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Abstract Irregular boundaries in image stitching
naturally occur due to freely moving cameras. To deal
with this problem, existing methods focus on optimizing
mesh warping to make boundaries regular using the
traditional explicit solution. However, previous methods
always depend on hand-crafted features (e.g., keypoints
and line segments). Thus, failures often happen in
overlapping regions without distinctive features. In
this paper, we address this problem by proposing
RecStitchNet, a reasonable and effective network for
image stitching with rectangular boundaries. Considering
that both stitching and imposing rectangularity are
non-trivial tasks in the learning-based framework, we
propose a three-step progressive learning based strategy,
which not only simplifies this task, but gradually
achieves a good balance between stitching and imposing
rectangularity. In the first step, we perform initial
stitching by a pre-trained state-of-the-art image stitching
model, to produce initially warped stitching results
without considering the boundary constraint. Then, we
use a regression network with a comprehensive objective
regarding mesh, perception, and shape to further
encourage the stitched meshes to have rectangular
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boundaries with high content fidelity. Finally, we
propose an unsupervised instance-wise optimization
strategy to refine the stitched meshes iteratively, which
can effectively improve the stitching results in terms of
feature alignment, as well as boundary and structure
preservation. Due to the lack of stitching datasets and
the difficulty of label generation, we propose to generate
a stitching dataset with rectangular stitched images
as pseudo-ground-truth labels, and the performance
upper bound induced from the it can be broken by our
unsupervised refinement. Qualitative and quantitative
results and evaluations demonstrate the advantages of
our method over the state-of-the-art.

Keywords image stitching; boundaries; convolutional
neural network

1 Introduction

In recent decades, image stitching has been an
active topic in computer graphics and vision. The
goal of image stitching is to construct a wide
field-of-view (FOV) scene from several overlapping
images each having a limited FOV. This has a wide
range of applications in virtual reality, autonomous
driving, video surveillance, etc. Traditional image
stitching methods mainly focus on accurate feature
matching, natural warping, shape- and straight line-
preservation [1–3]. Despite their great success, most
of these methods rely on the performance of hand-
crafted feature matching in overlapping regions, and
thus have limited generalizability. These methods
often struggle to stitch images with unclear textures,
or taken in low light, or having low resolution.
Additionally, preserving geometric structure and
visual features necessitates complex optimization
and intensive computation, further heightening the
difficulty of image stitching.
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To overcome the challenges posed by feature
matching and structure preservation, learning-
based methods have been extensively studied in
recent years; they stitch images by adaptively
learning high-level semantic features from big data.
These methods can be roughly divided into three
types: supervised [4–6], weakly-supervised [7], and
unsupervised [8, 9] methods. They are able to robustly
and efficiently stitch images, demonstrating high
performance in terms of large parallax tolerance
and geometry preservation. However, most of them
do not take boundary regularity into consideration.
Recently, following previous work on image stitching
and imposing rectangularity of results based on
conventional optimization frameworks [10, 11], Nie
et al. [12] proposed the first deep learning solution
for imposing image rectangularity, which was further
extended to image rotation correction in Ref. [13].
They took well-stitched images as input and learned
to rectify the irregular boundaries while preserving
the high-level semantic features. However, their
method does not consider optimizing stitching
simultaneously with creation of rectangular image
boundaries. This oversight could potentially amplify
artifacts in the stitched input after applying warping-
based rectification.

In this paper, we introduce RecStitchNet, a
supervised learning network designed for stitching
images while ensuring rectangular stitching boun-
daries. To enable an effective learning process, we
have designed a three-step progressive stitching
approach. Firstly, we conduct an initial stitching

process using a state-of-the-art deep stitching
technique, to give warped meshes for the image
pair. Secondly, we use a regression network of our
own design with a comprehensive objective regarding
mesh, perception, and shape to encourage the stitched
meshes to have rectangular boundaries with high
content fidelity. The output of the network is the
predicted mesh motions relative to the initially
warped meshes. In this paper, the term “mesh motion”
refers to offsets of all vertex positions of the mesh
on each image. Finally, to ensure the robustness of
our method across various scenarios, we employ an
unsupervised instance-wise network to improve the
stitching result. This refinement process is guided
by an objective function comprising a rectangular
boundary term, a feature-matching term, and a shape
preservation term, which collectively contribute to
the production of high-quality stitching results.

Unlike typical stitching methods that often
result in irregular boundaries, our objective is to
achieve stitching results with rectangular boundaries.
Generally, both stitching and imposing rectangularity
are challenging tasks, necessitating a supervised
network for effective learning. However, obtaining
ground truth stitching results is difficult due to the
absence of a publicly recognized standard. So that
rectangular stitching results can be more standardized
and universally recognized, we propose to generate
pseudo-ground-truth using a state-of-the-art stitching
technique with rectangular boundaries [11].

Figure 1 shows the pipeline of our method. Given
two normal FOV images as input, the proposed

Fig. 1 Pipeline of our method. We take two normal FOV images as input, and then stitch them using a pre-trained model. Taking the initial
stitching result with irregular boundary as input, we use RecStitchNet to produce coarse stitching result with a rectangular boundary. We
finally refine the coarse stitching result using an instance-wise unsupervised learning method.
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solution progressively stitches them from an initial
stitched image with irregular boundaries to a coarse
stitched image with rectangular boundaries to the
final stitching result with further refinement of
boundaries and alignment. Extensive experiments
and evaluations in this paper show that our approach
can effectively stitch images and obtain satisfactory
results, with rectangular boundaries.

Compared to a previous stitching method imposing
rectangularity [11], our method is more robust
and efficient due to its effective high-level feature
extraction and matching.

To sum up, our main contributions are as follows:
• We propose a novel deep stitching network called

RecStitchNet, which does not rely on the fragile and
expensive feature matching found in traditional
methods, so is much more robust and efficient
compared to these methods. As our extensive
experimental results demonstrate later, our
method achieves state-of-the-art performance, both
qualitatively and quantitatively, outperforming
traditional methods and deep learning baselines.

• We introduce an unsupervised instance-wise
learning strategy to iteratively optimize stitching
results, to ensure high-quality stitching in a wide
range of scenarios.

• Given the absence of an existing dataset for
supervised learning, we have created a new
dataset, which includes pseudo-ground-truth
mesh warping results, strictly selected and re-
rendered from traditional stitching results with
rectangular boundaries.

2 Related work

2.1 Traditional image stitching

Image stitching refers to aligning multiple images
with mutual overlaps and producing a new image
with a larger FOV. The key problem of image
stitching is to keep accurate feature alignment, with
unnoticeable distortion. Earlier works based on a
single homography [14] and dual-homographies are
limited to parallax and perspective variations.

To compensate for the shortcomings of a globally
projective model, a number of spatially varying
warping models, which can better address local
alignment, have been proposed, such as smoothly
varying affine stitching [15], as-perspective-as-possible
(APAP) stitching [16], piecewise planar region

matching [17], and seam-guided warping [18–20].
To produce more natural stitching with less

perspective distortion, several warping schemes
have proposed, characterized by shape-preserving
half-projection (SPHP) [21], adaptive as-natural-as-
possible (AANAP) [3], global similarity prior [1],
quasi-homography [22], single perspective [23], and
geometric structure preserving [24].

Recently, Jia et al. [25] considered global collinear
structures, effectively preserving global and local
structures while reducing distortions. Zhang and
Huang [26] proposed manifold preserving stitching:
Using on-manifold operations helps to reduce ghosting
and distortion artifacts. To improve stitching results,
seam-cutting methods have been applied to removing
artifacts in overlapping regions [20, 27].

The most relevant work to our paper comes from
Zhang et al. [11], in which boundary regularity
constraints are incorporated into the stitching
framework, helping to solve the irregular boundary
problem in image stitching. Although successful in
many examples including some challenging cases, the
method in Ref. [11] may fail in situations such as those
with unclear textures, low lighting, and low resolution.
In addition, the two-step energy optimization process
is also time-consuming.

2.2 Deep image stitching

Unlike the above methods, deep stitching learns to
stitch images by extracting high-level features from
large datasets, which avoids the difficulties in feature
matching, global and local structure preservation, etc.
We may roughly divide recent research into three
main types.

2.2.1 Supervised learning
Nie et al. [4] and Zhao et al. [5] proposed view-free
image stitching based on global homography learning,
which improves upon the previous learning based
stitching method [28] which is limited to relatively
fixed views. To tolerate parallax in stitching, they
generate a synthetic dataset from an existing real
image dataset. Instead of homography based learning,
Kweon et al. [6] recently proposed a novel deep
stitching framework using a pixel-wise warp field,
which can handle the large-parallax problem well.

2.2.2 Weakly supervised learning
To overcome the difficulties in dataset and ground
truth generation, Song et al. [7] proposed a weakly-
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supervised learning method to train the stitching
model without using real ground truth images. They
have further extended their method to stitching
multiple images and creating 360-degree panoramas.
2.2.3 Unsupervised learning
Considering the difficulties in data label generation,
some works focus on unsupervised learning methods,
which train stitching models without labels. Nie
et al. [8] proposed an unsupervised image stitching
method, which consists of unsupervised coarse
image stitching and image reconstruction. Very
recently, Nie et al. [9] further proposed a parallax-
tolerant unsupervised image stitching method which
is characterized by combining homography and thin-
plate splines (TPS) into a unified framework.

2.3 Enforcing image rectangularity

Enforcing image rectangularity aims to regulate
the irregular boundaries caused by image stitching,
rotation, etc. The pioneering works in imposing image
rectangularity are Refs. [10, 29], in which content-
aware warping methods based on mesh optimization
are proposed. Wu et al. [30] further extended imposing
rectangularity to videos, incorporating temporal
coherence into the warping-based optimization. Nie
et al. [12] proposed a one-stage learning baseline of
deep rectangularity imposition for image stitching.
Compared to the two-stage methods in Refs. [10, 29],
the method in Ref. [12] is more efficient and robust,
and can well preserve non-linear structures thanks
to high-level feature extraction in the learning
framework. Liao et al. [31] proposed a rectangularity
imposing rectification network, which applies the
TPS module to perform non-linear and non-rigid
transformations for imposing rectangularity on wide-
angle rectified images. Very recently, Zhou et al. [32]
combined stitching and imposing rectangularity into
a unified end-to-end framework using a synthetic
dataset. Although effective in producing stitching
results with rectangular boundaries, it still suffers
from content loss and ghosting effects in the
overlapping regions.

3 Method

3.1 Overview

Like recent work on stitching and imposing
rectangularity [1, 9, 11, 12, 23], we also stitch

images by content-aware mesh warping. Mesh warping
is widely used in image manipulation due to its
simplicity and efficiency. Traditional methods [1, 11,
23] are based on energy optimization with constraints
on all grid vertices of the mesh. Let V = {V i, i =
1, . . . , N} be the sets of all vertices of the input
images, where N is the number of images. We aim to
obtain warped mesh vertices V̂ = {V̂ i} by minimizing
the energy function E(V̂ ), which includes several
content-aware constraints, such as feature alignment,
shape preservation, and straight line preservation.
Such methods usually focus on designing energy terms
that are effective in stitching and easy to optimize.
Unlike traditional methods, deep learning based
methods [9, 12] focus on dataset preparation, network
construction, and mesh regression. For effective mesh
regression, we have to focus on designing the objective
function to effectively guide the training process, and
the total loss, to ensure satisfactory convergence. To
calculate the feature loss after mesh warping, an
effective and efficient warping operation is required,
which must also be differentiable for effective gradient
propagation.

Inspired by the methods above, we propose a novel
method to achieve stitching and imposing boundary
rectangularity simultaneously in a learning-based
framework. Figure 2 shows an overview of our method
for deep stitching with rectangular boundaries. We
take two images of the same size with partial overlap
as input; the output is a rectangular stitching result
with no loss of content. We first perform initial
stitching, which aims to warp the high-level features
extracted from input images. The warping is guided
by the initial meshes generated by a state-of-the-art
deep stitching model [9]. We further learn to regulate
the boundary of the stitching result by designing a
regression network, which generates suitable mesh
motion to be applied to the initial meshes. Finally,
with the combination of initial meshes and these
mesh motions, the final stitching result can easily be
produced by warping and average blending.

3.2 Initial warping

In this stage, the input images are initially stitched
using a leading deep stitching model [9]. As illustrated
in Fig. 3, given two input images {Ii, i = 1, 2} to
be stitched, a uniform quad mesh υi is placed on
each image Ii. The initial warping produces warped
meshes {ξi} after the deep stitching process. To
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Fig. 2 Overview of our network for deep stitching with rectangular boundaries. Our supervised learning network consists of initial warping
and mesh motion regression stages. The first stage warps the high-level features extracted from the input images; the warping is guided by
meshes generated by the deep stitching model by Nie et al. (2023). Using the warped features as input, we further obtain the mesh motions
(vertex offsets to apply to the initial meshes) through mesh motion regression. Final stitching results are obtained by averaging the images
warped by the meshes produced by combining the initial meshes and mesh motions.

Fig. 3 Mesh manipulations in initial stitching and mesh motion regression.

facilitate the deep stitching task, the first image is
consistently kept unchanged, while the other image
is warped into alignment with it. Next, high-level
semantic features are extracted from each input image
(without warping) through a series of convolution
and pooling blocks (blue solid blocks in Fig. 2); each
block comprises two convolution layers. After the
first, second, and third blocks, a max-pooling layer
is applied. We set the number of channels to 64 and
128 for the convolution layers in the first two and the
last two blocks, respectively. Subsequently, following
the last blocks, an adaptive pooling layer is employed
to standardize the resolution of the features.

To establish the relationship between the two
images in the overlapping regions, we concatenate
the global correlation [4] with the features extracted
for each image. Given the extracted features (F 1, F 2)
of the input images, their global correlation refers to
their feature-wise similarities, defined by

Cor(x1, x2) = < F 1(x1), F 2(x2) >
|F 1(x1)||F 2(x2)| (1)

where x1, x2 represent the locations of the feature
vector in each feature map. We limit the range of
feature similarity comparison for fast calculation of
global correlation. These features are then warped
using the meshes {ξi} obtained through the initial
stitching process. These warped features {κi} of the
input images, representing the features of the initial
stitching results, serve as input to the mesh motion
regression process.

3.3 Mesh motion regression

In this stage, our goal is to obtain the mesh motion,
as offsets from the initially warped mesh vertices;
this helps regulate the shape of the final stitching
boundaries. As indicated in the middle section of
Fig. 2, the input to this stage consists of the extracted
high-level features that have been warped by the
meshes from the initial stitching. We provide a simple
yet effective fully convolutional network to predict
both the vertical and horizontal motion, denoted as
{χi}, for all vertices relative to those in the initially
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warped meshes {ξi}. The output of the regression
is of dimension (P + 1) × (Q + 1), where P and Q

denote the resolution of the meshes. Subsequently, we
determine the predicted meshes {ψi} by combining
the mesh motion {χi} with the initial warped meshes
{ξi}, as shown in Fig. 3. With the incorporation of
mesh motion, the outer boundary of the combined
meshes more closely approximates a rectangle.
3.4 Loss functions

3.4.1 Loss
Our regression network learns the motion of the mesh
vertices that can ensure both feature alignment and
boundary regularity. We use three loss terms and
define the total loss as Eq. (2):

Ltrain = ϕmlm + ϕplp + ϕsls (2)
where lm, lp, ls refer to the mesh, perception, and
shape preserving loss terms respectively, and ϕm, ϕp,
ϕs are corresponding weights.

For our supervised training framework, we have
prepared a large dataset (refer to Section 3.6),
which contains input image pairs, pseudo-ground-
truth mesh labels representing warped mesh vertices,
and pseudo-ground-truth stitching result labels.
The pseudo-ground-truth data are produced by a
leading traditional stitching method which produces
rectangular boundaries [11].
3.4.2 Mesh loss
Given the predicted meshes {ψi}, we simply constrain
them to be close to the ground truth labels of meshes
Ψi, using:

lm =
2∑
i=1

(P+1)∗(Q+1)∑
j=1

‖ψij −Ψi
j‖1 (3)

where ψij and Ψi
j refer to the vertex positions of the

predicted mesh and the pseudo-ground-truth mesh
respectively.
3.4.3 Perceptual loss
We further constrain the result to be visually
appealing, and to preserve the structure in the input
image, such as linear or salient structures. We define
the corresponding loss as Eq. (4):

lp =
2∑
i=1
‖Γ(Ωtps(ψi, Ii))− Γ(Ωtps(Ψi, Ii))‖1 (4)

where Ωtps(·) refers to the TPS transformation [33],
which is used to warp the input images {Ii} guided by
the warped mesh, and Γ(·) refers to the VGG-19 [34]
feature extractor.

3.4.4 Shape preserving loss
Following Ref. [12], we also preserve the shape of the
mesh using intra-grid and inter-grid shape similarity
constraints, using:

ls = lintra
s + linter

s (5)
The intra-grid constraint is employed to enforce both
the scale and direction of the grid edges, and is defined
as Eq. (6):

lintra
s =

2∑
i=1

∑
~ej∈~hi

ϑ(∆x(~ej) + σW/Q)
(P + 1)Q

+
2∑
i=1

∑
~ek∈~vi

ϑ(∆y(~ek) + σH/P )
P (Q+ 1) (6)

where ~ej and ~ek refer to all horizontal and vertical
edges of a mesh respectively, and ∆x(~ej) and ∆y(~ek)
refer to projections of the edge vectors onto x and y

directions respectively. ϑ is the ReLU function, which
is used to cause the direction of the horizontal and
vertical edges to be right and bottom, and enforce
their scale to be more than σW/Q and σH/P ; we set
σ = 0.8 in this paper.

The inter-grid constraint aims to cause pairs of
successive horizontal and vertical grid edges {~et1,
~et2} to undergo linear changes (i.e., encouraging their
angle to be close to zero). It is defined as Eq. (7):

linter
s =

2∑
i=1

1
|Λi|

∑
{~et1,~et2}∈Λi

(1− cos(~et1, ~et2)) (7)

where cos(~et1, ~et2) calculates the cosine of the angle
between ~et1 and ~et2, Λi refers to the set of all
successive grid edges in the mesh of the ith image,
and |Λi| is the total number of successive grid edges.
3.5 Unsupervised instance-wise stitching

refinement

3.5.1 Approach
In the mesh motion regression step, our loss
functions are designed to cause the predicted
stitching result to be close to both the pseudo-
ground-truth mesh and the stitched image while
preserving mesh shape. However, our experiments
showed that some predicted results may not exhibit
perfect boundary regularity and feature matching
(see Fig. 4). Simply incorporating feature matching
and rectangular boundary constraints into the
network training process does not yield satisfactory
results. This is because the refinement objective
(unsupervised learning) is slightly contradictory to the
original optimization goal of RecStitchNet (supervised
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Fig. 4 Refinement of stitching results. The input to this step comprises the predicted meshes and the corresponding input image pair. We
first extract the outer boundary of the predicted meshes using a polygon Boolean operation, and then predict the refined meshes using the
instance-wise unsupervised learning framework in an iterative manner. Finally, we obtain an optimized stitching result by warping and blending.

learning using pseudo mesh labels), preventing
the network parameters from being optimized. To
enhance stitching performance and enable the transfer
of the pretrained model to other datasets, we
propose an instance-wise unsupervised learning
method constrained by feature matching, rectangular
boundary, and shape preservation constraints, which
are designed to further optimize the mesh grid, so as
to refine the imperfect rectangular boundaries and
the ghosting in stitched images.

As Fig. 4 shows, while the predicted stitching result
appears quite satisfactory, it still exhibits irregular
boundaries and misalignment in the overlapping
regions. To further refine the stitching result, we
introduce an instance-wise unsupervised learning
scheme to iteratively optimize the stitching (see
Algorithm 1). The input consists of the predicted
meshes {ψi} generated by our pre-trained regression
network, along with the corresponding input image
pair {Ii}. The output comprises the optimized
meshes {Θi}, for i = 1, 2, and the stitching result

Φ. To iteratively optimize the stitching boundary,
we first need to obtain the boundary vertices of the
stitching result. Drawing inspiration from Ref. [11],
we treat the outer boundaries of the meshes {ψi} as
polygons {P̂ i}. Subsequently, the outer boundary
P̂ of the two meshes is calculated using a polygon
Boolean union operation [35], as Eq. (8):

P̂ = P̂ 1 ∪ P̂ 2 (8)
With the outer boundary vertices of the stitching
results, we are able to construct an effective constraint
for the rectangular boundary. In each iteration, we
first predict the mesh motions {χi} relative to the
current meshes {ψi} using an unsupervised learning
network with the same architecture as RecStitchNet.
{ψi} is then updated for the next iteration. We then
compare the current loss value with the value from the
previous iteration. The iterations terminate when
the difference in loss is sufficiently small. Finally,
we warp the input images using the final optimized
meshes {Θi}, and obtain the final stitching result Φ
through average blending of the warped images.
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Algorithm 1: Refine the stitching results
Input: Predicted meshes {ψi} produced by our

pre-trained regression network, and input image
pair {Ii}, i = 1, 2;

Output: Optimized meshes {Θi}, i = 1, 2 and stitching
results Φ;

Let P̂ i be the boundary vertices of ψi;
Let P̂ be the outer boundary vertices of the two meshes
{ψi}, i = 1, 2, calculated by Eq. (8);
foreach j ∈ [1, 200] do

foreach i ∈ [1, 2] do
χi = RecStitchNet(ψi, Ii);
ψi = ψi + χi;
Θi = ψi;

end foreach
if j == 1 then

Losspre = Loss(RecStitchNet);
end if
else

Lossnow = Loss(RecStitchNet);
if |Lossnow − Losspre| < e−5 then

break;
end if
Losspre = Lossnow

end if
end foreach
foreach i ∈ [1, 2] do

Ri = Ωtps(Θi, Ii)
end foreach
Φ = AverageBlend(R1, R2);

In the refinement step, we use a different set of loss
functions for the instance-wise unsupervised learning,
defined as below.
3.5.2 Feature matching loss
The feature matching constraint is designed to ensure
that the features of the two images in the overlapping
regions are well-aligned. It is defined as the difference
between the warped image features in the overlapping
regions, as Eq. (9):

lf =
∥∥∥∥∥

2∑
i=1

(Γ(Ωtps(ψi, Ii) ∗M ∗ (−1)i−1))
∥∥∥∥∥

1

(9)

where Ωtps(·) refers to the TPS transformation, and
Γ(·) refers to the VGG-19 [34] feature extractor. M
is the intersection of the warped masks guided by the
predicted meshes {ψi}.
3.5.3 Rectangular boundary loss
In Ref. [12], the rectangular boundary loss is simply
defined as the difference between the {0, 1} mask
of the result and the all-one mask. However, we

found in experiments that incorporating this form of
loss has almost no effect on shaping the rectangular
boundary probably due to the difficulty of gradient
propagation. To effectively optimize the stitched
boundary, we first extract the outer boundary P̂ of
the warped and overlaid meshes {ψi}. We assign
several attributes to each vertex νk in P̂ , including
their constraint directions ρ(νk) ∈ {[1,0], [0,1]} (in
x and y directions), and their target values τ(νk)
(the values in the top/bottom/left/right directions).
Finally, the loss is defined as the sum of the differences
between all vertices and their target locations, as
Eq. (10):

lb =

∥∥∥∥∥∥
∑
νk∈P̂

(νk · ρ(νk))− τ(νk)

∥∥∥∥∥∥
1

(10)

In this stage, the total loss function is a
linear combination of feature matching, rectangular
boundary, and shape preserving constraints (see
details in Section 3.4.4), as Eq. (11):

Lrefine = ϕf lf + ϕblb + ϕsls (11)
where ϕf , ϕb, ϕs are corresponding weights to control
their relative importance.
3.6 Data preparation

Recently, there have been very few datasets available
for image stitching, and defining their labels (i.e.,
ground-truth results) is quite challenging. To the best
of our knowledge, no dataset suitable for our method
exists yet. Unlike traditional stitching methods,
which often yield results with irregular boundaries,
our objective is to achieve stitching results with
rectangular boundaries. This makes it considerably
easier to define labels for the stitching process.

To train a deep learning network for image stitching
with rectangular boundaries, we have established a
new dataset, which comprises input images, mesh
labels, and image labels (refer to Fig. 5). Data
preparation was carried out as follows.
• Stitching: Input image pairs were sourced from

the training dataset of UDIS-D proposed in
Ref. [8]. We performed stitching using the
traditional warping-based method described in
Ref. [11]. This method is capable of generating
stitching results with rectangular boundaries,
along with corresponding meshes for each input
image. Given our focus on stitching with
rectangular boundaries, we prefer to omit data
where the stitching result contains an excessive
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Fig. 5 Dataset preparation. Give a pair of input images, we first stitch them using the method from Zhang et al. (2021), and then output the
resulting mesh labels and the corresponding warped image labels.

amount of missing content. Furthermore, our
stitching method does not have to account for
piecewise rectangular boundaries as in Ref. [11].

• Normalization: For effective training, mesh labels
should be constrained within a certain range.
However, the scale of stitching results tends to
vary greatly. Consequently, we set the resolution
of the stitching result to be Ws × Hs; for each
vertex of the mesh with coordinates (x, y), we
converted them to (xWs/wt, yHs/ht), where wt
and ht represented the outer boundary size of the
stitching result.

• Rendering: We further rendered the stitching
results by warping the input images guided by the
normalized meshes. To achieve smoother stitching
results, our rendering was performed using the
TPS transformation [33], which provides more
natural transitions and smoother interpolation
than mesh-based warping. At this stage, the
resolution of each rendered image was also set to
Ws ×Hs.

Actually, the stitching labels produced by Ref. [11]
cannot be considered as ideal labels due to limitations
in their approach. This may impact the performance
of the training model. In this paper, we utilize
these labels, considered as pseudo-ground-truth, for
supervised training. To break the bottleneck of the
pseudo-ground-truth, we further refined the stitching
results using our unsupervised instance-wise learning.
Experimental results and evaluations in Section 4
demonstrate that our refined results improve upon
the training labels produced by Ref. [11].

4 Experiments

4.1 Implementation details

In the data preparation and training stages, we set
the mesh resolution of each image to 11 × 11, and
resolution of each input image was normalized to
512× 512. In the feature extraction and regression

stages, we set kernel-size = 3, stride = 2 for all
convolution blocks and kernel-size = 2, stride = 2
for all max pooling layers; we set the search range
to 6 to efficiently calculate the correlation of two
feature maps (32× 32); the size of the correlation is
(4× 32× 32× 169). In the training stage, we used a
linear combination of conv4 2, conv3 2, and conv2 2
layers of the VGG-19 features as the high-level feature
of an image. The weights of loss terms were set to
ϕm = 1, ϕp = 0.000006, ϕs = 0.8. As for many CNN-
based networks [12], we used the Adam optimizer with
a learning rate initialized to 10−4 for 105 iterations,
and a decay rate of 0.9. We set batch-size = 4 and
used ReLU as the activation function. In the stitching
refinement stage, we set ϕf = 0.0001, ϕb = 1, ϕs = 1,
and the decaying learning rate was initialized to 0.002
for fast refinement. All implementation was based on
TensorFlow using a single GPU with an Nvidia RTX
4090. To better compare the performance of different
stitching methods, we simply used average blending
to composite the overlapping regions.

4.2 Evaluation

To assess the effectiveness of our method, we
conducted both qualitative and quantitative
evaluations. We compared our method to state-of-
the-art methods that have public source code.

Figure 6 displays several stitching results from
examples sourced from the testing dataset of UDIS-D,
which were unseen during training. Given a pair of
input images, we shows results of performing stitching
using the methods from Refs. [11, 12] and our method
separately. For the method in Ref. [12], we initiate
the process with an initial stitching using the deep
stitching method from Ref. [9]. By subsequently
utilizing the stitching result and corresponding mask,
the final stitching result is obtained through the
deep rectangularity imposition method from Ref. [12].
Zhang et al.’s method [11], carries out stitching
through a global optimization process. To obtain
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our result, we first stitch images using the proposed
RecStitchNet, and then refine the stitching to produce
improved results. In comparison to Refs. [11, 12], our
method excels at shaping the rectangular boundary
and ensuring precise alignment in the overlapping
regions. The marked red and green boxes (close-
up views), along with the PSNR (peak signal-to-
noise ratio) and SSIM (structural similarity) metrics,
highlight the advantages of our method in terms of
shape preservation, boundary regularity, and feature
alignment. To quantify the performance of boundary
regularity, we define the Mask metric by calculating
the proportion of white pixels inside the warped
stitching mask, which serves as a demonstration of
our proficiency in preserving rectangular boundaries.

To validate the effectiveness of our method, we
conducted further tests on data unseen in UDIS-D,
and some of which was previously utilized in certain
traditional stitching methods [1, 11]. Figure 7
showcases stitching results and makes comparisons to
the methods presented in Refs. [11, 12]. The close-up
views illustrate that our method excels in aligning
salient structures, such as lines and characters, and
better maintains rectangular boundaries. Figure 8
provides more results and comparisons. The red
rectangles highlight the shortcomings of Refs. [11, 12]
in terms of structure preservation, feature alignment,
and boundary regularity. Furthermore, we offer a
quantitative evaluation in Table 1, which vividly
compares the performance of different methods.

Fig. 6 Stitching results and comparisons on the testing dataset of UDIS-D.
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Fig. 7 Stitching results and comparisons on data unseen in UDIS-D.

Fig. 8 Further results and comparisons. The red rectangles point out artifacts in feature alignment, structure preservation, and rectangular
boundary preservation.
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Table 1 Metrics for examples in Figs. 7 and 8

Metrics Fig. 7(1) Fig. 7(2) Fig. 8(1) Fig. 8(2) Fig. 8(3) Fig. 8(4) Fig. 8(5) Fig. 8(6)
Nie et al. (2022)
PSNR 25.7282 26.8942 28.3332 27.8733 28.3954 30.1785 30.6975 29.9269
SSIM 0.9442 0.9390 0.9522 0.9430 0.9278 0.9490 0.9668 0.9499
Mask 0.9905 0.9873 0.9895 0.9873 0.9906 0.9925 0.9944 0.9927
Zhang et al. (2021)
PSNR 23.3887 23.1461 25.9588 24.9477 26.6624 27.2616 27.8547 28.2692
SSIM 0.8947 0.8597 0.9161 0.8844 0.9102 0.8901 0.9335 0.9171
Mask 0.9903 0.9908 0.9920 0.9924 0.9921 0.9920 0.9919 0.9920
Ours
PSNR 25.4717 26.0382 29.0105 30.0713 28.8899 33.6945 32.9202 32.0031
SSIM 0.9618 0.9098 0.9619 0.9394 0.9454 0.9647 0.9660 0.9486
Mask 0.9951 0.9935 0.9936 0.9950 0.9940 0.9932 0.9947 0.9934

Results obtained from Ref. [12] excel in feature
alignment due to the complete separation of stitching
and imposing rectangularity. However, they cannot
guarantee rectangular boundaries and preservation of
salient structures. In Ref. [11], where stitching and
imposing rectangularity are accomplished through
global optimization, the rectangular boundaries are
well preserved, but artifacts tend to appear in terms
of feature alignment.

We performed further extensive quantitative
evaluations on the testing dataset of UDIS-D, as
shown in Table 2. Pseudo-ground-truth in the column
2 refers to the metrics of the results from Ref. [11],
which are used as training labels. The last two
columns present the metrics of our stitching results
before and after refinement. The metrics include
PSNR, SSIM, and Mask, which are used to measure
feature alignment in the overlapping regions as well
as the boundary regularity. In experiments, we find
that limitations of Ref. [11] may cause it to fail
to generate stitching results when images exhibit
characteristics such as low light, low texture, low
contrast, low overlap, etc. Out of the 1106 examples

in the testing dataset of UDIS-D, 1068 examples were
successfully stitched by Ref. [11], and the remaining
38 examples could not be stitched correctly. For
a fair comparison, the quantitative evaluation was
performed on the selected 1068 examples and the
remaining 38 examples, separately. The results
in Table 2 vividly show the advantages of our
method.

Additionally, we select some stitching results pro-
duced from the remaining 38 examples of the testing
dataset of UDIS-D, which exhibit characteristics such
as low light, low texture, low contrast, and low overlap.
Both the visual results and metrics in Fig. 9 illustrate
that our method is effective and robust in challenging
scenarios. Both quantitative and qualitative results
affirm the effectiveness of our method in terms of
feature alignment, regular boundary preservation,
and structure preservation.

4.3 Ablation study

As in the case of the quantitative evaluation in
Table 2, we also selected the testing dataset of UDIS-
D for an ablation study.

Table 2 Quantitative evaluation on the testing dataset of UDIS-D. The upper part and the lower part give quantitative evaluations on the
selected 1068 examples and the remaining 38 examples of the testing dataset of UDIS-D

Metrics Pseudo-ground-truth Nie et al. (2022) Ours Ours+refinement
Selected 1068 testing examples of UDIS-D
PSNR 25.0656 25.9212 21.3544 27.7812
SSIM 0.8454 0.8581 0.7020 0.8958
Mask 0.9903 0.9913 0.9889 0.9941
Boundary 0.0002 0.00017 0.0016 0.00014

Remaining 38 testing examples of UDIS-D
PSNR — 24.7549 20.9781 26.7898
SSIM — 0.8292 0.7281 0.8772
Mask — 0.9909 0.9742 0.9920



RecStitchNet: Learning to stitch images with rectangular boundaries 13

Fig. 9 Challenging examples of the testing dataset of UDIS-D,
including low light, low texture, low contrast, and low overlap.

We first provide visual results from the ablation
study in Fig. 10. From the close-up views and quan-
titative metrics, it is easy to see that without the
mesh and shape constraints, the results are completely
unacceptable: there are significant artifacts in feature
alignment and shape distortions. Without the
perception and correlation constraints, the results
are much better, but still have noticeable ghosting
and irregular boundary artifacts.

We further conducted a quantitative evaluation
for the ablation study test to assess the role of each
constraint term and the global correlations, using
as metrics PSNR, SSIM, and Mask. In the ablation
study, we observed that the “Mask” metric may not
accurately represent the regularity of boundaries, as
the mesh vertices often exceed the target rectangular
boundary, especially when there is no mesh label
loss. Therefore, we additionally employed a Boundary
metric, which measures the distance between the
vertices on the outer boundary and their target
positions (as detailed in Section 3.5.3). Table 3 shows
that all the constraint terms and the global correlation
play an important role in improving the performance
of stitching.

4.4 Speed

In terms of running time, our experiments show that
the average time for image stitching for the testing
dataset is 51 ms, which is significantly faster than
the traditional method in Ref. [11]. Each iteration of
stitching refinement requires 35 ms, with an average
of 50 iterations. We provide a speed comparison on
the testing dataset of UDIS-D in Table 4. For Nie et
al.’s method [12], the running time includes both
the time spent in initial stitching using the learning-
based method [9] and their rectangularity imposition
process. In comparison, our learning-based method
is shown to be more efficient.

Following refinement, our speed is comparable to that
of the traditional method [11]. However, our results
surpass it in terms of feature alignment and boundary
regularity. Furthermore, our method demonstrates
greater robustness in many challenging cases.

4.5 Discussion

In this paper, we propose RecStitchNet, which
combines imposing rectangularity and stitching in
a unified learning based framework. It is natural to
compare our method with the two-network cascade
approach for stitching and imposing rectangularity.
Actually, in this paper, the results of Nie et al.

Table 3 Ablation study metrics

Metric w/o shape w/o perception w/o mesh w/o correlation Our method

PSNR 18.1769 21.0704 17.8817 20.7431 21.3544
SSIM 0.6147 0.6690 0.5753 0.6758 0.7020
Mask 0.9617 0.9828 0.9937 0.9814 0.9889
Boundary 0.0382 0.0017 0.0756 0.0020 0.0016
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Fig. 10 Output images in ablation study using the testing dataset of UDIS-D.

Table 4 Average running time (Unit: s)

Nie et al. Zhang et al. Ours Ours+refinement

0.256 1.413 0.211 1.921

[12] are produced by the cascaded stitching and
imposing rectangularity. Our method is superior to
the cascaded one, and its advantages are as follows.
Firstly, artifacts, such as feature misalignment, in the
first stitching step cannot be fixed in the following
rectangularity imposition step, and can be amplified
by warping. In addition, the stitching performance of
different methods may also affect the rectangularity
imposition effects. Secondly, a cascaded solution
cannot ensure globally optimal results in terms of
shape preservation, rectangular boundary imposition,
and feature alignment, while our method takes two
normal images as input, and learns to perform
stitching and impose rectangularity in a unified
framework. With a reasonable and effective network
and the unsupervised refinement, our method can
stably produce high-quality stitching results.

Having a supervised learning framework, we use
pseudo-ground-truth as labels for training. The
reason is that so far there is no recognized ground-
truth for learning based stitching with rectangular
boundary, and it is true that the pseudo-ground-truth
is theoretically the upper limit to the boundary of

the learned model in this step. However, we have to
point out that it would be very difficult to train our
RecStitchNet without labels, and after training using
the pseudo-ground-truth, we can obtain acceptable
stitching results at a very small cost, with only a few
artifacts regarding feature alignment and rectangular
boundary preservation, which also exist in the pseudo
labels. To break the bottleneck of pseudo-labels and
further improve stitching performance, we further
refine the stitching results using an unsupervised
learning method, which can produce high quality
stitching results with better performance than the
pseudo-ground-truth, as shown in our quantitative
and qualitative evaluations.

5 Conclusions

This paper has presented RecStitchNet, a novel
learning-base framework for image stitching with
regular boundaries. Compared to traditional stitching
and recent learning-based methods, our method
can effectively ensure feature alignment, boundary
regularity, and salient structure preservation. Our
stitching refinement stage enables our model to better
adapt to various scenarios and datasets. Although
simple yet effective, our method still has some
limitations. See Fig. 11: our method may fail to
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Fig. 11 Our method may fail to preserve salient structures (e.g.,
straight lines) near stitching boundaries.

preserve salient structures (e.g., straight lines) near
stitching boundaries when there is large content loss.
In addition, our method may fail to stitch correctly
when there is very little overlap in the images, and
this is also challenging for other methods.

In future, we hope to produce more image-stitching
datasets with diverse scenarios and high-quality
labels, and further explore more effective networks
and constraints for better stitching. In addition,
we also would like to extend our learning based
framework to video stitching [36, 37], in which
stabilization [38] and feature tracking [39] across
frames should be considered.
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