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Towards Grouping in Large Scenes with

Occlusion-aware Spatio-temporal Transformers
Jinsong Zhang, Lingfeng Gu, Yu-Kun Lai, Member, IEEE, Xueyang Wang, Kun LiB, Member, IEEE

Abstract—Group detection, especially for large-scale scenes,
has many potential applications for public safety and smart
cities. Existing methods fail to cope with frequent occlusions
in large-scale scenes with multiple persons, and are difficult
to effectively utilize spatio-temporal information. In this paper,
we propose an end-to-end framework, GroupTransformer, for
group detection in large-scale scenes. To deal with the frequent
occlusions caused by multiple people, we design an occlusion
encoder to detect and suppress severely occluded person crops.
To explore the potential spatio-temporal relationship, we propose
spatio-temporal transformers to simultaneously extract trajec-
tory information and fuse inter-person features in a hierarchical
manner. Experimental results on both large-scale and small-scale
scenes demonstrate that our method achieves better performance
compared with state-of-the-art methods. On large-scale scenes,
our method significantly boosts the performance in terms of
precision and F1 score by more than 10%. On small-scale scenes,
our method still improves the performance of F1 score by more
than 5%. We will release the code for research purposes.

Index Terms—Group detection, Large-scale scenes, Spatio-
temporal transformers.

I. INTRODUCTION

G
ROUP detection is a fundamental task in computer

vision that involves identifying groups of people from

images or videos, which has numerous applications in human-

centric analysis tasks such as abnormal detection [1], [2], tra-

jectory prediction [3]–[6] and group activity recognition [7]–

[10]. In this work, our primary focus is on group detection

in large-scale scenes, which has significant implications for

public safety [11], dynamic environments [12], and smart

cities [13], [14].

Existing group detection methods mainly focused on small-

scale scenes with limited persons or interactions. Some works

focused on group detection on a single image. Traditional

methods [11], [16], [17], [18] utilized some hand-crafted

features to identify F-formations [19] in crowds, which needed

to detect the interaction spaces of groups of people. However,

they only detected groups of F-formations, while other spa-

tial patterns of groups were ignored. Furthermore, detecting

groups based solely on a single image is not always reasonable,

considering the dynamic nature of human relationships in real

life. Consequently, researchers have explored group detection

in videos. Some methods [20] directly input video clips into an
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Figure 1. Given a video of a large-scale multi-person scene,

our method can detect reasonable groups, despite the large

number of people and frequent occlusions in the scene. While

the state-of-the-art method [15] fails to predict right results.

Different groups are shown with different color boxes.

I3D backbone [21] to extract spatial and temporal information

simultaneously. However, it is important to note that spatial

and temporal concepts are learned by different cognitive

mechanisms in our brains [22], indicating the challenge of

effectively learning both concepts within the same network.

Other methods [23] have utilized trajectory information to

detect groups in crowds. However, these approaches overlook

the impact of image information, such as interactions between

individuals, on group detection. Moreover, the aforementioned

existing methods are designed for group detection in short
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videos of small-scale scenes, which are not suitable for large-

scale multi-person scenes due to the large computation cost.

Group detection on large-scale multi-person videos holds

great research significance and offers a wide range of potential

applications. However, there is a scarcity of works in this

area primarily due to the limited availability of datasets de-

signed specifically for large-scale multi-person scenes. Wang

et al. [24] addressed this gap by introducing the gigaPixel-

level humANcentric viDeo dAtaset (PANDA), which features

a wide field-of-view, gigapixel-level image resolution, and

temporally long-term crowd activities. They also proposed a

global-to-local zoom-in framework to detect groups in large-

scale multi-person videos using the multi-modal inputs, i.e.,

images and trajectories. However, they ignored the frequent

occlusions in crowd videos, i.e., a person can be occluded

sometimes, and the appearance features at those time instances

are unreliable for group detection. Furthermore, the method

extracted image and trajectory features independently, em-

ploying 3D ConvNet [25] for spatio-temporal image features

and LSTM (Long Short-Term Memory) [26] for temporal

trajectory features. It is worth noting that 3D ConvNet faces

similar challenges as I3D, and LSTM fails to incorporate

spatial information from trajectories. Recently, Li et al. [15]

proposed a novel group detection method by pre-training

the model using a self-supervised method, which produced

promising results. However, this method also disregarded the

occlusion problem and processed spatial and temporal infor-

mation separately, which means that the spatial information

and the temporal information are processed in sequence and

not synchronized [22], limiting its performance.

In this paper, we propose GroupTransformer, an end-to-end

spatio-temporal framework designed to address the challenges

of frequent occlusions and complex spatio-temporal interac-

tions in large-scale multi-person scenes. To tackle the issue

of occlusions prevalent in large-scale scenes, we introduce an

occlusion encoder that focuses on better extracting individual

features. It leverages inter-frame similarity to identify and

suppress features influenced by severe occlusions in specific

frames, thereby enhancing the robustness of our model to

occlusions. The occlusion encoder improves the overall perfor-

mance by effectively considering the inter-frame similarities of

individuals. Inspired by [22], we design a hierarchical scheme

for the spatio-temporal transformers, which addresses the

challenge of processing spatial and temporal information in a

series computation manner. Our scheme incorporates a spatial

branch and a temporal branch, enabling synchronized process-

ing of spatial and temporal information during data-driven

training. This design allows for comprehensive exploration

of the relationship between trajectory and appearance, with

high-level semantic features from the temporal branch guiding

the learning of appearance features. The temporal information

is primarily extracted from trajectory features using densely

connected convolutional layers, while the spatial information is

fused and obtained through a transformer encoder. We evaluate

our method on both small-scale scene datasets and large-scale

scene datasets, and the experimental results demonstrate its

superiority over state-of-the-art methods. Figure 1 illustrates

an example of the grouping results compared our method with

the state-of-the-art method, S3R2 [15]. To facilitate further

research, we will release the code for GroupTransformer for

academic purposes.

The main contributions of this work are summarized as

follows:

• We propose an end-to-end framework which fuses spatio-

temporal information from multi-modal inputs to detect

groups in a large-scale multi-person scene, which ef-

fectively explores the multi-modal information and well

deals with the occlusion problem.

• We propose spatio-temporal transformers, comprising a

spatial branch and a temporal branch, which facilitate the

hierarchical fusion of appearance and trajectory features.

• To further enhance the personalized individual feature

extraction process, we propose an occlusion encoder. This

component effectively suppresses features affected by

severe occlusions in specific frames, thereby improving

the anti-occlusion ability of our model.

• Experimental results on both large-scale and small-scale

benchmark datasets demonstrate the superior perfor-

mance of our proposed method.

We organize the remainder of this paper as follows: in Sec-

tion II, we give a brief review of related work, including static

methods, dynamic methods for group detection, occlusion-

aware methods, and spatio-temporal methods. In Section III,

we introduce our proposed GroupTransformer, including the

training strategy and loss functions. In Section IV, we first val-

idate the effectiveness of our method through qualitative and

quantitative experimental results, comparing it with several

state-of-the-art methods. Subsequently, we conduct ablation

studies to assess the impact of different components in our

model. Additionally, we evaluate the robustness of our method

by introducing noise to the bounding boxes and randomly

reducing the bounding boxes of each person. Finally, we

conclude and discuss our work in Section V.

II. RELATED WORK

In this section, we review group detection on still images

and videos. The methods can be classified into static methods

and dynamic methods according to the input. Besides, we

review the existing works about occlusion-aware methods and

spatio-temporal methods to learn about the motivation of our

model.

A. Static Methods

Group detection in still images has been studied extensively

in the literature. These methods aim to detect interactions and

spatial arrangements among individuals in a single image.

Early static methods focused on detecting F-formations,

which are spatial patterns formed by free-standing conversa-

tional individuals. Kendon et al. [19] proposed the concept of

F-formations and identified specific spatial configurations that

tend to emerge during conversations. Traditional static meth-

ods for detecting F-formations relied on hand-crafted rules and

mathematical models [27], [28]. With the advancement of deep

learning, recent static methods have benefited from the power

of deep neural networks to improve performance in group



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 3

detection. For example, some methods have adopted Graph

Neural Networks (GNNs) [29] to model the mutual features

and relationships among individuals in a single image. These

methods leverage position and pose features of individuals and

construct a fully connected graph to transfer messages and

capture the group structure [30].

Static methods are suitable for closed scenes with a limited

number of people, such as social gatherings or small group

activities [17], [31]. However, they have limitations in real-

world scenarios where the number of individuals is large and

dynamic. Additionally, static methods often rely on camera

parameters and depth information to reconstruct world coordi-

nates, which may not be readily available in practical settings.

Moreover, grouping results obtained from a single image may

not be reliable, as the relationships and interactions between

individuals are inherently dynamic and may change over time.

Therefore, there is a need for methods that can leverage

temporal information from video sequences to improve group

detection performance.

B. Dynamic Methods

Dynamic methods leverage the temporal information from

consecutive frames to infer the relationships among individ-

uals in a video sequence. Early dynamic methods focused

on using trajectory features for group detection. Ge et al.

[23] proposed a classic trajectory-based method that utilized

pedestrian detection and tracking techniques to extract tra-

jectories from video frames. They then applied hierarchical

clustering to detect groups of people with similar trajectories.

However, relying solely on trajectory information may not be

sufficient to determine the relationships between individuals.

For example, in a crowd walking on a sidewalk, most people

may have similar trajectories but have no direct relationship

with each other.

To overcome this limitation, appearance features obtained

from images, which contain meaningful interactive informa-

tion, are incorporated to obtain reliable grouping results.

Ehsanpour et al. [20] proposed a novel framework for small-

scale videos group detection in small-scale videos by utilizing

appearance features. They used the I3D network [32] as

a video backbone to extract spatial and temporal features

across frames. However, this type of feature extractor may

not be suitable for large-scale scenes, especially for videos

with gigapixel-level resolution. Additionally, using the same

network to extract both spatial and temporal features from the

inputs may not be reliable.

To address the challenges of large-scale scenes, researchers

have explored different approaches. Wang et al. [24] proposed

a global-to-local zoom-in framework for group detection in

large-scale scenes. They utilized both appearance and trajec-

tory features. However, in their appearance-based model, the

fusion of spatial and temporal information from appearance

input was not well addressed. In their trajectory-based model,

they used LSTM to capture temporal information from the

trajectory input but ignored the spatial information. Further-

more, the occlusion of appearance features of different persons

in long-duration crowd videos was not properly considered,

leading to inaccurate grouping results. Recently, Li et al. [15]

proposed a two-stage method that pre-trains the model on

unsupervised tasks before fine-tuning for group detection.

While achieving promising performance, this approach ne-

glects frequent occlusions in crowd videos and relies on a

gated recurrent unit model for temporal information aggrega-

tion, which may limit its effectiveness.

In this paper, we propose an end-to-end framework for

group detection in large-scale multi-person scenes by ex-

tracting personalized individual features with an occlusion

encoder and exploring the relationship between trajectory and

appearance features using spatio-temporal transformers. By

explicitly considering occlusion and leveraging both spatial

and temporal information, our method aims to improve group

detection performance in challenging large-scale scenes.

C. Occlusion-aware Methods

Occlusion problems exist in many computer vision tasks,

including person re-identification [33], optical-flow estima-

tion [34], instance segmentation [35] and so on. Existing

occlusion-aware methods aim to recover the occluded informa-

tion through different approaches. For person re-identification,

Wang et al. [33] proposed a feature erasing and diffusion

network to recover the occluded information by data augmen-

tation to achieve intrinsic representation. For flow estimation,

Wang et al. [34] addressed occlusion by estimating an oc-

clusion map to post-process the estimated flow. For instance

segmentation, Ke et al. [35] presented a novel perspective that

segments single images as double-layer images, and adopted

a transformer-based network to recover the occluded infor-

mation, which meant it also tries to deal with the occlusion

problem by recovering the occluded information.

In our work, instead of recovering the occluded information,

we adopt a transformer-like architecture [36] as our occlusion

encoder to extract more useful and precise information, while

ignoring unreliable information caused by occlusions. By

focusing on the essential information, our model aims to

achieve accurate and reliable group detection in the presence

of occlusions.

D. Spatio-temporal Methods

The fusion of spatial and temporal information is a well-

studied problem, particularly in video-based tasks [37]–[46].

Some methods used optical flow as the temporal informa-

tion to cope with video instance segmentation [47], [48].

However, these approaches heavily rely on accurate optical

flow estimation, which can be challenging and memory-

intensive, making them less suitable for large-scale scenes.

Some methods [42], [43] utilize CNN-based networks to

extract frame-wise features and employ RoIAlign to extract

individual features for group activity recognition. However, in

the context of large-scale scenes with images at the giga-pixel

level, extracting frame-wise features becomes impractical.

Ehsanpour et al. [20] employed video-based backbones, such

as I3D [21], for video activity recognition. However, using

the same architecture to extract both spatial and temporal

features may not be optimal [22]. Zheng et al. [38] proposed
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a novel temporal attention mechanism for abnormal event

detection. They treated temporal information as a sequence

and used non-local attention to extract and aggregate it. Similar

with [38], some methods [49]–[51] adopted transformer-like

architectures to cope with spatio-temporal information. These

methods consider the temporal information as a sequence, and

apply attention mechanism to extract and aggregate informa-

tion for each frame, which is suitable for video-based tasks.

However, as discussed in [22], the spatial information and the

temporal information should be learned by different cognitive

mechanisms, and should be synchronized to process the se-

quential information. The conventional approaches [41], [45],

[46] that first extract spatial information from each frame and

then fuse it with temporal transformers may lead to a lack of

information synchronization. Besides, in group detection, the

temporal information e.g., trajectories, is not just a sequence,

it is also the important location information for distinguishing

the group results. LSGD [24] and S3R2 [15] handle temporal

information and spatial information respectively, which can

result in suboptimal performance.

Motivated by [22], we propose to update the temporal infor-

mation and the spatial information in a hierarchical manner.

Specifically, we propose the spatio-temporal transformer with

a temporal branch and a spatial branch, which first extracts

temporal information, and then concatenates with the spatial

information. With this operation, the spatial information can

be synchronized with temporal information. We stack several

spatio-temporal transformers to extract and aggregate spatial

and temporal information effectively.

III. METHOD

The objective of our work is to detect groups in large-scale

multi-person scenes. To achieve this, we represent individuals

and their relationships as vertices and edges in a graph

G = (V,E). We then formulate the group detection task as

an edge classification task, and exploit features from multiple

modalities (the trajectory and the video) for edge classification.

The proposed framework consists of three key components:

1) occlusion encoder, which takes the appearance feature of

individuals as inputs and aims to alleviate the influence of

occluded person crops in specific frames; 2) spatio-temporal

transformers (STT), which encode the features from both

modalities, i.e., the trajectory and the video, and fuse infor-

mation across both spatial and temporal dimensions; 3) edge

classifier, which classifies the interested edges in the graph G

according to the fused individual features from spatio-temporal

transformers. Figure 2 shows the framework of our method,

depicting the flow of information and the interaction between

the different components.

A. Occlusion Encoder

Previous works [15], [24] of group detection in large-scale

scenes ignored the issue of frequent occlusions in multi-

person scenes. As a result, the extracted features may contain

noise and unreliable information. To address this problem, we

propose the occlusion encoder, inspired by the attention mech-

anism [36]. Instead of recovering occluded information [33]–

[35] in other vision tasks, the occlusion encoder aims to filter

out the occluded information in the input sequence, allowing

us to obtain more reasonable and meaningful information from

the inputs.

The occlusion encoder consists of two learnable functions,

denoted as f(·) and g(·). The input is the sequential ap-

pearance features X ∈ R
N×D×T extracted by a pre-trained

ResNet50 [52], where N,D, T represent the number of per-

sons, the dimension of appearance features, and the number

of frames, respectively. For each person and its sequential

appearance features X = [x1,x2, ...,xT ] ∈ R
D×T , we assume

that most of the person crops are not occluded. Then, we

leverage the fact that appearance features for the same non-

occluded person crops exhibit inter-frame similarity, while

occluded ones are likely to have little similarity with other

frames.

To capture the inter-frame similarity, we calculate the affin-

ity between frames using the inner product in the normalized

feature space. Specifically, the similarity between frame i and

frame j of a person can be computed as:

si,j =
f(xi)f(xj)

⊤

∥f(xi)∥∥f(xj)∥
. (1)

Here, f(·) is a learnable function that maps appearance

features to a feature space, and xi represents the appearance

feature at frame i. The similarity values range from 0 to 1, as

f(·) outputs ReLU-activated feature vectors.

To determine the attention value ai for frame i, we calculate

the mean similarity between frame i and all other frames:

ai =
1

T

T∑

j=1

si,j . (2)

For a severely occluded frame i, it will have little similarity

with the other frames, resulting in a small attention value ai.

In practice, if a person does not appear in all frames, the mean

value is calculated only based on the visible frames. Finally,

we obtain the processed appearance feature with the attention

mask by:

zi = g(xi)× ai. (3)

The embedding functions f(·) and g(·) are implemented by

a linear layer and a ReLU activation function. The output of

this module is the refined appearance features for each person,

denoted as Zapp = [z1, z2, ..., zT ].

B. Spatio-temporal Transformers

Previous works on video understanding [20], [23] adopted

RNN/LSTM-based or 3D ConvNet-based approaches to ex-

tract temporal information. However, these methods typically

process spatial and temporal information in a sequential man-

ner, leading to a lack of synchronization between spatial and

temporal features [22]. This limitation hinders the effective

representation of extracted features. In order to exploit the

potential relationship between the multi-modal inputs in both
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Figure 2. Overview of the proposed GroupTransformer. We initially adopt a pre-trained ResNet50 network to extract individual

appearance features. Subsequently, the proposed occlusion encoder is utilized to filter out occluded information. Finally,

spatio-temporal transformers are employed to fuse both trajectory and appearance features. In output results, the individuals

encapsulated within red bounding boxes, who are interconnected by blue edges, are classified into the same group.

the spatial and temporal dimensions, we propose the spatio-

temporal transformers (STT) to fuse spatio-temporal informa-

tion from trajectory and appearance features.

The STT module contains two branches: a temporal branch

and a spatial branch. The temporal branch extracts high-

level temporal semantics from trajectory features, such as the

moving velocity at each moment. We design the temporal

branch based on the DenseNet [53], where 1D convolutional

layers are utilized, and each layer is connected to every other

layer in a feed-forward manner. This architecture enables the

preservation of both low and high-level trajectory semantics.

The spatial branch employs a transformer encoder to cap-

ture the spatial patterns from both trajectory and appearance

features. Specifically, given the input appearance feature of

all persons Zappm
= {Zappn

m
|n = 1, 2, ..., N} at depth m, it

is firstly concatenated with the processed trajectory features

Ztrajm+1
to form the raw embedding features for individual

persons:

Zm = Zappm
⊕Ztrajm+1

. (4)

We view the temporal dimension as the batch dimension and

apply a transformer encoder to exploit spatial context for all

persons. The process of embedding spatial context for frame

i can be formulated as:

Qi
m = Zi

mWq,m,Ki
m = Zi

mWk,m, V i
m = Zi

mWv,m, (5)

V ′i
m = softmax(

Qi
mKi

m√
D1

)V i
m + V i

m, (6)

V ′′i
m = MLP(V ′i

m), (7)

where Wq,m,Wk,m,Wv,m are learnable parameters, D1 is the

dimension of Qm, and MLP is the Multi-Layer Perceptron

in the canonical transformer. The features of all persons at

all time instances {V ′′i
m |i = 1, 2, ..., T} are packed together

as Zappm+1
. Finally, the STT module outputs the extracted

features from the two branches, Ztrajm+1
and Zappm+1

, which

can be further used as input of the next STT module. We stack

M STT modules to form a deep model inspired by [54].

C. Edge Classifier

Previous spatio-temporal transformers [42], [43] designed

for group activity recognition are not suitable for grouping.

Adopting these approaches to generate the complete output

results simultaneously makes it necessary to predict all pair-

wise relation scores. This way not only imposes additional

computational overhead but also introduces training complex-

ities owing to the abundance of zero scores, given that most

individuals are not part of the same group. To deal with this

problem, we propose an edge classifier to predict the relation

scores for edges in the graph G(V,E) using the features of

individual persons. The individual features are collected by

concatenating all appearance and trajectory features from the

STT modules of different depths, which can be expressed as:

Zall = Zapp1
⊕ ...⊕ZappM

⊕Ztraj1 ⊕ ...⊕ZtrajM . (8)

Note that Zall preserves the temporal dimension, resulting

in Zall = [z1all, z
2
all, ...z

T
all]. Then, we convert the individual

features to inter-person edge features. Specifically, for an edge
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TABLE I: Architecture of GroupTransformer. The hyper-parameters for linear layers are denoted by L(input dimension, output

dimension); the hyper-parameters for convolutional layers are denoted by C(input dimension, output dimension, kernel size);

and the hyper-parameters for transformer encoders are denoted by T (hidden layer dimension, hidden layer number, the number

of heads). The variables N,T,Ne represent the number of persons, the number of frames, and the number of edges, respectively.

Module Input Parameter Value

Occlusion Encoder N × T × 16384
f(x) L(16384, 1024)
g(x) L(16384, 512)

STT1

N × 5× T Conv1 C(5, 64, 3)
N × 69× T Conv2 C(69, 64, 3)
N × 133× T Conv3 C(133, 128, 3)
T ×N × 640 Transformer Encoder T (128, 2, 4)

STT2

N × 128× T Conv1 C(128, 64, 3)
N × 192× T Conv2 C(192, 64, 3)
N × 256× T Conv3 C(256, 128, 3)
T ×N × 256 Transformer Encoder T (128, 2, 4)

Edge Classifier Ne × T × 512 Linear L(512, 1)

(u, v) ∈ E, we construct its feature F(u,v) by taking the

absolute difference between the features of the two individuals:

F(u,v) = |Zu
all −Zv

all| . (9)

After obtaining the edge features, they are fed into a Multi-

Layer Perceptron (MLP) to generate frame-wise classification

logits. Subsequently, a global average pooling is applied along

the temporal dimension to obtain the overall prediction. This

can be expressed as:

Ru,v = MLPR(Fu,v), cu,v =
1

T

T∑

t=1

Rt
u,v, (10)

where Ru,v represents the classification logits for edge u

and edge v, cu,v represents the average prediction score

over the temporal dimension, and MLPR is the Multi-Layer

Perceptron layer. For the person pairs with social interactions,

the classifier will assign positive scores for the corresponding

edges, while for those without interactions, negative scores are

supposed.

D. Training

We train the proposed model in an end-to-end manner.

Instead of sampling a fixed number of persons in a scene,

we sample a fixed number of groups, which ensures a certain

number of positive edges to guarantee sufficient training.

However, the number of negative edges is still much higher

than that of positive edges. This leads to two issues: (1)

classifying a large number of edges becomes computationally

inefficient; and (2) most of the negative edges are too easy to

discriminate, limiting the performance of the model.

To cope with these problems, we propose a pre-processing

strategy that filters out edges that are not worth training

during the construction of the relation graph. We keep all

positive edges due to their rarity, while removing unnecessary

negative edges. Specifically, we first filter out edges where

the two persons never appear simultaneously in the frames.

Then, we ignore person pairs with a minimal distance on

trajectories larger than a threshold δtrain. This means that

only hard negative edges are retained for training. By applying

this strategy, we construct the edge set E corresponding to

the sampled persons. Simultaneously, the edges are assigned

binary labels yu,v ∈ 0, 1, ∀(u, v) ∈ E according to the ground-

truth group annotation. During training, we utilize binary

cross-entropy loss to train the model in a supervised manner:

L = −
∑

(u,v)∈E

(1− λ)yu,v × log(σ(cu,v))+

λ(1− yu,v)× log(1− σ(cu,v)), (11)

where σ(·) denotes the sigmoid function, and λ =
|Epositive|

|E|
is a balance coefficient to account for the difference in the

number of positive and negative edges. Here, Epositive and

E are the sets positive edges and all edges, and | · | is the

cardinality of the set.

E. Inference

During the training phase, the input persons are controlled

to form a limited number of groups. However, during infer-

ence, all the persons from a scene are fed into the model

simultaneously. In the case of large scenes, this can result

in thousands of persons and millions of edges in the graph,

which is computationally expensive. To improve efficiency, we

adopt two strategies to filter out obvious negative edges during

classification.

The first strategy is similar to the training phase. We filter

out edges where the distance between two persons exceeds

a threshold δtest. It is important to note that δtest should

be larger than δtrain to avoid mistakenly removing positive

edges. The second strategy involves removing edges where two

persons do not appear simultaneously for most of the frames.

We calculate the Intersection over Unions (IoU ) at visible

frames of each person. If the IoU is less than a threshold γ,

the edge is assumed to represent no interaction behavior and

is removed from the edge set E. After applying these filtering

strategies, we feed the remaining edges into our model and

construct an affinity matrix using the predicted relation scores.

The ignored edges are assigned a score of 0 by default. Finally,

we solve a clustering problem on the affinity matrix to detect

groups. Various clustering algorithms can be applied for this

task (see the next subsection for implementation details).
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F. Implementation Details

The appearance features are extracted using a ResNet50

[52] pre-trained on ImageNet. We extract feature vectors of

dimension 4×2×2048 from the layer preceding the max-

pooling operation in ResNet50. These vectors are then flat-

tened to form 16384-dimensional feature vectors, which serve

as the appearance features. Our models are trained using a

stochastic gradient descent optimizer with no momentum, and

the learning rate is set to 0.1 initially. We sample 8 groups

in each iteration and apply the gradient descent every 10

iterations. For large-scale datasets, the models are trained for

200 epochs, and the learning rate drops by a factor of 5 at

50, 100 and 150 epochs. For small-scale datasets, the models

are trained for 20 epochs without learning rate decay. In data

preprocessing, we set δtrain = 0.1, δtest = 0.2, γ = 0.3 for

large-scale scenes, and δtrain = 0.5, δtest = 0.75, γ = 0.001
for small-scale scenes. It is important to note that the positions

in trajectories are normalized, so larger scenes with high

image resolution require smaller threshold values. For group

inference, we apply the same clustering algorithm as the

compared methods to ensure fair comparison. We use label

propagation [55] for large-scale scenes and spectral clustering

[56] for small scenes. We train and test our model on a desktop

with an Intel(R) Xeon(R) CPU and a GeForce RTX 2080 Ti

GPU. The training time for PANDA dataset is about 20 hours,

while it takes around 3 hours for JRDB dataset. The inference

time of our model is related to the number of edges in the test

video. On average, the inference time on JRDB test set is 0.11

seconds, while the inference time on PANDA test set is 0.48

seconds. The number of model parameters is about 33.73M.

Detailed Framework. The detailed architecture of our

GroupTransformer is defined in Table I. We stack 2 Spatio-

Temporal Transformers (STT), namely STT1 and STT2. The

f(x) and g(x) functions are followed by a ReLU activation

function. All the Conv1, Conv2, and Conv3 are followed

by a Batch Normalization layer [57] and a ReLU activation

function.

TABLE II: Quantitative comparison on PANDA dataset.

Method
PANDA

Precision Recall F1

G2L w/o Local [24] 0.237 0.120 0.160
G2L w/ Random [24] 0.244 0.133 0.172

G2L w/ Uncertainty [24] 0.293 0.16 0.207

Dis.Mat+ [58] 0.429 0.120 0.188
GNN w/ GRU 0.419 0.173 0.245

ARG [59] 0.349 0.200 0.254
S3R2 [15] 0.559 0.507 0.532

Ours 0.750 0.545 0.632

TABLE III: Quantitative comparison on JRDB-Group dataset.

Method
JRDB-Group

Precision Recall F1

Joint [20] 0.300 0.284 0.291
JRDB-Group [60] 0.390 0.379 0.384

Dis.Mat+ [58] 0.573 0.235 0.334
GNN w/ GRU 0.434 0.286 0.345

ARG [59] 0.325 0.384 0.352
S3R2 [15] 0.577 0.562 0.569

Ours 0.662 0.606 0.633
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Figure 3. Qualitative results compared with S3R2 [15] on

PANDA benchmark. More results can be found in the sup-

plementary video.

IV. EXPERIMENTAL RESULTS

A. Datasets

To validate the effectiveness of our method, we conduct our

experiments on a large-scale dataset PANDA [24] and a small-

scale dataset JRDB-Group [60] following [15]. The details of

two datasets are given in the following.

PANDA benchmark. PANDA is a gigapixel-level human-

centric video dataset with a wide field-of-view (up to 1km2)

and a very dense crowd (up to 4k subjects in a frame). It

consists of 9 videos for group detection, providing rich and hi-

erarchical ground-truth annotations, including bounding boxes,

fine-grained labels, trajectories, and interactions. Following

[15], [24], we adopt 8 videos as the training set and 1 video

as the test set for fair comparison. On average, each training

video has 2713 frames and 1070.4k bounding boxes, while

each test video has 3500 frames and 335.2k bounding boxes.

In the training and test video sets, the average group sizes per

video are 144.6 and 75, respectively. Same with [15], [24],

we use the ground-truth bounding boxes and trajectories to

validate the effectiveness of our method in training and test

phases.
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w/o Appw/o Transw/o OccFULLGround Truth

Figure 4. Qualitative results of ablation study on PANDA benchmark.

JRDB-Group benchmark. JRDB-Group [60] is a multi-

person video dataset captured by a panoramic camera equipped

on a robot, which contains outdoor and indoor crowd scenes.

Following [15], we take 20 videos as the training set and

7 videos as the test set, and use key frames to validate the

performance of group detection. The key frames are sampled

every 15 frames, and we get 1419 samples for training and

404 samples for testing.

B. Metrics

To evaluate the performance of our method, we use the

same metrics as the compared state-of-the-art methods [15],

[24]. For large-scale scenes, we calculate precision, recall, and

F1-score using the half metric [61] with a group member

IoU threshold of 0.5. The half metric determines whether a

detected group is considered positive or negative based on

the intersection over union (IoU) between the individuals in

the detected group and the ground-truth group. This can be

formulated as

|Gpdet ∩Gpgt|
max(|Gpdet| , |Gpgt|)

> 0.5, (12)

where Gpdet denotes the detected groups, and Gpgt denotes

the ground-truth groups. That means if the number of indi-

viduals in the intersection is greater than half the number

of individuals in the ground-truth group, the detected group

is considered a positive sample. Precision, recall, and F1-

score are then calculated based on these positive and negative

samples.

C. Comparison Results

We try to conduct as much comparative experiments as

possible to demonstrate the performance of our model. How-

ever, the source code of most group detection methods are not

available, so we implement all models based on [15] to give

a clear comparison results. Here, we give a brief introduction

of compared methods.

Dis.Mat+ [58]. This method is a straightforward method that

first measures the distance of each subject pair in the scene

and adopts label propagation algorithm [15] to obtain the final

group results.

GNN w/ GRU. This method is designed by [15], which

uses a gated recurrent unit model to aggregate the temporal

information and adopts a graph neural network to model the

graph relation.

ARG [59]. This method is a state-of-the-art method for group

activity recognition. We follow the modifications applied in

[15].

G2L [24]. This method is the baseline method proposed

with the PANDA benchmark. It models the group relation of

subjects as a graph, and adopts a global-to-local strategy to

leverage the visual cues for group detection. The group results

can be obtained after label propagation.

Joint [20] and JRDB-Group [60]. The Joint method leverages

group detection results to get better results for group activity

recognition, which is suitable to be a compared method.

The JRDB-Group is built on Joint by introducing spatial

information.

S3R2 [15]. This method is the most relevant method and

is also the state-of-the-art method of group detection. It first

trains the model using its self-supervised method, and then

adds a group detection head to tune the model to get the group

detection result using supervised training.

The quantitative results presented in Table II and Table III

demonstrate the superior performance of our method compared

to other state-of-the-art methods on the PANDA and JRDB-

Group datasets.

On the PANDA dataset, our method achieves the best

performance in terms of precision, recall and F1-score. The
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TABLE IV: Quantitative comparison with three alternative designs.

Method
PANDA JRDB-Group

Precision Recall F1 Precision Recall F1

w/o Occ. 0.686 0.530 0.598 0.568 0.522 0.544
w/o Trans. 0.574 0.470 0.517 0.560 0.508 0.533
w/o App. 0.679 0.545 0.605 0.585 0.570 0.577

FULL 0.750 0.545 0.632 0.662 0.606 0.633

baseline method G2L and other straightforward methods strug-

gle to predict correct group detection results for the large-scale

dataset, resulting in unsatisfactory performance. S3R2, which

adopts self-supervised learning for pre-training, performs bet-

ter than the baseline methods but fails to consider occlusion

circumstances in crowd scenes. Our method addresses the oc-

clusion problem through the proposed occlusion encoder and

leverages the spatio-temporal transformer to model temporal

information. As a result, our method significantly improves

the performance compared to S3R2, with an increase in the

F1-score from 0.532 to 0.632. These results highlight the

effectiveness of our approach in handling large-scale group de-

tection challenges. Similarly, on the JRDB-Group dataset, our

method outperforms the compared methods, including Joint

and JRDB-Group, as well as Dis.Mat+, GNN w/ GRU, ARG,

and S3R2. Our method achieves a higher precision, recall, and

F1-score, indicating its superiority in group detection on both

large-scale and small-scale scenes. Overall, the comparison

results demonstrate that our method surpasses other methods

in terms of performance metrics on both datasets, proving its

effectiveness and suitability for group detection tasks.

Figure 3 presents qualitative results on the PANDA bench-

mark, comparing our approach with the state-of-the-art method

S3R2 [15]1. It can be observed that S3R2 fails to detect

groups in cases where individuals are walking towards the

same direction, such as the three pedestrians in the second

column. With our spatio-temporal transformer, our model

can distinguish whether pedestrians with similar trajectories

belong to the same group. Dynamic results and additional

results can be found in the supplementary video.

TABLE V: Quantitative results with different Gaussian noises.

Metrics σ = 0 σ = 0.1 σ = 0.3
precision 0.750 0.750 0.715

recall 0.545 0.545 0.409
F1 0.632 0.623 0.519

TABLE VI: Quantitative results with different Missing detec-

tion rate.

Metrics MDR=0 MDR=0.1 MDR=0.2

precision 0.750 0.793 0.700
recall 0.545 0.348 0.212

F1 0.632 0.484 0.326

D. Ablation Study

We evaluate our method with three alternative models to

assess the factors that contribute to achieving better group

1The public repository only contains the source code for the PANDA
benchmark.

detection results on both small-scale videos and large-scale

videos.

The Model without Occlusion Encoder (w/o Occ.). We

delete the mask branch in occlusion encoder and the appear-

ance features are simply processed with a linear projection

layer.

The Model without Transformer (w/o Trans.). We use a

MLP to fuse appearance and trajectory feature instead of a

transformer encoder.

The Model without Appearance Feature (w/o App.). We

input only trajectories with the spatial branch deleted, and

consequently, the fused individual features are obtained by

only concatenating the features from the temporal branch.

Table IV shows quantitative results compared with three

alternative models on PANDA and JRDB-Group benchmarks,

respectively. The full model outperforms all the alternatives

on both large-scale PANDA benchmark and small-scale JRDB-

Group benchmark, which verifies the effectiveness of different

modules. The model with only trajectory as input works better

than the model with appearance feature but without occlusion

encoder. The possible reason is that frequent occlusions make

the appearance features full of noise, leading to a negative

effect on performance.

To give a more intuitive reasoning, Figure 4 shows the

performance of different ablation models on several typical

cases. We zoom in the persons in the large-scale scenes, and

the persons belonging to the same group are marked with the

same color. Our full model predicts the groups accurately.

In the top row, the model without occlusion encoder and

the model without transformer fail to distinguish the two

separate persons. The overlap of the two bounding boxes

makes their appearance features similar, and therefore the edge

between them is misclassified as positive. We also notice that

the two persons can be separated simply by the trajectory,

demonstrating that improper use of appearance features or

insufficient fusion model may cause confusion. In the middle

row, four persons follow the same trajectory along the side-

walk, and thus the model without appearance feature tends

to detect the four persons as a group. Appearance features are

required to make the correct prediction. In the bottom row, six

persons are wrongly detected as a group by the model without

the transformer. They have the same destination and similar

posture, which will lead to the wrong detection if the features

are insufficiently extracted.

E. Robustness

To evaluate the robustness of our method with a raw video

input, we simulate the detection errors by adding noise to

the bounding boxes or randomly dropping some detections

on PANDA test set.
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Adding Noise to Bounding Boxes. Denote σ as the noise

intensity and u = [x0, y0, x1, y1] as a bounding box, where

x0, y0 and x1, y1 are the top-left and bottom-right coordinates

of the bounding box. We define w and h as the width and the

height of u. Taking top-left coordinates as an example, we add

the disturbances δx and δy to top-left coordinates x0 and y0
by sampling them from Gaussian distributions with standard

deviation σ × w and σ × h, respectively. Table V shows the

quantitative results with different levels of Gaussian noises.

Even with noise σ = 0.3, our method still outperforms LSGD

[24] that uses the clean input (Table II).

Missing Detections. Denote MDR as the missing detection

rate of the bounding box to each person in the whole video.

Table VI shows the quantitative results with different missing

detection rates. With increasing MDR, although the perfor-

mance of our method degrades, our method still outperforms

LSGD without missing detections [24],

F. Limitations

Although our method effectively detects groups in most

large-scale scenes and small-scale scenes, it cannot cope with

the cases of extremely low resolution and long-time occlusion.

Figure 5 shows some failure cases on large-scale scenes. The

middle row shows ground-truth groups and the bottom row

shows our grouping results. Our method fails to group persons

due to the low resolution of images and the serve occlusion of

persons in a long time. This can be coped in our future work.
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Figure 5. Some failure cases on large-scale scenes.

V. CONCLUSION

In this paper, we propose a novel end-to-end spatio-temporal

framework for group detection in large-scale video scenes.

The proposed framework addresses the challenges of fre-

quent occlusions and complex spatio-temporal interactions.

The occlusion encoder effectively extracts individual features

by considering occlusion patterns, while the spatio-temporal

transformers capture the dynamic relationships among individ-

uals in a hierarchical manner. The comprehensive evaluation

on the PANDA and JRDB-Group benchmarks confirms the

superior performance of our method, and the ablation study

demonstrates the effectiveness of each proposed module. The

proposed framework opens up possibilities for further research

in group detection and understanding. Future work could

focus on exploring more advanced occlusion modeling and

extending the framework to handle more complex scenarios

with variable group sizes and activities.
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