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Abstract
Direct numerical simulation of a turbulent forced buoyant plume in a crossflow is per-
formed at a source Reynolds number Re

0
= 1000 , Richardson number Ri

0
= 1 , Prandtl 

number Pr = 1 and source-to-crossflow velocity ratio R
0
= 1 . The instantaneous and 

temporally averaged flow fields are assessed in detail, providing an overview of the flow 
dynamics. The velocity, temperature and pressure fields are used together with enstrophy 
fields to describe qualitatively the evolution of the plume as it is swept downstream by the 
crossflow, and the mechanisms involved in its evolution are outlined. The plume trajectory 
is determined quantitatively in a number of ways, and it is shown that the central streamline 
and the centre of buoyancy of the plume differ significantly—as with jets in crossflow, the 
central streamline is seen to follow the top of the plume, whereas the centre of buoyancy, 
by definition, describes the plume as a whole. We then investigate the turbulence properties 
inside the plume; in particular the eddy viscosity and diffusivity are presented, which are 
significant parameters in turbulence modelling. Assessment of turbulence production dem-
onstrates the presence of regions where turbulence kinetic energy is redistributed to the 
kinetic energy of the mean flow, implying a negative eddy viscosity within certain regions 
of the domain. Similarly, the observation that the buoyancy flux and buoyancy gradient 
are anti-parallel in specific regions of the flow implies a negative eddy diffusivity in said 
regions, which must be realised in models of such flows in order to capture the counter-
gradient transport of thermal properties. A characteristic eddy viscosity and diffusivity are 
presented, and shown to be approximately constant in the fully developed regime, resulting 
in a constant characteristic turbulent Prandtl number, in turn signifying self-similarity.
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1 Introduction

Turbulent plumes in crossflow are a common phenomenon in various environmental fluid 
mechanics applications, such as pollutant dispersion in rivers and atmospheric dispersion 
of gases and particulate matter, either natural or man-made [1, 2]. These plumes result from 
the release of a buoyant fluid into a crossflow, which induces complex interactions between 
the plume and the surrounding fluid, bending the plume over and sweeping it downstream. 
Understanding the behavior and characteristics of turbulent plumes in crossflow is crucial 
for predicting and mitigating the environmental impact of fluid release events, from cool-
ing tower vapour plumes [3] to volcanic eruption columns [4].

Forced turbulent plumes have been a topic of interest for several decades owing to their 
prevalent nature. The typical setup is that of a circular source of buoyancy and momentum, 
which in a uniform environment generates an axisymmetric flow which expands radially 
due to entrainment as it rises [5–8]. The addition of a crossflow acts to break the axisym-
metry and cause the plume to bend over, and has been studied extensively both numeri-
cally and experimentally [9–12]. The complexity of the phenomena and the variability of 
environmental conditions make it challenging to develop accurate and reliable predictive 
models; Muppidi and Mahesh [13], in their study of forced jets in crossflow, remark on the 
difficulties involved in RANS and eddy viscosity models for this type of flow, particularly 
in the near-field around the source, owing to the steep velocity gradients in this region, 
which is far from a state of turbulent equilibrium. Indeed, the studies of Yuan et al. [14] 
and Muppidi and Mahesh [15] observed the sensitivity of the near-field flow to the bounda-
ries imposed on the source.

In this paper, a comprehensive analysis of a forced turbulent plume in uniform crossflow 
is presented, as outlined by Middleton [16], using data from Direct Numerical Simulation 
(DNS). DNS is a powerful tool that resolves the Navier–Stokes equations up to the small-
est energetic scales in the flow, the Kolmogorov scale, making it ideal for exploring the 
dynamics of turbulent fluctuations in the absence of any turbulence modelling. Remark-
ably few studies exist that use DNS to explore turbulent plumes in crossflows, presumably 
as the computational requirements have been hitherto prohibitive. Jordan et al. [17] used 
DNS to study an infinitely lazy plume in cross-flow, i.e. a plume for which the injection 
velocity is zero. The DNS study of Wang et al [18] investigated instead a jet in crossflow, 
i.e. no buoyancy. Most numerical studies use Large-Eddy Simulation (LES) or Reynolds-
averaged Navier Stokes (RANS) models. Cintolesi et al [19] performed a detailed analysis 
of first- and second-order statistics of the forced plume in crossflow using LES, repeating 
the experiment of Fan [20], identifying three regions of the plume evolution: a momen-
tum phase where the initial plume momentum flux dominates; a buoyancy phase where 
the initial plume buoyancy flux dominates; and the entrainment phase, where the crossflow 
momentum bends over the plume and the well-known counter-rotating vortex pair forms 
[21].

This study builds upon the work of Jordan et  al [17], analysing a forced plume with 
a source-to-crossflow velocity ratio of unity. The paper is organised as follows. The flow 
studied is outlined, and the governing equations are stated alongside all simplifying 
assumptions. The numerical parameters of the DNS are then given. A phenomenological 
analysis of the flow is then presented with reference to the vortical structures and mean 
temperature, velocity and pressure fields. The plume trajectory is then assessed via the cen-
tral streamline, centres of mass of velocity and temperature, and positions of the maxima of 
velocity and temperature, and the resulting paths are compared. Finally, the eddy viscosity 
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and diffusivity are analysed, and characteristic integral values are calculated that hold for 
the entire fully developed regime of the plume, leading to a constant characteristic turbu-
lent Prandtl number.

2  Numerical modeling

2.1  Problem setup

The subject of the present study is that of a turbulent buoyant plume with source buoyancy 
b
0
 exiting from a circular source of radius r

0
 with initial velocity w

0
 in the vertical z-direc-

tion, that is subject to a uniform crossflow U in the streamwise x-direction. The only sym-
metry in this flow is a reflective symmetry along the plume centre in the x-z plane, remov-
ing the cylindrical symmetry of the plume in the absence of crossflow. The plume develops 
spatially as it is swept along with the crossflow, bending over and expanding as it rises. The 
problem setup is identical to that used in Jordan et al. [17], except for the non-zero source 
velocity w

0
 implemented in this study.

For sufficiently small buoyancy differences and a low Mach number release, the gov-
erning equations can be reduced to the Navier–Stokes equations in the Boussinesq 
approximation

where (x
1
, x

2
, x

3
) = (x, y, z) are respectively the streamwise, spanwise and vertical Cartesian 

spatial co-ordinates, (u
1
, u

2
, u

3
) = (u, v,w) is the fluid velocity field and b = g(�

0
− �)∕�

0
 is 

the buoyancy field, both evolving over time t, with density � , a constant reference density 
�
0
 and gravitational acceleration g. �ij is the Kronecker delta, equal to 1 only when i = j 

and zero otherwise. In the Boussinesq approximation, buoyancy is proportional to tem-
perature via the coefficient of thermal expansion, b = �g(T − T

0
) for reference tempera-

ture T
0
 and coefficient of thermal expansion � , and therefore b can be freely referred to as 

both temperature and buoyancy throughout. The kinematic pressure perturbation is given 
by p = p̃∕𝜌

0
+ gz for the standard pressure p̃ . Kinematic viscosity and thermal diffusivity 

are given respectively by � and �.
Using the velocities w

0
 and U, the source buoyancy b

0
 , and the viscous and thermal 

velocity parameters � and � , four dimensionless quantities can be defined [17]:

(1)
�uj

�xj
= 0,

(2)
�ui

�t
+ uj

�ui

�xj
= −

�p

�xi
+ �

�2ui

�xj�xj
+ b�i3,

(3)
�b

�t
+ uj

�b

�xj
= �

�2b

�xj�xj
,

(4)R
0
=

w
0

U
, Ri

0
=

b
0
r
0

w2

0

, Re
0
=

2r
0
w
0

�
, Pr =

�

�
,
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where R
0
 is the source-to-crossflow ratio of velocities, Ri

0
 the source Richardson num-

ber, Re
0
 the source Reynolds number and Pr the Prandtl number. The case studied here is 

parameterised by R
0
= 1 , Ri

0
= 1 , Re

0
= 1000 and Pr = 1.

2.2  Direct numerical simulation

The dataset analysed in this work has been obtained by means of a DNS approach employ-
ing the code SPARKLE, utilised and validated in previous studies of plumes [8, 22, 23], 
which spatially makes use of a fourth-order symmetry-preserving central difference 
scheme, and integrates temporally via a third-order Adams–Bashforth scheme.

The domain is laid out as per the schematic of Fig.  1. The domain dimen-
sions are (Lx × Ly × Lz) = (28r

0
× 24r

0
× 24r

0
) , and the simulation grid is made 

up of (Nx × Ny × Nz) = (1344 × 768 × 768) points, leading to Δx∕r
0
= 0.021 and 

Δy∕r
0
= Δz∕r

0
= 0.031 . These are of the same order as the smallest Kolmogorov length 

scale � = (�3∕�)1∕4 = 0.02r
0
 in the fully developed region of the flow, calculated a poste-

riori using the maximum dissipation rate � in this region, indicating that the grid resolution 
is sufficient to capture the dynamics at the dissipative scales.

The boundary conditions are periodic in the streamwise x and spanwise y direc-
tions, and free-slip on z = 0 and z = Lz , with the exception of a constant top-hat veloc-
ity function w

0
= (0, 0,w

0
) imposed on the plume source centred at (x, y) = (0, 0) with 

radius r
0
 , positioned at a distance of 5r

0
 from the start of the computational domain in 

the x-direction. It is noted that the top-hat profile will not represent the velocity distri-
bution at the source of a real plume, which will not be uniform and will likely feature 
turbulence. Smith and Mungal [24] and Moussa et al. [25] state that the flow dynam-
ics are sensitive to the plume exit boundary, however the experiments of Savory et al 
[26] demonstrate that the the source-to-crossflow velocity ratio is the main parameter 
influencing the flow in the far field. Neumann boundary conditions are imposed on the 
buoyancy at z = 0 and z = Lz , again with the exception of the plume source, which has 
a uniform top-hat buoyancy b

0
 . In order to introduce the required fluctuations to break 

down the potential core of the plume rapidly, the source velocity and buoyancy are 

Fig. 1  A schematic of the DNS 
domain in the central (x, z) plane
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perturbed using Gaussian white noise with an amplitude of 0.1% of the source velocity 
and buoyancy respectively. This white noise is applied uniformly on the source only, 
with no vertical extension. The magnitude is chosen to perturb the source fluid enough 
to facilitate the transition to turbulence.

In order to enforce the uniform inflow in the x-direction that serves as the crossflow 
source with the periodic boundary conditions, a nudging region of length Ln = 4r

0
 is 

introduced in the last section of the domain. In this region, denoting the distance down-
stream from the start of the nudging region as x∗ , the velocity and buoyancy is gradu-
ally reduced to that of the ambient field via u∗ = (1 − x∗∕Ln)u + (x∗∕Ln)u0 , where u is 
the DNS-calculated velocity field and u

0
= (U, 0, 0) is the ambient crossflow velocity 

field. This reduces the field from u∗ = u at the start of the nudging region 4r
0
 upstream 

from the end of the domain to u∗ = u
0
 at x = Lx . The same treatment is performed on 

the temperature to reduce it to a null field at the inflow. It is evident that therefore any 
dynamics in this region do not represent the physical flow; these have been omitted 
from the analysis of the results. The choice of spanwise domain length Ly guarantees 
that the dynamics of the plume are not affected by the periodic boundary conditions 
in this direction. At its widest point downstream, on the nudging region boundary, the 
1% threshold of the average temperature field was found to occupy a width of approxi-
mately 25% of Ly and 37.5% of Lz , and therefore the plume spans less than 9% of the 
total domain area at its widest region; this is small enough so as to ensure that bound-
ary effects were negligible. Studies performed by Rooney [27] indeed indicate that for 
a row of adjacent plumes, a plume spanning approximately 25% of the domain is not 
affected in a significant manner by the entrainment of the neighbouring plumes.

The initial condition is a neutral environment with a uniform flow, i.e. 
u(x, t = 0) = (U, 0, 0) and b(x, t = 0) = 0 . This led to an initial transient period, which 
is defined as ending when the buoyancy field first reaches the downstream nudging 
region, and has been discarded in the analysis.

3  Results

The results are analysed using the instantaneous fields produced by the DNS, and the 
three-dimensional fields of Reynolds averaged first- and second-order statistics are cal-
culated in post-production by averaging across the approximately 1200 such fields each 
produced at time intervals of 5r

0
∕U . This is chosen such that a number of inertial flow 

timescales r
0
∕U have passed between subsequent snapshots, allowing the system to 

evolve sufficiently between each snapshot to avoid correlation. These averages are indi-
cated by an overbar. It is noted that the the crossing time, defined as the time taken for 
a fluid particle originating at the plume source to cross the domain, is approximately 
equal to 20r

0
∕U . Over the duration of the simulation, it is found that 240 of these 

timescales have passed. This is suitably large enough to capture the complete flow 
dynamics a significant number of times. Owing to the absence of spatially homogene-
ous directions in this problem, the statistical averages are temporal only, and a small 
amount of noise is present in the higher order observables. The overall behaviour of 
the flow is discussed in this section by analysing the vortical structures and the mean 
buoyancy, velocity and pressure fields.



 Environmental Fluid Mechanics

1 3

3.1  Vortical structures

Figure 2 (left) shows a snapshot of the instantaneous enstrophy field �2 , where � = � × u 
is the local vorticity, via isocontours at the 1% threshold of the maximum mean enstrophy 
�2 . The tube-like Intense Vorticity Structures (IVSs) shown demonstrate the tell-tale signs 
of turbulent flow almost immediately out of the plume source, and the plume expansion as it 
is swept downstream by the crossflow. As the plume is deflected by the crossflow, these IVSs 
first appear as annular rings across the top of the plume, which will cause fluctuations in the 
temperature field. In the fully developed region further downstream, the IVSs take on less 
regular structure, however they follow counter-rotating helical paths, most visible in the right 
arm of the snapshot of Fig. 2 (left), indicating a larger vortical structure present in the flow. It 
is evident from the 0.2% isosurface of mean enstrophy demonstrated in Fig. 2 (right), chosen 
to best visualise the field throughout the domain, that there exist twin vortical structures tra-
versing the x-direction and separating in the y-direction as the plume is swept downstream by 
the crossflow.

3.2  Reynolds‑averaged flow features

Assuming statistically steady state, when applying Reynolds averaging to the governing Eqs. 
(1)–(3), they read as follows

(5)
𝜕ūj

𝜕xj
= 0

(6)
𝜕

𝜕xj

(
ūjūi + u�

j
u�
i

)
=

𝜕p̄

𝜕xi
+ 𝜈

𝜕2ūi

𝜕xj𝜕xj
+ b̄𝛿i3

(7)
𝜕

𝜕xj

(
ūjb̄ + u�

j
b�

)
= 𝜅

𝜕2b̄

𝜕xj𝜕xj

Fig. 2  3D snapshots of the instantaneous enstrophy isocontour �2 at the 1% threshold of the maximum in 
the mean field (left) and mean enstrophy isocontour �2 at the 0.2% threshold (right) demonstrating the IVSs 
and twin vortical structure respectively
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where the classical Reynolds decompositions of the velocity, u� = u − ū , pressure 
p� = p − p̄ and buoyancy b� = b − b̄ have been used. Here and in the remainder of the 
paper the prime denotes the fluctuating components. The buoyancy (or temperature) field 
is often used to identify the fluid within the plume, for example Fig.  3 shows the mean 
buoyancy field at y∕r

0
= 0 , divided by the maximum value at each x, b̄

max
(x) . This quantity 

tries to map the 3D evolution of the plume to a 2D plane; the source possesses a normal-
ised magnitude of 1 and the fluid around this region maintains this value, which decreases 
for larger x∕r

0
 . The edge of the plume is represented in the same figure as the 1% thresh-

old of the global maximum value, as one expects the buoyancy field to tend to zero as it 
approaches the ambient fluid. The picture derived from Fig. 3 tells us that the plume ini-
tially rises vertically, due to the source fluxes, and is somewhat diffused downstream on the 
leading edge interacting with the crossflow, but hardly shifts in the streamwise direction on 
the downstream edge, thus narrowing the plume. It then proceeds to remain approximately 
constant in width in the non-spanwise directions until roughly x∕r

0
= 5 , before beginning 

to expand.
Cintolesi et  al. [19] identified three phases of the plume dynamics. The momentum 

phase is the phase in which the initial momentum flux at the source mainly drives the 
plume; the buoyancy phase where the buoyancy force dominates the plume dynamics; and 
the entrainment phase, where the crossflow bends the plume horizontally and the counter-
rotating vortex pair forms. These phases are not necessarily distinct; if the initial momen-
tum is that much stronger than the buoyancy force, then the momentum phase and buoy-
ancy phase can overlap, and there does not exist a pure buoyancy phase.

The vertical length scale at which momentum and buoyancy fluxes dominate the upward 
acceleration of the plume are given by, respectively (Fischer et al. [21]),

where Fr = Ri
−1∕2

0
 is the source Froude number. Here, zM = 1.77 and zB = 1.57 ; zB < zM 

and therefore a pure buoyancy driven phase does not exist, as the influence of the source 

(8)zM = r
0

√
�
w
0

U
, zB =

�

2

r
0

Fr2

�
w
0

U

�3

,

Fig. 3  Mean buoyancy field 
at y∕r

0
= 0 divided by the 

maximum value at each x, 
b̄∕b̄

max
 . The plume source is 

centred at x∕r
0
= 0 where r

0
 is 

the source radius. The black line 
represents the 1% threshold of 
the maximum value of the mean 
buoyancy, bounding the plume 
radius
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momentum flux extends past zB ; that is to say that the momentum forces dominate the ver-
tical acceleration of the plume throughout the initial ascent. The transition to the entrain-
ment region defined by Fischer et al. [21] occurs at

In this instance, z∗∕r
0
= 1.84 . This is where the crossflow dominates over the initial 

momentum, and one can see in the instantaneous flow field of Fig. 2 that this is indeed 
approximately where the annular tube-like structures signalling the transition to turbulence 
begin to form.

Cross-sections of temperature in the y–z plane are shown in Fig. 4 for a number of 
positions along the flow. At x∕r

0
= 0 , directly above the centre of the plume, rolling 

structures form along the upper edge, which develop into the rolling tendrils seen at 
x∕r

0
= 1 and in the mean enstrophy surface in the right plot of Fig.  2. Further down-

stream at x∕r
0
= 5 these begin to coalesce into a pair of uniform central core structures 

reflected about the central plane of symmetry, becoming more localised by x∕r
0
= 15 , 

demonstrating once more the twin buoyant vortical core structure which continues 
downstream.

Figure 5 shows the average velocity fields by means of isocontours and streamlines in 
the central x–z plane and in the y–z plane at x = 15 . Close to the source, a convergence 
of streamlines can be observed of the within-plume and incoming-flow streamlines. 
This is due to a combination of the incoming crossflow, and the twin counter-rotating 
vortical feature of the plume demonstrated in the y–z plane, which injects fluid into the 
plume from below along the central x–z plane and forces it upward until the crossflow 
dominates and bounds the plume.

While the convergence of the streamlines in the x–z plane seems to imply an increase 
in velocity flux, and therefore a large acceleration which is not observed, it is noted 
that a particle emanating from the plume source would trace one of the counter-rotating 
vortex pairs. Statistically, these would average out to a zero v̄ spanwise velocity in the 
central plane, however this does not imply a zero 𝜕v̄∕𝜕y . At infinitesimal distances either 
side of the central plane, these quantities are clearly non-zero due to the counter-rotating 
vortex pair, and the fully 3D streamlines in the mean flow will follow the trajectories of 
the vortices, rather than converging as seen in the 2D plane; that is to say, any stream-
line contraction observed in the x–z plane corresponds to an expansion in the y–z plane.

It can also be seen in the x–z central plane that there is in fact a slight back flow 
into the downstream edge of the plume immediately adjacent to the downstream plume 
source boundary at x∕r

0
= 1 . This is due to the velocity boundary function possessing a 

singularity on this edge, where the top-hat plume inflow condition and free-slip bound-
ary meet, causing a high back-pressure differential and accelerating the fluid immedi-
ately backward and into the plume. The influence of the crossflow is negligible in this 
region; the plume source effectively blocks the ambient flow, owing to the effect of the 
circular plume source possessing zero streamwise or spanwise velocity, becoming phe-
nomenologically analogous in this plane to the two dimensional cylinder in a potential 
flow.

The pressure field is visualised by the contours of Fig. 6, which are taken in the x–z 
centre plane and the y–z plane at x∕r

0
= 15 , overlaid with the planar velocity vectors 

and 1% temperature threshold to indicate the plume boundary. The x–z centre plane 

(9)z∗ ≥ zM

(
zM

zB

) 1

3

.
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demonstrates the aforementioned high back-pressure gradient along the downstream 
edge leading to the back flow in this region. It further shows a region of high positive 
pressure along the upper edge of the plume, which acts in x to accelerate the plume 
downstream. There is also a slight pressure gradient beneath the centre of the plume, 
where the double vortex structure injects fluid into the plume from below.

The plume cross section at x∕r
0
= 15 demonstrates a high positive vertical pressure 

gradient immediately atop the plume, which opposes the vertical acceleration due to tem-
perature as previously observed by Jordan et al [17]. This also acts to prevent the ejection 
of fluid along the x–z centreline by the twin vortices, leading to the thin film seen in the 

Fig. 4  Average buoyancy b̄∕b
0
 over (y, z) plane at four slices along the streamwise direction: a the source 

centre x∕r
0
= 0 , b the downstream source edge x∕r

0
= 1 , c in the near-field downstream at x∕r

0
= 5 and 

d far downstream x∕r
0
= 15 . The outline represents the 1% threshold of the maximum buoyancy in each 

plane
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temperature contours of Fig. 4 connecting the twin vortices across the top, leading to the 
kidney-like structure of the plume cross section in the turbulent region.

3.3  Plume trajectory

The plume trajectory centreline is an important concept for integral models of plumes in 
crossflow, and it typically thought of as the central streamline of the plume [29], denoted 
here as zU . This streamline can be determined by following a fluid particle from the centre 
of the plume source. However, as has been demonstrated in Figs. 4 and 5, the central plane 
does not capture the much more prominent effect of the twin vortical structures, which 
in this flow sit some distance below the maxima in the central plane. Alternative plume 

Fig. 5  Average velocity fields in the central (x,  z) plane (left) and (y,  z) plane at x∕r
0
= 15 (right). Iso-

contours denote x-velocity magnitudes, with white representing ū∕U = 1 , the ambient crossflow velocity. 
Streamlines are calculated in each plane. It is noted once more that the full computational domain is not 
shown

Fig. 6  Average pressure over (x,  z) centre plane (left) and (y,  z) plane at x∕r
0
= 15 , overlaid with planar 

velocity vectors and contours of 1% temperature threshold in each plane to indicate plume boundary
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trajectories based on centre of mass of temperature b̄ and velocity V =
√
ū2 + w̄2 are also 

used, calculated by

where the integration is performed over plume area Ω in the y–z plane, defined on the 1% 
maximum temperature threshold. These trajectories are plotted in Fig. 7, along with the 
z-positions of the maximum values of b̄ and V at each x, and overlaid with the temperature 
field integrated across the spanwise direction ⟨b̄⟩y.

The central streamline follows the very top of the plume, consistent with the stream-
line plot shown in Fig. 5. This is a markedly different behavior than for the infinitely lazy 
plume ( w

0
= 0 ) case studied in Jordan et al. [17]; in their study, it was impossible to define 

a central streamline starting from the plume source, owing to the imposed zero-velocity at 
the outlet, which is why a central streamline was constructed from starting some distance 
above the source. In that case, the central streamline remained much more in the middle 
of the plume. The higher central streamline in the presence of non-zero source momentum 
flux is noted in the experiments of Su and Mungal [30] and also observed by Muppidi 
and Mahesh [13] for the turbulent jet in crossflow; the severe asymmetry in the radius of 
plume fluid above and below the central streamline in the fully developed region is due to 
the upstream fluid at the leading edge of the source being stripped away by the crossflow, 

(10)

zc(x) =
∬

Ω
zb dy dz

∬
Ω
b dy dz

,

zV (x) =
∬

Ω
zV dy dz

∬
Ω
V dy dz

,

Fig. 7  Plume trajectories based on the central streamline zU , the centres of mass of b̄ and V =
√
ū2 + w̄2 , 

maximum of b̄ and maximum of V, overlaid with isocontours of the y-integrated temperature field ⟨b̄⟩y . The 
maxima of b̄ and V have been omitted for x∕r

0
< 2 due to noise
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while the central momentum dominated region less influenced by the crossflow in the near 
field continues its upward trajectory less affected. In the infinitely lazy case of Jordan et al. 
[17] with zero source momentum flux, this phenomenon does not occur.

The centre of mass trajectories both evolve similarly along the domain, with the centre 
of mass of V only marginally higher than that of b̄ . These quantities are, by definition, more 
representative of the entire plume than the plume centreline. The maxima of b̄ , which fol-
lows roughly the centres of the vortical structures as shown by Fig. 4, sits only marginally 
below the centres of mass, suggesting that the largest contributions to the centre of mass of 
b̄ come from the accumulation of temperature within these structures. The maximum of V 
within the plume also follows the maximum of b̄ very closely, as it does with the centre of 
mass. This suggests the central streamline represents the path followed by top of the plume, 
whilst the other definitions are more representative of the plume as a whole.

4  Eddy viscosity and diffusivity

4.1  Eddy viscosity

Closure of the Reynolds-averaged Navier–Stokes Eq. (6) is obtained by modelling the 
Reynolds stress tensor, −u�

i
u�
j
 . The most common modelling approaches are based on the 

eddy viscosity assumption,

where �T is an eddy viscosity, k = u�
i
u�
i
∕2 is the turbulence kinetic energy and 

Sij = (�ui∕�xj + �uj∕�xi)∕2 is the mean strain rate tensor. Each component of the tensorial 
relation (11) would give different behaviour for the eddy viscosity, especially in strongly 
inhomogeneous and anisotropic flows like the present case. In order to study a single 
behaviour of eddy viscosity that is representative of the flow evolution, both sides of (11) 
are contracted with the strain rate tensor,

Such an approach is instructive from a physical point of view as the left hand side of the 
above equation can be easily recognised as the turbulence shear production Π , which is 
typically positive in instances of turbulence. In fact, when a Reynolds decomposition of the 
flow is performed, the energetics of the flow can be studied by analysing the two contribu-
tions to the kinetic energy associated with the mean field and with the fluctuating fields, 
respectively. In this decomposition, the dissipative nature of turbulent flows can be recog-
nized in the draining of the kinetic energy of the mean field due to interactions of the mean 
shear with turbulent fluctuations, which are finally dissipated by viscosity into heat. Gen-
erally we expect positivity of the shear production to hold also in buoyancy driven flows 
even if in these cases an extra production term due to density differences also appears. 
Reynolds-averaged turbulence closures are classically based on these arguments, as dem-
onstrated by the Boussinesq hypothesis (11). However, while in most problems the vol-
ume integral of the turbulent production term should be positive for statistically stationary 
flows, as it should be balanced by dissipation, locally it could be of either sign [31]. Indeed, 

(11)−u�
i
u�
j
= 2�TSij −

2

3
k�ij,

(12)
−u�

i
u�
j
Sij

⏟⏟⏟
Π

= 2�TSijSij.
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in the remainder of the paper we will use the relation (12) to study the behaviour of an 
effective eddy viscosity that, from an energetic point of view, guarantees the same local 
turbulence production of the actual flow. As such we anticipate that this quantity could also 
be negative in the positions where Π is negative.

Figure 8 shows slices of turbulence production Π and of SijSij reflected side by side in 
the y–z plane. It is immediately evident that �T cannot be positive throughout the entire 
flow, as there exist sinks of turbulence kinetic energy along the plume trajectory in the 
negative values of Π , typically along the lower boundary of the plume, indicated in red. 
Furthermore, any potential model would have to modulate �T ; there are regions of negli-
gible turbulence production that correspond to areas in which the norm of the strain rate 
tensor is of similar order of magnitude to its maximal values in each plane.

A characteristic eddy viscosity can be constructed instead based on the average value 
of �T , which is not assumed to be constant throughout the plume, but instead dependent on 
the distance from the plume source. Approximating the plume as fully bent over such that 
the angle made with the horizontal is small, the resultant characteristic integral turbulent 
viscosity is given by

where Ω is the plume area, defined by the 1% threshold of the maximum buoyancy at each 
x, as outlined in Fig. 4. The appropriate length and velocity scales rm and U for the flow 
are the characteristic radius of the plume and the crossflow velocity respectively, such that 
rm = (Q∕U)1∕2 , where

is the integral volume flux, again assuming a fully bent over solution. The characteristic 
plume radius can be shown to increase linearly with x. Figure 10 demonstrates that for this 
flow there is an initial transitional region immediately out of the plume source, then in the 
fully developed regime x∕r

0
> 5 , �Tm∕rmU is approximately constant with x. These DNS 

(13)�Tm =

(

∬Ω

Π dy dz

)(

∬Ω

2SijSij dy dz

)−1

,

(14)Q =
1

𝜋 ∬Ω

ū dy dz

Fig. 8  Turbulence produc-
tion (left half) mirrored with 
strain rate tensor contraction 
(right half) in the y–z plane at 
x∕r

0
= 15.
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data provide a benchmark with which to compare such a characteristic integral turbulent 
viscosity from numerical models, and the constant nature of this eddy viscosity implies a 
global self-similarity, whereby turbulent flow structures at different locations in the plume 
are geometrically similar, but differ only in size and intensity, as found experimentally for 
turbulent round buoyant jets in crossflow by Papaspyros et al. [32].

4.2  Eddy diffusivity

Using the identity 𝜕(ūib̄)∕𝜕xi = ūi(𝜕b̄∕𝜕xi) + b̄(𝜕ūi∕𝜕xi) and the statement of incompress-
ibility (1) in the Reynolds averaged buoyancy Eq. (7) one finds that

where 𝜅𝜕b̄∕𝜕xi can be interpreted as a diffusive buoyancy flux and −u�
i
b� the buoyancy 

flux due to turbulent eddies, playing an analogous role to the Reynolds stress term in the 
momentum balance equation. The high Péclet number Pe

0
 condition of this flow, where 

Pe
0
= Re

0
Pr = 2r

0
w
0
∕� , ensures the 𝜅𝜕b̄∕𝜕xi term is negligible and thus does not contrib-

ute to the temperature flux. However, a common assumption used in models of eddy dif-
fusion to close the system (15), for example in gradient diffusion models, is that these two 
terms are proportional, such that

where �T is the turbulent diffusivity, �T = �T∕PrT for turbulent Prandtl number PrT . One of 
the limitations of the gradient diffusion model is that it is not necessarily the case that the 
temperature flux vector −u�

i
b� is parallel to the direction of the gradient. One can indeed 

obtain interesting insight on what happens in the present flow by inspecting the left hand 
plot of Fig.  9 which shows the cosine of the angle between these two quantities, 
cos (𝜃) = (−u�b� ⋅ �b̄)∕

|||u
�b�

|||
||�b̄|| . In the top part of the plume, the cosine of the angle 

between the directions of the turbulent transport and the gradient of the mean buoyancy is 
substantially equal to 1, confirming that in this region of the flow the modeling hypothesis 
based on the Boussinesq assumption (16) holds. A different scenario is depicted from the 

(15)
𝜕(ūib̄)

𝜕xi
=

𝜕

𝜕xi

(
𝜅
𝜕b̄

𝜕xi
− u�

i
b�

)

(16)−u�
i
b� = 𝜅T

𝜕b̄

𝜕xi
,

Fig. 9  Left: Cosine of the angle between −u�b� and �b̄ at x∕r
0
= 15 inside the plume—red = parallel, blue 

= anti-parallel. Right: −u�
i
b�

𝜕b̄

𝜕xi
 (left half) mirrored with 𝜕b̄

𝜕xi

𝜕b̄

𝜕xi
 (right half) for the same cross section
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inspection of the bottom of the figure; in the boundary regions the cosine changes sign 
altogether, clearly indicating counter gradient behavior of the turbulent transport. In the 
intermediate regions, the value of the cosine is neither close to 1 nor to −1 , suggesting that 
an anisotropic model should be invoked in this part of the flow. In order to obtain quantita-
tive information on �T , the anisotropy can be absorbed by contracting both sides of Eq. 
(16) with the buoyancy gradients 𝜕b̄∕𝜕xi , following a similar approach to the eddy viscos-
ity. Unfortunately, even with this procedure, a direct calculation of �T from (16) is not com-
pletely well defined, as the contraction of 𝜕b̄∕𝜕xi with itself tends rapidly to zero at the 
plume boundary, and at points within the plume as well, as seen in the right plot of Fig. 9. 
In any case, the inspection of the plot would confirm the need for a large quantitative varia-
tion of the eddy diffusivity in the (y,  z) plane to obtain a point-wise correspondence 
between the turbulent flux of buoyancy and the modeled one.

On the other hand, a characteristic eddy diffusivity �Tm for a given distance from the 
plume source can be constructed by means of the same arguments as (13) and it is defined 
as

Figure 10 demonstrates its x-behaviour alongside �Tm . It is observed that the local maxima 
for both quantities around x∕r

0
= 6 are too small compared to the statistical noise to be 

given a physical meaning and hence we can assume that �Tm is also roughly constant in the 
fully developed region of the flow. This implies that the mixing of temperature within the 
plume is consistent for any cross section in the fully developed flow. The temperature will 
also disperse similarly throughout the plume, simplifying the prediction of heat transfer 
dynamics in the modelling of this type of flow. However, it is important to stress that a 
constancy assumption of the eddy diffusivity does not account for the spatial variations 
in the flow fields within the plume, as already discussed for Fig. 9, and instead �Tm should 
be regarded as a bulk property of the plume. Instead, the presence of the large peak on the 

(17)

𝜅Tm = −

(

∬Ω

u�
k
b�

𝜕b̄

𝜕xk
dy dz

)

(

∬Ω

𝜕b̄

𝜕xl

𝜕b̄

𝜕xl
dy dz

)−1

.

Fig. 10  Plot of �Tm∕rmU and �Tm∕rmU (left) and PrTm (right) as functions of x∕r
0
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downstream edge of the plume at approximately x∕r
0
= 2 suggests a more complex mecha-

nism for the mixing of temperature in the early development.
A characteristic integral turbulent Prandtl number can further be defined via 

PrTm = �Tm∕�Tm , which returns an approximately constant value of PrTm = 0.45 from 
x∕r

0
= 5 , as shown in Fig. 10. This definition of PrTm is consistent with that of Craske et al. 

[33], who analytically demonstrate the the turbulent Prandtl number in a pure plume with 
Gaussian velocity profile is a constant, equal to 3/5. The fact that the characteristic Prandtl 
number is constant throughout the fully developed region of the flow indicates that the 
turbulent mixing of momentum and heat is strongly coupled, and occurring in a consistent 
manner throughout the plume, despite variations in the plume geometry such as its trajec-
tory and width as it is swept downstream. This observation is significant, as it suggests the 
plume is behaving in a consistent and predictable way throughout the flow despite geomet-
rical changes, which could have important implications for the modelling of such flows in 
the far field. Furthermore, it lends credence to the assumption used in many key theoretical 
models of turbulent plumes, that the plume is behaving in a self-similar manner, implying 
that the forced plume in crossflow under these conditions could be described by a set of 
governing equations that are independent of specific flow geometry, simplifying the model-
ling of such flows. Further work is required to establish whether altering the flow condi-
tions, such as raising or lowering the source-to-crossflow velocity ratio R

0
 or implementing 

a less idealised inlet boundary condition, impact these findings.

5  Conclusion

In this study, a detailed phenomenological assessment of a forced buoyant turbulent 
plume in crossflow has been conducted via the analysis of a very large DNS dataset. The 
instantaneous and Reynolds-averaged flow field structures have been reported, along 
with various measures of the plume trajectories, with particular mention given to the 
discrepancy between this forced plume and the infinitely lazy plume of previous stud-
ies. In order to inform future modelling efforts, the large amount of available data have 
been utilised to evaluate the pointwise behaviour of eddy viscosity and diffusivity. We 
have demonstrated that a detailed model for Reynolds stresses and buoyancy turbulent 
flux is far from trivial, with instances of negative turbulent production and countergra-
dient turbulent transport for buoyancy that challenge classical RANS models based on 
the Boussinesq approximation. Successively, we have constructed a characteristic eddy 
viscosity and diffusivity, based on an integral approach, which gives x-dependent func-
tions of these quantities. For this particular flow parameterisation these are shown to be 
approximately constant in the fully developed plume. The resultant constant value of 
the turbulent Prandtl number indicates the self-similarity of the flow fields, and further 
suggests the mechanisms involved in the mixing of momentum and temperature are one 
and the same. Additional DNS studies are required to investigate the impact of varying 
parameters such as the source-to-crossflow velocity ratio or the inlet boundary condition 
on these findings, to give further modelling insight.
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