus on the ObjectNav

with the indoor environment setting, give a comprehensive

review of the existing learning-based works, and discuss the

challenges of this task.

The paper is organized as follows: Section II discusses

the ObjectNav definition, simulators, and evaluation metrics.

Section III introduces different methods used in ObjectNav.

We categorize these works into three categories: end-to-end,

modular, and zero-shot methods. Section IV discusses the chal-

lenges and future directions. Section V gives the conclusion

of this paper. Fig. 2 illustrates the structure of this paper.

II. PRELIMINARIES

A. Task Definition

The definition of ObjectNav is to navigate to an object of

a specific category in an unseen environment. Formally, we

consider a set of objects O = {o1, · · · , on} and an agent with

the action space A = {a1, · · · , ak}. In indoor environments,

objects often include chair, bed, tv, etc., and the actions that

an agent can take often include “move ahead”, “rotate right”,

“rotate left”, “look up”, “look down”, and “DONE”. In an

ObjectNav task τ , the agent is initialized at a random position

p in an unseen environment s. The agent is asked to find an

TABLE I
COMPARISON OF HABITAT SIM AND AI2-THOR SIMULATORS. WE GIVE

A COMPARISON OF THESE TWO MAIN SIMULATORS IN THE IMAGE,
DATASETS, AGENT INPUTS, AND ACTION SPACE.

Habitat Sim AI2-THOR

Image Realistic Synthetic

Datasets
MP3D, Gibson,
HM3DSem

iTHOR, RoboTHOR,
ProcTHOR-10K

Agent Inputs
RGB-D,
Compass+GPS

RGB-D

Action Space1 F, L, R, U, D, S F, L, R, U, D, S

1F, L, R, U, D, S: Move-forward or move ahead, turn-left or rotate left, turn-right or

rotate right, look-up, look-down, and STOP or Done.

object o ∈ O in s with a minimum number of steps. We

therefore denote each task by the tuple τ = (s, o, p). The

inputs are RGB or RGB-D images with or without the agent’s

real-time positions. The agent learns a policy and outputs

actions a ∈ A at each step.

B. Simulators

Some simulators have been proposed to facilitate the

Embodied Navigation tasks, like Habitat Sim [84], AI2-

THOR [85], and Gibson Env [86]. Among them, Habitat Sim

and AI2-THOR are the two main platforms for the ObjectNav

task. In this section, we will introduce these two platforms

in detail. Fig. 3 shows example scenes in the two simulators.

Table I is a brief comparison of these two simulators.

1) Habitat Sim: Habitat Sim is a flexible and high-

performance 3D simulator that consists of configurable

agents, sensors, and 3D datasets. It uses the Matterport3D

(MP3D) [87] and Gibson [86] datasets, which are scans of

large scenes, to render out photo-realistic views. Habitat Sim

provides an API layer to allow developing embodied AI for

tasks like ObjectNav. Now Habitat Sim has been extended to

interactive 3D environments (Habitat 2.0) for some interactive

tasks, like Rearrangement [88]. In this paper, we mainly

focus on Habitat Sim. Based on this simulator, the Habitat

ObjectNav Challenge has been held every year since 2019.

In Habitat Challenge from 2019 to 2021, MP3D consisting

of scans of 90 indoor spaces is used, with a standard 61/11/18

split for training, validation, and testing, as described by

Chang et al. [87]. 21 object categories from the 40 annotated

ones in MP3D are selected. Using this environment, episodes

are generated, and are defined by the unique ID of the scene,

the starting position and orientation of the agent, and the

goal category label for the ObjectNav task. Building on the

top of Habitat-Matterport 3D Dataset (HM3D) [89], Habitat-

Matterport 3D Semantics (HM3DSem) v0.1 [90] with 120

scenes and Habitat-Matterport 3D Semantics (HM3DSem)

v0.2 [90] with 216 scenes are used for the challenge in 2022

and 2023, respectively. Fig. 3(a) gives an example of the scene

used in Habitat Sim.

The agent is modeled as an idealized cylinder of radius

0.18 m and height 0.88 m. It is equipped with an RGB-D

camera and a GPS+Compass sensor. Specifically, the RGB

camera has a 79◦ horizontal field of view with a resolution of

640× 480, and the depth camera is clipped from 0.5m to 6m.
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(a) Habitat Sim (b) AI2-THOR

Fig. 3. Examples of Scenes in Habitat Sim and AI2-THOR. We show some
RGB images of one scene used in each simulator.

The GPS+Compass sensor provides relative positions (x, y,

z) and heading (angle) information with regard to the starting

position (origin) and heading (0◦). The action space of the

agent includes “move-forward 0.25m”, “turn-left 30◦”, “turn-

right 30◦”, “look-up 30◦”, “look-down 30◦” and “STOP”.

2) AI2-THOR: AI2-THOR is an interactive simulator that

consists of near photo-realistic indoor scenes. It provides a

Python API for users to perform interactions with the objects

in the rooms. Currently, iTHOR and RoboTHOR are the two

main datasets used in ObjectNav on the AI2-THOR platform.

iTHOR is the original set of scenes, including 120 scenes

covering bedrooms, bathrooms, kitchens, and living rooms.

RoboTHOR consists of 89 maze-styled dorm-sized apartments

to study sim2real transfer, which is also the dataset used in

the RoboTHOR Challenge for the ObjectNav task. Developed

from AI2-THOR, Deitke et al. [91] propose a framework,

ProcTHOR, to procedurally generate a larger dataset named

ProcTHOR-10K, which is also used in ObjectNav lately.

In the RoboTHOR Challenge, there are 89 scenes in total:

75 simulated scenes used for training, 4 real/simulated scenes

used for validation, and 10 real scenes used for the challenge.

There are 43 object categories: 11 classes of furniture and 32

classes of small objects. 12 of these categories are used as test

targets. In iTHOR, as shown in Fig. 3(b), there are four scene

categories: kitchens, living rooms, bedrooms, and bathrooms,

and each category has 30 scenes. In each category, the first 20

scenes are used for training. The next five scenes are used for

validation, and the last five scenes are for testing.

The physical robot used is a LoCoBot equipped with an Intel

RealSense RGB-D camera. Different from Habitat Sim, they

only use RGB-D images without position sensors. Its action

space is: “move ahead”, “rotate right”, “rotate left”, “look up”,

“look down”, and “DONE”.

C. Evaluation Metrics

Four main metrics have been used for the ObjectNav task:

Success Rate (SR), Success-weighted Path Length (SPL), Soft

SPL, and Distance to Success (DTS).

Success Rate (SR) is the ratio of episodes that count as a

success. As long as the agent executes the “STOP” or “DONE”

action and the distance to the target (any instance of the

category) is within a threshold (e.g., 1m in Habitat Challenge),

this episode counts as a success.

2019 2020 2021 2022 2023

Modular Methods

End-to-end Methods

Visual Representation

Policy Learning

Grid Map without Prediction

Grid Map with Prediction

Graph-based Map Representation

Zero-shot Methods

Zero-shot Setting

Open Vocabulary Setting

Fig. 4. Research Directions. We show the development timeline of methods
in ObjectNav and their main research concerns.

Success-weighted Path Length (SPL) is the metric to

evaluate the efficiency of the agent’s navigation. It uses a

comparison between the optimal path and the agent’s path.

SPL = s ·
d

max (p, d)
(1)

where s is 1 if the agent finds any instance of a target,

otherwise s is 0. d is the geodesic distance of the shortest

path, and p is the distance traveled by the agent. When s is

0, SPL will be 0. Otherwise, SPL is in the range of 0 to 1,

and a larger SPL means higher efficiency (i.e., shorter path to

success).

Soft SPL is a softer version of SPL that measures efficiency

based on the progress towards the goal (even with 0 success).

SoftSPL =
d

max (p, d)
(2)

Distance to Success (DTS) is the geodesic distance of the

agent to the goal at the end of the episode. It measures how

long the agent needs to navigate to reach the target when it

stops.

III. METHODS IN OBJECTNAV

In this section, we group current works in ObjectNav into

three categories: end-to-end methods, modular methods, and

zero-shot methods Fig. 4 shows the development timeline of

these methods and summarizes their main research concerns.

We also list the works in ObjectNav on the website1.

A. End-to-end Methods

As shown in Fig. 5, end-to-end methods map the ob-

servations to actions directly using reinforcement learning

(RL) or imitation learning (IL). In this framework, the agent

first encodes the observations to extract features as a visual

representation and embeds the goal and previous action for the

policy network input. The policy network then learns the ac-

tion decision-making based on the reward by interacting with

the environment. Visual representation and policy learning are

two main parts of this framework. In this section, we will sum-

marize existing works and group them into two subcategories

in terms of their focuses: 1) to improve visual representation

for better scene understanding, and 2) to solve problems in

1https://github.com/jws39/awesome-objectnav
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Goal: “Bed”

Previous Action

Visual Representation

“Turn Left”

Embedding

Embedding

C
N

N

Policy Learning
(Reinforcement Learning/

Imitation Learning)

Action

Environment

Observations:
RGB-D

Fig. 5. The Framework of End-to-end Methods. In this framework, the agent
first encodes the observations to extract features as a visual representation
and embeds the goal and previous action for the policy network input. The
policy network then learns the action decision-making based on the reward
by interacting with the environment.

policy learning such as sparse reward and overfitting. We also

summarize these works in Table II.

1) Visual Representation: Visual representation is impor-

tant for agent navigation. It aims to extract useful information

from the observations to help the agent understand the environ-

ment. Early works [7], [8] only combine different visual rep-

resentations, including raw RGB-D images, object detection

bounding boxes, and semantic segmentation masks as inputs

of the policy network. Instead of combining different visual

representations for a single policy network, Shen et al. [9]

utilize different visual representations as the inputs of different

policies and then fuse actions from the policies. Yadav et

al. [34] first learn the visual representation from large-scale

images of indoor environments using self-supervised learning.

Then the pre-trained visual encoder is fine-tuned with image

augmentations and then used in the ObjectNav task.

Despite directly using the raw images, object detection, and

semantic segmentation results, some works further investigate

relationship information, such as the relationship between

objects and regions, to enhance the visual representation.

This idea comes from human navigation behaviors in which

humans can use some relationship information (e.g., the layout

of a specific room and the co-occurrence of some objects).

To explore the use of such relationships, some works have

proposed different ways to represent them. Du et al. [10]

propose an object relation graph for simultaneously encod-

ing category closeness and spatial correlations from object

detection information during training. Instead of constructing

a graph, Druon et al. [11] use a context grid to represent the

relationship information. In this context grid, the relationship

is represented by the similarity score between the target

and detected objects, which are computed using the word-

embedding feature of the object class. Campari et al. [12]

design a scene-specific joint representation to explore the

scene-object relationship. They associate the goal with a

specific room by combining the scene feature of the current

observation with the goal feature. Yan et al. [13] design an 8-D

spatial context vector to integrate the spatial and relationship

information that contains the detected objects’ categories and

positions and the similarity between them and the target.

The works mentioned above only explore relationship infor-

mation residing in the environment itself. Some other works

extract relationship information among objects, regions, or

rooms from other datasets (mainly Visual Genome [92]) [14]–

[20] and then integrate this prior knowledge with current ob-

servations. Yang et al. [14] first introduce the prior knowledge

of relationships among objects using a graph in ObjectNav.

They first count the occurrence of object pairs in the Visual

Genome dataset [92] and set the objects as nodes and the

occurrence frequency as edges. Then a Graph Convolutional

Network (GCN) [93] is used to integrate this prior knowledge

with observations to guide navigation. Pal et al. [16] also

use a graph to represent prior knowledge from the Visual

Genome dataset. The difference is that they not only represent

the object category in a node but also the object position

and the similarity between the object and target using a

novel context vector. Zhou et al. [18] specify the spatial

relations between objects in terms of their relative directions

(in, on, over, under, in front of, behind, left of, and right of).

Zhang et al. [20] consider the object-to-zone relationship in the

visual representation. They propose a hierarchical object-to-

zone (HOZ) graph composed of scene nodes, zone nodes, and

object nodes to do the ObjectNav in a coarse-to-fine manner.

Because of the excellent performance of the transformer

in some vision tasks, like object detection, segmentation, and

video understanding [94], some works [12], [13], [21]–[24]

apply the attention mechanism and transformer in ObjectNav.

Mayo et al. [21] introduce an attention mechanism that con-

sists of target, action, and memory attention models to encode

semantic and spatial information of observed objects. Based

on the work [21], Lyu et al. [35] incorporate a global and

local knowledge graph to capture global prior information

and local relationship to enhance the attention modules. Du et

al. [22] employ a visual transformer to encode the relationship

among detected objects and their spatial correlations of current

observations. In another work, Fukushima et al. [23] use a

transformer to extract long-term scene and object semantic

information from sequential observations to help with nav-

igation. Their work is the first work to consider long-term

memory in ObjectNav. Dang et al. [24] point out that in

previous works the agent may not treat all items equally

when extracting relationships between objects because of the

different visibility of each object in an image. So they propose

a directed object attention (DOA) graph to balance the agent’s

attention on different objects.

2) Policy Learning: Policy learning aims to learn how to

map the visual representation to actions by interacting with the

environment. End-to-end methods use the RL or IL framework

to learn the policy network. However, it has some problems

including poor generalization or overfitting, sparse reward, and

sample inefficiency. Researchers have explored different ways

to solve these problems.

To overcome the poor generalization or overfitting problem,

meta-learning, known as learning to learn, is also introduced to

improve the robustness of navigation policy by quickly adapt-

ing the policy to a new scenario. Wortsman et al. [25] propose

a meta-reinforcement learning approach for navigation, where

the agent learns to adapt through a self-supervised interaction



ACCEPTED BY IEEE TRANSACTIONS ON AUTOMATION SCIENCES AND ENGINEERING 5

TABLE II
SUMMARY OF END-TO-END METHODS. WE SUMMARIZE WORKS IN END-TO-END METHODS WITH SOME BASIC INFORMATION AND SOME HIGHLIGHTS.

Paper Year Input Datasets1 Simulator Metric2 Highlights

V
isu

al
R

ep
resen

tatio
n

Mousavian et al. [7] 2019 RGB-D
AVD [95],

SUNCG [96]
- SR, PLR Combine different visual representations as policy inputs.

Shen et al. [9] 2019 RGB-D S3DIS [97] - SR Fuse actions from different policies.

Yadav et al. [34] 2022
RGB-D,

GPS+Compass

Gibson,

MP3D, HM3D
Habitat Sim SR, SPL

Learn the visual representations from large-scale images

using self-supervised learning.

Du et al. [10] 2020 RGB iTHOR AI2-THOR SR, SPL
Propose an object relation graph for encoding category close-

ness and spatial correlations.

Druon et al. [11] 2020 RGB iTHOR AI2-THOR SR, SPL
Use a context grid with the object similarity to represent the

object relationship.

Campari et al. [12] 2020
RGB,

GPS+Compass
MP3D Habitat Sim SR, SPL, DTS

Design a scene-specific joint representation to explore the

scene-object relationship.

Yan et al. [13] 2022 RGB iTHOR AI2-THOR SR, SPL
Design an 8-D spatial context vector to represent the spatial

and relationship information.

Yang et al. [14] 2019 RGB iTHOR AI2-THOR SR, SPL
First introduce the prior knowledge of relationships among

objects using a graph.

Pal et al. [16] 2021 RGB iTHOR AI2-THOR SR, SPL
Encode the object category, positions, and the similarity

among objects into graph nodes.

Zhou et al. [18] 2021 RGB-D iTHOR AI2-THOR SR, SPL
Specify the spatial relations between objects in terms of their

relative directions.

Zhang et al. [20] 2021 RGB iTHOR AI2-THOR SR, SPL, SAE
Propose a hierarchical object-to-zone graph composed of

scene, zone, and object nodes.

Mayo et al. [21] 2021 RGB iTHOR AI2-THOR SR, SPL
Introduce attention models to encode semantic and spatial

information.

Lyu et al. [35] 2023 RGB iTHOR AI2-THOR SR, SPL
Incorporate a global and local knowledge graph to capture

global prior information and local relationships.

Du et al. [22] 2021 RGB iTHOR AI2-THOR SR, SPL
Employ a visual transformer to encode the relationship among

detected objects and their spatial correlations.

Fukushima et al. [23] 2022 RGB iTHOR AI2-THOR SR, SPL
Use a transformer to extract long-term scene and object

semantic information from sequential observation.

Dang et al. [24] 2022 RGB iTHOR AI2-THOR SR, SPL, SAE
Introduce a directed object attention graph to balance atten-

tion on different objects.

P
o
licy

L
earn

in
g

Wortsman et al. [25] 2019 RGB iTHOR AI2-THOR SR, SPL
Introduce a self-adaptive policy to overcome the poor gener-

alization problem.

Li et al. [36] 2021 RGB iTHOR AI2-THOR SR, SPL

Introduce meta-learning to learn a good parameters ini-

tialization based on the work model-agnostic meta-learning

(MAML).

Li et al. [37] 2023 RGB iTHOR AI2-THOR SR, SPL

Explore hierarchical semantic information and combine it

with meat-learning to improve the generalization perfor-

mance.

Li et al. [38] 2020 RGB iTHOR AI2-THOR SR, SPL
Use meta-learning to learn some meta-skills and then transfer

them to the ObjectNav task.

Maksymets et al. [27] 2021
RGB-D,

GPS+Compass
MP3D Habitat Sim

SR, SPL, Soft

SPL, DTS

Introduce a dataset to enrich the environment to alleviate the

overfitting problem.

Ye et al. [26] 2021 RGB-D SUNCG House3D [98]
SR, SPL,

AS/MS, AR

Introduce intrinsic rewards to alleviate the sparse reward

problem. The winner of 2021 Habitat ObjectNav Challenge.

Ye et al. [28] 2021
RGB-D,

GPS+Compass
MP3D Habitat Sim SR, SPL

Add auxiliary learning tasks and exploration reward to im-

prove the sample efficiency.

Pratap et al. [31] 2022 RGB
iTHOR,

RoboTHOR
AI2-THOR SR, SPL

Generate an auxiliary graph loss as a general supervisory

signal to train the agent.

Dang et al. [32] 2023 RGB
iTHOR,

RoboTHOR
AI2-THOR SR, SPL, SNE

Introduce a dual adaptive thinking method to balance the

“search for” and the “navigate to” stage.

Dang et al. [41] 2023 RGB
iTHOR,

RoboTHOR
AI2-THOR SR, SPL

Decompose the ObjectNav task into multiple meta-abilities

from three aspects: input, encoding and rewards.

Ramrakhya et al. [30] 2022
RGB-D,

GPS+Compass
MP3D, Gibson Habitat Sim SR, SPL

Collect large-scale human demonstrations to guide the agent

navigation with IL.

Ramrakhya et al. [33] 2023
RGB,

GPS+Compass
HM3DSem Habitat Sim SR, SPL Train the policy with IL and then fine-tune it with RL.

Moghaddam et

al. [29]
2022 RGB iTHOR AI2-THOR SR, SPL

Add a forward model to inform the agent about the potential

observations.

Zhang et al. [40] 2023 RGB

iTHOR,

RoboTHOR,

Gibson

AI2-THOR,

Habitat Sim
SR, SPL, DTS

Calculate the layout gap using KL divergence between the

current environment and learned experience to control the

effect of learned experience.

Du et al. [39] 2023 RGB
iTHOR,

RoboTHOR
AI2-THOR SR, SPL

Eliminate the impacts of dominant navigation states to reflect

the newly observed information and reduce the correlations

among them to get informative states.

Xie et al. [45] 2023 RGB
iTHOR,

RoboTHOR
AI2-THOR SR, SPL, SAE

Learn an implicit obstacle map and then design a non-local

target memory aggregation to obtain the target orientation

feature and locate the target.

Song et al. [46] 2023 RGB iTHOR AI2-THOR SR, SPL
Infer object-wise depth implicitly to jointly decide termina-

tion with reinforcement learning.

1AVD: Active Vision Dataset; MP3D: Matterport3D Dataset; HM3D: Habitat-Matterport 3D Dataset; HM3DSem: Habitat-Matterport 3D Semantics Dataset.
2SR: Success Rate; SPL: Success-weighted Path Length; Soft SPL: Soft Success-weighted Path Length; DTS: Distance to Success; PLR: Path Length Ratio; SAE: Success

weighted by Action Efficiency; AS/MS: Average Steps/Minimal Steps over all successful cases; AR: Average discounted cumulative extrinsic Rewards (AR); SNE: Success

Weighted by Navigation Efficiency; EL: Episode Length.
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loss. It can adapt in testing when supervision is not available.

In this way, the agent can learn as it performs, which differs

from traditional reinforcement learning. Li et al. [36] propose

to learn a good parameters initialization based on the work

model-agnostic meta-learning (MAML) [99]. In this work,

they use the knowledge graph built from the Visual Genome

dataset. After that, They [37] further explore hierarchical

semantic information represented by a context vector and

combine it with meta-learning to improve the generalization

performance. Li et al. [38] use meta-learning to learn some

meta-skills quickly with a small amount of unannotated data

and then transfer the learned meta-skills to the ObjectNav task.

Maksymets et al. [27] first point out that overfitting is the

crucial reason for the poor performance. So they introduce

the Treasure Hunt Data Augmentation (THDA) method, which

inserts 3D scans of objects at arbitrary locations to enrich the

environment.

In the RL setting, sparse reward is a well-known problem

and is also posing challenges to ObjectNav. In ObjectNav, the

agent only gets high rewards when it reaches the final goal,

which is a small subset of the states. The agent struggles to

learn the policy because it is hard to sample the few rewarding

states. To tackle the sparse reward challenge in navigation,

Ye et al. [26] propose a hierarchical policy, HIEM, which

adds sub-goal rewards instead of relying on a single final

goal reward to alleviate this sparse reward problem. Another

problem of RL setting is sample inefficiency. The work in

PointNav, DD-PPO [100], shows the excellent learnability

of RL in PointNav, but it requires 2.5 billion frames of

experience, which is quite sample-inefficient. The work in

PointNav [101] adds some auxiliary learning tasks to the DD-

PPO, which is 5.5× better sample-efficiency. Based on this

advance, Ye et al. [28] add three new tasks to improve sample-

efficiency: two are for learning an inverse dynamics model,

and one is for predicting map coverage. They also add an

exploration term to reward the agent to explore. Their work

won the 2021 Habitat Challenge. Singh et al. [31] also encode

a scene graph and utilize an auxiliary graph loss as a general

supervisory signal to train the ObjectNav agent.

Some works solve ObjectNav by dividing the needed abil-

ities into different stages or sub-skills. Dang et al. [32]

decompose the ObjectNav task into two stages, the “search

for” stage and the “navigate to” stage. They think current

works neglect the “navigate to” stage. So they propose a

dual adaptive thinking (DAT) method that consists of search

and navigation thinking modules to balance these two stages.

Furthermore, Dang et al. [41] decompose the ObjectNav

task into multiple meta-abilities from three aspects: input,

encoding and rewards. They then select five meta-abilities:

intuition, search, navigation, exploration, and obstacle, with

corresponding inputs, encoding networks, and designed re-

wards for ObjectNav. Similarly, some works [42]–[44] split the

abilities needed in ObjectNav into sub-skills (e.g., exploration

and navigation) and then design a skills selection module or

high-level policy to switch between them.

Some works also explore other ways in terms of policy

learning to improve ObjectNav performance. Ramrakhya et

al. [30] collect a large-scale dataset and use it to explore

how large-scale imitation learning (IL) compares to rein-

forcement learning (RL). Their results show that a single

human demonstration appears to be worth ∼ 4 agent-gathered

ones. Later, they propose an approach, PIRLNav [33], for

first training the policy with IL to provide a reasonable start

and then fine-tuning it with RL. Moghaddam et al. [29]

point out that end-to-end state-of-the-art works are model-

free, which means these methods lack a forward model to

inform the agent about the potential observations after its

actions. To address this, they propose a forward model that

can predict a representation of a future state. Zhang et al. [40]

propose that the agent should keep the positive effect and

remove the negative effect of learned experience in training.

So they propose to calculate the layout gap using Kullback-

Leibler (KL) divergence between the current environment and

learned experience to control the effect. Du et al. [39] point

out that the high correlation among navigation states causes

navigation inefficiency (e.g., stuck or trapped in a loop). So

they first eliminate the impacts of dominant navigation states

to reflect the newly observed information and then reduce the

correlations among navigation states to get informative states.

Xie et al. [45] focus on improving the robustness of obstacle

avoidance. They first learn an implicit obstacle map based

on historical experience, and then design a non-local target

memory aggregation to obtain features of the target orientation

and locate the target. Song et al. [46] point out that deep

reinforcement learning methods using RGB only without depth

information often struggle with optimal path planning and fail

termination recognition. So they design a termination policy

to infer object-wise depth information implicitly and jointly

decide termination with reinforcement learning.

Some works also allow interaction with humans to make

the ObjectNav agent more performant and reliable. Singh et

al. [102] introduce human assistance to give the agent the

next optimal action when it asks for help. They propose

the Ask4Help policy to balance the task performance and

the amount of requested help without modifying the original

agent’s parameters. Instead of giving the next optimal action

when the agent requests help, Zhang et al. [103] give the

agent an object-in-view observation containing the ground

truth semantic segmentation of the target object’s location in

the agent’s view.

3) Discussion: For the end-to-end method, most works

mainly focus on the visual representation for better scene

understanding. Some early works use the detected objects and

segmentation results from RGB images directly. Then some

works extract further information between the detected ob-

jects, such as the object-to-object relationship and the object-

to-region relationship. We humans can easily transfer prior

knowledge from known environments (e.g., the layout of our

own house) to a new environment. Inspired by this, some

works first extract such prior knowledge and then combine

it with the current observation of the agent as the input

of the policy network. Some works also use the attention

mechanism to extract useful semantic information. Other than

the focus on visual representation, some researchers focus

on problems of policy learning to improve agent navigation

performance. Some works introduce meta-learning to solve
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poor generalization or overfitting problems. Some works try

to solve the sparse reward and sample efficiency problem of

RL. Some works decompose the ObjectNav into two stages

or sub-skills. Other works explore different methods in policy

learning, like exploring large-scale imitation learning, adding

a forward model, balancing the positive and negative effects

of learned experience, improving the robustness of obstacle

avoidance, and designing a termination policy.

End-to-end methods directly learn the whole navigation

system and do not need to build and maintain a map, which

is quite straightforward. Current works have explored visual

representation and policy learning deeply, but the end-to-end

methods still have a long way to go to be applicable in

real application. Overall, these methods are straightforward

but difficult to learn, because they need to learn localization,

mapping, and path planning together. In addition, there is a

sim-to-real gap. The agents are trained in simulators. Due

to the fidelity of simulators, the observations in simulation

environments are very likely to be different from the real

world. Moreover, the end-to-end learning methods using re-

inforcement learning or imitation learning require significant

computational resources and time [28], which is also a prob-

lem for real-world applications. To address these limitations,

researchers also explore modular methods.

B. Modular Methods

Rather than studying the whole system in an end-to-end

way, modular methods usually consist of a mapping module, a

policy module, and a path planning module, as shown in Fig. 6.

The agent first encodes the observations to extract features.

And it also utilizes the mapping module to build a map or

graph to represent the environment. Then the features from

observations and the built map or graph are both used in the

policy module to generate a long-term goal. Finally, the path

planner takes the long-term goal as the input and outputs the

next action. In this framework, the mapping module is vital and

has great influence on the subsequent decision-making. So we

group the modular methods into two subcategories in terms of

map representation: grid map representation and graph-based

map representation. For methods using grid maps, they can

be further grouped into grid maps without prediction and grid

maps with prediction, based on if the agent relies on only

the current observed map or the predicted grid map. We also

summarize these works in Table III.

1) Grid Map without Prediction: Works using grid maps

explicitly or implicitly project the partially observed 3D envi-

ronment onto a top-down 2D grid map. Gupta et al. [47] first

propose a navigation network that consists of mapping and

planning modules. They encode the first-person images into

neural representations implicitly and integrate the representa-

tions into a latent memory, which corresponds to an egocentric

map of the top-down view of the environment. Then the

planning module uses this map to output navigation actions.

Chaplot et al. [48] first introduce a three-module framework

with an explicit top-down semantic grid map, which heavily

influenced following works. The mapping module uses Mask-

RCNN [104] first to get the 2D semantic segmentation from

Goal: “Bed”

Previous Action

“Turn Left”

Embedding

Embedding

C
N

N

Long-term Goal
Policy 

Action

Mapping 
Module

C
N

N

Path Planning
(FMM)

Observations:
RGB-D

Map Long-term goal

Environment

Fig. 6. The Framework of Modular Methods. In this framework, the agent first
encodes the observations to extract features. And it also utilizes the mapping
module to build a map or graph to represent the environment. Then the features
from observations and the built map or graph are both used in the policy
module to generate a long-term goal. Finally, the path planner takes the long-
term goal as the input and outputs the next action.

the current frame and then projects the segmentation to a top-

down semantic grid local map, which is accumulated to get

a global semantic grid map. Then the policy module uses the

top-down semantic grid local and global maps as inputs and

predicts the next long-term goal. The path planning module

uses the FMM [105] to plan a path to the long-term goal.

Their work won the 2020 Habitat ObjectNav Challenge. Luo et

al. [49] also use a semantic top-down grid map borrowed

from [48]. In contrast to previous modular methods using

trained policies, they just set one of the corners of the map as

a long-term goal and get impressive results. Zhang et al. [51]

not only use the top-down semantic map but also first take

the 3D point scene representation as the inputs of the policy.

Using these two representations, they develop two policies to

predict corner and target goals, respectively. Rudra et al. [50]

do the ObjectNav with a given 2D occupancy grid map. They

first sample some vantage points on the map and compute the

probability of spotting the target at these vantage points. Then,

they consider the agent’s start position, the room layout, and

the probability of spotting targets to generate the navigating

order to these points.

2) Grid Map with Prediction: Previous works only use

the grid map that has been observed so far as the policy

input. However, these observed maps are incomplete and

often have occlusions due to the robot’s limited field of

view. To solve this problem, some researchers propose to

predict the complete map and/or predict where the target will

appear before inputting into the policy module. Georgakis et

al. [53] first predict a complete occupancy map from the

accumulated partial occupancy map and then combine the

semantic segmentation of the current view with it to predict

the complete semantic map. Both predictions are carried out

using encoder-decoder networks. Then they use the predicted

semantic map to design the policy to get the next goal and

employ the DD-PPO [100] model to reach the goal. Liang et

al. [52] first use an encoder-decoder network to complete

the local partial map with semantic labels for the unobserved
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TABLE III
SUMMARY OF MODULAR METHODS. WE SUMMARIZE WORKS IN MODULAR METHODS WITH SOME BASIC INFORMATION AND SOME HIGHLIGHTS.

Paper Year Input Datasets Simulator Metric1 Highlights

G
rid

M
ap

w
ith

P
red

ictio
n

Gupta et al. [47] 2017 RGB/D S3DIS [97] -

SR, Mean DTS,

75th percentile,

DTS

First introduce a navigation network that consists of map-

ping and planning modules.

Chaplot et

al. [48]
2020

RGB-D,

GPS+Compass
MP3D, Gibson Habitat Sim

SPL, SR, Soft

SPL, DTS

First introduce a three-module framework with an explicit

top-down semantic map. The winner of 2020 Habitat

ObjectNav Challenge.

Luo et al. [49] 2022
RGB-D,

GPS+Compass
MP3D Habitat Sim

SR, SPL, TR,

GT ER

Use the semantic top-down map and set one of the corners

of the map as a long-term goal.

Zhang et al. [51] 2023
RGB-D,

GPS+Compass
MP3D, Gibson Habitat Sim

SPL, SR, Soft

SPL, DTS

First take the 3D point scene representation as the input

of the policy.

Rudra et al. [50] 2023 Lidar, Depth
2 Simulated and

1 Real Scenes
- SR, SPL

Navigate to some vantage points on a given 2D occupancy

grid map.

G
rid

M
ap

w
ith

o
u
t

P
red

ictio
n

Georgakis et

al. [53]
2022

RGB-D,

GPS+Compass
MP3D Habitat Sim

SPL, SR, Soft

SPL, DTS

First predict a complete occupancy map and then use it to

predict the complete semantic map.

Liang et al. [52] 2021
RGB-D,

GPS+Compass
MP3D Habitat Sim SPL, SR

Use an encoder-decoder network to complete the local

partial map.

Ramakrishnan et

al. [54]
2022

RGB-D,

GPS+Compass
MP3D, Gibson Habitat Sim

SPL, SR, Soft

SPL, DTS

Predict two potential functions that describe the probability

of covering a larger area and finding the target to design

the policy.

Zhu et al. [55] 2022
RGB-D,

GPS+Compass
MP3D Habitat Sim SPL, SR

Predict a distance map that describes the distance from the

map cells to the target.

Goel et al. [56] 2022
RGB-D,

GPS+Compass
MP3D Habitat Sim SPL, SR, DTS

Design a network to predict the occupancy map and the

target distance map as the cost map.

Min et al. [57] 2022
RGB-D,

GPS+Compass

Gibson, 3 Real

Houses
Habitat Sim SPL, SR, DTS

Propose a self-supervised approach to train the semantic

segmentation model used in ObjectNav.

G
rap

h
-b

ased
M

ap
R

ep
resen

tatio
n

Chang et al. [58] 2020
RGB-D,

GPS+Compass
Gibson Habitat Sim SPL, SR

Use a topological map describing the possibility of the

goal’s direction.

Staroverov et

al. [61]
2022

RGB-D,

GPS+Compass,

Landmark List

MP3D, A Real

Scene
Habitat Sim SPL, SR, DTS

Give the agent an order of rooms to explore according to

the analysis of training scenes.

Kumar et al. [59] 2021
RGB-D,

GPS+Compass
MP3D Habitat Sim

SPL, SR, Soft

SPL, DTS

Classify the object’s region area and predict the region

every object belongs to.

Kiran et al. [60] 2022
RGB-D,

GPS+Compass
MP3D Habitat Sim

SPL, SR, ACS,

Soft SPL, DTS

Construct a spatial relation graph to encode the relationship

between objects and regions.

Liu et al. [63] 2023
RGB-D,

GPS+Compass
MP3D Habitat Sim SPL, SR, DTS

Adopt a combination of graph neural networks to extract

multiform relations, like room-to-room connection and

object-in-room membership.

Campari et

al. [62]
2022

RGB-D,

GPS+Compass
MP3D Habitat Sim

SPL, SR, Soft

SPL, DTS

Propose an abstract model encoding the objects, scenes,

and their relationships to get a symbolic representation.

Chen et al. [64] 2023 RGB-D Gibson Habitat Sim SPL, SR, DTS

Encode the environment with different representations, and

propagate the semantics on the scene graphs to get the

geometric frontiers for agent navigation.

1GT: Ground Truth; ACS: Average category-wise Success, TR: Trapped Rate, GT ER: GT Exploration Rate.

scene and also use another network to predict the confidence

of the predicted complete map. Then they use the complete

semantic map and its confidence map as inputs of a policy

network to generate the next action. Experiment results show

that the predicted map with confidence can help improve the

ObjectNav performance by 5.3%/3.9% SR/SPL.

Rather than predicting a complete map, some works directly

predict the probability of the position or area of the target.

Ramakrishnan et al. [54] disentangle the ObjectNav task into

two parts: “where to look?” and “how to navigate to (x, y)?”.

They focus on the first part and treat it as a pure perception

problem by predicting two potential functions that describe

the probability of covering a larger area and finding the target,

respectively. Then the predicted potential functions are used to

design a policy to generate a long-term goal. Zhu et al. [55]

predict a distance map from a top-down semantic map that

describes the distance from the map cells to the target based

on prior knowledge. Then they use the predicted distance

map to design a policy to generate the long-term goal for

path planning. In the 2022 Habitat Challenge, they combine

this modular method with an end-to-end method [30] using

a switch strategy considering different conditions. Their work

won the challenge in 2022. Goel et al. [56] design a network to

predict the occupancy map and the target distance map as the

cost map. Then the cost map is used to generate continuous

robot actions. Min et al. [57] point out that current works

depending on labeled 3D meshes may hinder the transfer of

the ObjectNav to the real world. So they propose a self-

supervised approach to train the semantic segmentation model

using local consistency as a supervision signal. Based on the

PONI [54] framework, they apply the segmentation model to

the ObjectNav task in the real world.

3) Graph-based Map Representation: Despite using a top-

down grid map, some works explore other formats to represent

the environment (e.g., a topological map or a graph). Chang et

al. [58] point out that we humans can leverage common

sense patterns in the environment’s layout from experience.

So they use a topological map describing the possibility of

the goal’s direction and learn it from videos. Then they use

the topological map to get a possible direction and a long-

term goal, and finally use the FMM to reach the long-term

goal. Staroverov et al. [61] analyze training scenes to relate

object types to room types and then use this information to

give the agent an order of rooms to explore the environment.
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Then they use another three trained basic skills (i.e., navigation

to the point, exploration of the nearby area, and reaching the

seen object) to construct the hierarchical navigation system.

Some works use a graph to represent semantic information

and use it directly in the navigation system. Kumar et al. [59]

first construct an object graph and use a region classification

network to predict the region every object belongs to. Then

they count the probability of a goal occurring in all the region

classes. Using the region classification network and the goal

distribution probability, they can get the probability of the goal

appearing in the adjacent area to each detected object and

set the highest as the next long-term goal. They also propose

another modular method [60] in which they construct a spatial

relationship graph and use a graph convolutional network to

encode the relationship between objects and regions. With

the spatial relationship graph, they then introduce a Bayesian

inference approach to process the observations to estimate the

visible regions and select the next visible region to explore.

Liu et al. [63] propose a hierarchical navigation framework,

ReVoLT, in which they adopt a combination of graph neu-

ral networks to extract multiform relationships, like room-

to-room connection and object-in-room membership. Using

these relationship priors, the semantic reasoners adopt Upper

Confidence Bound for Tree (UCT) [106], a strategy to balance

exploration and exploitation, to generate a semantic sub-goal.

Campari et al. [62] propose an abstract model encoding the

objects, scenes, and their relationships to get a symbolic

representation without unnecessary details. With this abstract

model, if the target can be located within this abstract model,

they can set it as the goal position. Otherwise, they will use

a policy based on Active Neural SLAM [107] to generate

the goal position. Based on a visual SLAM system, Chen et

al. [64] propose a training-free pipeline, StructNav. They first

encode the environment with point clouds, scene graphs, and

semantic occupancy maps. Then the semantics are propagated

on the the scene graphs to get the geometric frontiers for agent

navigation.

4) Discussion: Unlike end-to-end learning methods, modu-

lar methods combine the advantages of learning methods and

the classical navigation pipeline. It usually has a mapping

module to represent the environment, a policy module to

generate a long-term goal, and a path planning module to

navigate to the long-term goal. Early works directly use an

implicit or explicit semantic grid map as the input of the

policy network. Then some works use the predicted completed

map from partial observations as the policy input. Then some

researchers take this task as a pure perception task, where they

do not predict the completed map but predict the potential

positions or areas of the target to generate the long-term

goal. At the same time, some works have also explored

maps in other formats (e.g., topological maps) or represented

the environment in a graph-based map representation using

relational information. Unlike end-to-end methods, modular

methods decompose ObjectNav into mapping, long-term goal

policy, and path planning modules. The mapping module

provides a domain-agnostic representation, disentangling the

agent’s perceptual module from the subsequent policy and

path planning modules, which makes it easier to transfer such

methods to the real world. Moreover, modular methods require

less computational resources and time to some extent [54].

However, most modular methods have different mapping mod-

ules with correspondingly designed policies, which are specific

to different assumptions. The lack of a unified framework

like end-to-end methods makes it difficult to compare the

effectiveness of different mapping modules.

C. Zero-shot Methods

Zero-shot learning is a paradigm in which the model is

made to generalize to novel classes with zero training samples.

For example, in zero-shot image classification, the model is

capable of classifying the unseen classes in the test data

without seeing them in the training data. Apart from image

classification, zero-shot learning has been applied to the fields

of object detection and image segmentation and achieved

impressive performance [69]. In ObjectNav, zero-shot methods

refer to navigating to unseen targets that are only available in

testing. So far, there is no unified definition for the existing

works. Zero-shot methods use a zero-shot learning manner to

solve ObjectNav, so they can use the frameworks of end-to-end

or modular methods. According to the slight difference in task

settings, we follow the work [69] to group existing works into

two categories: zero-shot setting and open vocabulary setting.

In the zero-shot setting, seen target classes are available during

the training, while unseen target classes are only available

during the testing. In the open vocabulary setting, there is

no split between seen target classes and unseen target classes

for training and test sets. Instead, Vision Language Models

(VLMs) and Large Language Models (LLMs) are directly used

to provide prior knowledge about unseen target objects, which

allows zero-shot learning in the open-vocabulary setting. As

shown in Table IV, we summarize the zero-shot ObjectNav

methods in both categories.

1) Zero-shot Setting: Zhao et al. [69] point out that over-

fitting on seen classes in training is a core problem in the

zero-shot setting. In order to alleviate this problem, they use

the detection results of seen and irrelevant classes and their

similarity scores with the target as policy inputs. Then they use

a self-attention module to learn the relationship between each

pair of classes. In the testing process, through the learned rela-

tionships, the agent can generate the ability of navigation to the

unseen target classes. Zhang et al. [70] point out that the key

challenge of zero-shot setting is how to generate unseen object

representations within its current environment in testing. They

propose a generative meta-adversarial network that consists of

a feature generator to map the object embeddings to visual

features and an environmental meta-discriminator to adapt the

visual features to fit the current observation. Zhao et al. [72]

explore how to use the historical information. They store

the visual features, goal semantic embeddings, and previous

actions at each step and then aggregate them in the policy

network based on semantic embeddings to facilitate different

targets.

The above three works try to solve the ObjectNav in the

strict zero-shot setting from different perspectives (i.e., allevi-

ating the overfitting on seen classes, generating unseen object
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TABLE IV
SUMMARY OF ZERO-SHOT METHODS. WE SUMMARIZE WORKS IN ZERO-SHOT METHODS WITH SOME BASIC INFORMATION AND HIGHLIGHTS.

Paper Year Input Datasets Simulator Metric1 Highlights

Z
ero

-sh
o
t

S
ettin

g

Zhao et al. [69] 2023 RGB iTHOR AI2-THOR SR, SPL
Use a self-attention module to learn the relationship between

each class to alleviate overfitting on seen classes in training.

Zhang et al. [70] 2022 RGB
iTHOR,

RoboTHOR
AI2-THOR

SPL, SR, EPA,

DTS

Propose a generative meta-adversarial network to map the object

embeddings to visual features and adapt these features to fit the

current observation.

Zhao et al. [72] 2023 RGB-D

MP3D,

HM3D,

RoboTHOR

Habitat Sim,

AI2-THOR
SPL, SR

Store the visual features, goal semantic embeddings, and pre-

vious actions and then aggregate them in the policy network

based on semantic embeddings to facilitate different targets.

O
p
en

V
o
cab

u
lary

S
ettin

g

Gadre et al. [65] 2022 RGB-D
MP3D,

RoboTHOR

Habitat Sim,

AI2-THOR

SR, SPL, VP,

AS

Decompose this task into zero-shot object localization and

exploration without additional training.

Khandelwal et

al. [66]
2022 RGB

MP3D,

RoboTHOR

Habitat Sim,

AI2-THOR

SPL, SR, Soft

SPL, DTS

Use the CLIP vision and language encoders to process the image

and goal labels.

Majumdar et

al. [67]
2022 RGB

Gibson,

MP3D,

HM3DSem

Habitat Sim SR, SPL

First use the CLIP vision encoder to encode the target image in

the ImageNav during training and then use the CLIP language

encoder to encode the goals’ labels in ObjectNav during testing.

Al-Halah et al. [68] 2022 RGB Gibson Habitat Sim SR, SPL

First train a source policy for ImageNav and then develop a

joint goal embedding to relate the target goals to image goals

in ObjectNav.

Chen et al. [71] 2023 RGB iTHOR AI2-THOR SPL, SR

Learn the object co-occurrence relationships by training a GNN

on the Visual Genome dataset and use them directly to predict

the possible areas where the target object may be located.

Zhou et al. [75] 2023 RGB-D

MP3D,

HM3DSem

RoboTHOR

Habitat Sim,

AI2-THOR
SPL, SR

Utilize GLIP to detect objects and rooms and then do common-

sense reasoning using an LLM model to get the most possible

object or room the target will appear around.

Dorbala et al. [73] 2023 RGB RoboTHOR AI2-THOR SPL, SR
Caption the observations to text and then use GPT-3 to decide

the next object the agent should go towards.

Yu et al. [74] 2023
RGB-D,

GPS+Compass

Gibson,

HM3DSem
Habitat Sim SPL, SR, DTS

Describe the environment semantic map boundaries with text

and then use GPT-3 to reason out the better frontier with a high

score to explore for the agent.

Yu et al. [76] 2023
RGB-D,

GPS+Compass
HM3DSem Habitat Sim SPL, SR, DTS

Explore the capability of LLMs as a global planner to guide

multi-robots to navigate to an object

Cai et al. [77] 2023 RGB HM3DSem Habitat Sim SPL, SR, DTS
Transcribe the image into text and use GPT-4 to plan the most

optimal next step, indicated as a pixel.

1VP: Number of visited position; AS: Action Success; EPA: Exploration Area.

representations, and using historical information). However,

there is no standard training or test setting. They use their

own split of the seen and unseen targets on different datasets

(e.g., iTHOR, RoboTHOR, and HM3D), which makes it hard

to compare the performance of their work.

2) Open Vocabulary Setting: In the open vocabulary set-

ting, some works use the encoding ability of the visual and

language information in VLMs to help the agent understand

the environment better. Furthermore, other works introduce

the reasoning ability of LLMs to help the agent make better

decisions without learning.

With the development of multi-modal representation learn-

ing, VLMs (e.g., Contrastive Language-Image Pre-Training

(CLIP) [108]) have shown outstanding zero-shot performance

of different tasks on ImageNet. Recently, some researchers

have applied CLIP to ObjectNav. Gadre et al. [65] propose

CoWs, which decomposes this task into zero-shot object

localization and exploration without additional training. CoWs

first uses CLIP to pair images and goals’ labels and uses a

gradient-based object localization method to get the detailed

spatial positions of goals. Then it integrates the zero-shot

object localization with the frontier-based exploration to do the

ObjectNav. Khandelwal et al. [66] propose EmbCLIP, which

uses the vision and language encoders of CLIP to process the

image and goal labels, respectively. EmbCLIP uses the rep-

resentations from CLIP as inputs and trains a policy network

with a few learnable parameters. Unlike the previous work,

which directly applies the CLIP encoders to the observed

images and goals’ labels, Majumdar et al. [67] propose ZSON.

ZSON first uses the CLIP vision encoder to encode the target

image in the ImageNav [109] task using an RL framework

during training. Then it replaces the CLIP vision encoder with

the language encoder to encode the goals’ labels in ObjectNav

during testing. Similarly, Al-Halah et al. [68] propose ZESL.

ZESL first trains a source policy for ImageNav from scratch.

Then it develops a joint goal embedding to relate various

target goal types to image goals. The joint goal embedding

enables reusing the policy learned from ImageNav to address

ObjectNav in a zero-shot manner. Chen et al. [71] first learn

the object co-occurrence relationships by training a GNN on

the Visual Genome dataset. Then the learned relationships are

used directly to predict the possible areas where the target

object may be located for ObjectNav without modeling any

relationships in a new environment.

In addition to introducing the pre-trained VLMs to help

the agent understand the environment, some works also use

LLMs (e.g., GPT-3 [110] and GPT-4 [111]) to help decision-

making. Zhou et al. [75] propose ESC, which utilizes a pre-

trained vision-and-language grounding model, GLIP [112],

to detect objects and rooms. Then ESC does commonsense

reasoning using an LLM model, Deberta v3 [113], to get

the most possible object or room the target will appear

around. Dorbala et al. [73] propose the Language-Driven Zero-

Shot Object Navigation (L-ZSON) task, in which the goal is

described by language. They first caption the observations to

text and then use GPT-3 to decide the next object the agent
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TABLE V
OTHER RELATED TASKS. WE SUMMARIZE WORKS IN MULTION AND ION TASKS WITH SOME BASIC INFORMATION AND SOME HIGHLIGHTS.

Task Paper Year Input Datasets Simulator Metric1 Highlights

M
u
ltiO

N

Wani et al. [114] 2020
RGB-D,

GPS+Compass
MP3D Habitat Sim

SUCCESS, SPL,

PROGRESS, PPL

First propose the MultiON task, and test the effec-

tiveness of different map representation.

Kim et al. [115] 2021
RGB-D,

GPS+Compass
MP3D Habitat Sim

SUCCESS, SPL,

PROGRESS, PPL

Combine a classical SLAM system, a target detection

module, and a policy to do the MultiON task.

Chen et al. [116] 2022 RGB-D MP3D Habitat Sim
SUCCESS, SPL,

PROGRESS, PPL

Combine a camera policy for the agent to look around

with the existing navigation policy.

Marza et al. [117] 2022
RGB-D,

GPS+Compass
MP3D Habitat Sim

SUCCESS, SPL,

PROGRESS, PPL

Combine existing MultiON methods with three aux-

iliary tasks. The winner of the 2021 Multi-ON Chal-

lenge.

Marza et al. [118] 2023
RGB-D,

GPS+Compass
MP3D Habitat Sim

SUCCESS, SPL,

PROGRESS, PPL

Propose two implicit representations to predict the

positions of the targets and map the environment to

2D occupancy information.

Schmalstieg et

al. [119]
2022

RGB-D,

GPS+Compass

iGibson 1.0,

An Office

Scene

iGibson [120] SUCCESS, SPL

First do the MultiON in continuous action space and

remove the requirement for the agent to navigate to

targets in a fixed order.

IO
N Li et al. [121] 2021 RGB iTHOR AI2-THOR

CLSR, CLSPL,

INSR, INSPL,

ILSR, ILSPL

Propose a navigation module based on an instance-

level relation graph to encode the representations of

colors, materials, and locations.

1SUCCESS: Binary indicator of episode success; PROGRESS: The fraction of object goals that are successfully found; SPL: Extension of “Success weighted by Path Length” to

the MultiON task; PPL: A version of SPL based on progress; CLSR: Category-Localization Success Rate; CLSPL: Category-Localization Success weighted by Path Length;

INSR: Instance-Navigation Success Rate; INSPL: Instance-Navigation Success weighted by Path Length. ILSR: Instance-Localization Success Rate; ILSPL: Instance-Localization

Success weighted by Path Length.

should go towards. Yu et al. [74] propose L3MVN, which

describes the environment semantic map boundaries with text

and then uses GPT-3 to reason out the better frontier with a

high score to explore for the agent. They [76] further propose

Co-NavGPT to explore the capability of LLMs as a global

planner to guide multi-robots to navigate to an object. Cai et

al. [77] propose PixNav to use the capability of LLMs to

complete the last-mile navigation. PixNav first transcribes the

image into text and uses GPT-4 to plan the most optimal next

step, indicated as a pixel.

3) Discussion: In summary, the works with the zero-shot

setting are more focused on exploring how to alleviate the

overfitting problem, generate unseen object features in new

environments, and use historical information. While the works

using the prior knowledge of pre-trained VLMs and the

reasoning ability of LLMs help get better visual features and

make better decisions for the agent. The zero-shot methods

provide a way to solve the problem where new objects are

encountered in real-world applications, and are good supple-

ments to end-to-end and modular methods where only pre-

defined objects are considered. However, there is a relatively

small amount of research in this direction. More research and

exploration are expected in the future.

D. Other Related Tasks

In this section, we will introduce two more challenging

related tasks, Multi-Object Navigation (MultiON) [114] and

Instance-level Object navigation (ION) [121]. In MultiON, the

agent is asked to navigate to an ordered sequence of objects

(1-3 objects) in an unseen environment. It requires the agent to

remember the targets it has seen and navigate to the targets in

a fixed order. In ION, the agent has to navigate to an instance-

level object with a specific color and material. MultiON and

ION tasks are more challenging than the ObjectNav. MultiON

deals with multiple objects, while ION deals with specific

objects. There are not so many works till now. Research on

these two tasks will help to improve the intelligence of the

agent.

1) MultiON: Wani et al. [114] propose the MultiON task

and hold the MultiON Challenge2 to promote the research of

long-horizon navigation. In [114], the effectiveness of differ-

ent map representations are tested in an end-to-end learning

framework. It is found that the agent using a simple semantic

map performs better than the agent using a complex map

with neural features. Kim et al. [115] propose a framework

consisting of a classical SLAM system, a target detection

module, and a policy. If the target is not detected, the agent just

explores the environment using the Frontier-based Exploration

(FBE) policy. Otherwise, the agent utilizes the D* [122] path

planner to approach the detected target. Their method ranked

2nd place in the 2021 Multi-ON Challenge without using any

learning modules. Chen et al. [116] point out that humans

turn their heads to look around with curiosity when walking

in a new environment. So they propose a camera policy for

the agent to look around and combine it with the existing

navigation policy to improve the efficiency of exploration. In

the study of human spatial navigation [123], researchers point

out that the sense of direction and the judgment of relative

distance is very important to human navigation. Inspired

by this idea, Marza et al. [117] combine existing MultiON

methods with three auxiliary tasks (i.e., to predict whether

the target has been seen, the direction to the target, and the

distance to the target). Their method won the 2021 Multi-

ON Challenge. Recently, implicit representations have had an

impressive performance in novel view synthesis [124] and the

potential in representations for robotics [125]. Inspired by this,

Marza et al. [118] propose two implicit representations: the

Semantic Finder to predict the positions of the targets and the

Occupancy and Exploration Implicit Representation to map

the environment to 2D occupancy information. Such repre-

sentations have advantages without considering the explicit

2https://multion-challenge.cs.sfu.ca/2021.html
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Fig. 7. Papers on Habitat Sim and AI2-THOR. We count the number of
works done in these two simulators.

TABLE VI
PERFORMANCE ON HABITAT OBJECTNAV CHALLENGE 2021. WE

COMPARE THE PERFORMANCE OF WORKS DONE IN THE HABITAT

OBJECTNAV CHALLENGE 2021.

Type Method SPL↑ SoftSPL↑ DTS(m)↓ SR↑

End-to-end

Red Rabbit [28] 0.062 0.121 9.146 0.237
OVRL [34] 0.083 0.175 7.511 0.249
THDA [27] 0.089 0.172 9.176 0.214
Habitat-Web [30] 0.099 0.177 7.629 0.278
PIRLNav [33] 0.145 0.237 6.951 0.346

Modular PONI [54] 0.088 0.171 8.684 0.200
Stubborn [49] 0.098 0.174 9.084 0.237

Zero-shot EmbCLIP [66] 0.078 0.203 7.918 0.181

No report RIM (RIM) 0.156 0.250 6.807 0.376

format of the map. Slightly different from the definition of

MultiON [114] in previous works, Schmalstieg et al. [119]

propose MultiON in continuous action space and remove the

requirement for the agent to navigate to the targets in a

fixed order. They propose a predictive module to predict the

direction of the closet target using the encoding of the semantic

map and previous states. They take this direction prediction

as the agent’s long-horizon intention.

2) ION: Li et al. [121] extend ObjectNav to Instance Object

Navigation (ION), where the agent is required to navigate to

an instance-level object with a given instance-level description,

like colors and materials. To solve this more challenging

task, they propose a navigation module based on an instance-

level relation graph to encode the representations of colors,

materials, and locations. Then they use an instance grounding

module to select the final instance prediction from several

ground truth candidates provided by the simulator.

IV. DISCUSSION

In this section, we first summarize the performance of

ObjectNav on the two mentioned simulators and analyze some

failure modes. Then, we discuss challenges faced in ObjectNav

and potential future directions.

A. Performance Comparison and Analysis

1) Performance on Habitat Sim and AI2-THOR: We sum-

marize the distribution of the existing works on Habitat Sim

and AI2-THOR as in Fig. 7. The basic information and

highlights can also be found in Table II, III, and IV. We

find works focused on visual representation in the end-to-end

method are mainly done on AI2-THOR. And modular methods

are mostly evaluated on Habitat Sim. We think the reason is

that the AI2-THOR simulator provides the RGB-D images as

inputs, and the Habitat Sim provides not only the RGB-D

images but also the GPS+Compass, which makes it easier to

build the map.

For the works tested in Habitat Sim, some perform the

validation set in their way, and a few give the results on the

Habitat ObjectNav Challenge. So for a fair comparison, we

only show the performance of works that have published the

results on Habitat ObjectNav Challenge 2021 Leaderboard3

and Habitat ObjectNav Challenge 2022 Leaderboard4. We do

not show the results on Habitat ObjectNav Challenge 2023

Leaderboard5 which only has results of three works. We show

the performance of works before 2021 using the MP3D [87]

and in 2022 using the datasets HM3DSem [90] in Table VI

and Table VII, respectively.

In the Habitat ObjectNav Challenge before 2021, there are

21 categories of objects in the environment. And in the test

split, the target object for the agent to navigate to is from

the same 21 categories. In Table VI, PIRNav achieved the

best performance with 0.145 SPL, 0.237 SoftSPL, 0.346 SR,

and 6.951 DTS in the end-to-end methods. The RIM without

any report achieved the best results with 0.156 SPL, 0.250

SoftSPL, 0.376 SR, and 6.807 DTS.

In the Habitat ObjectNav Challenge in 2022, another

dataset, HM3DSem, is used. This dataset has higher visual

fidelity and fewer artifacts than MP3D. The targets are from 6

categories of objects. There are also two test phases: the Test-

Standard phase for establishing the state of the art (SOTA)

and the Test-Challenge phase to decide the winner. As shown

in Table VII, ByteBOT, which is based on the work [55], has

the best results with 0.35 SPL, 0.38 SoftSPL, 0.64 SR, and

3.19 DTS. Currently, there is no report for this method and

only the presentation. From the presentation, they combine

their modular work with the end-to-end work [30] to do the

ObjectNav. From Table VII, we can see the results in 2022

are much higher than the results in 2021 and before. We think

this mainly attributes to the number of the target category.

On the AI2-THOR platform, RoboTHOR is used for Object-

Nav Challenge, while many works also use the iTHOR in their

experiments. So we use the comparison results in works [32],

[41] to show the performance on the AI2-THOR platform, as

shown in Table VIII. We can see the MT [41] achieves the

best performance on both iTHOR and RoboTHOR datasets.

The performance on iTHOR is much better than the perfor-

mance on RoboTHOR. We think it is attributed to the simple

environment in the iTHOR dataset, which is the single room-

sized scene. The scenes in RoboTHOR are more complex and

have longer navigation paths.

The results of the Habitat ObjectNav Challenge (before

2021) are much lower than the results in AI2-THOR. We think

this is because the scenes in Habitat Sim are larger, and the

target number is 21, while the number in the test phase in the

RoboTHOR ObjectNav Challenge is only 12. After they set

the target number to 6 in the Habitat ObjectNav Challenge

in 2022, there is no significant gap between the results on

3https://eval.ai/web/challenges/challenge-page/802/leaderboard/2195
4https://eval.ai/web/challenges/challenge-page/1615/leaderboard/3899
5https://eval.ai/web/challenges/challenge-page/1992/leaderboard/4705
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TABLE VII
PERFORMANCE ON HABITAT OBJECTNAV CHALLENGE 2022. WE COMPARE THE PERFORMANCE OF WORKS DONE IN THE HABITAT OBJECTNAV

CHALLENGE 2022.

Type Method Test-Standard Phase Test-Challenge Phase

SPL↑ SoftSPL↑ DTS (m)↓ SR↑ SPL↑ SoftSPL↑ DTS (m)↓ SR↑

End-to-end

DD-PPO [100] 0.12 0.22 4.31 0.26 0.12 0.22 4.82 0.25
Habitat-Web [30] 0.22 0.26 3.15 0.55 0.30 0.36 2.89 0.59
SkillFusion (AIRI) [43] 0.29 0.35 3.05 0.55 0.27 0.33 3.68 0.53
OVRL [34] 0.27 0.31 2.49 0.60 - - - -
ProcTHOR-Large [?] 0.32 0.38 2.58 0.54 - - - -
PIRLNav [33] 0.33 0.37 2.22 0.65 0.33 0.36 2.46 0.65

Modular Stretch [48] 0.34 0.38 3.46 0.60 0.29 0.34 4.05 0.56

No report
Walle 0.27 0.33 2.78 0.56 0.30 0.35 2.72 0.61
ICanFly 0.33 0.39 2.70 0.60 - - - -
ByteBOT 0.37 0.40 2.61 0.68 0.35 0.38 3.19 0.64

TABLE VIII
PERFORMANCE ON ITHOR AND ROBOTHOR DATASETS. WE COMPARE

THE PERFORMANCE OF WORKS DONE IN THE ITHOR AND ROBOTHOR
DATASETS.

Type Method iTHOR RoboTHOR

SR↑ SPL↑ SR↑ SPL↑

End-to-end

Random 0.0412 0.0221 0 0
SP [14] - - 0.2743 0.1749
SAVN [25] 0.6312 0.3781 0.2897 0.1659
ORG [10] 0.6732 0.3701 0.3051 0.1862
HOZ [20] 0.6853 0.3750 0.3167 0.1902
OMT [23] 0.7113 0.3727 0.3217 0.2009
VTNet [22] 0.7224 0.4457 0.3392 0.2388
DOA [24] 0.7432 0.4027 0.3622 0.2212
DAT [32] 0.8239 0.4893 0.4172 0.2791
MT [41] 0.8314 0.5023 0.4280 0.2709

Modular SSCNav [52] 0.7714 0.3109 0.3812 0.1410
PONI [54] 0.7858 0.3378 0.3842 0.1630

these two simulators. Though the performance is improving,

current results show that the agent’s performance is still poor

in complex environments, which makes it still far from real-

world applications.

2) Analysis on Failure Modes: Many methods have been

proposed to improve the ObjectNav performance in simulation

environments. However, it is still far from real-world appli-

cations. Two works [28], [49] analyze the failure modes in

simulation environments, and one [126] analyzes those in both

simulation and real-world environments. In this section, we

summarize the analysis reported in works [49] and [126].

In the work [49], the authors analyze the failure modes of

end-to-end and modular learning methods [28], [48] in the

Habitat Sim environment. They find the top reason is false or

missed target detection, which means the agent either detects

the wrong object as the target or does not detect the target

even though it is in view. The second reason is exploration,

in which the agent loops over or repeats the collision in the

same area and explores the wrong area to find the target.

Gervet et al. [126] compare the classical methods, the end-

to-end learning methods, and the modular learning methods

both in simulation and real-world environments. The results

show that the classical and modular learning methods transfer

better from simulation to real world than the end-to-end

learning methods. There is an increase in both classical and

modular learning methods from sim to real. They point out

two gaps between the current simulators and the real world,

which are summarized below.

First, there is a gap in the quality and appearance of RGB

images. The segmentation results trained on the simulation

environment drop when tested in the real world, and vice versa.

The end-to-end learning methods directly map observations

to actions, so the gap significantly affects the performance.

But the classical and modular learning methods first use

observations to build a semantic grid map that is invariant

when transferred between sim and real. This is why the

modular learning methods have better sim-to-real performance

than the end-to-end learning methods.

Another gap is the failure modes of the modular learning

methods between the simulator and the real world. The errors

in the simulator come from the inherent visual and physical

reconstruction errors, which do not happen in the real world.

The errors in the real world are primarily due to depth sensor

errors, such as those caused by mirror reflections. This also

explains the increased performance of classical and modular

learning methods in reality.

B. Challenges and Future Directions

1) High Computational Cost: Most end-to-end and zero-

shot methods and some modular methods usually implicitly

learn the policy using an RL or IL framework. As a result, it

requires significant computational resources and time, which

makes it quite hard for real-world applications. There have

been some modular methods to solve this problem. For ex-

ample, PONI [54] does the ObjectNav by predicting some

potential functions using supervised learning instead of RL

to reduce computational cost. Some other works [49], [53],

[60] use a designed policy rather than learning the policy to

remove the time-consuming learning process. Further studies

in this direction are expected to be conducted in the future.

2) Application in Real World: Many of the existing works

of ObjectNav are in simulators. The work in [126] studies

the classical, end-to-end, and modular learning methods both

in the simulator and the real world. It finds gaps in image

quality and failure modes between the simulator and the real

world, which provides useful directions for research works on

sim-to-real in the future. Another challenge is that we still rely

on the expensive human-annotated semantic 3D mesh in the

simulator. Min et al. [57] have pointed out this problem and
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used a self-supervision method to do ObjectNav, which could

be explored further in the future.

3) Representation with 3D Information: From the perspec-

tive of visual representation, most works only use the visual

representation of 2D images without considering 3D infor-

mation. Though some work convert 2D depth images to 3D

point clouds and then get a top-down map, they only use the

top-down map in 2D without exploiting the 3D information.

Zhang et al. [51] is the first work that proposes to use a 3D

point scene representation as the input for policy prediction. It

mainly uses 3D information to help with target identification.

So one of the future directions would be to introduce 3D

information into different representations and explore how

the 3D information could be used to improve navigation and

exploration.

4) VLMs and LLMs for ObjectNav: In zero-shot methods,

the VLMs and LLMs have been applied to help the agent

use the prior common knowledge and make decisions. Ben-

efiting from large-scale pre-training, VLMs and LLMs show

excellent zero-shot performance in vision and language tasks.

However, the knowledge learned (e.g., semantic and spatial

relationships) in VLMs and LLMs has not been thoroughly

explored and applied to ObjectNav, which is also a promising

direction for future research.

V. CONCLUSION

We present a comprehensive survey on ObjectNav. We first

give the definition of this task, and introduce the simulators,

the datasets, and the metrics it uses. Then we group the works

on ObjectNav into three categories: end-to-end, modular, and

zero-shot methods, and discuss their advantages and disad-

vantages. We also introduce two other related tasks, MultiON

and ION. Finally, we summarize the performances of current

works and the failure modes that cause the poor performances

and discuss challenges and directions for future research in

this field.

REFERENCES

[1] M. M. Rayguru, S. Roy, L. Yi, M. R. Elara, and S. Baldi, “Introduc-
ing switched adaptive control for self-reconfigurable mobile cleaning
robots,” IEEE Trans. Autom. Sci. Eng., pp. 1–12, 2023.

[2] H. M. Do, K. C. Welch, and W. Sheng, “SoHAM: A sound-based
human activity monitoring framework for home service robots,” IEEE

Trans. Autom. Sci. Eng., vol. 19, no. 3, pp. 2369–2383, 2021.
[3] P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta,

V. Koltun, J. Kosecka, J. Malik, R. Mottaghi, M. Savva et al., “On
evaluation of embodied navigation agents,” arXiv:1807.06757, 2018.

[4] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in Proc. IEEE Int. Conf. Symp. Comput. Intell. Robot. Autom. CIRA’97.
IEEE, 1997, pp. 146–151.

[5] J. Duan, S. Yu, H. L. Tan, H. Zhu, and C. Tan, “A survey of embodied
AI: From simulators to research tasks,” IEEE Trans. Emerging Top.

Comput. Intell., 2022.
[6] D. Batra, A. Gokaslan, A. Kembhavi, O. Maksymets, R. Mottaghi,

M. Savva, A. Toshev, and E. Wijmans, “ObjectNav revisited: On eval-
uation of embodied agents navigating to objects,” arXiv:2006.13171,
2020.
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