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ABSTRACT

In recent years, federated learning (FL) and the Internet of Things (IoT) have enabled many artificial
intelligence (AI) applications. The new paradigm brings many benefits over conventional machine
learning (ML) and deep learning (DL) because it moves model training to the edge. Even though FL
proves its feasibility, the constant change in the environment of IoT systems makes it difficult for
FL to converge quickly and work as promised. Consequently, a self-adaptive approach is required to
automatically react to context changes and maintain system performance. We provide a systematic
overview of current efforts to use self-adaptation approaches for FL in the IoT context. In particular,
we review different computing disciplines such as self-adaptive systems(SAS), feedback controls, IoT,
and FL. Additionally, we present (i) a multidimensional taxonomy to highlight the main characteristics
of a self-adaptive FL system and (ii) a conceptual architecture for self-adaptive FL in the IoT context
and apply it to anomaly detection (AD) for smart homes. We conclude by describing the motivations,
implementations, applications, and challenges of the self-adaptive FL system in the IoT context.

Keywords Federated Learning, Internet of Things, Self-adaptation



A PREPRINT - MARCH 21, 2024

1 Introduction

The Internet of Things (IoT) facilitates the rapid advancement of smart applications that transform cities, homes,
and workplaces into interconnected, efficient, and responsive spaces [1]. Statistics indicate that the total number of
IoT devices is expected to reach 125 billion by 2030. [2]. The significant expansion of the IoT network increases
the number of artificial intelligence (AI) applications, which heavily rely on the massive amount of data that were
unavailable before. [3]. However, because of the importance of data privacy, most of these data are private for AI
applications. Therefore, Google introduced the concept of federated learning (FL) to overcome these obstacles, enabling
AI applications to use these data without violating data privacy. The adaptation of FL has expanded to many areas. For
instance, several medical organizations may collaborate to develop machine learning (ML) diagnostic models without
sharing patients’ health records. Smart industries can also benefit by actively sharing model training with similar
manufacturers to enhance early fault tolerance in the production line. Domestic users can also benefit from using FL to
prevent cyber-physical attacks on domestic IoT devices. To provide a proper notation for this new paradigm, the term
“Internet of Federated Things (IoFT)” was introduced to explain the relationship between IoT and FL and the explosive
interest that has been generated during the last few years [4]. IoFT allows devices to work together to extract knowledge
and create intelligent analytics and models while storing their data locally. In addition to lowering privacy concerns,
this paradigm shift introduces several inherent benefits, such as cost-effectiveness, diversity, and less computation.
However, because of the unpredictable nature of operating environments, such as changing weather and uncertainty
around service delivery, IoFT has been displaying increasing complexity. Self-adaptation evolved to allow systems to
respond autonomously to shifting environments and preserve the necessary level of service quality [5]. In this paper, we
demonstrate the efforts of the scientific community to overcome IoFT challenges using the self-adaptation property. To
enhance the reading of this paper, we have included all the abbreviations used in Table 1.

1.1 Existing Surveys

Numerous studies have demonstrated the viability of self-adaptive systems (SAS) in various contexts. We provide a
summary of previous research on SAS. Table 2 shows the analysis of self-adaptive IoFT in the literature. The effort to
review SAS and its properties has motivated many researchers, especially after IBM proposed the vision of autonomic
computing in 2001 [5]. The proposed manifesto demonstrated the urgent need to implement a system that can operate
autonomously without human intervention to overcome the complexity of the system. Consequently, their continuous
operation became difficult for humans to manage. Early work has been conducted to review autonomic computing
and its application [6]. The authors discuss various aspects of SAS, including its motivations, methodologies, and
applications. However, their paper should have included a section on SAS evaluation. Moreover, they present the
main properties and definitions of self-management systems. Although their study partially discusses the use of a
self-management concept in distributed systems, FL should be mentioned. In [7], Salehie and Tahvildari provide an
extensive summary of self-adaptive software research by identifying related fields and notable research initiatives.
They used a question-based approach (when, what, how, and where questions) to identify the main properties of SAS.
Krupitzer et al. [8] outlined further analysis of the 5W + 1H questions. They answered all questions by introducing
their self-adaptation taxonomy, although the “why” question was not answered because of the nature of SAS. Elhabbash
et al. [9] presented another survey on self-awareness in software engineering. Although their paper focuses on the
field of software engineering, it covers many important questions regarding the definition of self-properties and the
engineering approach to developing self-awareness software. Most surveys, including those mentioned earlier, focus on
SAS. To the best of our knowledge, we are unaware of any survey paper focusing on self-adaptive IoFT. However, some
literature partially addresses self- properties in IoFT. For instance, Abdulrahman et al. [10] discuss self-optimization in
resource management within a federated ecosystem. This study demonstrates the reasons and goals behind using this
approach across various domains.

1.2 Contributions

Although there are systematic reviews of both SAS and FL, most studies treat the two topics separately. Furthermore, a
thorough study of self-adaptive IoFT is yet to be conducted. Therefore, our contributions can be summarized as follows.

- We have thoroughly evaluated the literature related to the implementation of self-adaptive IoFT systems.
- We briefly define SAS, FL, and IoT and their unique characteristics and relationships.
- We introduce our taxonomy, highlighting the main properties of self-adaptive IoFT systems.
- We cover aspects of self-adaptive IoFT systems, such as context, motivations, implementation, applications,

challenges, and future direction.
- We introduce a conceptual architecture with feedback loop for self-adaptive IoFT, which is demonstrated

through anomaly detection (AD) in smart home environments.
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Table 1: List of Abbreviations
Phrase Acronym Phrase Acronym

Federated Learning for IoT Application IoFT Research Question RQ
Federated Learning FL Inclusion Criteria IC
Internet of Things IoT Exclusion Criteria EC
Industrial Internet of Things IIoT Transmission Control Protocol TCP
Self-adaptive System SAS User Datagram Protocol UDP
Machine Learning ML Internet Protocol IP
Reinforcement Learning RL Remote Procedure Call RPC
Neural Network NN Network Functions Virtualization NFV
Deep Learning DL Software-Defined Networking SDN
Anomaly Detection AD Virtual Machine VM
Artificial Intelligence AI Systematic Literature Review SLR
Independent and Identically Distributed IID Stochastic Gradient Descent SGD

Table 2: Previous Survey Comparison

|Paper |Year |Method |Domain |Focus |Studies |Self-adaptation system
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[6] 2008 Adh AC C|H|O|P N/A N/A Ex ✓ ✓ x ✓ x
[7] 2009 Adh SE C|H|O|P|A|D|CA N/A N/A Ex ✓ ✓ ✓ ✓ x
[8] 2015 Adh AC C|H|O|P|A|D|CA N/A N/A Ex ✓ ✓ ✓ ✓ x
[9] 2019 SLR SE H|P|A|D|CA 865 74 Ex ✓ ✓ ✓ ✓ x
[11] 2022 SLR CPS H|P|A|D|CA 266 30 Ex ✓ ✓ ✓ ✓ x
[10] 2021 Adh FL O N/A N/A x P/C P/C P/C ✓ ✓
This Paper 2024 SLR FL C|H|O|P|A|D|CA 290 20 Ex/Im ✓ ✓ ✓ ✓ ✓

C: self-configuring H: self-healing O: self-optimization P: self-protecting A: self-awareness, D: self-adaption M: self-managing L: self- learning, CA: Context-awareness
SLR: systematic literature review Adh: ad hoc Ex: Explicit Im: Implicit IoFT: Internet of Federated Things, FL: Federated learning SE: Software engineering AC:
Autonomic computing CPS: Cyber–physical system P/C: partial coverage, N/A: not applicable

1.3 Paper Structure

The remaining sections of this paper are structured as follows: Section 2 introduces the background knowledge for the
rest of this paper by describing fundamental topics and terminologies. Section 3 highlights the research methodology
used in this study. Section 4 presents the definition, motivation, implementation, evaluation, and application of self-
adaptive IoFT. In this section, we also introduce the feedback control loop for self-adaptive IoFT and demonstrate how
it works for self-adaptive IoFT for AD in smart homes. At the end of this section, we discuss the challenges and future
research directions for self-adaptive IoFT. Finally, we conclude this work in Section 5.

2 Background

2.1 Self-adaptive Systems

SAS is designed to deal with the increasing complexity of systems that face uncertain aspects at runtime. In the early
2000s, the research community introduced the concept of SAS [7] [12] [13], which describes a system that can configure
itself using various mechanisms to preserve system quality within an unstable environment. Uncertainties can take
different forms, such as introducing a device to the current network, adapting a new user’s behavior to smart places, and
exceeding the threshold due to an unknown event in cloud resources. Therefore, a system that can adapt to the dynamic
environment is crucial. The core design philosophy of an SAS is to distinguish between the adaptation logic that
maintains or enhances certain system qualities and the managed resources that execute the domain-specific functions of
the application. Therefore, the research community has provided a myriad of proposals and system architecture in the
last two decades to design an SAS. We briefly discuss some popular conceptual designs for developing and using SAS
in the literature.

2.1.1 Autonomic Feedback Loop

Driven by autonomic communication, which focuses on communication, networking, and distributed computing
paradigms, Dobson et al. [14] proposed an autonomic control loop, as shown in Figure 1a to enable self-adaptation to
autonomic communication. They stated that the system begins gathering information from various sources, such as
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(a) Autonomic feedback loop (b) MAPE-K model

Figure 1: Conceptual designs of autonomic feedback loop and original MAPE-K model

network traffic, sensor readings, user context, and application requirements. The data will be analyzed using different
techniques, such as decision theory and risk assessment. This analysis will help create a model representing the system’s
current state, which will be used later to make decisions. Once the decision-making stage is complete, the results are
moved to the action stage, which provides instructions to the system administrators or records strategies for the next
control cycle.

2.1.2 Traditional and MAPE-K Feedback Loops

The MAPE feedback control loop is a well-recognized engineering approach to enable self-adaptation, which also
follows the four computation components monitor–analyze–plan–execute [12]. The monitoring stage initiates the
control loop. This stage gathers relevant data from the environment representing the current state of the system. After
that, in the analysis stage, the system should analyze the output of the previous monitoring stage using various methods
to organize and reason the information; we will explore a few methods later in Section 4.3. In the planning stage,
a set of actions to adapt the managed resources is defined, which allows a reactive response to any event that may
evolve over time. These actions and responses will be executed in the last stage to enable adaptation within the system.
Finally, a MAPE-K feedback loop improves MAPE by adding a knowledge base to share the data across all computation
components in Figure 1b.

2.1.3 Architecture-based Self-adaptation

Oreizy et al. [15] introduce one of the early works on architecture-based self-adaptation. Unlike the other self-adaptation
approach, Oreizy’s method includes a two-phase model for an SAS: evolution and adaptation management, which
include key processes that help attain the goals and objectives of SAS. First, the evolution management phase has
several components to make changes and constantly collect observations. This phase minimizes changes and accidental
errors during model execution. Evolution management mainly deals with applying change over time while minimizing
the risks associated with the process. Second, the adaptation management phase examines system behaviors to react
accordingly and identify appropriate adaptations. The essential practices of this phase include evaluating, monitoring,
and planning changes. The model mainly addresses the issue of inconsistencies and errors that occur unplanned.

2.1.4 Rainbow Framework

Garlan et al. [13] introduce the rainbow framework, which integrates the architectural model of a system in its runtime
system in contrast to conventional applications of software architecture as a purely design–time artifact. Developers of
self-adaptation capabilities specifically use the software architectural model of a system to track and analyze the system.
Therefore, the rainbow framework design consists of two layers: system and architecture. Separating the system design
reduces the development cost and increases the usability of the framework because it can be used with any system, such
as a legacy system. Rainbow realizes self-adaptation using the model manager to support the constraint evaluator, which
provides reasoning features to the current system and identifies its behavior. The reasoning features support planning
for the following action through the adaptation engine, which is later translated into action via the adaptation executor.
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Figure 2: Architectural design for (a) centralised learning vs. (b) federated learning

2.1.5 Common Features of SAS

We have listed some approaches in the literature to enable self-adaptation systems. These self-adaptation techniques
clearly share some common features, which can be summarized into three main observations. First, a crucial feature is
the separation of the control logic and managed resources. This separation enhances the usability and portability of
these approaches because it allows easy adaptation to new or existing systems. Moreover, it reduces the complexity of
the system by splitting it into small subsystems. From a system design perspective, the separation allows engineers to
focus more on system operation and quality maintenance rather than on the system interface with the adaptation logic
component. Second, reducing the number of adaptation logic and managed resource interactions is one of the main
objectives. Consequently, the system permits costly operations on the adaptation logic component and returns feedback
as a single or set of actions to be applied to managed resources or notified to the system administrator. Third, the main
structure of the adaptation cycle in these approaches contains several steps. Each is responsible for a specific task using
data from the previous step. However, all these steps use some form of state management, sharing common variables
and system configurations to synchronize the data across all components.

2.2 Federated Learning

2.2.1 Definition

Several models are used for ML in the IoT, including centralized and decentralized approaches, each with its advantages
and disadvantages [16]. The FL paradigm for IoT is a new addition to these methods. FL applications can be seen in
various fields, including smart city [17], health care [18], recommendation systems [19], edge network [20], electric
grid [21], vehicular ad hoc network [22], and blockchain [23]. In contrast to centralized ML approaches, FL inherently
enhances security and privacy by keeping data localized at the edge. In this framework, data generated on edge devices
are used for local training of ML models rather than being transmitted to a central server. Consequently, only model
parameters are exchanged between the edge devices and the cloud server, as shown in Figure 3. Therefore, the FL
process generally includes three main steps.

• Step 1: A federated server initiates the training task and creates an initial global ML model. The federated
server also determines the list of contributed clients, the number of rounds, and the aggregation process for all
incoming parameters.

• Step 2: After receiving the model from the federated server, the federated clients train the model using their
local data. After completing this training phase, they transmit the newly refined model, which is returned to
the federated server.

• Step 3: After receiving refined models from the federated clients, the federated server aggregates the received
model parameters to create an updated global model. Subsequently, the global model was redistributed to all
participants, initiating another training round.

These processes (i.e., those mentioned in steps 2 and 3) will continue until the federated server reaches the maximum
number of rounds or convergence. In the literature, the terms specialization and generalization are used as alternative
terminology for communication. After convergence, additional rounds may be required if a new federated client joins
or new data are collected. Determining how federated servers aggregate the received model into a global model is
critical. Numerous FL aggregation approaches have been reported in the literature. The most common method is
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Figure 3: Data partitioning types in FL

federated averaging denoted by FedAvg [24]. Thus, the proposed algorithm attempts to reduce the loss function and
achieve convergence by averaging the model weights received from the client, thereby making it the baseline of FL. The
FedSGD algorithm is commonly used in deep learning because it aggregates gradients and performs a step of gradient
descent [24]. However, FedAvg distributes updated weights rather than gradients, which allows local clients to perform
multiple batch updates on local data. If all local clients have the same start model parameters, averaging the gradients in
FedSGD is equivalent to averaging the weights in FedAvg .

2.2.2 Data Partitioning

An essential stage in designing an FL system is data distribution analysis over samples and feature spaces. Therefore,
the FL system can be typically categorized as horizontal, vertical, or hybrid FL.

Horizontal/Example-based FL The datasets of different participants are different or have a small intersection in
the sample space; however, the feature space is identical. Horizontal FL is a helpful technique for partitioning data,
particularly when multiple participants attempt to enhance ML model performance on similar tasks using FL. This
type of horizontal data partitioning is commonly used in FL research. Because local data are in the same feature space,
participants can train their local models using the same ML model architecture and local data. FedAvg was therefore
used in the horizontal FL to average all local models. A typical application of wake word detector [25] and a word
prediction [26].

Vertical/Feature-based FL The data space between participants is the same but differs in terms of the feature space.
For example, if we want to create a generalized model that works across �elds, we can combine different features of
different sectors to train a single global model. Therefore, this type of data partitioning requires a different approach
to achieve the FL task. For example, entity alignment techniques can acquire participant knowledge and identify
overlap samples between participants [27]. Cheng et al. [28] proposed a vertical FL method that allows participants to
train gradient-boosting decision trees collaboratively without loss of information. Their approach �nds commonalities
between different FL client data that join the decision tree process while preserving the privacy of the FL client.

Hybrid/Transfer FL This is a combination of both horizontal and vertical FL data partitions. Another name used
in the literature is federated transfer learning. The main reason for introducing this hybrid data partitioning is that if
we have two or more FL clients with overlapping sample data and features, the FL will perform poorly because of
the heterogeneity of the data and feature spaces. An example of an application that could bene�t from hybrid FL is
a marketing company that collects customer data to launch marketing campaigns in different countries. Because of
cultural variations, thoughts, and beliefs, some countries may have more features that work well to predict a marketing
campaign's success than others. However, there is a small intersection in the feature space, such as age interest,
which can be generalized across countries. Furthermore, because of the different geographic locations of the two
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marketing campaigns, the overlap of the data sample was negligible. Thus, hybrid FL attempts to bene�t from both data
partitioning techniques by transferring learning [29] to another FL client. Liu et al. [30] provide a secure transfer FL
system that uses shared features and samples to learn a representation of an FL client.

2.2.3 Federation Scale

FL scaling classi�cation encompasses cross-device [31] and cross-silo [32] applications based on the number of
participants and the volume of data distributed within the federation.

Cross-siloCross-silo FL is typically used in cross-domain FL such as banking or medical or for different
geographically distributed data centers. Cross-silo FL leverages extensive datasets from some FL clients to enhance
the training of the global model. Therefore, the FL client count is small, typically encompassing companies and
organizations. An example of a cross-silo is YouTube, which shows targeted advertisements by training models using
data collected from different geographical locations and storing them in the nearest Google data center. The data were
con�gured, and the model was trained using suf�cient computational resources. Because of the �exibility of cross-silo
FL, data partitioning can be either example (horizontal) or feature (vertical) based. Moreover, many FL clients are
incentivized to train a model using all their data in the cross-silo context. However, they cannot exchange their data
directly because of secrecy, regulatory limitations, or even when they cannot organize their data to meet the initial data
requirements of FL.

Cross-device There are potentially vast numbers of FL clients; only a tiny fraction are available at any given time.
The type of FL client can vary because of the heterogeneity of devices such as smartphones and IoT devices. Most of
these devices have limited computational resources, making them ineffective for training. In this case, the federated
server must be able to manage all revised local models to aggregate a global training model. For example, Google has
proposed an FL-based keyboard suggestion using end-user devices to locally train a keyboard suggestion model [33].
Similarly, Apple uses cross-device settings to train Siri to recognize various voices [34]. Because of the nature of the
cross-device FL setting, it is impossible to directly address and index participating clients. This limitation reduces
reliability, unlike cross-silo, where each client can be identi�ed easily to make it accessible [32].

2.2.4 ML Techniques

FL in IoT uses several ML techniques. Technique selection is primarily based on the goal to be achieved and the
type of available data. Many domains use different ML techniques in addition to SAS. Supervised, unsupervised,
and reinforcement ML algorithms are common approaches to building SASs. Some examples of ML techniques
are based on Bayesian theory [35][36][35], clustering [37], fuzzy learning [38], genetic algorithms [39] [40], neural
networks [41][42], and decision trees [43][44][45]. Saqutri and Lee [46] provide a comprehensive review of ML for
SAS. Detailed qualitative and quantitative syntheses of 231 studies that re�ected state-of-the-art federated ML were
analyzed recently [47].

2.2.5 FL Frameworks

There are many frameworks used in the FL research community. These frameworks were primarily created to be
implemented on real-world systems, which decreases the entrance barrier since it does not require substantial knowledge
of different computing disciplines. Some well-known frameworks are PySyft [48], FedML [49], LEAF [50], Flower
[51], Clara [52], PaddleFL [53], Open FL [54], TensorFlow-Federated [55], FATE [56]. Burlachenko et al. [57] present
FL_PyTorch, an FL simulator, to deduce the preliminary required to implement FL without expert knowledge.

2.2.6 Relationship between FL and IoT

Several limitations regarding the current IoT ecosystem paradigm for implementing ML tasks should be noted. These
limitations include lack of data availability; violation of end-user privacy; high communication costs; heterogeneity
of IoT devices; and challenges in the scalability, availability, and reliability of ML functionality [58]. FL plays an
essential role in addressing the limitations of ML in the IoT domain. FL tackles the lack of data availability by allowing
several parties to join the collaboration and share their model parameters trained within other parties' local data. The
conventional approach for training ML in the IoT domain requires all bene�ted parties to share their data with a central
server to perform model training. However, many organizations, such as health care, refuse to accept this idea of
collaboration because of the high privacy violation of sharing end-user private data. To preserve privacy, FL discourages
all joined parties from sharing their local data; instead, they may share the model's parameters such as gradient and
weight. Moreover, the communication costs associated with of�oading local data to the cloud are critical for traditional
ML in IoT systems. Additionally, the heterogeneity of the IoT introduces new challenges because of the capabilities of
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Figure 4: Research methodology stages [60].

IoT devices, which can affect the overall training process and the performance of the global model. The architecture
of FL provides a novel solution for both communication costs and the diversity of IoT devices by taking advantage
of the distributed nature of FL and the type of data required from joined parties. Each FL client is only required to
share a small amount of data, process less payload, and improve network bandwidth. Additionally, the aggregation
process of the FL server can be ef�ciently used to manage the diversity of IoT devices by leveraging different incentive
mechanisms to reward FL clients based on their contributions, such as data quality and quantity. One of the biggest
challenges regarding the scalability, availability, and reliability of conventional ML systems in the IoT domain is that all
training is conducted on a single centralized server, making it more vulnerable to threats. Additionally, as IoT devices
grow, handling scalability becomes overwhelmingly complex. In the FL architecture, the FL client is responsible for
training the global model with its local data, and the FL server is responsible for global model initiation and aggregation
of all FL client contributions. FL clients need not join the training round, which can be disconnected anytime. However,
they will lose the bene�t of FL by obtaining the most updated model. Some FL architectures, such as FL with the
incentive aggregation technique, are designed to manage many FL clients and measure their contributions. Finally,
the primary objective of adapting IoFT is to overcome the limitations of conventional ML systems when applied to
continuously changing environments.

3 Review Methodology

The advantage of a systematic literature review (SLR) is that it is well- known for evaluating papers that �t the
prespeci�ed eligibility criteria [59]. Moreover, the SLR is concerned with identifying, analyzing, and assessing research
�ndings relevant to speci�ed research questions. To conduct this study, we performed both manual and automatic
searches. We investigated the implementation of self-adaptive IoFT in edge, fog, and cloud computing scenarios. We
used backward and forward reference search methods to identify the most relevant results. We followed the research
methodology outlined in Figure 4.

• Stage 1 : research questions: We intend to present a comprehensive and structured overview of all signi�cant
self-adaptive IoFT articles related to the following research questions.

– RQ1: What is the de�nition of self-adaptive IoFT systems?
– RQ2: What are the characteristics of self-adaptive IoFT systems?
– RQ3: What is the feedback loop architecture for self-adaptive IoFT systems?
– RQ4: What are the primary motivations for using self-adaptive IoFT systems?
– RQ5: What are the technical considerations for implementing self-adaptive IoFT systems?
– RQ6: How are self-adaptive IoFT systems evaluated?
– RQ7: What is the reality of self-adaptive IoFT systems?

RQ1 addresses the de�nition of self-adaptive IoFT in the literature and its different interpretations in Section
4.1. RQ2 is motivated by the need to de�ne and characterize self-adaptive IoFT capabilities. Additionally,
we summarize several existing taxonomies used in the literature to identify the primary characteristics of
self-adaptive IoFT in Section 4.2. RQ3 addresses the adaptation logic and conceptual architecture of feedback
loop control for self-adaptive IoFT in Section 4.3. RQ4 explains the motivation for using self-adaptive IoFT in
real-world applications in Section 4.5. To conduct a thorough analysis, RQ5 examines various engineering
approaches for developing a self-adaptive IoFT system in Section 4.6. The purpose of RQ6 is to identify
various evaluation techniques, criteria, and metrics proposed in the literature to assess the performance and
reliability of the IoFT in Section 4.7. Finally, RQ7 demonstrates the reality of self-adaptive IoFT by examining
real-world applications and domains that use this paradigm in Section 4.8.

• Stage 2 : literature search strategy: The literature search strategy begins by identifying data sources and
a search query. The study's search strategy is based on an automated search of multiple globally known
databases and indexing systems such as Google Scholar, Scopus, ScienceDirect, AMC Digital Library, IEEE
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Table 3: Search Queries
Database or Indexing Services Search Queries
Google Scholar intitle:"federated learning" OR intitle:FL AND IoT OR "Internet of Things" AND intitle:self-* AND

-intitle:review AND -intitle:survey AND -intitle:systematic
Scopus TITLE-ABS-KEY(("federated")AND(self*) AND ("IoT" OR "Internet of Things")) AND PUBYEAR

> 2015
ScienceDirect ("federated") AND ("IoT" OR "Internet of Things")
ACM [Abstract: "federated"] AND [Abstract: self*] AND [Publication Date: (01/01/2016 TO 31/12/2023)]
IEEE ("Abstract":"federated") AND ("Abstract":"self*") AND ("Abstract":IoT OR "Abstract":"Internet of

Things")
Springer Link "federated learning" OR "Internet of Federated Things" AND self-* AND (review OR survey OR

systematic)

Xplore, and SpringerLink to collect relevant information from published sources. We searched for keywords in
the lists of databases and scienti�c citation indexing services. Our automatic search technique focused on the
keywords “Federated learning,” “Internet of Federated Things,” “Autonomic computing,” and “Context-aware.”
Because of the ambiguity surrounding the de�nition of self-adaptation, we used a wildcard search to obtain all
relevant results containing terms such as “Self-con�guration,” “Self-learning,” and “Self-optimization.” Table
4 shows the automatic search results before snowballing.

• Stage 3 : selection criteria: We conducted two rounds of study selection against the �ndings of automatic
searching to determine the primary study. We carefully �ltered the papers in the �rst round according to their
titles, abstracts, and keywords. Additionally, duplicate data were eliminated from various sources. In the
second round, we �ltered the primary studies using well-de�ned inclusion (IC) and exclusion (EC) criteria.

– IC1: Google �rst proposed FL in 2016 as an alternative setting for centralized ML approaches [24].
Therefore, we limited our search to papers published after January 1, 2016, demonstrating self-adaptive
IoFT.

– IC2: This study demonstrates an ML-based approach for IoFT and its properties. However, any study
that incorporates a self-adaptive technique that explicitly mentions the IoFT, such as federation in cloud
computing, software, or blockchain, will be included.

– IC3: The study discusses self-logic in general. Because this study focuses on IoFT, we include only
research that applies the self-adaptive IoFT environment for self-adaptation.

– EC1: The study should not be an abstract or limited to one or two pages. These studies are excluded
because they often need more information.

– EC2: The study should not use self-adaptation in contexts other than FL and IoT. This study does not
contribute to answering the main research question because we focus on the IoFT.

– EC3: A study that focuses on theory without proof of concept will be excluded because this study must
meet our quality assessment criteria.

• Stage 4 : cross-references check: To ensure that no relevant research is overlooked, we use the cross-referencing
methodology and identify potentially relevant papers using the “snowballing” search strategy. We accomplished
this by recording the references listed in the “References” section of each primary study [61] [59].

• Stage 5 : quality assessment criteria: Kitchenham et al. [61] [62] stated that the quality of research is related
to its ability to minimize bias and maximize internal and external validity. The primary studies were evaluated
according to prede�ned quality assessment criteria. Moreover, we used checklists provided by reference [62].
We include each paper that has de�ned the problem statement and contribution, presented background and
context, provided a clear description of the research method and evaluation, and reported the �ndings.

• Stage 6 : data extraction item: We review all selected primary studies to gather data to help answer the research
questions. Table 5 describes the data items to be retrieved and their corresponding research questions.

• Stage 7 : analysis and synthesis: Stages 3, 4, and 6 of the research method used in this study examined
the analysis and synthesis of research publications. Data items de�ned earlier in stage 6 were extracted and
recorded in a spreadsheet for each study. Additionally, we used various software tools, such as NVivo and
Excel, to analyze and visualize the �ndings of the selected primary studies.

• Stage 8 : reporting the review: At this stage, we present the results of our analysis of the 20 selected primary
study data after the �ltering process conducted in all previous stages and the answers to our research questions.
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Table 4: Search Results Before Snow-balling
Google Scholar IEEE ACM ScienceDirect Scopus Springer Link

64 21 50 23 104 28

Table 5: Data Item Collection Form
Data item Description Relevant QR
Title for paper's reference Documentation
Year The publication year of the primary study Documentation
Publication source The Publication metadata and type of primary study Documentation
De�nition The de�nition of self-adaptive IoFT RQ1
self-* property The properties of self-adaptive IoFT RQ2, RQ3
self-* taxonomy The self-* taxonomy on different in the �eld of a self-adaptive system RQ2, RQ3
Feedback loop control The feedback loop architecture concept RQ3
Motivation The primary motivations for using self-adaptive IoFT RQ4
Technical aspect The technical considerations for implementing self-adaptive IoFT s RQ5
Assessment method The various evaluation techniques, criteria, and metrics for assessing self-

adaptive IoFT
RQ6, RQ7

Applications The real-world applications and domains that employ the self-adaptive IoFT RQ7

4 Self-adaptive IoFT

4.1 The De�nition of Self-adaptive IoFT

To de�ne a self-adaptive IoFT, we �rst need to understand two terms: context and context-aware systems. These terms
form the foundation of every SAS.

4.1.1 Context and Context-aware Computing

The primary source of data generation is the context. However, in the literature, many researchers have de�ned the term
“Context” differently based on their domain expertise. For example, Brown [63] de�nes context as the components of
the user's surroundings that are known to the computer. Salehie et al. [7] extend Brown's de�nition; thus, the context
is everything in an operating environment that in�uences the system's attributes and behaviors. However, the most
accurate de�nition was proposed by Abowd et al. [64]. These authors refer to context as:

”Context is any information that can be used to characterize the situation of an entity. An entity is a
person, place, or object that is considered relevant to the interaction between a user and an

application, including the user and applications themselves.”

Abowd et al. [64] state that the context comprises three entities: people (individuals and groups), places (buildings and
of�ces), and things (sensors and actuators). These entities are characterized by several attributes: identity, location,
status, and time. Abowd et al. [64] de�ne these categories as the primary context. In contrast, the secondary context
can only be obtained from the primary context with additional information, such as weather based on the user's location.
However, in IoT applications, this de�nition is only partially applicable. Perera et al. [65] argue that the categorization
scheme proposed by Abowd et al. [64] did not consider ordinary IoT contexts. For example, calculating the distance
between two GPS sensors involves processing the locations obtained using both sensors. This type of data processing
commonly occurs in IoT applications because most data interpretations are derived from a group of sensor readings.
The de�nition proposed by Abowd et al. [64] does not address this common scenario in IoT applications. Therefore,
Perera et al. [65] extend the original de�nition to include an operational perspective. Their de�nition highlights the
challenges in data acquisition in IoT applications and provides a conceptual perspective to understand the relationships
between different contexts. Our study adopts the categorization scheme proposed by Perera et al. [65] because it is
better suited to the IoT paradigm and captures both the operational and conceptual attributes of context-aware IoT
applications. Context-aware computing is derived from the desire to use contextual information. Numerous viewpoints
on how systems should consider context have been provided [65] [64] [63] [7]. However, the primary purpose of
context-aware computing is to evaluate the context and respond to dynamic environment changes to meet speci�c goals
based on relevant information. In the IoT setting, context-aware systems connect context information to sensor data to
provide insight for interpretation.
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Table 6: De�nitions of Self-* Property in IoFT System
Study Express Property De�nition
[69] Implicit self-organization The ability of federated learning clients to autonomously enhance the uploaded weight

of parameters to the federated learning server.
[70] Implicit self-organization The ability of federated sensor network to autonomously detect resources, optimise the

network routing protocol and algorithm
[71] Implicit self-learning The ability of federated learning to learn the device's type and anomalies autonomously.
[72] Explicit self-organization The ability of federated learning to autonomously create different collaboration schemes

to identify the heterogeneity hidden in the federation.
[73] Implicit self-organization The ability of federated learning to autonomously formalities device clusters, join

devices, and allocate resources.
[74] Explicit self-adaption ”In the context of self-adaptation, the roles are monitor, analyze, plan and execute over

a shared knowledge ”
[75] Explicit self-adaption ”FedML solutions con�gure the system, that is, set its parameters, and allocate resource

dynamically”
[62] Explicit self-awareness ”we refer to a SASO system S as a collection A of autonomous subsystems ai that are

able to adapt their behaviour based on self-awareness of the internal and external
conditions”

[76] Explicit self-attention ”By using the self-attention mechanism, we can optimize both the server-to-client and
the client-to-client parameter divergence and increase the model's performance to
Non-IID data. ”

[77] Explicit self-revealing ”The self-revealing mechanism of the contract theory approach enables workers to be
rewarded based on their speci�c types even in the presence of information asymmetry,
i.e., when the worker types are not known by a model owner.”

4.1.2 Self- IoFT Systems

An early de�nition of the term “self” emerged in the late 1890s within psychology, where Baker [66] described “self”
as a process of identi�cation that marked the beginning of scholarly exploration. Goffman [67] further extended this
conceptualization of “self” in sociology, illustrating “self” as a dynamic entity in�uenced by varying circumstances and
contexts. The transition from these foundational ideas to the technological domain was marked by IBM's introduction
of “autonomic computing,” aimed at developing systems capable of self-management [12]. This manifesto led to the
emergence of “self-” systems, which encompass behaviors such as self-con�guration, self-optimization, self-healing,
and self-protection. The concept of “self-” systems has evolved rapidly, prompting efforts to de�ne it broadly, despite
the lack of a universally accepted de�nition, as highlighted in [9][68]. The literature presents two opinions on the
de�nition of “self-.” Initially, the de�nition is in�uenced by the author's perspective and the context in which it is
applied. Alternatively, it is shaped by the domain that adopts the “self-” method. This variation underscores the
adaptability of “self-” concepts across different scienti�c �elds, including the IoFT, where such systems play crucial
roles. Table 6 shows explicit and implicit de�nitions of “self-” in IoFT systems, as found in primary studies.

4.2 Characteristics of Self-adaptive IoFT

There has been a signi�cant effort in the literature to develop various taxonomies to identify key characteristics of SAS
over the years. A notable contribution to this �eld is the comprehensive empirical analysis conducted by Krupitzer et al.
[8], which spans early studies from the 2000s. This study aimed to establish a uniform taxonomy for self-adaptation
by addressing the 5W + 1H questions, a concept �rst introduced by Salehie et al. [7]. The taxonomy presented by
Krupitzer et al. is summarized into �ve dimensions: time, level, technique, reason, and adaptation control, providing a
general overview of the SAS landscape. Other researchers, such as Andersson et al. [78], have proposed alternative
dimensions that view self-adaptation through system goals, triggers, mechanisms, and adaptation outcomes. Brun et al.
[79], who proposed �ve dimensions speci�cally for software engineering further re�ned this perspective: adaptation
targets, effects, actions, states, and the environment. Although these contributions are pivotal, they predominantly
re�ect the viewpoints and requirements of the software engineering community without directly addressing the unique
aspects of the IoFT. Therefore, we formed the IoFT taxonomy in Figure 5, drawing inspiration from the aforementioned
studies. The multidimensional taxonomy is organized to encapsulate the distinctive features of IoFT, providing a novel
framework that complements existing research while addressing the speci�city of IoFT applications.

4.2.1 Time

In an ideal scenario, proactive rather than reactive adaptation is preferred to ensure performance continuity. Proac-
tive adaptation requires accurate prediction capabilities that requires ongoing monitoring and sophisticated learning
techniques [8]. In contrast, reactive adaptation begins after the recognition of a change requirement and responds to
irregular environmental patterns. Therefore, the adaptation process in a reactive model is initiated by detecting these
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Figure 5: A taxonomy of characteristics for self-adaptive IoFT

irregularities. Conversely, proactive adaptation seeks to anticipate potential environmental changes before performance
degradation occurs, focusing on predicting and preparing for future environmental shifts [7] [8].

4.2.2 Reason

Adaptation is often a response to change. Consequently, the type and effect of the change must be de�ned to determine
whether a response is required. Additionally, it is essential to identify the cause of the change and de�ne criteria for
an appropriate method to respond to that change. The main reasons for IoFT adaptation are (1) in technical resource
changes, (2) environmental changes, (3) changes due to user interactions, and (4) downgraded feedback from FL clients.
First, a change in technical resources includes all tangible (IoT device and hardware components failures) and intangible
(software failure, FL server model divergence, FL client aggregation errors, and unstable network connection) assets.
Second, the environment changes when the context of the federated clients changes from one context to another (smart
home, building, and manufacturing). Third, a change due to user interactions can occur by either altering user behavior
using IoT devices (�re alarm leading to evacuation) or changing user preferences to interact with IoT devices and
sensors. Finally, the FL server may trigger the adaptation strategy if feedback from the FL client does not meet the
current service requirement (lack of availability to join the training, poor model training due to data availability, or
model poisoning attack).

4.2.3 Level

The implementation of adaptation can exist at different levels. Various existing taxonomies attempt to answer the
following questions: “which layer of the system can be changed” [7] and “where do we have to implement changes”
[8]. These questions have been addressed in the literature. However, IoFT does not explicitly declare the adaptation
levels. There are two levels in IoFT: the FL server and client. They provide a high-level abstraction of where managed
resources and adaptation logic exist . An FL server has many adaptation mechanisms, such as client selection, global
model selection, and model aggregation optimization. Adaptation also occurred in the FL client, where different actions,
such as local model optimization, automatic sensor con�guration, and automatic delivery of actuation orders, can be
presented.

4.2.4 Technique

The literature uses several adaptation techniques from different �elds. McKinley et al. [84] mentioned two approaches
for adaptation in software engineering: (1) parameter and (2) compositional adaptation. Parameter adaptation is the
most straightforward technical approach because it can be achieved by simply identifying the system's parameters
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Table 7: FL Optimisable Parameters in FL
Category Parameter/Algorithm De�nition/Parameter Details
Global FL
Parameters

fraction_�t The proportion of randomly selected clients participating in each training round re�ects
the system's strategy.

fraction_evaluate The proportion of clients selected for model evaluation after training.
min_�t_clients The minimum number of clients required to proceed with a training round.
min_evaluate_clients The minimum number of clients needed to validate the model's performance.
min_available_clients The minimum number of clients that must be online and available for the FL system to

function.
accept_failures A policy determining whether training rounds that experience client failures are accepted

or discarded.
initial_parameters The initial global model parameters serve as a baseline for subsequent iterations.

Aggregation
Parameters

FedAvg [24] (c) Number of clients participating in each training round, (e) Number of training epochs
each client makes over its local dataset on each round, (b) The local mini-batch size
used for training in client side

FedSGD [24] (w) Model weights on communication selected round , (c) Number of clients partici-
pating in each training round, (e) Number of training epochs each client makes over its
local dataset on each round, (b) The local mini-batch size used for training in client side,
(eta) The learning rate

FedAdam, FedYogi
[80]

(eta) Server-side learning rate, (eta_l) Client-side learning rate, (beta_1) Momentum
parameter, (beta_2) Second moment parameter, (tau) Controls the degree of adaptability

FedAdagrad [80] (eta) Server-side learning rate, (eta_l) Client-side learning rate, (tau) Controls the degree
of adaptability

FedProx [81] (proximal_mu) The weight of the proximal term used in optimization
FedTrimmedAvg [82] (beta) Fraction to cut off of both tails of the distribution
q-FedAvg [83] (eta) learning rate, (q) Tune the amount of fairness

and changing them according to the adaptation policies. Compositional adaptation is a dynamic approach to changing
algorithms or system components to reduce performance degradation. Therefore, we leverage these two adaptation
techniques for self-adaptive IoFT. In self-adaptive IoFT, parameter adaptation must consider three general FL system
design tiers: (1) FL server parameters and ML model (2) parameters and (3) hyperparameters. The FL server parameter
adaptation achieves adaptation by adjusting the global con�guration settings of the FL server and aggregator parameters,
which vary depending on the aggregation algorithm. Table 7 shows the literature's most used aggregation algorithms
and their con�gurable parameters. The ML model parameters allow the changes to the ML algorithm parameters to
obtain a better starting model. The adaptation can occur on the FL server or client side depending on the prede�ned
adaptation strategy. Changing model parameters may require reinitializing the FL system to implement the changes.
Unlike ML model parameters, ML model hyperparameters enable changes at runtime in any part of the FL system,
including the FL server and client. Two methods can archive compositional adaptation: (1) change components by
replacing the ML algorithms or adding more models in the case of ensemble ML and 2) add or remove components,
such as including or excluding FL clients, based on their contributions and effectiveness to global model convergence.
Finally, the adaptation triggers are based on speci�c prede�ned policies or criteria where adaptation is required to
prevent performance loss or to obtain better overall performance.

4.2.5 Adaptation Mechanism

The adaptation mechanism is the core element of any SAS [8], [7]. [8] highlights that adaptation control can be
compressed into two main components: managed resources and adaptation logic. The same components are also applied
to the self-adaptive IoFT domain, but with different interpretations of managed resources and adaptation logic.

Managed resources Managed resources in the IoFT ecosystem encompass physical and virtual resources. The
physical resources of FL clients vary according to their speci�c domain, such as motion sensors in smart homes or heart
rate monitors in health care. Despite their diversity across domains, these resources function universally as sensors,
actuators, small devices, and gateways. For example, a sensor translates physical events into electrical signals, whereas
an actuator executes physical actions based on electrical inputs. Other examples of physical resources are small devices
and IoT gateways. Small devices, such as mobile phones or Raspberry Pi and any control system device with limited
computational power . A gateway connects the IoT devices to the internet, facilitating data transmission between the FL
client devices and the FL server. In contrast, virtual resources represent the capabilities of these physical resources, such
as the accuracy of sensor data or the storage capacity of devices. These intangible factors are crucial to the ef�ciency
of IoFT ecosystems. In the FL server, resources are represented differently, which aligns better with cloud and fog
computing paradigms. Physical resources refer to devices hosting FL orchestration mechanisms, ranging from PCs to
virtual machines in the cloud. Virtual resources in the FL server contain performance metrics such as computing power
and autoscaling capabilities.
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Adaptation logic The primary objective of adaptation logic is to explain how SAS can adapt to a given context.
On the basis of the nature of IoFT, internal and external adaptations can occur on the FL server and client because
they are not tightly coupled systems. Therefore, internal approaches can integrate the application and adaptation logic.
This approach changes the internal con�guration of the IoFT. For example, an FL server hosted on a cloud internally
con�gures its virtual resources to provision autoscaling infrastructure based on a speci�c threshold [93]. Additionally,
an FL server may change the ML model during runtime due to a decrease in overall performance. Similarly, an FL
client may change the local ML model hyperparameters based on concept drift [94]. The internal approach has two
main drawbacks: (i) the cost of testing and maintaining the system and (ii) the knowledge required to perform internal
adaptation is only sometimes available [8] [7]. Therefore, external approaches can overcome these limitations by
separating the adaptation logic and managed resources and connecting them via different interfaces. Thus, adaptation
logic uses an interface to acquire knowledge from the context and interact with managed resources [12]. The modularity
of the external approach makes it more suitable for IoFT. A classic example of an external approach is an FL server that
uses the TCP/IP communication protocol to obtain the local model parameters of the FL client and optimize the global
FL model according to the client's feedback. In the previous example, the communication protocol used to establish
communication is an interface that allows the adaptation logic in FL servers to acquire knowledge from the context,
which in this case is the FL client. Additionally, the FL client, in this context, uses the gateway as a physically managed
resource to respond to the FL server. The external approach can also be implemented for FL clients. The FL client
adaptation logic collects knowledge from the context via sensors and enables adaptation via actuators. For example, in
federated smart homes with “anomaly detection” scenarios, the adaptation logic obtains humidity readings from the
sensor, which provides the adaptation logic with contextual information to decide whether to open or close windows
using an actuator. In summary, managed resource and adaptation logic are the two main pillars of SAS development,
including IoFT. In Section 4.3, we explain the adaptation feedback loop for self-adaptive IoFT in detail.

4.3 Feedback Control Loop for Self-adaptive IoFT

The characteristics of self-adaptation systems make it crucial to understand how self-adaptive IoFT is used in MAPE-K
loops. Furthermore, the feedback control loop mechanism should be able to manage the increasing complexity of IoFT
systems. Therefore, the MAPE-K loop should contain an adaptation logic to manage different internal and external
resources to comply with these standards. Unlike the traditional design of standalone and distributed systems, the
IoFT system design must contain two modules, i.e., the FL server and client, to allow the IoFT system to function, as
discussed in 2.2.1. To differentiate FL from a traditional client/server system, the minimum number of FL clients is
two, each serving as an independent module in the FL system. Therefore, the FL client is equivalent to a standalone
IoT system. The adaptation logic could be in the system gateway, and the managed resources could be virtual or
physical within the IoT environment, as discussed in 4.2.5. In contrast, an FL server has different characteristics and
managed resources to realize self-adaptation. To explain and analyze self-adaptation in the IoFT context, we used
architecture-based self-adaptation [15] using the MAPE-K framework [12] to explain several aspects of the adaptation
mechanism. First, we analyzed each IoFT level in section 4.2.3, including the adaptation logic and managed resources
for both the FL server and client. Finally, we conclude by a generalized interpretation of MAPE-K for the entire FL
system. Figure 6 shows our conceptual architecture of the proposed self-adaptive IoFT.

4.3.1 FL Client as a Managed Resource

On the FL client side, we categorize the devices into two types: nonadaptive and adaptive IoT client. The nonadaptive
IoT client includes all small and large devices, such as smartphones, tablets, PCs, microcontrollers, microprocessors,
and other embedded systems. An important criterion for nonadaptive devices is their ability to participate in FL
collaboration. Sensors and devices unable to perform computations will be excluded unless they use an adapter to
extend their capabilities, such as humidity and temperature sensors connected to a microcontroller to join in FL rounds.
Another distinguishing feature of nonadaptive IoT clients is that they only train local models and share updated versions.
They did not adapt to the context or modify the model parameters based on factors such as concept drift. In contrast,
adaptive IoT clients are devices that can join FL collaboration and adapt to the given context. These FL clients use one
of the self-adaptation approaches mentioned in 2.1. The global model is received from the FL server, and the local
model is then trained using the local data. Asynchronously, they adapt the training behavior based on the sensing layer,
which re�ects the local model training. At the end of each round, all nonadaptive and adaptive IoT clients upload their
trained local models to the FL server to join another round of training.

4.3.2 Middleware

The middleware is responsible for communication between the FL client and server for (1) uploading or downloading the
FL model, (2) registering or removing an FL client, and (3) modifying an FL client's parameters. It uses communication
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Figure 6: Conceptual architecture overview for self-adaptive IoFT

protocols to maintain the orchestration of FL, such as hypertext transfer protocol secure (HTTPS) and remote procedure
call (RPC). HTTPS is based on TCP/IP, which leads to more reliable and stable communication between the FL server
and clients. However, RPC uses TCP for reliability and order and UDP for low latency and overhead, depending on the
application's requirements or the system's con�guration. For example, TCP may be used when the amount of data to be
sent cannot �t into a single UDP datagram. Otherwise, RPC will initially use UDP for small data.

4.3.3 FL Server as Adaptation Logic

The work�ow of the self-adaptive feedback loop in the FL server has different characteristics and features than that in
the federated client. The overall objective of the self-adaptive FL server is to maintain system quality by managing the
orchestration of FL. Therefore, the FL server is responsible for the adaptation logic and can be installed on physical
devices such as computers, microcontrollers, or virtual devices like containers and VMs running in the cloud. The FL
server consists of several layers of independent and dependent components that form the FL adaptation logic.

TheFL client abstraction layeris the interface between the FL server and clients, where each FL client is connected
to a client interface to facilitate communication. The FL client proxy can be changed on the basis of the communication
protocol used by the FL system. The data received from the FL clients via the client interface are used as contextual
information for the MAPE-K module within thestrategy layer. TheFL client registration managercomponent provides
a client registration or elimination mechanism that allows FL clients to join FL cooperation. The data are available in the
knowledge base of the MAPE-K module and can be used later during the MAPE-K cycle. Thesystem administration
component allows the system administrator to interact with the FL system and modify FL parameters in the knowledge
base. Thestrategy layeris the core layer containing the MAPE-K module, which helps the FL server implement model
aggregations and maintain system performance. The MAPE-K cycle starts at the monitoring phase to collect data
from the context, as discussed in 4.1.1. From the FL server's perspective, the context can be either physical resources
(adaptive or nonadaptive IoT clients) or internal factors as virtual resources (CPU and RAM usage) as discussed in 4.2.5.
The contextual information is collected in two modes, which differ depending on the data source. Data generated from
virtual resources updated by the system administrator in the knowledge base are monitored in real-time. Conversely, the
data received from theFL client abstraction layerare monitored after each FL round.

All received data were preprocessed in themonitor phaseusing the assumptions and system rules prede�ned in
the knowledge base component. This preprocessing includes extracting data from various sources such as network
instrumentation, environmental sensors, and application requirements, selecting a model (such as an NN model,
ensemble ML model, or reinforcement learning [RL] model), and identifying FL clients (by participant information and
type). After preprocessing, the sensing data are passed to theanalysis phasefor data diagnosis and model aggregation.
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