Supplementary Material

Supplementary Tables

Supplementary Table 1. Primers
Name | Sequence
Cloning
NFKB2EXx6F CACCTCCTAGATCTGTAACTACGA
NFKB2Ex6R AAATCGTAGTTACAGATCTAGGAA
RGS1 SE g1F CACCGAGTTCAAAGGGGATGTCCAG
RGS1 SE g1R AAACCTGGACATCCCCTTTGAACTC
RGS1 SE g4F CACCGCTCACTTTTGAAGTAGATGC
RGS1 SE g4R AAACGCATCTACTTCAAAAGTGAGC
BCL2 SE g7F CACCGGCATATGGCGTATAAACAC
BCL2 SE g7R AAACGTGTTTATACGCCATATGCC
BCL2 SE g8F CACCGAAACCGGACAGGTGCTGAG
BCL2 SE g8R AAACCTCAGCACCTGTCCGGTTTC
BCL2 SE g9F CACCGAAAGATTTCCCCGCACAGTG
BCL2 SE g9R AAACCACTGTGCGGGGAAATCTTTC

BCL2 SE g10F

CACCGGACACTGGAGTCTGACTAG

BCL2 SE g10R

AAACCTAGTCAGACTCCAGTGTCC

BCL2 SE g11F

CACCGAAGGGAAATCAACAGCACGT

BCL2 SE g11R

AAACACGTGCTGTTGATTTCCCTTC

BCL2 SE g12F

CACCGTTTTCCAAAATGGTACCCTG

BCL2 SE g12R

AAACCAGGGTACCATTTTGGAAAAC

RGS10E -F CTAGCTAGCATGCGCGCAGCAGCCATCTCCA

RGS10E-R CGACCGGTTCACTTTAGGCTATTAGCCTGCA

shRGS1#2 F CCGG ATTGAAAGGAACCACTCATTCCTGCAG GAATGAGTGGTTCCTTTCAATTTITIG
shRGS1#2 R AATTCAAAAA ATTGAAAGGAACCACTCATTCCTGCAG GAATGAGTGGTTCCTTTCAAT
shRGS1#4 F CCGG GCATTCAGATGCTGCTAAACA CTGCAG TGTTTAGCAGCATCTGAATGCTTTTTTG
shRGS1#4 R AATTCAAAAA GCATTCAGATGCTGCTAAACA CTGCAG TGTTTAGCAGCATCTGAATGC

GRAP2 Sh g1-F

CCGGGGAGGCAGCCTTGACATAAATCTGCAGATTTATGTCAAGGCTGCCTCCTTTTTG

GRAP2 Sh g1-R

AATTCAAAAAGGAGGCAGCCTTGACATAAATCTGCAGATTTATGTCAAGGCTGCCTCC

GRAP2Shg2-F

CCGGGCGAGACAACAAGGGTAATTACTGCAGTAATTACCCTTGTTGTCTCGCTTTTTG

GRAP2 Shg2-R

AATTCAAAAAGCGAGACAACAAGGGTAATTACTGCAGTAATTACCCTTGTTGTCTCGC

Genotyping

RGS1SE F TTTGCCAAACATGCAGAGTC
RGS1SER TTTGGCAACAAAACCCTTTC
BCL2SE1 F TTTCTGTACCCCAGGAGGTG
BCL2SE4 F CTCTTGGGCTGTTTTTCCAA
BCL2SE2 F GGAAGACCTGCCAGAGTGAG
BCL2SE3 R CGGCCACCAGGTAAAAAGTA
BCL2SE4 R GAAGAGGGGACTCTGCACTG
BCL2SE2 R CCCTGTGTAGCAAAGGGAAA
BCL2SE3 R CGGCCACCAGGTAAAAAGTA




Supplementary Table 2. Summary of features across concordantly requlated EPI pairs
Features Enhancers (Super-Enhancers) | Interactions | Genes EPI Pairs
Upregulated 75 (19) 90 (24) 77 (20) 99 (26)
Downregulated | 357 (127) 543 (217) 351 (116) | 695 (283)




Supplementary Table 3. Genes linked to Proximal or Distal SEs

Group Gene log2(FC) FDR

Proximal AL358473.1 -2.09 1.41E-02
Proximal KIF21B -1.61 6.03E-03
Distal AC126696.3 -1.55 7.00E-02
Proximal LAIR1 -1.28 4.90E-06
Distal STOM -1.08 6.58E-13
Proximal LINC01686 -1.02 1.01E-02
Distal+Proximal WIPI1 -0.97 1.78E-02
Distal LINC02362 -0.86 5.53E-07
Proximal ERN1 -0.85 5.18E-06
Proximal ANKRD36BP2 -0.80 1.80E-08
Distal RHOD -0.79 2.53E-04
Distal+Proximal TMSB4X -0.78 9.41E-12
Distal+Proximal RGS16 -0.77 2.58E-07
Distal IRF2BP2 -0.67 2.74E-07
Distal+Proximal ADTRP -0.67 2.42E-04
Distal+Proximal AL022724.3 -0.66 1.90E-03
Proximal AL360182.2 -0.65 7.58E-02
Distal AL160408.2 -0.64 3.53E-05
Proximal UBC -0.63 4.46E-05
Distal AL365272.1 -0.57 3.54E-04
Proximal CD48 -0.51 6.00E-05
Distal+Proximal CREG1 -0.51 2.57E-05
Proximal MXI1 -0.46 1.53E-03
Distal+Proximal WWC3 -0.45 1.68E-02
Distal UBALD2 -0.42 1.52E-02
Distal+Proximal DUSP22 -0.38 1.50E-02
Distal+Proximal NDUFAF6 -0.38 3.94E-02
Distal+Proximal QPCT -0.38 5.38E-03
Proximal SYNGR2 -0.35 4.26E-02
Proximal NFIL3 -0.34 8.96E-02
Proximal SUB1 -0.34 2.94E-02
Distal+Proximal CYTIP -0.32 3.21E-02
Proximal GALM -0.31 5.26E-02
Distal PHF19 -0.30 7.20E-02
Distal IL6ST -0.28 4.97E-02
Distal+Proximal SEPTING -0.28 7.16E-02
Distal FHL1 -0.26 8.89E-02
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Supplementary Figure 1. NF-kB+ tumors display gene signatures of 1q gain, HRD low
TP53 and MAF subtypes that regulate critical processes in multiple myeloma

(a) UMAP visualisation of CoMMpass sample similarity based on gene expression counts
after normalisation and variance stabilising transformation. (b) Differential gene expression
profiles between NF-kB+ and NF-kB- groups with or without mutations (M), are shown as Z-
score of variance stabilised counts for genes with a base mean > 10. (¢) Gene ontology
enrichment analysis (hypergeometric; g-value <= 0.01) showing NF-kB+ samples
overexpress genes associated with biological processes often involved with cancer
progression. (d) Average subtype expression for each gene mapped to selected GO terms
identified as enriched in NF-kB+ samples. Known NF-kB targets are indicated. (e) Biological



processes significantly enriched (hypergeometric test; Q-value <= 0.01) in NF-kB+
downregulated genes. GO terms were hierarchically clustered based on their semantic
similarity with a single representative term chosen for each cluster '. Gene count, average
enrichment ratio and Q-value for each term/cluster are plotted. (f) A representative western
blot showing changes to factors involved in the canonical (NFKB1: p105/p50, p65, c-Rel, p-
IkBa) and non-canonical NF-kB (NFKB2: p100/p52, RelB) pathways upon CRISPR-Cas9
knockdown of NFKB2 in MM1.144, n=2.. (g) Downregulated genes identified following
NFKB2 knockdown in MM1.144, with essential genes highlighted and named. (h) Counts of
genes deemed essential for multiple myeloma identified as differentially regulated during p52
knock down in KMS-11 and MM1.144.
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Supplementary Figure 2. NF-kB/p52, H3K27ac ChIP-seq and STABILO in MMCLs

(@) Principal component analysis of p52 ChIP-seq and H3K27ac replicate counts in
consensus peaks across the multiple myeloma cell lines (MMCLs) panel. (b) TFBS-
landscape plots showing NF-kB2 motif positioning relative to centre of p52 peaks using
FIMO. (c¢) NFKB2 motif found across all p52 ChIP-seq peaks using DREME (d) Endogenous
p52 binding sites mapped to chromHMM states predicted across three tonsil derived Naive
B-Cell (NBCT), three blood derived Naive B-Cell (NBCB), three Germinal Center derived B-
Cell (GCBC), one non-class switched Memory B-Cells (ncsMBC), two class-switched
Memory B-Cells (csMBC), three tonsil-derived Plasma Cell (PCT) and four multiple myeloma
(MM) samples 2. The average number of p52 binding sites overlapping strong enhancer 1
and 2 states are significantly greater in MM (n = 4) compared to earlier B-cell and Plasma
Cell stages (n =15). One-sided Wilcoxon Test. (e) Profile and heatmap visualisation of the
signals obtained from p52, H3K27ac, H3K4me1 and H3K27me3 ChIP-seq at p52 bound
enhancers putatively defined as p52 and H3K27ac overlapped peaks in intronic or intergenic
regions (f) lllustration of the logic and data sources behind the STABILO classification. Two
separate studies #® implemented a chromHMM model to segment the genome of different
types of B-cells as well as MM samples into 12 epigenomic states. States featuring elevated



H3K27ac and H3K4me1 signals were considered as markers of strong enhancer activity. We
were therefore able to summarise what segments of the genome transition from one of the
12 states to Strong Enhancer states across different sample groups: B-Cell (BC), Plasma
Cell (PC) and Multiple Myeloma (MM) using 5 major classes: De novo, Reactivated,
Preserved, Lost and Unknown (also see Methods) (g) H3K27ac signal (Z-score of
normalised rLog counts) at putative enhancers identified across mutant MMCLs bound by
p52. Each putative enhancer (rows) is annotated with the STABILO classification (see
Methods). Dendrogram for samples is generated by hierarchical clustering.
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Supplementary Figure 3. p52 impacts H3K27 acetylation and chromatin accessibility
across a diverse collection of enhancers associated with gene expression changes
(a) Loci displaying differential H3K27 acetylation after p52 knockdown (KD) and overlapping
p52 binding sites identified in KMS-11 cells. (b) Volcano plot of accessibility dynamics at
consensus ATAC-seq peaks detected in p52 knockdown (KD) relative to control in KMS-11
cells. (c¢) Principal component analysis of H3K27ac KMS-11 ChIP-seq sample counts in
consensus peaks. (d) Distribution of differential gained and lost H3K27ac peaks detected in



KMS-11 across genomic features. (e) Global H3K27 acetylation signal and accessibility
signals plotted as individual profiles and heatmaps centred on p52 peaks. (f) Distributions of
the significant expression changes for genes nearest to lost, gained or unchanged
enhancers identified. 3 groups of enhancer/gene pairs are defined and tested: Lost (n =
265), Gained (n = 128) and Unchanged (n = 1129). Lower and upper hinges correspond to
first and third quartiles. Central value corresponds to the median. Whiskers extend to
largest/smallest values no further than 1.5 x IQR (Interquartile range). Pairwise-comparison
p-values determined by 2-sided Wilcoxon rank sum tests and adjusted for multiple
comparisons (Benjamini-Hochberg). (g) Proportions of enhancers bound or unbound by p52
when lost or gained after p52 KD in KMS-11. Dormant (de novo + reactivated) enhancers
show a significant association with p52-dependent lost enhancers. P-values were calculated
using Fisher’s Exact Test (n = 4112). (h) H3K27 acetylation and accessibility signals
obtained in MM1.144 plotted as individual profiles and heatmaps centred on loci exhibiting
p52-dependent H3K27 acetylation identified in KMS-11.
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Supplementary Figure 4. Extended genome browser track visualisations

Genome browser visualisation for BCL2 (a) and IL6ST (b) loci encompassing proximal SEs.
Tracks display: p52 ChlP-seq signal and peak calls (green) and H3K4me1 ChlIP-seq signal
obtained in KMS-11; H3K27ac ChlP-seq signal from control and p52 KD experiments in
KMS-11 in brown and orange respectively; SEs (black rectangles) and dynamic H3K27ac
peaks (orange = lost) called from KMS-11 experiments; H3K27ac ChIP-seq signal from



control and p52 KD experiments in MM1.144 (brown/orange); ChIP-seq signal from average
of NF-kB+ (yellow; background) or NF-kB- (dark red; forefront) patient samples; ATAC-seq
signal from control and p52 KD experiments in KMS-11 (brown/orange); ATAC-seq signal
from control and p52 KD experiments in MM1.144 (brown/orange); ATAC-seq signal from
average of NF-kB+ (yellow; background) or NF-kB- (dark red; forefront) patient samples;
SEs (black rectangles) and constituent H3K27ac peaks classified by STABILO; gene track.
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Supplementary Figure 5. p52 dependent SEs impact proximal gene expression and
are bound by several transcription factors enriched in NF-kB+ patients

(a) Significant expression changes for genes found within +/- 500 Kb of lost, gained or
unchanged super-enhancers identified following p52 knockdown. 3 groups of peak/gene
pairs are defined and tested: Lost (n = 332), Gained (n = 92) and Unchanged (n = 1595).
Lower and upper hinges correspond to first and third quartiles. Central value corresponds to
the median. Whiskers extend to largest/smallest values no further than 1.5 x IQR



(Interquartile range). Pairwise-comparison p-values determined by 2-sided Wilcoxon rank
sum tests and adjusted for multiple comparisons (Benjamini-Hochberg). (b-e) Aggregated
footprints for transcription factors showing differential binding in NF-kB+ MM samples within
the SEs identified in KMS-11.
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Supplementary Figure 6. NFKB2 knockdown in KMS-11 cells alters chromatin contact
frequency at enhancers

Aggregate Peak Analysis (APA) of significant loops (a-b) called from KMS-11 H3K27ac
HiChIP experiments. The p52 KD condition (b) showed a reduction in contact frequency at
loop peaks compared to control samples (a). APA performed on observed/expected
transformed 41 x 1 Kb bin matrices (n = 16890) with a minimum and maximum range of 50
Kb and 5 Mb respectively. (¢) Summary of differential TADs detected. 867 differential TADs
were detected by hicDifferentialTAD representing 21% of all TADs called. Differential TADs
are classified as undergoing inter (723) or intra (247) TAD changes or both (103). (d)
Numeric breakdown of putative interaction types supported by the loops detected. (e)
Alluvial plot summarising interaction pairings between differential EP features (Enhancers or
Promoters) forming EPI pairs resulting from p52 knockdown in KMS-11 cells. Most
downregulated features show downregulation in interactions with their downregulated
counterparts. (f) Summary of Enhancer to Promoter interactions in the context of TAD
changes. Alluvia are coloured to highlight dynamic interactions connecting downregulated
enhancer and promoter features (green). As shown by the alluvia, most dynamic EPI pairs
occur in unchanged TADs however a minority do occur in TADs undergoing significant intra-

Enhancers intra-TAD inter-TAD Promoters



TAD or/and inter-TAD changes (yellow). (g) Summary of EPIs with concordantly
downregulated features (enhancer activity, expression and contacts) upon p52 KD with
enriched enhancer or gene activity in NF-kB+ multiple myeloma patients. Enhancer
STABILO classification and dependency of target genes are highlighted.
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Supplementary Figure 7. Influence of p52-dependent enhancer distance on gene
expression

Genome browser visualisation for CREG1 (a), KIF21B (b) and IRF2BP2 (c) loci
encompassing proximal and distal SEs. Tracks display: p52 ChlIP-seq signal and peak calls
(green) and H3K4me1 ChliP-seq signal obtained in KMS-11; H3K27ac ChIP-seq signal and
HiChIP loops from control (brown) and p52 KD (orange) experiments in KMS-11; SEs (black
rectangles) and dynamic H3K27ac peaks (orange = lost) called from KMS-11 experiments;
SEs (black rectangles) and H3K27ac peaks classified by STABILO; gene track. All loci
feature proximal and distal SEs however distal and proximal enhancers did not show
significant changes in H3K27 acetylation upon p52 knock down in KMS-11 in KIF21B and
IRF2BP2 respectively. (d) Distributions of the expression changes for genes featuring
different combinations of p52-dependent distal and proximal enhancers. 3 groups of
enhancer combinations are defined and tested: Distal (n = 649), Distal+Proximal (n = 200)
and Proximal (n = 313). Lower and upper hinges correspond to first and third quartiles.
Central value corresponds to the median. Whiskers extend to largest/smallest values no
further than 1.5 x IQR (Interquartile range). Pairwise-comparison p-values determined by 2-
sided Wilcoxon rank sum tests and adjusted for multiple comparisons (Benjamini-Hochberg).
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; H3K27ac ChlP-seq signal from control and p52 KD experiments in MM1.144
(brown/orange); ChlP-seq signal from average of NF-kB+ (yellow; background) or NF-«kB-
(dark red; forefront) patient samples; ATAC-seq signal from control and p52 KD experiments
in KMS-11 (brown/orange); ATAC-seq signal from control and p52 KD experiments in
MM1.144 (brown/orange); ATAC-seq signal from average of NF-kB+ (yellow; background) or
NF-kB- (dark red; forefront) patient samples; SEs (black rectangles) and constituent
H3K27ac peaks classified by STABILO; gene track.
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Supplementary Figure 9. NF-kB/p52 mediated super-enhancer reprogramming
impacts the expression and activity of myeloma essential genes
(a) Relative luciferase activity of the p52-bound constituent enhancer of BCL2, RGS1 or

IL6ST SE regions in 293T cells with or without p52 overexpression. Fold luminescence is
calculated by normalising luciferase luminescence reading by renilla luminescence reading.
The normalized luciferase activity value in p52 overexpressing cells (fold activation) is then
calculated as a fold change to the normalized GFP luciferase activity. Error bars represent
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meantSD of three experimental replicates. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001,
ns: not significant; 2-way ANOVA. A representative western blot validating overexpression of
p52 in 293T cells compared to GFP control cells used for luciferase assay, n=2. (b)
CRISPR-Cas9 deletion of a section of the identified super-enhancer region. lllustrated is the
SE regulating RGS71. gRNA1 and gRNA4 yields a deletion of approximately 1kb within the
RGS1 superenhancer. Sanger sequencing of the cut band shows successful deletion of the
indicated region. (c¢) Qualitative analysis of BCL2 enhancer deletion by electrophoresis of
genomic DNA PCR products. Wild type genomic DNA (control cells, Ctrl) used as negative
controls. B7_8, BCL2SE gRNA7 + gRNAS8. B9_10, BCL2SE gRNA9 + gRNA10. B11_12,
BCL2SE gRNA11 + gRNA12. Percentage of deletion was calculated from the deletion
sample using formula: densitometry (cut band / (cut band + uncut band))%. (d) A
representative western blot analysis of BCL2 protein expression upon SE deletion, n=2.
Blotting results were evaluated by densitometric analysis, corrected with respect to GAPDH
expression and expressed relative to the control (Ctrl). The relative protein amount is
reported below the lanes. (e) Qualitative analysis of RGS1 enhancer deletion by
electrophoresis of genomic DNA PCR products. Wild type genomic DNA (control cells, Ctrl)
used as negative control. RGS1SE: RGS1SE gRNA1 + gRNA4. Percentage of deletion was
calculated from the deletion sample using formula: densitometry (cut band / (cut band +
uncut band))%. (f) Effect of RGS7 knockdown on RGS1 and p38a signalling pathway
components in KMS-11 and LP1 cell lines. (g) KMS-11, LP1 and JJN3 cells were labelled
with CellTrace Blue (#C34574, Invitrogen) and dilution of the dye was tracked via flow
cytometry with or without RGS1 shRNA knockdown. MFI (mean fluorescence intensity) fold
reduction was calculated relative to day 0. **p<0.01 ***p<0.001, ****p<0.0001; 2-way
ANOVA. For each condition and timepoint, data are represented as mean + SEM of 3
biological replicates in each cell line. (h) KMS-11, LP1 and JJN3 cells were transduced with
shRNA sequences and after 4 days, they were assessed for apoptosis by FACS. Shown is
the percentage of live cells (Annexin V-) and apoptotic cells (Annexin V+). *p<0.05,
**p<0.01, ***p<0.001, ****p<0.0001, ns=not significant; 2-way ANOVA. For each condition,
data are represented as mean £ SEM of 3 biological replicates in each cell line .(i) Cell
adhesion to fibronectin of KMS-11 and LP1 with RGS1 shRNA knockdown. Points represent
the mean OD at 590nm of technical triplicates *p<0.05, **p<0.01 ; 2-way ANOVA. For each
condition, data are represented as mean + SEM of 4 biological replicates in each cell line.) (j)
Cell adhesion to fibronectin coated plates. KMS-11 and LP1 RGS1 SE deletion cells
overexpressing RGS1. Points represent the mean OD at 590nm of technical triplicates

*p < 0.05; two-tailed t-test. For each condition, data are represented as mean = SEM of 3
biological replicates in each cell line). (k) KMS-11 and LP1 with RGS1 SE deletion and
RGS1 overexpression were labelled with CellTrace Blue (#C34574, Invitrogen) and dilution
of the dye was tracked via flow cytometry. MFI (mean fluorescence intensity) fold reduction
was calculated relative to day 0. **p<0.01, ****p<0.0001; 2-way ANOVA. For each condition
and timepoint, data are represented as mean + SEM of 3 biological replicates in each cell
line .(I) KMS-11 and LP1 with RGS1 SE deletion and RGS1 overexpression assessed for
apoptosis by FACS. Shown is the percentage of live cells (Annexin V-) and apoptotic cells
(Annexin V+). ****p<0.0001; 2-way ANOVA. For each condition and timepoint, data are
represented as mean + SEM of 3 biological replicates in each cell line. (m) Rag-/-, IL2R -/-
mice were injected subcutaneously with 5x10*6 KMS-11 cells at the right hind flank. Images
taken at D26 post injection. N=5 for each group. (n) Average tumor volume of each group
measured by electronic caliper over time + SEM is shown. Mice were sacrificed once tumor
volume reached 2000mm?®. N =5 for each group. Source data are provided as a Source Data
file.
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102  Supplementary Figure 10. RGS1 SE confers aggressive tumor phenotypes in MM

103  orthotopic models via enhanced expression of RGS1.

104  (a) Gross anatomy of liver from mice engrafted with RGS7 SE deleted KMS-11 (CRISPR),
105 RGS1 SE deleted + RGS1 overexpression KMS-11 (rescue), and KMS-11 (control) cells at
106 the endpoint. Scale bar = 1 cm. (b) Representative western blot showing shRNA mediated
107 KD of GRAP?2 attenuates the effect of RGS7 OE on the activation and expression level of
108  JNK, further downregulating the expression of its target proteins including cdc2 and cyclinD1
109  in MM cell lines (KMS-11 and LP1). The level of p-p38 remains the same, independent of
110 GRAP2 level, suggesting p38 to be upstream of GRAP2. Bar plots represent the

111 densitometric quantification of the expression levels. Normalization was done taking GAPDH



112  as loading control and enrichment quantified value (AU) is plotted. N=3 and error bar is
113  SEM. Source data are provided as a Source Data file.
114
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KMS-11_Scram_001.fcs
Single Cells
8839



117
118
119
120
121
122
123
124
125
126
127
128
129
130

(a) Gating strategy for cell trace (Proliferation) assay. Applicable to Figures 6f, S9k, S9g.
The mean signal of Buv-395 from the Single Cells population taken at Day 0 and another 2/3
timepoints up to Day 8. MFI calculated as rate of Buv 395 signal reduction over time. Gating
example shown for 1 replicate of KMS-11 scramble sample in Figure S9g. The first column
shows Cells gate to exclude debris. The second column shows Single cells gate to exclude
doublets. Buv-395 signal of this Single cells population used for MFI calculation over time.
Rate of proliferation is calculated by rate of Buv-395 signal reduction over time as seen in
the third column. (b) Gating strategy for Annexin V (Apoptosis) assay. Applicable to Figures
6e, S9h, S9l. Graphs are plotted using values of % of Annexin V+ (Apoptotic) cells and % of
Annexin V- (Live) cells. Gating example shown for 1 replicate of KMS11 scramble sample in
Figure S9h. The first “Cells” gate to exclude debris. The second “Single cells” gate to
exclude doublets. The third gate used to differentiate between Annexin V+ and Annexin V-
cells.
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