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Abstract Novel space-time view synthesis for mono-
cular video is a highly challenging task: both static
and dynamic objects usually appear in the video, but
only a single view of the current scene is available,
resulting in inaccurate synthesis results. To address
this challenge, we propose FRNeRF, a novel space—time
view synthesis method with a fusion regularization field.
Specifically, we design a 2D-3D fusion regularization
field for the original dynamic neural field, which helps
reduce blurring of dynamic objects in the scene. In
addition, we add image prior features to the hierarchical
sampling to solve the problem that the traditional
hierarchical sampling strategy cannot obtain sufficient
sampling points during training. We evaluate our
method extensively on multiple datasets and show
the results of dynamic space—time view synthesis.
Our method achieves state-of-the-art performance both
Code
for research purposes at https://cic.tju.edu.cn/
faculty/likun/projects/FRNerf.

qualitatively and quantitatively. is available
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1 Introduction

The environment we live in is a three-dimensional
space, and images captured from the environment
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have various viewpoints. With monocular videos
as input, novel space-time view synthesis aims to
generate novel view images of dynamic scenes. Novel
view synthesis has many applications in real life, such
as achieving space—time interpolation in virtual game
scenes, replaying the actions of athletes from novel
viewpoints for professional sport events, and creating
cinematic effects.

Systems for novel view synthesis need to overcome
the challenging problems associated with video
capture, reconstruction, compression, and rendering.
Most existing methods use expensive and laborious
setups, e.g., multi-view camera systems [1], fast-
moving cameras [2], or other specialized hardware to
capture and observe the scenes [3, 4]. However, such
approaches are complicated in real life applications.
Therefore, it is more practical to generate dynamic
scenes from a monocular video captured by a single
RGB camera. Few methods are able to achieve
novel view synthesis from a single stereo camera
or even monocular RGB camera, and they are
further constrained to specific fields such as human
reconstruction [5, 6]. Some methods [7-9] represent
dynamic scenes as continuous neural radiance fields
of space and time and generate reflectivity, density,
and 3D
layer perceptrons (MLPs). Unlike static neural
radiance fields (NeRFs) [10], a scene flow establishes
tight relationships for frame sequences. NSFF [7]
strengthens the consistency between viewpoints and

scene motion information with multi-

the 3D scene flow and introduces a variety of prior
knowledge, so it can generate more coherent novel
view images. At the same time, NSFF [7] creates
separate neural radiation fields for static and dynamic
regions to improve the synthesis quality of the
network. However, the most significant difficulty is to
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reduce the artifacts caused by fast motions of multi-
frame images in novel viewpoint synthesis. NSFF [7]
estimates the scene flow field between corresponding
3D points in a multi-frame scene and calculates the
pixel colors in adjacent frames through the scene
flow field. The depth in the 3D scene flow field is
essentially generated by a depth estimation network,
which differs from the ground truth depth information,
so is inaccurate. In addition, directly calculating a
loss using color differences between adjacent frames
has the problem of pixel misalignment. As a result,
fast-moving objects in novel view images suffer from
noticeable artifacts.

To address the problems above, in this paper,
we propose FRNeRF for dynamic space—time view
synthesis. It can generate novel view images from
monocular videos with greater clarity and realism.
We propose a 2D-3D fusion regularization field, which
can fuse the 2D feature field with the 3D scene flow
field to enhance it. Specifically, we first introduce a
2D feature field in the dynamic NeRF to simulate
the real spatial offset of pixels between adjacent
frames. Then we extract the high-level semantic
features of the original 3D scene flow field predicted
by dynamic NeRF to re-match and correct the
misaligned dynamic pixels due to inaccurate depth
information. The fusion regularization process of the
flow field in the scene can significantly reduce the
artifacts caused by the fast motion of dynamic objects,
and generate a more realistic novel view image.

Dynamic space—time view synthesis is a challenging
problem. Unlike static novel view synthesis, in which
the input is an intensive multi-view observation, a
novel view of the captured scene can be synthesized
simply by a hierarchical sampling strategy. In the
dynamic case, novel view synthesis requires more
information about the scene as the dynamic scene
changes over time. However, the sparse viewpoints
cannot adequately capture the dynamic pixels in the
scene, and a simple hierarchical sampling strategy
cannot provide sufficient sampling points, affecting
the quality of novel view synthesis.

We propose two improvements to overcome this
challenge. The first improvement is to append the 2D
image features extracted by the feature extractor to
the input of FRNeRF, which provides more feature
information to the implicit neural representation
and can improve inference on unseen pixels, and we
add a local convolution module to the pre-trained
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feature extractor. The local modeling property of the
convolution module can utilize the two-dimensional
neighborhood information during each iteration.
Additional 2D priors can increase the pixel features
needed for rendering. In order to further improve
the quality of novel view synthesis on a global
scale, we propose as a second improvement to add a
global pixel alignment loss between the estimated
view and the input view to enhance the global
rendering perception quality, which diminishes the
spatial ambiguity due to the high-speed movement of
pixels. As shown in Fig. 1, our method significantly
improves the rendering fidelity of dynamic space—time

view synthesis.

Fig. 1 Novel view synthesis for dynamic monocular video. Our
method takes monocular video frames as input. Each frame in the
video is taken from a different viewpoint at a unique time step. Existing
space—time view synthesis methods such as NSFF struggle to render
high-quality views from monocular videos with highly dynamic motion.
Our method produces results with higher clarity.

Our main contributions can be summarized as

e a joint 2D—3D fusion regularization field, which
contains both 2D feature field and 3D scene flow
field, and

e image-prior-based 2D feature addition and
semantic constraints, achieving local interactivity
and global consistency for each pixel in the scene,
leading to

e generation of results superior to previous state-
of-the-art dynamic space-time view synthesis
methods.

2 Related work

2.1 Implicit neural representations

Continuous and differentiable functions parame-
terized by fully-connected networks have been
successfully applied as compact implicit repre-
sentations for modeling 3D scenes [10-13], object
appearances [14, 15], and 3D shapes [16-22]. These
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methods train MLPs to regress input coordinates,
e.g., points in 3D space, to the desired quantities, for
example, volume densities [10], colors [10, 11, 15, 23],
signed distances [19, 24, 25], or occupancy values [12,
23, 26]. Recently, several works have shown training
MLPs with 2D images under multi-view without
directly using 3D supervision [10, 14, 27], leveraging
differentiable rendering [28, 29].

Most existing methods deal with static scenes.
Due to motion entanglement and the complexity
of 3D shapes, directly extending MLPs to encode
additional temporal dimensions is ineffective. The
method in Ref. [30] extends NeRF [10] to process
diverse photographs containing lighting changes and
transparent objects. The most relevant work for
our method is Ref. [7], which learns continuous
motion fields over space and time. Our method
follows it, but the focus of our task is to resolve
the previously ambiguous fast motion for dynamic
space-time novel view synthesis. Unlike Ref. [7],
we additionally extract features from 2D images as
supplementary information to guide the model for
dynamic scene learning.

2.2 Novel view synthesis for static scenes

Synthesizing novel views for static scenes is a long
standing vision and graphics problem that aims to
synthesize new images from arbitrary viewpoints
of a scene captured by multiple cameras. Different
methods represent the underlying geometry using
different representations. Mesh-based approaches [31—
36] represent scenes using compact and easily
renderable surfaces, while optimizing a mesh for
complex scenes remains challenging. Volume-based
works, e.g., multi-plane images (MPIs) [17, 37-41] and
voxel-meshes [42-46] are more suitable for modeling
those complex and translucent scenes which are
smooth and fluid. In particular, the realistic rendering
quality of NeRF [10] has led to an explosion of
developments in the field. Progress has been made in
training speed [16, 47-50], improving the rendering
quality [51, 52], accelerating rendering, and adapting
to more general scenes [30, 53-55], etc.

2.3 Novel view synthesis for dynamic scenes

Synthesizing novel views for dynamic scenes is a more
practical and challenging problem. However, existing
methods do not perform well with dynamic scenes.
Discrepancies between the actual capture process and

the existing experimental protocols for monocular
videos have been shown in Ref. [56].

Most methods are limited to certain scenarios,
e.g., constrained motions or human models. For
complex scenes in the real world, reconstruction from
synchronized multi-view videos is more promising
due to the intensive supervision of each viewpoint
and point in time. Earlier works [57, 58] explore
this issue and show the possibility of rendering novel
videos from a set of input views. The neural volumes
approach [44] uses volumetric representations. It
employs an encoder—decoder network to convert
the input images into 3D volumes and decode the
latent representation by differentiable ray marching
operations. Ref. [59] proposes a data-driven strategy
for 4D space—time visualization of dynamic scenes.
They split the static and dynamic components and
convert the intermediate representations into images
using spatial U-Net structures. More recently, Li
et al. [60] used a time-aware neural radiance field
to address the problem, and proposed several new
sampling strategies to train the model efficiently.
They presented a more complex real-world dataset
and validate the improvements of their method
compared to the previous methods. To accelerate
the reconstruction of dynamic scenes, the Fourier
Plenoctree approach [61] proposes to model dynamic
components in the frequency domain, and generates
a Plenoctree by multi-view blending to accelerate
the rendering. The authors focus on the foreground
moving components extracted through chroma key
segmentation, which requires that the background
should be a solid color.

With advances
methods have shown state-of-the-art results from a

in rendering, view synthesis
monocular video depicting a dynamic scene. These
methods can be divided into explicit modeling [62—
65] and implicit modeling of deformations [7, 66-69)].
Despite the improvements achieved, it is still difficult
to reconstruct complex dynamic scenes only using
monocular videos. In particular, DynamicNeRF [67]
decomposes a dynamic scene into static, deforming
components and jointly trains a time-invariant static
NeRF and a time-variant dynamic NeRF, and learns
how to blend the results in an unsupervised manner.
However, this approach is unsuitable for fast motions
and often leads to incorrect flows. NSFF [7] proposes
a new representation that models a dynamic scene
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as a time-variant continuous function of appearance,
geometry, and 3D scene motion. However, this method
only works well for short (1-2 s) videos without fast
or drastic motions.

Differing from these works, we introduce fusion
regularization fields to eliminate the influence of the
inaccurate 3D flow fields, which can further enhance
the correlation between adjacent video frames. We
also propose a 2D image feature extractor to achieve
local interactivity and global consistency for each
pixel in the dynamic scenes.

3 Method

3.1 Background: Static scene rendering

NeRFs represent a continuous static scene as a
function with an input of 5D vectors, including the
3D coordinate position o = (x,y, z) of a space point,
and the viewpoint direction d = (6, ®). In NeRF, Fg
represents an MLP network that models the volume
density o and color ¢ = (r, g, b) corresponding to each
position and view direction in the space, forming an
implicit representation of the 3D scene:
Fo : (0,d) — (c,0) (1)
The RGB value of each pixel in the view of a single
novel viewpoint requires the (r, g, b, o) values of all the
sampled points on the ray to be determined. To render
the color of an image pixel, NeRF approximates
a volume rendering integral. Light is emitted and

sampled from the camera position to a pixel in the
scene and the expected color C of that pixel is then
given by

C(r) = [ T(H)o(r(D)e(r(D), d)di

tnear

i (2)
T(#) = exp (- /t a(r(t))dt)

n

where the function T'(f) represents the accumulated
transmittance of the ray from fpear to £, and fypear
and tg,, correspond to the samples at the near and
far planes.

The goal of our work is to synthesize novel
viewpoints at any desired time within the video.
Figure 2 shows the framework of our method.
The inputs are a monocular video frame sequence
(t1,...,t,) of a dynamic scene and the known
camera parameters (ki, ..., ky). The most significant
differences from existing work are that we predict the
fusion regularization fields from frame t to frame ¢ — 1
and to frame t + 1 for bi-directional consistency of
adjacent video frames, and globally align the rendered
pixels with the corresponding input video frame
pixels. In addition, we propose a feature enhancement
strategy for hierarchical volume sampling. Our
method consists of three steps: (i) extraction of
2D semantic features from scene images using a
pre-trained feature extractor and attachment of
2D feature information to the original hierarchical
sampling points (see Section 3.2), (ii) knowledge

Target color
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Fig. 2 Framework. Our dynamic NeRF with fusion regularization fields can take 2D-3D knowledge transfer as input to predict the flow fields
from frame ¢ to frame ¢ — 1 and frame ¢ 4 1. For static components, we train a following NeRF model, but exclude all pixels marked as dynamic
from model training. This allows us to reconstruct the background structure and appearance without conflicting with moving or deforming

objects.
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transfer for 2D-3D fusion (see Section 3.3.1), and (iii)
alignment regularization of the 3D scene flow field
(see Section 3.3.2). To synthesize seamless and sharp
dynamic scenes, we have designed a hybrid dynamic-
static neural rendering network (see Section 3.4).
Utilizing both 2D images and 3D scene data, we
address the pixel misalignment in consecutive novel
views.

3.2 Feature enhancement for hierarchical
volume sampling

NeRF uses a combination of implicit neural fields
and volume rendering techniques [70] to render 3D
scenes by hierarchical volume sampling. However,
the hierarchical volume sampling mechanism cannot
provide sufficient pixel information for dynamic
radiance fields where the input is a monocular video
frame sequence. In order to increase the available
input information for the model, we introduce
additional 2D image information to the original
hierarchical sampling points:

(@,ct,ff’D, ,?D,wt) = Fa(2e,dt, Fy(nay)) (3)
where x; is the spatial position of 3D point = at
frame ¢, d is the view direction. oy and ¢; = (r, g,b)
are the volume density and color at frame ¢ for the
3D point, respectively. m denotes projecting 3D point
x; onto the image. Fy is the dynamic representation
model. Fy (r(,,)) represents image feature extraction
by bilinear interpolation.

In addition, the model predicts the forward
and backward 3D 3D =
(f32,1, f8,_1), and the forward and backward
2D feature fields fZ° = (f2,,1, /25 1), which
represent the 3D offset vectors and 2D feature offsets
corresponding to x; and its projection points at
frames t+ 1 and ¢ — 1, respectively. To handle motion
occlusion in 3D space, the model also predicts the

scene flow fields

occlusion weights wy = (W¢—¢+1, We—t—1) for previous
frame ¢t — 1 and next frame ¢ + 1.

As Fig. 3 shows, given an input image [ of the scene,
we extract the features Fyy = E(I), where E denotes
the feature extraction network. Specifically, we choose
the masked autoencoder (MAE) feature extractor [71].
The core idea of the masked autoencoder is to
allow the model to learn a generalized intermediate
representation, which increases the NeRF’s ability to
reason about under-observed pixels. After obtaining
the 2D image features of the current frame through
the feature extraction network, the features of the

MAE
encoder

—

Y

Input views

A

Fig. 3 Image feature extraction. Given the input image, Fy ((x))
is extracted with the feature extraction network.

F

V(n(X))

Target views

current frame and the 2D feature field can be used
to calculate the pixel features of the previous frame
and the next frame. In this paper, we retain the
convolutional embedding operations in the first two
stages of the feature encoder module. This enables
the network to collect local image regions during
each iteration. Thus, utilizing 2D local neighborhood
information when rendering each pixel can be
formulated as Eqgs. (4)—(6):

Fencoder 1 = StrideConv (MAE, 2) (4)
Fencoder 2 = StrideConv (MAE,, 2) (5)

F2D = [Fencoderh Fencoderﬂ (6)
where  StrideConv(-, 2) the
convolution operation with a stride of 2, MAE;
and MAE, represent the two stages of the masked
autoencoder feature extractor respectively, Fencoder 1
and Fepcoder 2 are the two scales of features extracted
by the masked autoencoder feature extractor, and

represents mask

F5p is the final 2D fusion feature. Then, for each
sampling point x on the ray r, we project x to the
corresponding coordinate 7(x) on the image plane
using the known camera intrinsics and then retrieve
the corresponding image features by 7(z) and use
bilinear interpolation to extract the feature vector

By (n(@))-
3.3 Fusion regularization field

3.3.1 Knowledge transfer for 2D-3D fusion

Previous methods [7, 9] predict the forward and
backward 3D scene flow of a dynamic scene,
representing the offset of pixels moving at a uniform
speed for frames t — 1 and t + 1. However, the 3D
scene flow contains inaccurate depth information. In
this paper, we use the same datasets as NSFF [7],
in which the depth is not the ground truth, but it
is generated by the depth estimation method. As a
result, significant artifacts can be produced when we
model dynamic objects in the scene using a scene flow
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that includes inaccurate depth information. The 2D
feature field estimates the offset of pixels in adjacent
frames, which does not use inaccurate depth. As
shown in Fig. 2, we introduce 2D image features
in the fusion field to alleviate the artifacts of objects
in adjacent frames and making the NeRF effectively
handle rigid and non-rigid deformations of moving
objects. At the same time, the 2D feature field with
image priors can further enhance the accuracy and
extend the NeRF’s expressive capabilities for dynamic
space-time view synthesis.

For each pixel, the training process starts with three
frames of the scene to train the model: the current
frame t, the previous frame ¢t — 1, and the next frame
t + 1. After the number of training iterations reaches
50,000 steps, the model can be trained using five
adjacent frames of the scene, i.e., frames t — 2 and
t + 2 are added.

Taking frame ¢ as the reference frame, the volume
density o and color ¢ of the 3D point z in frames
t—1 and t+ 1 can be calculated according to the 3D
scene flow field and 2D feature field, expressed as

(Ott—1,Ctt—1) = Fuq (lUt + 0, dt—1,

FV(W(wt)JrftQEtfl)) (7>

(Otstt1, Ctost41) = Fa (xt + ftht—i-lv d,t+1,

FV(W(fEt)+ft2—D>t+1)) (8)
When rendering the image, we warp the 3D point
x; of the current frame ¢t to frames t — 1 and ¢t + 1
using the predicted 3D scene flow field f#P and the
2D feature field f2P. The volume density o and color
c of this 3D point z; at adjacent frames ¢t — 1 and
t + 1 are rendered along the ray r;. It can be seen
that the volume density o and color ¢ of pixels in
adjacent frames should be consistent.

8.8.2  Alignment regularization of 3D scene flow field
Adjacent monocular video frames in the same scene
share the same semantic features; capturing and
realigning the semantic features of the scene is
beneficial to improve the consistency and fidelity
of the scene flow. Since the contents and styles of
adjacent frames are similar, the deep learning network
can learn invariant representations. Therefore, we
alleviate the artifacts due to inaccurate depth
information by re-aligning the original 3D flow field
at the semantic level through a vision transformer
(ViT) [1]. In the ViT module, a monocular video
(B %4 % it
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frame is flattened into n non-overlapping patch
sequences. Then each patch is linearly embedded
into a c-dimensional vector, and the learned position
embedding (using a value to characterize the absolute
position of each patch) is added. ViT extracts
abstract high-level semantic representations from non-
overlapping patches using global self-attention and
generates a single global embedding vector. As Fig. 4
shows, we use this mechanism to correct the high-level
semantic features of adjacent frames.

The cost of matching the corresponding pixel points
of adjacent video frames is determined based on the
high-level semantic feature representation learned
by ViT. Scene flow features after ViT processing
are of the form X;y;, X; € R"*P where p is the
dimension of the features. The losses are calculated
as Eq. (9):

_ (X)Xt
1o(XE ) (X7

where X/, X} € R™ P are the i-th and j-th patches
of X;y; and X;, respectively, and ®(-) denotes the
normalized embedding of the image.

le{-1,1} (9)

S

3.4 Hybrid rendering

In this paper, we use the same hybrid (dynamic
and static) neural fields as NSFF [7] to render the
scene. The static representation model F; takes
3D coordinates x, view direction d, and feature
vector V(7m(z)) as input and aims to generate the
volume density o, and color ¢ = (r, g, b) of this 3D
point:

(10)

where m is an unsupervised 3D mixture weight for

(07 cC, m) = .F.S(.ZU, dv FV(TI’(X)))

linearly fusing o and ¢ from the static and dynamic
representation models; m is generated by training

N
Global alignment

lized frequency

—

Scene
—> s wmep|  flow [

mal

Anam L% Zcosin,é similarity
Il i T
Tl - Tﬂ—l —FﬂT,f)TﬂYill)
~. ¢(.) ViT process

{. Frame sequences

Fig. 4 3D scene flow regularization. High-level semantic information
of adjacent video frame pixels is extracted by ViT, and then optimized
using cosine similarity loss.
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the static representation network. The feature vector
Fy (z(x)) provides a priori information to generate
more accurate color details. Intuitively, m should
assign a low weight to the dynamic representation in
static regions with sufficient observations, as these
can be rendered at higher fidelity by the static
representation, while assigning a lower weight to
the static representation in regions that are moving,
as these can be better modeled by the dynamic
representation:

0= [ T @) e @) i ()

near

where o4 (r()) and c;(r¢(#)) are linear combinations
of static and dynamic scene representations weighted
by m(t), given by

o0 (ro(D)) et (re(®) = m(@)e (re(D) o (D)

+ (1= m(f))ee (re(D)) ov (re(?))
(12)

The final blended rendering loss Lg calculates the
mean squared error between the blended rendered
pixel value C; (r;) and its corresponding true pixel
value Cy(r;) along the ray r;:

£r =[G tr - Cotro)

Based on blended rendering loss, we align the

(13)

rendered pixels globally to enhance the overall spatial
consistency of the rendered scene images (dynamic
and static) with the original monocular video frames.
First, we flatten the raw input video frames and the
rendered scene images and then put them into ViT [1]
to obtain their high-level semantic features. The pre-
trained ViT has high robustness to unaligned pixels
in the scene flow. Following Ref. [72], we compute the
Lo distance between the high-level semantic features
extracted from the rendered scene images and the
semantic features of the original video frames to
construct the global loss function:

Latobar = |[E (ta) = E (t5)||” (14)
where E(-) denotes the advanced semantic feature
extractor, t; denotes the scene images generated
by NeRF rendering, and ¢y denotes the original
monocular video frames. Therefore, the improved
combined loss for the space—time viewpoints synthesis
task is as Eq. (15):

L=MNLr+ AL+ Agﬁglobal (15)
where A\, A, and A\, are balancing weights for the
corresponding loss terms, which are set to 1,0.1,0.1
in this paper, respectively.

4 Experiments

4.1 Setup

4.1.1  Implementation details

Our framework is implemented in PyTorch. The
hyper-parameters A, A¢, Ac, Aeg, Ag, and A, are set
to 1.0, 1.0, 1.0, 0.1, 0.2, and 0.4 during training. We
use COLMAP [73] to estimate the camera intrinsics
and extrinsics, and since COLMAP can only estimate
camera parameters for static scenes, we use instance
segmentation [74] to hide the features from the regions
that are associated with the common dynamic objects.
During training and testing, we sample 64 points
along each camera ray. In addition, we use the Adam
optimizer [75] to train a separate model for each scene,
with learning rate 5 x 10~%. Training a full model
takes about seven days per scene using two NVIDIA
2080Ti GPUs and rendering takes roughly 6 seconds
for each 512 x 288 frame.

4.1.2  Datasets

We evaluate our method on the NVIDIA Dynamic
Scene dataset [76]; it consists of 8 scenes with
human motions and objects
background. These sequences captured
with 12 cameras using a static camera setup. All
cameras synchronously captured images at 24
.,ta3}. The input is 24
,i23} obtained
by sampling the image taken by the k-th camera
at time ¢;. Note that each frame of the video uses
a different camera to simulate camera motion in

inanimate and

were

different time steps {to,..
frames of monocular videos {ig, ...

order to obtain information about the perspective
transformation. Frame 7 contains a background that
does not change over time, and dynamic objects
which change over time. We use positional encoding
to transform the inputs and parameterize the scenes
using standardized coordinates. We assume that
all cameras share the same intrinsic parameters.
Following Ref. [7], we simulate the moving monocular
camera by extracting images sampled from each
camera viewpoint at different time instances and
evaluate the results of view synthesis with respect
to known held-out viewpoints and frames. For each
scene, we use 24 frames from the original video for
training and use the remaining 11 held-out images
from each time instance for evaluation.

4.1.3 Metrics
We evaluate the results of novel view synthesis using
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the following metrics: (i) structural similarity index
measure (SSIM) [77], which measures the similarity
between images from three aspects: brightness,
contrast, and structural similarity, and (ii) learned
perceptual image patch similarity (LPIPS) [78],
which computes the distance between the generated
image and the ground-truth image in the perceptual
domain. LPIPS is generally considered to be closer
to human perception, when assessing reconstruction
errors. Furthermore, we calculate errors both over the
entire scene (full image) and restricted to dynamic
regions only (dynamic only). The dynamic component
is obtained using the binary masks in the initial
inputs.

4.2 Quantitative results

We first compare our approach to state-of-the-
art monocular dynamic view synthesis methods:
DynamicNeRF [67] and NSFF [7], which specifically
generate mnovel images with
monocular videos. Note that DynamicNeRF [67] was

space—time view

originally trained with 12 input images. We re-trained
DynamicNeRF [67] and NSFF [7] with 24 frames
of the monocular videos for fair comparisons, and
generated qualitative and quantitative results using
the same test set.

Table 1 reports our results and compares them

Table 1 Quantitative evaluation of space-time novel view synthesis
for dynamic scenes on the Nvidia Dynamic Scenes dataset

to those of DynamicNeRF and NSFF, which are
specialized to space—time novel view synthesis for
dynamic scenes. Our method outperforms them
for all metrics. In particular, our method achieves
much better results on the dynamic components,
demonstrating that our model is better adapted
to handle non-rigid motions and blur in the entire
scenes. In addition, calculating the mean values on all
datasets, our method gets the best scores: our model
outperforms existing methods.

In order to demonstrate the superiority and
robustness of our method for novel view synthesis,
we also conducted comparative experiments with
other state-of-the-art methods: NeRFPlayer [79], K-
planes [80], and DynIBaR [69]. NeRFPlayer and
K-planes both support novel view synthesis with
multiple cameras; NeRFPlayer focuses on reducing
training and rendering times, while K-planes focuses
on low memory usage and DynlBaR focuses on
synthesizing novel views from long videos. Table 2
compares our method to NeRFPayer, K-planes and
DynIBaR. We randomly selected two scenarios from
the NVIDIA Dynamic Scene dataset, i.e., Playground
and Jumping for evaluation.

4.3 Qualitative results

We provide qualitative comparisons between our
approach and two state-of-the-art monocular and
dynamic-scene-based view synthesis methods in Fig. 5.
DynamicNeRF [67] produces many artifacts in both

Sconc Method Dynamic only Full image static and dynamic regions of the scenes. NSFF [7]
SSIM + LPIPS | SSIM 1 LPIPS | reconstructs most static regions correctly since it
DynamicNeRF  0.203 0.392 0.709 0.205
Jumping NSFF 0.685 0.176 0.918 0.072 Table 2 Comparison of our approach to state-of-the-art novel view
Ours 0.705 0.131 0.925  0.055 synthesis methods NeRFPlayer, K-planes, and DynIBaR on the Nvidia
Dynamic Scenes dataset
DynamicNeRF  0.225 0.649 0.510 0.433
Umbrella NSFF 0.549 0171 0842  0.097 Scene Method Dynamic only Full image
Ours 0.549 0.162 0.844 0.098 SSIM 1+ LPIPS | SSIM 1 LPIPS |
DynamicNeRF  0.196 0.366 0.490 0.325 NeRFPlayer 0.532 0.289 0.813 0.102
Playground NSFF 0.716  0.143  0.876  0.081 Jumping K-planes 0.639 0.366 0.835 0.078
Ours 0.725 0.127 0.877 0.075 DynIBaR 0.701 0.133 0.922 0.057
DynamicNeRF  0.663 0.159 0.812 0.054 Ours 0.705 0.131 0.925 0.055
Skating NSFF 0.788  0.106  0.971  0.035 NeRFPlayer 0.598  0.245  0.812  0.163
Ours 0.789 0.098 0.977 0.023 Playground K-planes 0.654 0.198 0.822 0.147
DynamicNeRF  0.218 0.149 0.492 0.134 DynIBaR 0.721 0.129 0.875 0.077
Truck NSFF 0.839 0.056 0.691 0.026 Ours 0.725 0.127 0.877 0.075
Ours 0.913 0.046 0.963 0.024 NeRFPlayer  0.565 0.267 0.813 0.133
DynamicNeRF  0.301 0.343 0.603 0.230 Average K-planes 0.647 0.282 0.829 0.113
Average NSFF 0.715 0.130 0.860 0.062 DynIBaR 0.711 0.131 0.899 0.067
Ours 0.736 0.113 0.917 0.055 Ours 0.715 0.129 0.901 0.065
G > \ N Available on
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DynamicNeRF NSFF

Ours Ground truth

Fig. 5 Qualitative comparisons to state-of-the-art space—time novel view synthesis methods. Left to right: results from DynamicNeRF, NSFF,
our method, and ground truth. The images generated by our model more closely match the ground-truth, and include fewer artifacts, especially

in the highlighted regions.

treats all the moving objects as view-dependent
effects leading to loss of certain details, e.g., the
head of the woman, the eyes of the toy dinosaur,
and the folds of the umbrella when the dynamic
objects move rapidly. In contrast, our model is able
to model the fast motion of dynamic objects and still
retains the complete structure even if the dynamic
regions are widely separated between two adjacent
frames. We also make a comparison to other state-of-
the-art novel view synthesis methods: K-planes [80],
NeRFPlayer [79], and DynIBaR [69], in Fig. 6. Our
approach outperforms them both in terms of overall
quality and scene details.

Our novel views HeRERayes

K-planes

Figure 7 shows a comparison to NSFF [7] on
sequences with large motion, e.g., a moving truck and
a man skating. Unlike NSFF [7], which uses a static
NeRF to predict the blending weights, we propose a
fusion regularization field to fuse the 2D feature field
features to enhance the quality of the foreground. The
benefits of this 2D feature field include extracting
features of dynamic regions and generating the images
with less blur.

Figure 8 shows some novel viewpoints synthesized
by our method at any desired time within the video,
demonstrating that our method can achieve space—
time novel view synthesis and generate realistic

DynIBaR Ours Ground truth

Fig. 6 Qualitative comparisons to other state-of-the-art novel view synthesis methods. Left to right: our results, close ups of results from

NeRFPlayer K-planes, DynIBaR, our method, and ground truth.
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Fig. 7 Comparison to NSFF, showing that our proposed fusion
regularization field is the key to better visual results.

images, specifically generating accurate results for
dynamic regions of the entire scene.
4.4 Ablation study

We conducted ablation experiments on the Nwidia
Dynamic Scene dataset [76] for each of the

four proposed components and the full model.

We analyzed the effectiveness of each proposed
component in novel view synthesis by removing

(i) feature enhancement (w/o feature enhancement),
(ii) 2D-3D fusion (w/o 2D-3D fusion), (iii) 3D
regularization (w/o 3D regularization), and (iv) the
constraint loss (w/0 Lconstraint); our full method is
denoted (full model).

Quantitative results are shown in Table 3,
which demonstrate the relative importance of each
component, with the full model performing the best.
As shown in Table 3, the results of the dynamic
components in Jumping and Truck scenes of the Full
Model outperform the other four variants. The Full
Model does not get the best numerical performance
for the dynamic regions in the Skating scene. This
is because the movement of the skating man is
very smooth which leads the model to learn more
background information. Nevertheless, the average
results for all cases on the dynamic regions, indicate
that the full model performs best.

As for the full image, since the dynamic regions in
the foreground take up a small proportion of the whole

Fig. 8

Available on
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Table 3 Quantitative comparison with four alternative designs

Scene Method Dynamic only Full image

SSIM 1 LPIPS | SSIM 1 LPIPS |

w/o Feature enhancement 0.694 0.133 0.926 0.052

w/o 2D-3D fusion 0.698 0.136 0.922 0.057

Jumping w/o 3D regularization 0.699 0.136 0.927 0.054

w/0 Lconstraint 0.696 0.136 0.923 0.056

Full model 0.705 0.131 0.925 0.055

w/o Feature enhancement 0.769 0.118 0.982 0.019

w/o 2D-3D fusion 0.814 0.087 0.971 0.027

Skating w/o 3D regularization 0.813 0.098 0.974 0.027

w/0 Lconstraint 0.800 0.104 0.976 0.024

Full model 0.805 0.098 0.977 0.023

w/o Feature enhancement 0.892 0.054 0.965 0.023

w/o 2D-3D fusion 0.907 0.053 0.961 0.026

Truck w/o 3D regularization 0.908 0.054 0.961 0.027

w/0 LConstraint 0.901 0.053 0.967 0.023

Full model 0.913 0.046 0.963 0.024

w/o Feature enhancement 0.785 0.102 0.958 0.031

w/o 2D-3D fusion 0.806 0.092 0.951 0.037

Average w/o 3D regularization 0.807 0.096 0.954 0.036

w/0 Lconstraint 0.799 0.098 0.955 0.034

Full model 0.808 0.092 0.955 0.034

image, and the background information is dominant,
this leads the full model to achieve a performance
comparable to the best scores.

Visual results are shown in Fig. 9. Compared
to the four wvariants, the full model achieves
better results especially for non-rigid motions and
dynamic regions. More results can be found in the

demo video at https://cic.tju.edu.cn/faculty/

Without constraint loss

Full model

likun/projects/FRNerf/demo.mp4.

5 Conclusions and limitations

In this paper, we propose a novel framework for
novel view synthesis from a monocular video. Our
core contribution lies in the fusion regularization
fields and the addition of sampled features to

Ground truth

Fig. 9 Qualitative results of ablation study.
f"‘ . ‘\; j: Available on
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enhance consistency between video frames and to
mitigate the ambiguity in synthesizing dynamic
scenes due to inaccurate depth information and
under-sampled features. We demonstrate qualitatively
and quantitatively, using multiple dynamic datasets,
that our approach can synthesize photo-realistic
novel-view images from a monocular video, and can
achieve significant improvements over state-of-the-art
methods on the dynamic scene benchmarks.

Space-time view synthesis on dynamic scenes is a
highly challenging task, and our proposed method
addresses the problems of temporal consistency and
under-sampled features. However, our method still
has a limitation in common with most existing
methods [7, 67]; it has many learnable parameters,
leading to a long training time. In future, we
hope to improve training efficiency using a Jittor
model [81, 82], which is 2.26 times faster than the
equivalent PyTorch model on average.

Availability of data and materials

Code is available at https://cic.tju.edu.cn/
faculty/likun/projects/FRNerf.

Author contributions

Xinyi Jing: theoretical development, experiment
implementation, paper writing, approving the final
version of the article publication, including references.

Tao Yu: theoretical development, experiment
implementation, paper writing, approving the final
version of the article publication, including references.

Renyuan He: theoretical development, experi-
ment implementation, paper writing, approving the
final version of the article publication, including
references.

Yu-Kun Lai: guidance, theoretical development,
experimental design, paper revision, approving the
final version of the article for publication, including
references.

Kun Li: guidance, theoretical development, experi-
mental design, paper writing, approving the final
version of the article for publication, including
references.

Acknowledgements

We are grateful to the Associate Editor and anony-
mous reviewers for their help in improving this paper.
This work was supported in part by National Key

Available on

. & e
B) £ 4% 8t JEEE Xplore”

Tsinghua University Press

R&D Program of China (2023YFC3082100), National
Natural Science Foundation of China (62122058 and
62171317), and Science Fund for Distinguished Young
Scholars of Tianjin (No. 22JCJQJC00040).

Declaration of competing interest

The authors have no competing interests to declare
that are relevant to the content of this article.

References

[1] Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A;
Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin,
P.; Clark, J.; Krueger, G.; Sutskever, I. Learning
transferable visual models from natural language
supervision. In: Proceedings of the 38th International
Conference on Machine Learning, 8748-8763, 2021.

[2] Shin Yoon, J.; Kim, K.; Gallo, O.; Park, H. S
Kautz, J. Novel view synthesis of dynamic scenes with
globally coherent depths from a monocular camera.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 5336-5345,
2020.

[3] Broxton, M.; Flynn, J.; Overbeck, R.; Erickson, D.;
Hedman, P.; Duvall, M.; Dourgarian, J.; Busch, J.;
Whalen, M.; Debevec, P. Immersive light field video
with a layered mesh representation. ACM Transactions
on Graphics Vol. 39, No. 4, Article No. 86, 2020.

[4] Collet, A.; Chuang, M.; Sweeney, P.; Gillett, D.; Evseev,
D.; Calabrese, D.; Hoppe, H.; Kirk, A.; Sullivan, S.
High-quality streamable free-viewpoint video. ACM
Transactions on Graphics Vol. 34, No. 4, Article No.
69, 2015.

[5] Zheng, Z.; Yu, T.; Wei, Y.; Dai, Q.; Liu, Y.
DeepHuman: 3D human reconstruction from a single
image. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 7739-7749, 2019.

[6] Giiler, R. A.; Kokkinos, I. HoloPose: Holistic 3D
human reconstruction in-the-wild. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 10884-10894, 2019.

[7] Li, Z.; Niklaus, S.; Snavely, N.; Wang, O. Neural scene
flow fields for space-time view synthesis of dynamic
scenes. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 6498—
6508, 2021.

[8] Xian, W.; Huang, J. B.; Kopf, J.; Kim, C. Space-
time neural irradiance fields for free-viewpoint video.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 9421-9431,
2021.



FRNeRF: Fusion and regularization fields for dynamic view synthesis 13

[9]

10

[11]

[12]

[13]

[14]

[15

[16]

[17]

[18]

Gao, C.; Saraf, A.; Kopf, J.; Huang, J. B. Dynamic
synthesis from dynamic monocular video.
In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 5712-5721, 2021.
Mildenhall, B.; Srinivasan, P. P.; Tancik, M.; Barron,
J. T.; Ramamoorthi, R.; Ng, R. NeRF: Representing
scenes as neural radiance fields for view synthesis.
Communications of the ACM Vol. 65, No. 1, 99-106,
2021.

Sitzmann, V.; Zollhefer, M.; Wetzstein, G. Scene

representation networks: Continuous 3D-structure-

view

aware neural scene representations. In: Proceedings of
the 33rd Conference on Neural Information Processing
Systems, 2019.

Peng, S.; Niemeyer, M.; Mescheder, L.; Pollefeys, M.;
Geiger, A. Convolutional occupancy networks. In:
Computer Vision — ECCV 2020. Lecture Notes in
Computer Science, Vol. 12348. Vedaldi, A.; Bischof,
H.; Brox, T.; Frahm, J.-M. Eds. Springer Cham, 523—
540, 2020.

Miiller, T.; Evans, A.; Schied, C.; Keller, A. Instant
neural graphics primitives with a multiresolution hash
encoding. ACM Transactions on Graphics Vol. 41, No.
4, Article No. 102, 2022.

Niemeyer, M.; Mescheder, L.; Oechsle, M.; Geiger,
A. Differentiable volumetric rendering: Learning
implicit 3D representations without 3D supervision.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 3504-3515,
2020.

Oechsle, M.; Mescheder, L.; Niemeyer, M.; Strauss,
A. Texture fields:
representations in function space. In: Proceedings of
the IEEE/CVF International Conference on Computer
Vision, 4531-4540, 2019.

Chen, Z.; Zhang, H. Learning implicit fields for

T.; Geiger, Learning texture

generative shape modeling. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 5939-5948, 2019.

Genova, K.; Cole, F.; Sud, A.; Sarna, A.; Funkhouser,
T. Local deep implicit functions for 3D shape.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 4857-4866,
2020.

Genova, K.; Cole, F.; Vlasic, D.; Sarna, A.; Freeman,
W.; Funkhouser, T. Learning shape templates with
structured implicit functions. In: Proceedings of the
IEEE/CVF International Conference on Computer
Vision, 7154-7164, 2019.

[19]

21]

[24]

[25]

[26]

[28]

Park, J. J.; Florence, P.; Straub, J.; Newcombe,
R.; Lovegrove, S. DeepSDF: Learning continuous
signed distance functions for shape representation.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 165-174,
2019.

Xu, Q.; Wang, W.; Ceylan, D.; Mech, R.; Neumann,
U. DISN: Deep implicit surface network for high-
quality single-view 3D reconstruction. arXiv preprint
arXiv:1905.10711, 2019.

Shao, R.; Zheng, Z.; Tu, H.; Liu, B.; Zhang, H.; Liu,
Y. Tensor4D: Efficient neural 4D decomposition for
high-fidelity dynamic reconstruction and rendering.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 16632—
16642, 2023.

Chen, A.; Xu, Z.; Geiger, A.; Yu, J.; Su, H. TensoRF:
Tensorial radiance fields. In: Computer Vision — ECCV
2022. Lecture Notes in Computer Science, Vol. 13692.
Avidan, S.; Brostow, G.; Cissé, M.; Farinella, G. M.;
Hassner, T. Eds. Springer Cham, 333-350, 2022.
Saito, S.; Huang, Z.; Natsume, R.; Morishima, S.;
Li, H.; Kanazawa, A. PIFu: Pixel-aligned implicit
function for high-resolution clothed human digitization.
In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 23042314, 2019.
Atzmon, M.; Lipman, Y. SAL: Sign agnostic learning
of shapes from raw data. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2565-2574, 2020.

M.; Pontes, J. K.; Jack, D
Baktashmotlagh, M.; Eriksson, A. Implicit surface

Michalkiewicz,

representations as layers in neural networks. In:
Proceedings of the IEEE/CVF
Conference on Computer Vision, 4743-4752, 2019.

International

Mescheder, L.; Oechsle, M.; Niemeyer, M.; Nowozin,
S.; Geiger, A. Occupancy networks: Learning 3D
reconstruction in function space. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 4460-4470, 2019.

L.; Kasten, Y.; Moran, D.; Galun, M

Atzmon, M.; Basri, R.; Lipman, Y. Multiview neural

Yariv,

surface reconstruction by disentangling geometry and
appearance. arXi preprint arXiv:2003.09852, 2020.
Tewari, A.; Fried, O.; Thies, J.; Sitzmann, V.; Lombardi,
S.; Sunkavalli, K.; Martin-Brualla, R.; Simon, T
Saragih, J.; Nieflner, M.; et al. State of the art on
neural rendering. Computer Graphics Forum Vol. 39,
No. 2, 701-727, 2020.

Available on

(%2 % Mt [EEE Xplore®

Tsinghua University Press




14

X. Jing, T. Yu, R. He, et al.

[29]

[30]

[31]

32]

33

[34]

[35]

[36]

[37]

[38]

Kato, H.; Beker, D.; Morariu, M.; Ando, T.; Matsuoka,
T.; Kehl, W.; Gaidon, A. Differentiable rendering: A
survey. arXiv preprint arXiv: 2006.12057, 2020.
Martin-Brualla, R.; Radwan, N.; Sajjadi, M. S.
M.; Barron, J. T.; Dosovitskiy, A.; Duckworth,
D. NeRF in the wild: Neural radiance fields
unconstrained photo collections. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 7210-7219, 2021.

Buehler, C.; Bosse, M.; McMillan, L.; Gortler, S.;
Cohen, M. Unstructured lumigraph rendering. In:

for

Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques, 452—
432, 2023.

Debevec, P. E.; Taylor, C. J.; Malik, J. Modeling and
rendering architecture from photographs: A hybrid
geometry-and imagebased approach. Seminal Graphics
Papers: Pushing the Boundaries Vol. 2, Article No. 49,
2023.

Riegler, G.; Koltun, V. Free view synthesis. In:
Computer Vision — ECCV 2020. Lecture Notes in
Computer Science, Vol. 12364. Vedaldi, A.; Bischof,
H.; Brox, T.; Frahm, J.-M. Eds. Springer Cham, 623—
640, 2020.

Waechter, M.; Moehrle, N.; Goesele, M. Let there
be color! large-scale texturing of 3D reconstructions.
In: Computer Vision — ECCV 2014. Lecture Notes in
Computer Science, Vol. 8693. Fleet, D.; Pajdla, T.;
Schiele, B.; Tuytelaars, T. Eds. Springer Cham, 836—
850, 2014.

Thies, J.; Zollhofer, M.; NieBiner, M. Deferred neural
rendering: Image synthesis using neural textures. ACM
Transactions on Graphics Vol. 38, No. 4, Article No.
66, 2019.

Wood, D. N.; Azuma, D. I.; Aldinger, K.; Curless, B.;
Duchamp, T.; Salesin, D. H.; Stuetzle, W. Surface light
fields for 3D photography. Seminal Graphics Papers:
Pushing the Boundaries Vol. 2, Article No. 51, 2023.
Flynn, J.; Broxton, M.; Debevec, P.; DuVall, M.;
Fyffe, G.; Overbeck, R.; Snavely, N.; Tucker, R.
DeepView: View synthesis with learned gradient
descent. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2367—
2376, 2019.

Srinivasan, P. P.; Tucker, J. T,
Ramamoorthi, R.; Ng, R.; Snavely, N. Pushing the
boundaries of view extrapolation with multiplane
images. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 175184,
2019.

R.; Barron,

Available on

N % N
(12 % Wt |EEE Xplore-

Tsinghua University Press

[39]

[40]

[42]

[43]

[48]

[49]

Srinivasan, P. P.; Mildenhall, B.; Tancik, M.; Barron,
J. T.; Tucker, R.; Snavely, N. Lighthouse: Predicting
lighting volumes for spatially-coherent illumination.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 8080-8089,
2020.

Zhou, T.; Tucker, R.; Flynn, J.; Fyffe, G.; Snavely,
N. Stereo magnification: Learning view synthesis using
multiplane images. ACM Transactions on Graphics Vol.
37, No. 4, Article No. 65, 2018.

Tucker, R.; Snavely, N. Single-view view synthesis
with multiplane images. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 551-560, 2020.

Penner, E.; Zhang, L. Soft 3D reconstruction for view
synthesis. ACM Transactions on Graphics Vol. 36, No.
6, Article No. 235, 2017.

Kutulakos, K. N.; Seitz, S. M. A theory of shape
by space carving. International Journal of Computer
Vision Vol. 38, 199-218, 2000.

Lombardi, S.; Simon, T.; Saragih, J.; Schwartz, G.;
Lehrmann, A.; Sheikh, Y. Neural volumes: Learning
dynamic renderable volumes from images. ACM
Transactions on Graphics Vol. 38, No. 4, Article No.
65, 2019.

Seitz, S. M.; Dyer,

reconstruction by voxel coloring. In: Proceedings of

C. R. Photorealistic scene

the Proceedings of IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 1051—
1073, 2002.

Sitzmann, V.; Thies, J.; Heide, F.; NieBner, M
Wetzstein, G.; Zollhofer, M. DeepVoxels: Learning
persistent 3D feature embeddings. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2437-2446, 2019.

Liu, L.; Gu, J.; Zaw Lin, K.; Chua, T.-S.; Theobalt, C.
Neural sparse voxel fields. In: Proceedings of the 34th
Conference on Neural Information Processing Systems,
15651-15663, 2020.

Sun, C.; Sun, M.; Chen, H. T. Direct voxel grid
optimization: Super-fast convergence for radiance fields
reconstruction. In: Proceedings of the IEEE/CVF
Conference
Recognition, 5459-5469, 2022.

Yu, A.; Li, R.; Tancik, M.; Li, H.; Ng, R.; Kanazawa, A.
PlenOctrees for real-time rendering of neural radiance
fields. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 5752-5761, 2021.

on Computer Vision and Pattern



FRNeRF: Fusion and regularization fields for dynamic view synthesis 15

[50]

51

[52]

[53]

[54]

[56]

57

[58]

[59]

[60]

Fridovich-Keil, S.; Yu, A.; Tancik, M.; Chen, Q.
Recht, B.; Kanazawa, A. Plenoxels: Radiance fields
without neural networks. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 5501-5510, 2022.

Tancik, M.; Srinivasan, P. P.; Mildenhall, B.; Fridovich-
Keil, S.; Raghavan, N.; Singhal, U.; Ramamoorthi, R.;
Barron, J. T.; Ng, R. Fourier features let networks learn
high frequency functions in low dimensional domains.
arXiv preprint arXiv:2006.10739, 2020.

Barron, J. T.; Mildenhall, B.; Tancik, M.; Hedman,
P.; Martin-Brualla, R.; Srinivasan, P. P. Mip-NeRF:
A multiscale representation for anti-aliasing neural
radiance fields. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, 5855—
5864, 2021.

Zhang, K.; Riegler, G.; Snavely, N.; Koltun, V.
NeRF++: Analyzing and improving neural radiance
fields. arXiv preprint arXiv:2010.07492, 2020.

Tancik, M.; Casser, V.; Yan, X.; Pradhan, S
Mildenhall, B. P.; Srinivasan, P.; Barron, J. T,
Kretzschmar, H. Block-NeRF: Scalable large scene
synthesis. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 8248-8258, 2022.

Barron, J. T.; Mildenhall, B.; Verbin, D.; Srinivasan,
P. P; Hedman, P. Mip-NeRF 360: Unbounded anti-
aliased neural radiance fields. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 5470-5479, 2022.

Gao, H.; Li, R.; Tulsiani, S.; Russell, B.; Kanazawa, A.

Monocular dynamic view synthesis: A reality check.

neural view

In: Proceedings of the 36th Conference on Neural
Information Processing Systems, 2022.

Zitnick, C. L.; Kang, S. B.; Uyttendaele, M.; Winder,
S.; Szeliski, R. High-quality video view interpolation
using a layered representation. ACM Transactions on
Graphics Vol. 23, No. 3, 600-608, 2004.

Kanade, T.; Rander, P.; Narayanan, P. J. Virtualized
reality: Constructing virtual worlds from real scenes.
IEEE MultiMedia Vol. 4, No. 1, 34-47, 1997.

A.; Vo, M.; Sheikh, Y.; Ramanan, D

Narasimhan, S. 4D visualization of dynamic events

Bansal,

from unconstrained multi-view videos. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 5366-5375, 2020.

Li, T.; Slavcheva, M.; Zollhoefer, M.; Green, S.;
Lassner, C.; Kim, C.; Schmidt, T.; Lovegrove, S.;
Goesele, M.; Newcombe, R.; et al. Neural 3D video

[62]

[64]

[65]

[66]

[68]

synthesis from multi-view video. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 5521-5531, 2022.

Wang, L.; Zhang, J.; Liu, X.; Zhao, F.; Zhang, Y;
Zhang, Y.; Wu, M.; Yu, J.; Xu, L. Fourier PlenOctrees
for dynamic radiance field rendering in real-time.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 13524—
13534, 2022.

Park, K.; Sinha, U.; Barron, J. T.; Bouaziz, S.;
Goldman, D. B.; Seitz, S. M.; Martin-Brualla,
R. Nerfies: Deformable fields.
In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 5865-5874, 2021.
Park, K.; Sinha, U.; Hedman, P.; Barron, J. T.; Bouaaziz,
S.; Goldman, D. B.; Martin-Brualla, R.; Seitz, S.
M. HyperNeRF: A higher-dimensional representation

neural radiance

for topologically varying neural radiance fields. ACM
Transactions on Graphics Vol. 40, No. 6, Article No.
238, 2021.

Pumarola, A.; Corona, E.; Pons-Moll, G.; Moreno-
Noguer, F. D-NeRF: Neural radiance fields for dynamic
scenes. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 10318—
10327, 2021.

Tretschk, E.; Tewari, A.; Golyanik, V.; Zollhofer, M.;
Lassner, C.; Theobalt, C. Non-rigid neural radiance
fields: Reconstruction and novel view synthesis of a
dynamic scene from monocular video. In: Proceedings of
the IEEE/CVF International Conference on Computer
Vision, 12959-12970, 2021.

Du, Y.; Zhang, Y.; Yu, H. X.; Tenenbaum, J. B.; Wu,
J. Neural radiance flow for 4D view synthesis and
video processing. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, 14304—
14314, 2021.

Gao, C.; Saraf, A.; Kopf, J.; Huang, J. B. Dynamic
view synthesis
In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 5712-5721, 2021.
Xian, W.; Huang, J. B.; Kopf, J.; Kim, C. Space-
time neural irradiance fields for free-viewpoint video.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 9421-9431,
2021.

Li, Z.; Wang, Q.; Cole, F.; Tucker, R.; Snavely, N.
DynIBaR: Neural dynamic image-based rendering.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 4273—-4284,
2023.

from dynamic monocular video.

Available on

(%2 % Mt [EEE Xplore®

Tsinghua University Press




X. Jing, T. Yu, R. He, et al.

[70] Kajiya, J. T.; Von Herzen, B. P. Ray tracing volume

densities. ACM SIGGRAPH Computer Graphics Vol.
18, No. 3, 165-174, 1984.

Gao, P.; Ma, T.; Li, H.; Lin, Z.; Dai, J.; Qiao,
Y. MCMAE: Masked convolution meets masked
autoencoders. In: Proceedings of the 36th Conference
on Neural Information Processing Systems, 632-644,
2022.

Xu, D.; Jiang, Y.; Wang, P.; Fan, Z.; Shi, H.;
Wang, Z. SinNeRF: Training neural radiance fields
on complex scenes from a single image. arXiv preprint
arXiv:2204.00928, 2022.

Schonberger, J. L.; Frahm, J. M. Structure-from-motion
revisited. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 4104—4113,
2016.

Girshick, R. Fast R-CNN. In: Proceedings of the IEEE
International Conference on Computer Vision, 1440—
1448, 2015.

Kingma, D. P.; Ba, J.; Hammad, M. M. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Shin Yoon, J.; Kim, K.; Gallo, O.; Park, H. S;
Kautz, J. Novel view synthesis of dynamic scenes with
globally coherent depths from a monocular camera.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 5336—-5345,
2020.

Wang, Z.; Bovik, A. C.; Sheikh, H. R.; Simoncelli,
E. P. Image quality assessment: From error visibility
to structural similarity. IEEE Transactions on Image
Processing Vol. 13, No. 4, 600-612, 2004.

Zhang, R.; Isola, P.; Efros, A. A.; Shechtman, E.;
Wang, O. The unreasonable effectiveness of deep
features as a perceptual metric. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 586595, 2018.

Song, L.; Chen, A.; Li, Z.; Chen, Z.; Chen, L.; Yuan,
J.; Xu, Y.; Geiger, A. NeRFPlayer: A streamable
dynamic scene representation with decomposed neural
radiance fields. IEEE Transactions on Visualization
and Computer Graphics Vol. 29, No. 5, 2732-2742,
2023.

Fridovich-Keil, S.; Meanti, G.; Warburg, F. R.; Recht,
B.; Kanazawa, A. K-planes: Explicit radiance fields

[81] Hu, S. M.; Liang, D.; Yang, G. Y.; Yang, G. W.; Zhou,

W. Y. Jittor: A novel deep learning framework with
meta-operators and unified graph execution. Science
China Information Sciences Vol. 63, No. 12, Article No.
222103, 2020.

Zhou, W. Y.; Yang, G. W.; Hu, S. M. Jittor-GAN: A
fast-training generative adversarial network model zoo
based on Jittor. Computational Visual Media Vol. 7,
No. 1, 153-157, 2021.

Xinyi Jing received her B.E. degree
from the School of Computer Science,
Shaanxi Normal University, Xi’an, China,
in 2020. She is currently pursuing
her M.E. degree in the College of
Intelligence and Computing, Tianjin
University, China. Her research interests
are in computer vision and computer

graphics.

Tao Yu is currently pursuing his Ph.D.
degree in the College of Intelligence and
Computing, Tianjin University, China.
His research interests are in computer
vision and computer graphics.

Renyuan He received his B.E. degree
from the School of Cyberscience and
Engineering, Zhengzhou University,
China, in 2021. He is currently pursuing
an M.E. degree in the College of
Intelligence and Computing, Tianjin
University, Tianjin, China. His research
interests are in computer vision and

computer graphics.

Yu-Kun Lai received his bachelor and
Ph.D. degrees in computer science from
Tsinghua University in 2003 and 2008,
respectively. He is currently a professor
in the School of Computer Science
& Informatics, Cardiff University, UK.
His research interests include computer
graphics, geometry processing, image

in space, time, and appearance. In: Proceedings of processing, and computer vision. He is on the editorial
the IEEE/CVF Conference on Computer Vision and  boards of IEEE Transactions on Visualization and Computer
Pattern Recognition, 12479-12488, 2023. Graphics and The Visual Computer.

. é Available on
(12 % Wt |EEE Xplore-

Tsinghua University Press



FRNeRF: Fusion and regularization fields for dynamic view synthesis 17

Kun Li received her B.E. degree
from Beijing University of Posts and
Telecommunications, Beijing, China, in
& 2006, and master and Ph.D. degrees from

- Tsinghua University, Beijing, in 2011. She

is currently a professor in the College

of Intelligence and Computing, Tianjin

University. She served as an Area Chair

in ACM Multimedia 2021 and a Local Chair in VALSE
2022. Her research interests include 3D reconstruction and
generative Al
Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduc-

tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission

directly from the copyright holder.
To view a copy of this licence,

creativecommons.org/licenses/by/4.0/.

visit http://

To submit a manuscript, please go to https://jcvm.org.

Available on

(%2 % Mt [EEE Xplore®

Tsinghua University Press




