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A competition authority (CA) has an objective, which specifies what output profile firms need to produce
as a function of production costs. These costs change over time and are only known by the firms. The objective
is repeatedly implementable if the firms cannot collude and deceive the CA in equilibrium. We identify nec-
essary and sufficient conditions for repeated implementation when firms can only announce prices and quanti-
ties. We use these conditions to study when the competitive output is implementable. We extend the analysis to
the case when the firms can also supply hard evidence.

1. INTRODUCTION

We study the prevention of collusion by firms as a repeated implementation problem.
Specifically, we consider an infinite-horizon oligopoly model with discounting. Each period
firms produce a homogenous good and face an exogenously given demand, while their pro-
duction costs change randomly from one period to another. A competition authority (CA) has
a certain objective about the firms’ output. For example, it wants them to produce the com-
petitive equilibrium output in every period. This objective depends on the production costs,
which are unknown to the CA, but commonly known by the firms. The firms will try to benefit
from the information asymmetry and instead produce closer to the collusive output. The ques-
tion that we address is whether the CA can design a game (aka regime) such that the output
in every period of every equilibrium coincides with the one given by the CA’s objective. That
is, we study a full implementation problem.

Repeated implementation has been studied in a general setup by Lee and Sabourian (2011),
Mezzetti and Renou (2017), and Azacis and Vida (2019). If we wanted to apply the results
of those papers to the oligopoly problem, the firms would be required to report information
about their own and every competitor’s costs to the CA. However, it is not how firms nor-
mally compete.

The novelty of our article is that we restrict what the firms can report: Each firm only an-
nounces the quantity it wants to produce and the price at which it wants to sell. Furthermore,
we require that there exists an equilibrium such that on the equilibrium path, in every period,
the firms produce exactly those quantities that they announce. We refer to this requirement as
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forthrightness. Without forthrightness, announced prices and quantities could stand for any-
thing, including the costs of other firms, in which case we would be back in the framework of
the aforementioned papers.

We can interpret the forthrightness requirement as a restriction on what the CA can do.
Specifically, the CA does not intervene in the market as long as the announced prices and
quantities are consistent with its objective. We define firms’ messages as consistent if the an-
nounced quantities coincide with the CA’s objective for some realization of costs, and addi-
tionally all firms announce the price that equates the announced quantities with the demand.
However, once the messages are not consistent, the CA steps in and tells the firms what to
produce. In practice, CAs also do not intervene unless there is an evidence of possible anti-
competitive behavior.

When firms announce consistent messages, it can still be that the announced quantities do
not coincide with the CA’s objective given the actual realized costs, in which case the CA fails
to implement its objective. Therefore, we study conditions on the CA’s objective that ensure
that the firms do not collude on consistent but untruthful messages in equilibrium. Through-
out we consider pure-strategy subgame perfect equilibria (SPE), although we argue later that
all our results remain true if instead we looked for pure-strategy Nash equilibria (NE). Fol-
lowing the implementation literature, we now refer to the CA’s objective as a social choice
function (SCF). In the main body, we focus on implementation of SCFs in the simpler sym-
metric setup, while we relegate the general case with asymmetric firms to the Appendix. In
the latter case, we show that a condition, which we call pg-dynamic monotonicity, is both nec-
essary and sufficient for repeated implementation of SCF (Proposition A0). Intuitively, the
condition guarantees that whenever the firms collude, there always exists a firm that has in-
centives to act as a whistle-blower by triggering inconsistent messages, which then induce the
CA to intervene.

Mezzetti and Renou (2017) show that a condition called dynamic monotonicity is necessary
for repeated implementation when the messages can be arbitrary. pg-dynamic monotonicity is
a strengthening of dynamic monotonicity due to the restriction of messages to price—quantity
pairs and due to the forthrightness requirement. Whether or not messages are consistent only
depends on the outputs specified by the SCF and not directly on the realized costs. Therefore,
if the SCF specifies the same outputs for two different cost realizations, the CA cannot infer
the cost realization from the consistent messages. This makes it harder to provide the right
incentives for the whistle-blower because the CA also needs to ensure that no firm acts as a
whistle-blower when the other firms are in fact reporting truthfully.

The rest of the analysis is restricted to the symmetric setup. We find that in this setup,
pgq-dynamic monotonicity is equivalent to two simpler conditions—pg-monotonicity and pg-
stationary monotonicity (Proposition 1). The first condition ensures that there cannot be an
equilibrium in which the firms report consistent but untruthful messages only for one period
but otherwise they behave truthfully. The second condition ensures that there cannot be an
equilibrium in which the firms report (contingent on their costs) the same consistent but un-
truthful messages in every period. Because it is enough to consider these two types of collu-
sive behavior, checking for pg-dynamic monotonicity in the symmetric setup is much easier.

Equipped with these results, we next investigate repeated implementation of the SCF that
requires the firms to produce the competitive output for any cost realization. We show that
the competitive SCF satisfies pg-monotonicity under some fairly mild assumptions (Proposi-
tion 2). However, competitive SCF can fail pg-stationary monotonicity because of a high dis-
count factor (Example 1) or because of the forthrightness requirement (Example 2). How-
ever, when the cost functions exhibit strictly increasing differences, we show that the competi-
tive SCF is implementable for all values of the discount factor less than one, if the number of
firms exceeds some threshold. For a given number of firms, we show that the competitive SCF
is implementable if the discount factor is low enough, and we identify a condition when it is
also implementable for discount factors close to one (Proposition 3). Interestingly, an SCF can
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be implementable for low and high values of the discount factor, but not be implementable
for intermediate values (Example 3).

We also briefly consider another SCF that for every cost realization, maximizes the aggre-
gate output subject to firms breaking even. Although the competitive SCF is in general imple-
mentable for discount factors close to zero, we find that this other SCF might not be imple-
mentable for any value of the discount factor (Proposition 4) or only implementable for the
intermediate values (Example 4).

Finally, motivated by the literature on leniency programs (discussed below), we extend the
model by incorporating hard evidence. The CA can request the firms to back any reports with
supporting evidence. Clearly, more SCFs can be implemented with evidence because it can
help when either pg-monotonicity or pg-stationary monotonicity fails. We show that so-called
evidence monotonicity is necessary and sufficient for repeated implementation in the sym-
metric setup (Propositions 5 and 6). If the firms can hide their profits but cannot exaggerate
them, then the competitive SCF satisfies evidence monotonicity and, hence, is repeatedly im-
plementable (Example 5).

1.1. Related Literature. Nowadays CAs are increasingly relying on leniency programs to
combat collusion by firms. Under a leniency program, a firm that helps to uncover and pros-
ecute a cartel, receives a reduction in fines. Starting with Motta and Polo (2003), Spagnolo
(2004), Aubert et al. (2006), and Harrington (2008), there is a large and growing literature that
analyzes the impact of leniency programs on collusion.! A typical model in this literature as-
sumes that collusion creates hard evidence that the CA can discover with some probability, in
which case colluding firms face large fines. By offering reduced fines, the CA can incentivize
firms to come forward before it has even launched investigation or before the investigation
has produced enough evidence.

Our modeling approach differs in several ways from that literature. First of all, the above
leniency models can be viewed as moral hazard models (collusion as unobservable action),
whereas ours is an adverse selection model (collusion to misrepresent the unobservable
costs). Second, the leniency models assume verifiable information, whereas in our model, the
CA must rely on nonverifiable information (or partially verifiable information in the case of
hard evidence) that the firms supply. Third, in the leniency models, the (sometimes implicit)
stage game is given (e.g., a Cournot model), whereas in our model, the CA designs it. Similar
to the leniency models, the whistle-blower needs to be rewarded, but instead of using trans-
fers, it is done through altering its future profits.

Because in our model, the CA can influence the price the firms can charge or the quanti-
ties they can produce, these firms can also be viewed as regulated companies such as utilities.
Over past decades, regulators across the world have been adopting performance benchmark-
ing of the regulated firms in order to improve their efficiency and service quality.” That is,
firms are rewarded for being efficient, while their efficiency is measured against that of other
firms. However, such benchmarking can also create incentives for the firms to coordinate in-
formation that they provide to the regulators. Although information revelation by regulated
firms is a widely studied subject (see, e.g., Laffont and Tirole, 1993), previous work on collu-
sion by firms that are subject to benchmarking, has only been done by Tangerés (2002) and
Dijkstra et al. (2017). In particular, Tangeras (2002) finds the implementable SCF that maxi-
mizes the welfare in a static duopoly model with side-payments.

Our analysis builds on several strands of implementation literature. Repeated implementa-
tion has been studied by Lee and Sabourian (2011), Lee and Sabourian (2015), Mezzetti and
Renou (2017), and Azacis and Vida (2019). As noted, Mezzetti and Renou (2017) introduce

I See also the survey by Rey (2003).

Z See, for example, the international comparison of benchmarking methods in the electricity sector by Jamasb and
Pollitt (2000) or the assessment of benchmarking in the telecommunications, water, and energy sectors in the United
Kingdom by Dassler et al. (2006), among many others.
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the dynamic monotonicity condition that is closely related to the monotonicity conditions of
this article. Further, Lee and Sabourian (2011) show that if an SCF is not efficient, then it is
not repeatedly implementable for high enough discount factors. In Remark 2, we comment on
the differences in assumptions that allow us to implement inefficient SCFs even when the dis-
count factor is high. Chassang and Ortner (2019) and Ortner et al. (2022) also employ the in-
sights behind the results in Lee and Sabourian (2011) to study cartel detection.

Implementation when the announcements are restricted to prices and quantities has previ-
ously been studied in static economies. The seminal work in this area is by Dutta et al. (1994),
Sjostrom (1994), and Saijo et al. (1996). pg-monotonicity resembles the necessary conditions
that were identified in these papers. Bull and Watson (2004), Ben-Porath and Lipman (2012),
Kartik and Tercieux (2012), and Banerjee et al. (2023) study one-shot implementation with
evidence. In particular, Kartik and Tercieux (2012) introduce the notion of evidence mono-
tonicity. Compared to this literature, we are the first to study implementation with price—
quantity announcements and with evidence in the repeated setup.

The rest of the article is organized as follows. We describe the basic elements of the model
in Section 2 and define the repeated implementation problem in Section 3. We study neces-
sary and sufficient conditions for repeated implementation in the symmetric setup in Section 4
and in the general case in Appendix A. We investigate repeated implementation of the com-
petitive SCF in Section 5 and that of “break-even SCF” in Section 6. In Section 7, we con-
sider the extension to hard evidence. Although we study a specific implementation problem,
we argue in Section 8 that our results can also be applied to other problems like multigood
exchange economies. We also discuss alternative solution concepts in this section. We con-
clude in Section 9. Finally, most of the proofs and extensions are relegated to either the Ap-
pendix or the Online Appendix.

2. THE SETUP

There are n > 2 firms in a market and they interact for an infinite number of periods.® Let
I ={1,...,n} denote the set of firms. The periods are indexed as 0, 1, 2, .. ., with period 0 be-
ing the initial period. The firms produce a homogenous product. Each period the firms face
the same inverse demand function p = p(Q), where Q = > | g; is the aggregate output and
gi € Ry is the output of firm i € /. It is assumed that p(Q) is continuous in Q and strictly de-
creasing for all Q such that p(Q) > 0.

Production costs depend on the state of the world. Let ® be the set of possible states of the
world, which is assumed to be finite. At the start of each period, a new state 6 € ® is drawn in-
dependently and identically according to a distribution function /. Each state 6 € © is realized
with a strictly positive probability, /(9) > 0. The cost function of firm i is ¢;(g;, #), which is as-
sumed to be continuous and strictly increasing in g; with ¢;(0, 6) = 0. Let c;(g;, 0) denote the
marginal cost function of firm i when ¢;(g;, 0) is differentiable in g;.

The profit of firm i in any period with state 0 is given by 7;(q, 0) = p(Q)q; — ci(qi, 0), where
q = (q1,...,q,) denotes an output profile. Also, g_; is obtained by omitting the output of firm
i from g. Throughout we maintain the following assumption:

AssUMPTION Al. Foreach i € 1, there exists 0 € © and q such that 7;(q,0) > 0.

This assumption ensures that every firm wants to produce a positive quantity at least in
some state.

Firms discount their future profits using a common discount factor 8. Let v; denote a con-
tinuation value of firm i that it expects from the next period on, and let v = (v, ..., v,). If
in some period with state 0, the firms produce an output profile ¢ and expect v in continua-
tion, then the present discounted profit of firm i is given by (1 — §)m;(gq, 0) + Sv;. Firms want

3 We briefly study a finite horizon setup in Section E in the Online Appendix.



FIGHTING COLLUSION 5

to maximize their present discounted profits. Also, for v; to be feasible, it must be that v; < v;
where v; := maxg.o_Rr Y g [(0)mi(#(0), 6) denotes the highest continuation value that firm
i can attain. Clearly, to attain v;, firm { must be made a monopolist. Assumption Al guaran-
tees that v; > O for all i. Let V; = {v;|v; < 7v;} foralliand V = x;/V;.

The objective of CA is captured by an SCF, which specifies the desired output profile for ev-
ery state of the world, f: ® — R’.. For example, in Section 5, we will focus on SCF that se-
lects a competitive output in every state of the world. It is assumed that f does not change
over time and that the CA never observes the state of the world of any period. Throughout

we also maintain the following assumption:
AssumPTION A2. fis such that p (}_,.; fi(0)) > 0 for all 6.

This assumption together with the assumption that p(Q) is strictly decreasing in Q as long
as p(Q) > 0 ensures that there is a one-to-one relationship between the price and the aggre-
gate output in the range of f.

3. REPEATED IMPLEMENTATION

In order to implement an SCF, the CA uses a regime, which tells what mechanism to select
in each period as a function of past play. We now define mechanisms and regimes formally. A
mechanism is a pair (M, g) where M is a message space, which is the same for all firms, and
g:M" — R’ is an outcome function that specifies an output profile for each profile of mes-
sages. Since later we will fix the message space M, we denote the mechanism (M, g) with its
output function g. Let m; be a generic message of firm i and let m = (my, ..., m,) be a generic
message profile. m_; is obtained by omitting the message of firm i from m. It is assumed that
in each period, the firms send their messages simultaneously.

From now on, a superscript to any variable will indicate the period. Thus, 8’ and m' indicate
period ¢ state of the world and period ¢ profile of messages, respectively. In period ¢ > 0, a his-
tory of states is ¢/ = (67, ..., 0"), a history of messages is ' = (m’, ..., m'"!), and a history is
W=, ¢ ). Let ¢ =6%and ¢! = u® = h° = ¢. For any ¢, let H' denote the set of all pos-
sible period ¢ histories.

The mechanism that the CA employs can differ from one period to another. A regime,
r, describes which mechanism is selected after every possible message history: g = r(u').
Occasionally, it will be more convenient to condition r on /’, with the understanding that
r(u', 1y = r(ut, &) for any ¢!, £'~1. We assume that the CA commits to a regime at the
start of period 0 and that the firms know which regime the CA employs.

The firms learn the period ¢ state of the world before sending period ¢ messages. At the end
of period ¢, they also learn the period ¢ messages of other firms. A (pure) strategy s; of firm
i specifies a message m; = s;(h', 0") for every ¢, h', and 6'. We will condition strategies inter-
changeably on (#',0") and (u', ¢'). Let s = (s1, ..., s,) denote a strategy profile. Given ¢, /',
and s, let p(h'|A',s) = 1 and for any 7 > ¢, let

=1t if ut = -1 -1 =1 _ -2
Pl 5) = p(h™= 1R $)I(0) if -(u ,s(h™1,6))and ¢ (72, 0),
0 otherwise.

For any ¢ and /', the continuation value of firm i before it knows period ¢ state and given that
the firms follow strategies s is

visl) = (1=8)Y " > 8 p(h* |h', )L )mi(g (s(h™. 07)). 67),

=1 h‘[eH‘[
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where g* = r(h").*

We use pure-strategy SPE as a solution concept, although as we argue in Subsection 8.1.1,
all results remain true if instead we use pure-strategy NE. A strategy profile s is an SPE of r
if for all i, ¢, A, and s/, it is true that v;(s|A") > v;((s}, s—;)|h"). Note that this formulation also
implies that firm i will not want to deviate from s; once it learns 6.

DEerINITION 1. A regime r repeatedly implements f in SPE if the set of SPE is nonempty and
for every SPE s, we have that r(h')(s(h', 6")) = f(6") for all ¢, 8", and A’ such that p(h'|h°, s) >
0.

f is repeatedly implementable in SPE if there exists a regime that repeatedly implements it
in SPE.

3.1. Price—-Quantity Mechanisms. Message spaces of the mechanisms that are employed
in the implementation literature are often large and unnatural. For example, the canonical
mechanism for one-shot implementation in NE would require each firm to report a state (ef-
fectively, a profile of cost functions), an output profile, and an integer.” In order to address
this unattractive feature of the mechanisms, similar to Dutta et al. (1994) and Saijo et al.
(1996), we require that the CA only uses price—quantity mechanisms, where the messages of
the firms are announcements about their prices and quantities. Thus, the message space of ev-
ery firmis M =R, x R,. A typical message m; = (p;, q;) will have the following interpre-
tation: p; is firm i’s announcement of the market price and g¢; is its output. By announcing a
price and a quantity, each firm is also telling how much the other firms should jointly produce.
Note that we do not allow the firms to announce zero price, which we can do because of As-
sumption A2.

Without further restrictions on the mechanisms, however, what firms announce can differ
from what they actually produce. This, in turn, means that their announcements can poten-
tially encode additional information, for example, about the output of each of their rivals. In
order to prevent such information smuggling, we require the so-called forthrightness from the
regime.® It says that there exists an SPE such that on the equilibrium path, in every period,
the firms announce and produce exactly those quantities that the CA wants the firms to pro-
duce in that period according to f, and they all announce the price that equates demand with
the announced quantities.

Formally, for every 6 € ©, let m(9) denote the message profile such that m;(0) = (p, g;) for
all i € I where (q1,...,q,) = f(®) and p = p (3_;.; qi)- We refer to m(0) as the messages that
are consistent with state 6.

DEerINITION 2. A regime r satisfies forthrightness w.r.t. f if there exists an SPE s s.t.
s(h',0") =m(#") and r(h")(m(0")) = f(#") for all ¢, 6', and K’ s.t. p(h'|K°, s) > 0.

Two observations are in order about the above definition. First, it requires that there exists
an equilibrium such that in every period, the firms announce messages that are consistent with
the true state of that period. However, the definition does not rule out the existence of other
equilibria in consistent but untruthful messages or even in messages that are not consistent
with any state. In the next section, we introduce conditions on the SCF that will guarantee
that these other equilibria do not exist. Second, the definition implies that in any period, the
firms produce what they announce if their current and all past messages are consistent with
some (not necessarily true) states of the world. Only if their messages are ever inconsistent
with any state, from then on their outputs can differ from what they announce. In order to

“vs also depend on r, but we do not make this dependence explicit.

3 For the description of the canonical mechanism, see the proof of Theorem 3 in Maskin (1999). Mezzetti and Re-
nou (2017) and Azacis and Vida (2019) also use similar mechanisms for repeated implementation.

% For one-shot implementation in exchange economies, Saijo et al. (1996) also impose forthrightness on price—
quantity mechanisms, whereas Dutta et al. (1994) refer to this property as truthfulness.
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motivate this feature of forthrightness, we can think that the CA will intervene in the market
once it observes firms’ behavior that is clearly incompatible with its objective.

4. NECESSARY AND SUFFICIENT CONDITIONS

Suppose that in every period, firms announce messages that are consistent with some state.
It can be, however, that in some period with state 6, firms announce m(6’) for some 6’ such
that m(60") # m(#). In order to capture such a situation, we introduce a concept of deception.
It is convenient to distinguish between static and dynamic deceptions. A static deception tells
which message profile from {m(6)|0 € ®} to announce for every §’ € ®, whereas a dynamic
deception specifies which static deception to use in any given period as a function of history of
states.” Repeated implementation of SCF requires that the firms cannot sustain any dynamic
deception in equilibrium. We next provide conditions on SCFs that guarantee that.

Mezzetti and Renou (2017, Theorem 1) have proven that for an arbitrary message space
M, an SCF must satisfy the so-called dynamic monotonicity in order to be repeatedly im-
plementable. Dynamic monotonicity says that for every dynamic deception that results in an
undesirable output profile after some history, there exists a firm that has incentives to devi-
ate from this deception after some (possibly different) history. In Appendix A, we define a
version of dynamic monotonicity when M = R, x R, that we call pg-dynamic monotonic-
ity, and show in Proposition A0 that it is necessary and sufficient for repeated implementa-
tion when the regime satisfies forthrightness. Checking whether an SCF satisfies pg-dynamic
monotonicity, though, can be a daunting task because there is an infinity of possible dynamic
deceptions.®

Similar to most of the literature that studies collusion in the repeated setup, we restrict
attention to a symmetric environment in the main body. It turns out that in this case, pg-
dynamic monotonicity is equivalent to two simpler monotonicity conditions, which are easier
to check. It is because in the symmetric setup, it is enough to consider only two types of dy-
namic deceptions. The first type of dynamic deceptions are the ones where the firms only de-
ceive for one period but otherwise they behave truthfully. The second type are stationary de-
ceptions according to which the same static deception is used in every period. For each of the
two types of deceptions, we define a corresponding notion of monotonicity (which are special
cases of pg-dynamic monotonicity) and show that both notions of monotonicity are not only
necessary but together they are also sufficient for an SCF to be repeatedly implementable in
the symmetric setup.

We first introduce additional notation. Let o : ® — ©® denote a static deception where
a(0) = 6’ says that the firms act as if the state was 6’, although the true state is 6. Let v;(f o
o)=Y oo l(0)mi(f(x(9)),0) denote the expected profit of firm i when the firms use the de-
ception «. Let v;(f) := v;(f o @) when « is the identity map. As usual, v(f) and v(f o) de-
note vectors of continuation values.

Let Li(q,v,0):={(q,v)eR! x V|1 -2¥8)m(q,0)+vi>=(1—8)mi(q,0)+ v} denote
the lower contour set of firm 7 in state # at quantity—value pair (g, v). Li(g, v, ) consists of
all those quantity-value pairs that give to firm i weakly lower (present discounted) profit than
(g, v) in state 0. Given any output profile ¢, let f~'(q) := {# € ®©|q = f(#)} be the set of states
that are consistent with g given f, and let Al.f(q) = Npe (g Li(q, v(f), 0).

The first condition on f that we introduce, is pg-monotonicity. The intuition behind it is as
follows. Suppose f is repeatedly implementable in SPE by a regime that satisfies forthright-
ness. Consider the strategy profile s given in Definition 2. Take any period, say, period 0
and any state of that period, say, 6’. According to s, the firms announce m(6’). Because s is
an SPE, any deviation from m;(6’) by firm i must result in an output-value profile (¢, v) €

7 A formal definition of dynamic deception is given in Appendix A.
8 Though, in Azacis and Vida (2019, Theorem 1), we provide an alternative characterization of dynamic monotonic-
ity, which allows to test dynamic monotonicity of SCF using numerical methods.
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Li(f(0"),v(f),0"). However, given that other firms announce m_;(6"), the CA can only in-
fer that one of the states in f~!(f(6)) has occurred. In order to ensure that firm i does
not have incentives to deviate in any of these states, (¢, v) must belong to Alf (")) :=
Norer1(peyLi(f(07), v(f),0").

Now, consider a static deception « such that A{(f(a(e))) C Li(f(x(0)),v(f),0) holds for
all i and 6. Then, there exists an SPE, in which on the equilibrium path, the firms announce
m(a(f)) in period 0, but announce m(#) in any other period whenever the state of that
period is 6. Intuitively, the assumed set inclusions ensure that no firm i will deviate from
m(a(0)) in period 0 when the state is 6 because it prefers the equilibrium output-value pair
(f(«(0)), v(f)) to anything it can get in Al.f (f(«(0))). Neither will it deviate in subsequent
periods when the firms are truthful because it prefers (f(0), v(f)) to anything in Aif (f9)).
Therefore, if f is repeatedly implementable, it must be that f(«(0)) = f(8) for all 6. Hence,
we have the following condition.

DEerINITION 3. f satisfies pg-monotonicity if for any o : @ — 0, (a) implies (b):

a. Aif(f(a(e))) C Li(f(x(8)).v(f),0)forallic I and 6 € O,
b. f(x(f)) = f(0)forallb € O.

pg-monotonicity resembles Condition W* in Saijo et al. (1996), which is necessary for one-
shot implementation with quantity mechanisms in exchange economies. Condition W* is a
strengthening of Maskin monotonicity due to forthrightness, and it is similar here. If the
forthrightness was not required from the regime, then the firms could be made to send dif-
ferent equilibrium messages in different states (effectively, to announce the states). Then, if
firm i deviates, the CA can infer a unique state, say, «(#) from the messages of other firms.
Therefore, Aif(f(a(Q))) can be replaced with L;(f(«(6)), v(f), «(0)) in the above definition.

Because Af (f(6)) € Li(f(8),v(f),0) holds, f can satisfy pg-monotonicity if forthrightness is
not imposed, but fail it when forthrightness is imposed. The same is also true about the next
definition of monotonicity.

The second condition on f is pg-stationary monotonicity. If the firms adopt the same static
deception « in every period, they expect v(f o @) instead of v(f) in the continuation. Now,
if A;f(f(a(e))) C Li(f(x(8)),v(fowa),0) holds for all i and 6, then there exists an SPE, in
which on the equilibrium path, the firms announce m(«(6)) in every period when the state
of that period is 6. The assumed set inclusions again ensure that no firm i will deviate from
m(a(0)) in any period with state 6 because it prefers (f(«(0)), v(f o «)) to anything it can get
in A{ (f(«(0))). Therefore, if f is repeatedly implementable, it must again be that f(«x(6)) =
f(8) for all 6. Hence, we obtain the following condition.

DEerINITION 4. f satisfies pg-stationary monotonicity if for any « : ® — ©, (a) implies (b):

a. A (f(@(0))) € Li(f(«(9)), v(foa),0) forallieIandd € O,
b. f(x(8)) = f(0)forallb € O.

Both notions of monotonicity coincide when § = 0, but otherwise they are different. In the
next section, we will show that the competitive SCF can satisfy pg-monotonicity, but fail pg-
stationary monotonicity. One can also construct an opposite example when an SCF satisfies
pg-stationary monotonicity, but fails pg-monotonicity.

Both monotonicity conditions are not only necessary but also sufficient for repeated imple-
mentation when all firms are identical and the CA wants them to produce identical outputs.
Hence, we now introduce the following assumption.

AsSSUMPTION A3. Forevery 0, ¢;(-,0) =c;(-,0) and fi(0) = f;(0) foralli, j € I.
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Even though the firms are identical, their interests are not fully aligned because given As-
sumption A1, each firm prefers to be the only firm in the market.

ProrosiTION 1. Suppose Assumption A3 holds. f is repeatedly implementable in SPE with
a regime that satisfies forthrightness w.r.t. f if and only if f satisfies pq-monotonicity and pq-
stationary monotonicity.’

In order to prove the sufficiency part of Proposition 1, we construct a regime and show that
it satisfies forthrightness w.r.t. f and that it implements f in SPE if Assumption A3 holds and
if f satisfies both pg-monotonicity and pg-stationary monotonicity. Here, we informally de-
scribe the regime. We first introduce additional terminology. Recall that m is consistent with
some state or consistent, for short, if there exists 6 such that m = m(6). Suppose m is not con-
sistent. Then for each firm i, we ask if there exists m; such that (m], m_;) is consistent. If such
m; exists, we say that firm i is a whistle-blower. Note that given an inconsistent 1, there can be
simultaneously several whistle-blowers or none at all.!”

The regime employs two mechanisms, g and g. ¢ is similar to the mechanisms that appear
in Saijo et al. (1996). This mechanism is selected in period 0 and in any future period as long
as the messages in all previous periods have been consistent. Thus, suppose ¢ is selected in
period t. If period t messages m' are consistent, then the firms produce what they announce.
If m' is not consistent, then the period ¢ outputs and the continuation values depend on the
number of whistle-blowers. If firm i is a unique whistle-blower, then it chooses an output—
value pair in Aif (f(0)) where 0 is a state such that m’; =m_;(9).!" If there are multiple
whistle-blowers, then they all are severely punished. If there is no whistle-blower (but m' is
not consistent), then one of the firms becomes a monopolist forever. Also, after inconsistent
m', g is selected forever. g is a dictatorial mechanism and, similar to Lee and Sabourian (2011),
its purpose is to ensure that any of the whistle-blowers or the monopolist receives the right
continuation value.

The regime has the property that on the equilibrium path, the firms always announce con-
sistent messages and, hence, produce the quantities that they announce. There is no equilib-
rium in which the firms ever announce inconsistent messages because each firm has incentives
to become a monopolist or, in case of multiple whistle-blowers, each whistle-blower has incen-
tives to avoid the punishment. pg-monotonicity and pg-stationary monotonicity, in turn, en-
sure that the firms never deceive when announcing consistent messages in equilibrium. Specif-
ically, we invoke pg-stationary monotonicity to show that the continuation values of the firms
must be strictly less than v( f) if they ever deceive after period 0. Because any firm i can guar-
antee itself a continuation value of v;(f), no deception after period 0 is sustainable, whereas
pg-monotonicity rules out any deceptions in period 0. Hence, it follows that the regime sat-
isfies forthrightness and f is repeatedly implemented. The regime has multiple SPE but they
only differ in what happens off the equilibrium path.

We apply the result of Proposition 1 to study repeated implementation of the competitive
SCF in the next section.

5. REPEATED IMPLEMENTATION OF THE COMPETITIVE SCF

In order to define the competitive SCF and to study its implementability, we make the fol-
lowing simplifying assumption:

9 We relegate all lengthy proofs to the Appendix, which also contains Proposition AQ.

10 For example, when n = 2, the former happens when m = (m(6), m»(0’)) and m(6) # m(0’), whereas the latter
happens when m is such that m; # m;(0) for both i and any 6.

I From definitions of m(#) and Aif (), it follows that Alf (f(9)) is the same for all 6 such that /' ; = m_;(6).
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AssuMPTION A4. ¢;(q;, 0) is continuously differentiable and convex in q; for all i and 6. p(Q)
is differentiable for all Q s.t. p(Q) > 0. For each 0, the solution q* to the system of equations:

1 p(Q) = ¢(q:,0),4i = 0, (p(Q) — ¢i(q:,0))qi =0 fori=1,....n,
is unique with g > 0 for all i.

Given Assumption A4, the competitive SCF, which we denote by f*, is such that for every
0, f°(0) is a solution to (1).

ProrosiTioN 2. If Assumption A4 holds, then f° satisfies pq-monotonicity.

In the next two examples, we show why f“ might fail to be pg-stationary monotonic. Both
examples satisfy Assumptions A3 and A4. The message of the first example is that it is harder
to satisfy pg-stationary monotonicity when § is large because firms put more weight on the
continuation value in their discounted profits.

ExampLE 1. Let n =2, © = {6y, 6:}, [(6;) = 0.5, p = max{0, 2700 — 600}, ¢;(q;, 61) = 90q7,
and c¢;(q;, 6,) = 60q7 + g; for i = 1,2. The competitive SCF is f°(6;) =9 and f(6,) = 10 for
i = 1,2. The firms are better off if they adopt the following deception in every period: «(6;) =
O[(@z) = 91 because m(fc(el), 92) = 8, 991 > Ni(fc(ez), 92) = 8, 000.

We show that f¢ does not satisfy pg-stationary monotonicity for large enough 4. In order to
incentivize firm i to deviate when the firms follow deception «, but not to deviate when they
behave truthfully, we need to find (g, v;) s.t.

(2) (1= 8)mi(f°(01), 01) + dvi(f*) = (1 = 8)mi(q. 61) + dvi,
(3) (1 — 8)71,-(]“(91), 92) + (3Ui(fc o Ol) < (1 — (S)TL’I‘(C[, 92) + Sv;.

After combining both inequalities and simplifying, one arrives at the following necessary con-
dition:

(1 =8)(ci(qi 61) — ci(qi, 62)) > (1 = 8)(ci(f7 (61), 61) — ci(f; (61), 62))
4) +81(62) (i (f<(61), 62) — mi(f€(62), 62))-

¢i(qi, 61) — ci(qi, 8>) is maximized for g; = 20. Thus, setting ¢; = 20 and evaluating costs and
profits at the specified values, we find that the above inequality will not be satisfied for § >
B2 ~0.8227.

Let us write the r.h.s. of (2) and (3) as w; — (1 — 8)ci(gi, 0) for 6 € ® where w; := (1 —
3)p(Q)q; + dv;. Also, let us denote the Lh.s. of (2) and (3) as v;(61, 61) and v;(6,, 6;), respec-
tively. Then, we can conveniently illustrate (2) and (3) when they hold with equalities, in the
(i, w;) space, which is done in Figure 1 for two values of §. When § = 0, the iso-profit lines in-
tersect and we can find (g;, w;) that gives the right incentives to firm i. (We can pick any point
above the dotted red line, but below the solid blue line.) But when § = 0.9, the lines do not
cross and we cannot satisfy (3) without violating (2).

REMARK 1. Collusion models usually assume that in the absence of collusion, firms play
NE strategies of a static oligopoly model. In general, the NE outcome will differ from the
competitive outcome. Therefore, one might ask if the result would be qualitatively different
if instead the CA’s objective was, for example, for the firms to produce the NE output of the
static Cournot model. In the above example, it is given by f/'(6;) = 7.5 and f!'(6,) ~ 8.3095
for i =1,2. However, a similar result still applies: f” is not repeatedly implementable for
high enough values of §. That is, if we use f” instead of f¢ to evaluate (4), we find that pg-
stationary monotonicity of f” is not satisfied for § > 0.9530.



FIGHTING COLLUSION 11

4 6=0 4 6=0.9
9(><10 ‘ . : 1.8><10 ‘ .

w; = (1 —8)ei(gi, 01) + vi(01,01)
""""""""" w; = (1 = d)ci(gi, 02) + vi(0a, 1)

1.6 4
7 -
6 . 1.4+
5 -
s 121

by

0.8

0.6
30 0

di qi

[0 N U ',

20 30

FIGURE 1

ILLUSTRATION OF EXAMPLE 1

The next example shows that pg-stationary monotonicity of f° might fail because of the re-
quirement that a regime satisfies forthrightness.

EXAMPLE 2. Letn =5, 0 = {0, 65,63}, [(61) = [(62) = 1, p = max{0,22 — Q}, and for all i €
1, the cost functions are as follows:
2q; if g <6,

ci(qi. 61) = {2q?+4-63
362

if g > 6,

4q, if gq; <5,

ci(qi, 62) = ‘ R
i 22T i g > S,

4q;, it g; <11,

ci(qi, 63) = :
1 0) {ﬁﬁﬁ it g > 11,

All these cost functions are continuously differentiable (to be consistent with Assumption
A4). The competitive SCF is ff(6;) =4 and f(6:) = f{(63) = 3.6 for all i € I. The firms
are better off if they adopt the following deception: w(6;) = «(6,) = «(63) = 6, because
wi(f(62),61) =72 > mi(f(61),61) = 0. Also, v;(f¢) = 0 and v;(f o) = 2.4.

In order to eliminate deception «, we need to find (gq,v) st. for some i, (q,v) €

Al (fe(a(61))) but (q,v) & Li(f(a(61)), v(f< 0 @), 6r) or
0> (1 — S)JTi(q, 92) + Sv;,
0> (1 — 8)7‘[,'(6], 93) + Sv;,
72(1 — 5) +245 < (1 - S)JT,'(q, 01) + dv;.

Figure 2 plots the above expressions for § = 0.85 when they hold with equalities, in the (g;, w;)
space where w; = (1 — §)p(Q)q; + Sv;. The figure shows that it is impossible to find such a
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FIGURE 2

FAILURE OF pg-STATIONARY MONOTONICITY IN EXAMPLE 2 WHEN § = 0.85

pair (g, v) that would satisfy all three inequalities: (¢, v) must lie below both the solid blue
line and the dashed red line, but above the dotted green line. We conclude that f¢ is not pg-
stationary monotonic.

Note, however, if we did not impose forthrightness and allowed the firms to send different
messages (on the equilibrium path) in states 6, and 6, then we could eliminate both deception
a(6)) =60, and a(0) = 0 for 6 = 0,, 65 (because the solid blue line intersects the dotted green
line) and deception «’(0;) = 65 and &’(0) = 6 for 6 = 6,, 05 (because the dashed red line inter-
sects the dotted green line).!>!3 Thus, here we have an example of f¢ that is repeatedly im-
plementable when forthrightness is not imposed, but not implementable when forthrightness
is imposed.

We now introduce an assumption that rules out situations like in Examples 1 and 2 when
the isoprofit lines never intersect.

AssuMPTION AS5. ©® C R4, ¢i(gi,0)=0c(q;) for all 6 € ® and i€ l, c(0)=0, p(0) >
maxgep 0¢'(0), ¢’(q;) > 0, and ¢’ (q;) > 0 for all q; > 0. p(Q) is twice differentiable and p"Q +
2p' <0 forall Qst p(Q) > 0.

Assumption A5 implies that the cost function, which is the same for all firms, exhibits
strictly increasing differences. Increasing differences guarantee that the isoprofit lines corre-
sponding to any two states always intersect, which is needed in order for the firms to have the
right incentives to deviate from deceptions. However, because with higher §, the firms put less
weight on their current costs, the output level of firm i at which its isoprofit lines intersect, is
increasing in § and becomes unboundedly large as § approach 1. Therefore, the assumption
that the firms can produce arbitrary large quantities will matter for the next proposition.

12 That is, f¢ satisfies dynamic monotonicity as defined in Mezzetti and Renou (2017).
13 3; must also be feasible, that is, v; < 7; must hold where T; = 83.8775. According to Figure 2, it is enough to con-
sider w; < 70 or v; < 70/8 ~ 82.3529. Thus, the feasibility of v; is satisfied. This is the reason why we set n = 5.
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Note also that Assumption AS is a special case of Assumption A4, except that it only guar-
antees that there is a unique symmetric solution to (1)."* Therefore, whenever Assumption A5
is invoked, we require that f is such that for every 6, f°(0) is a symmetric solution to (1), that
is, p(nf{(8)) = 0c'(ff(#)) for all i and 6. Also, let f denote an SCF that assigns the symmet-
ric cartel output to the firms in every state. That is, given Assumption A5, f"(9) is a solution
to p(nf"(0)) + p'(nf"(0))nf"(0) =6c'(f"(0)) foralliand 6. (¢" > 0 and p"Q +2p" < O en-
sure that the second order condition is satisfied.)

ProrosiITION 3. Suppose Assumption A5 holds.

1. There exists § > 0 s.t. f€ satisfies pq-stationary monotonicity for all § € [0, §).
2. Suppose vy > vy (f¢) + 2t GD) pojds. Then, there exists 8 < 1 s.t. f€ satisfies pq-

ming g/jg-.qr 06’
stationary monotonicity for all § € (8, 1).
3. There exists ni s.t. f€ satisfies pq-stationary monotonicity for all § € [0,1) if n > n.

Proposition 2 implies that f¢ satisfies pg-stationary monotonicity for § = 0. Part 1 of Propo-
sition 3 says that f“ continues to satisfy pg-stationary monotonicity for §s sufficiently close to
0. Part 2 of Proposition 3 requires more explanation. In order to produce closer to the cartel
output, the firms will exaggerate their costs. In order to incentivize, say, firm 1 to deviate from
this deception, the CA asks it to produce more in the current period, which hurts its profit, but
the firm is rewarded with a higher continuation value v; in the following periods. If the true
cost is lower than what the other firms claim it to be, then indeed firm 1 will want to deviate.
However, the higher § is, the more firm 1 must produce in the current period and the higher
v; must be in the continuation, which might violate the feasibility constraint, v; < v;. Part 2
of Proposition 3 provides a condition that guarantees that the feasibility constraint is satisfied
for sufficiently large &s. The condition basically requires that vy (f") < 9%9/?1 + %vl( f¢) for
all 6,0’ € © such that 6 > 6. Finally, part 3 of Proposition 3 holds because v;(f¢) and vy (f™)
are decreasing in n, which helps to satisfy the feasibility constraint (for all values of §) and,
hence, also pg-stationary monotonicity of f*.

REMARK 2. Lee and Sabourian (2011) have shown in their Theorem 1 that an SCF f is
not repeatedly implementable for large enough discount factors if f is not efficient in the
range, meaning, there exists a deception « such that v(foa) > v(f).”” In general, f¢ is not
efficient from the firms’ perspective because v(f”) > v(f¢). The result in part 2 of Proposi-
tion 3 that f¢ can even be implemented when § is arbitrary close to 1, however, does not con-
tradict Theorem 1 of Lee and Sabourian (2011) because they assume bounded payoffs: There
exists some finite K s.t. max;c; gco.ger” |i(q,0)| < K. Our proof relies on the assumption that
the firms can produce arbitrary large quantities, which means that the current period profit is
unbounded from below. Note, though, that the large output is not used to punish firms, but
rather to provide the incentives to deviate from deceptions. If instead the firms faced capac-
ity constraints, then Theorem 1 of Lee and Sabourian (2011) would apply and the implemen-
tation of f¢ would fail for large §’s.

It also follows from the proof of Proposition 3 that under Assumption A5, f¢ can only fail
to be pg-stationary monotonic because of the constraint on the feasible continuation values.
However, if we allow for monetary transfers from the CA to firms, this constraint will not ap-
ply. Hence, we have the following corollary.

14 That is, Assumption A5 does not rule out the existence of additional asymmetric solutions to (1). For example,
there is a continuum of solutions to (1) in Example 3. Proposition 2, however, remains true if we replace Assumption
A4 with AS5; see Footnote 27.

15 We study the implementation of SCFs, which are efficient in the range, in Section F of the Online Appendix.
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FIGURE 3

FEASIBILITY CONSTRAINT IN EXAMPLE 3

CorOLLARY 1. Suppose Assumption A5 holds. If monetary transfers from the CA to firms are
feasible, then f° satisfies pq-stationary monotonicity for all § € [0, 1).

In the final example of the section, we show that there can be 0 < § < § < 1 such that f¢
is not pg-stationary monotonic when § € [, §], but it is pg-stationary monotonic when § €
[0,8) U (8,1). Thus, in general, it is not true that if an SCF is pg-stationary monotonic for
some 4§, then it is also pg-stationary monotonic for any smaller §. The example also shows that
even if § is close to 1, the number of firms that is needed for f¢ to satisfy pg-stationary mono-
tonicity does not need to be large.

ExampLE 3. Let © = {64, 6,} witha > 6; > 6, > 0, p = max{0, a — O}, ci(qi, 0) = 0¢; for all
i€l and 6 € ©. Thus, Assumption A5 is satisfied. The competitive SCF is f{(6) = % for
all i € I and 6 € ©. The firms are better off if they adopt the following deception: «(6;) =
0[(92) = 6; because n,«(fc(el), 92) = (91 — 92)"_91 > ﬂi(fc(ez), 92) = 0. Note that vi(f") =0,

n

vi(fCoa) =1(6:)(61 — 6,)=2, and v; = 1(6)) (%)2 +1(6,) (%)2.

From the proof of Proposition 3, f¢is pg-stationary monotonic if v} < v; where v is given
by (C5). In the example, v] < v; takes the following form:

a—0\> a—6\> (61 — max{0, a — q}})q;}
10(152) +160)(152) ~ 1)@ o) AL

where g} = “;—9] %ﬂf‘) is given by (C4) when it holds with equality.

We plot the Lh.s. of the above inequality against § in Figure 3 for a =10, 6, =8, 6, = 5.8,
1(61) = 0.5, and several values of n. Thus, when n =2, f¢is pg-stationary monotonic for all
3 < 8§~ 0.9179 and not monotonic otherwise. When n = 3, f is pg-stationary monotonic for
all § € [0, 1)\[8, 8] and not monotonic otherwise, where § ~ 0.9638 and § ~ 0.9929. When n >
4, f¢ is pg-stationary monotonic for all § < 1.1

16 The kinks in the figure correspond to qj = a and, hence, p = 0.
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5.1. Buyer as Another Participant. In a well-known survey of price fixing conspiracies in
the United States, Hay and Kelley (1974, table 1) report that in 14% of cases (7 out of 49
cases), the conspiracy was uncovered after a complaint by a customer. Carree et al. (2010)
have surveyed all formal decisions by the European Commission on antitrust cases during
1957-2004 and have found that almost 100 of these cases started after a complaint as opposed
to 29 cases that started with a leniency application (see their table 1). Thus, complaints play an
important role in detecting anticompetitive behavior. Although a detailed breakdown of com-
plaints is not available, some of these complaints are filed by the customers who are the vic-
tims of the anticompetitive practices. Therefore, in Section F of the Online Appendix, we con-
sider an extension to the model where a representative buyer also participates in the regime
by sending messages to the CA.

We prove there that if an SCF is efficient, then it only needs to satisfy pg-monotonicity in
order to be repeatedly implementable by a forthright regime. For this result, we even do not
need to invoke Assumption A3 about the symmetric setup. Because f¢(6) maximizes the sum
of firms’ profits and the representative buyer’s utility in every state 6, f¢ is clearly an efficient
SCE.! Furthermore, the result of Proposition 2 that f¢ satisfies pg-monotonicity given As-
sumption A4, continues to hold when we add the buyer as another participant in the regime.
(The regime can always ignore the buyer’s messages.) Therefore, we have the following result:

COROLLARY 2. Suppose Assumption A4 holds and the buyer is also one of the participants in
the regime. Then, f° is repeatedly implementable in SPE with a regime that satisfies forthright-
ness w.r.t. f<.

The result effectively says that it is easier to implement the competitive output if the CA
does not exclusively rely on whistle-blowing firms, but also solicits messages from buyers.

6. REPEATED IMPLEMENTATION OF THE BREAK-EVEN OUTPUT

We now briefly consider another appealing SCFE. Suppose that in every state, the CA wants
to maximize the aggregate output subject to firms breaking even. Formally, let the SCF, which
we denote as f?, be defined as follows: For every 6, f2(6) is such that ;(f°(6),8) = 0 for all
i and there does not exist another output profile g such that 7;(q,0) =0 for alli and }_,q; >
> £(0).

We know from Proposition 2 that f is implementable when § = 0 and so, by continuity, it
is also implementable for sufficiently small values of §. The same is not necessarily true in the
case of 7. The following proposition tells that if the domain of possible cost functions is suffi-
ciently rich, then f” does not satisfy pg-stationary monotonicity for any value of § and, hence,
it cannot be repeatedly implemented.

PRrOPOSITION 4. Suppose there exist ' and 0" s.t. for all i € I, ¢(q;,0") — c(q;, 0") is strictly
increasing in q; and c,(f°(0'),0") = c/(f2(6'),0'). Then f* does not satisfy pq-stationary
monotonicity for any value of 8.

Note that the assumptions in the proposition are compatible with Assumption A4.

PrOOF OF PropoSITION 4. First of all, given the definition of f”, the assumptions about
ci(qi, 0") — ¢(qi, 0'), and that ¢(0, ") = ¢(0,6") = 0, we have that m;(f°(6"),6”) > 0 for all i,
from which it follows that f*(6") # f>(9").

Suppose firms use the following deception in every period: «(6”) = 6’ and «(6) = 6 for all
6 # 6”. Note that v;(f*) = 0 and v;(f? o @) > 0 for all i. In order to eliminate this deception,

17 But note that f° is not efficient from the perspective of firms. Therefore, to implement f¢ in the benchmark
model, we additionally need that it satisfies pg-stationary monotonicity.
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we need i, 0, and (g, v;) s.t.

0> (1-38)mi(q, a(9)) + dv;,
(1 = 8)m(fP(«(8)),0) +svi(f* o) < (1 —8)mi(q, ) + Sv;.

Clearly, the inequalities cannot be satisfied if 8 # 6”. Thus, set § = 6”. Furthermore, the above
inequalities together imply the following inequality:

(1= 8)(ci(f7(9').0") = ci(f7(8').6")) > (1 = 8)(ci(i, 8") — ci(qi, 6)) + vi(f” 0 ).

However, v;(f’ oa) > 0 and, due to the assumptions, c;(g;,0") — ¢;(g;, 6') is minimized for
qi = fib (0) for all i. Therefore, the inequality cannot be satisfied for any i and f? fails pg-
stationary monotonicity. And this is true for all values of §. O

We saw in Example 3 that the range of §’s for which an SCF satisfies pg-stationary mono-
tonicity, can be disconnected. In the following example, we show that the range of §s for which
an SCF fails pg-stationary monotonicity, can also be disconnected. That is, we show that f? is
not implementable for both small and large values of §, but is implementable for intermediate
ones.

ExampLE 4. Letn=2,0 = {01, 6}, [(61) = %, p = max{0, 12 — Q}, and for i = 1, 2, the cost
functions are ¢;(q;, 01) = 4q; and

A it g<6,
ci(qi,0) =127 —(q;: —9)* if 9>¢;>6,

27+ (q; =97 if g >09.

(ci(qi, 02) is a strictly increasing and continuously differentiable function.) The SCF is
f2(61) = 4 and fP(6,) = 4.8 for i = 1,2. The firms are better off if they adopt the following
deception in every period: «(6;) = a(6,) = 6, because m;(f*(61),6) =8 and v;(f o) = 4.
Note that c/(f7(61), 61) = c/(f2(61), 62).

In order to incentivize firm i to deviate when the firms follow deception «, but not to devi-
ate when they behave truthfully, we need to find (g, v;) s.t.

0> (1-38)m(q,61)+dv,
8(1—-68)+48 < (1 —98)mi(q,0) + dv;.

Figure 4 plots the above expressions when they hold with equalities, in the (g;, w;) space
for two values of § where w; = (1 —38)p(Q)q; + dv;. When § = 0.7, the iso-profit lines do
not intersect and we cannot find (g, v;) that would satisfy the above inequalities. When & =
0, the iso-profit lines intersect, but any (g, v;) that satisfies the above inequalities, violates
the feasibility constraint that the firm cannot earn more than its monopoly profit, w; < (1 —
3)p(qi)q; + 8v; where v; = 20. That is, we cannot find (g;, w;) that lies below the solid blue and
dash-dotted green lines, but above the red dashed line.

One can verify numerically that there exists a (small) range of §s for which the feasibility
constraint and the above inequalities can be simultaneously satisfied and, consequently, f” im-
plemented. Specifically, f* is repeatedly implementable when § € (2, 1), whereas for all other
values of §, it is not implementable. Thus, interestingly, the range of §s for which an SCF fails
pg-stationary monotonicity, can be disconnected.
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ILLUSTRATION OF EXAMPLE 4

7. HARD EVIDENCE

The literature that studies the impact of leniency programs on collusion, explicitly or implic-
itly assumes the existence of hard evidence, which proves collusion by firms (see, e.g., Motta
and Polo, 2003; Spagnolo, 2004; Aubert et al., 2006). Therefore, we now extend the model of
Section 3 by assuming that the firms possess hard evidence, which varies with the state of the
world. Intuitively, the existence of hard evidence can help with implementation exactly when
either pg-monotonicity or pg-stationary monotonicity of f fails. We build on Kartik and Ter-
cieux (2012) who studied one-shot implementation with evidence, and we show that a con-
dition, called evidence monotonicity, is necessary and sufficient for repeated implementation
of SCFs (under certain assumptions). It says that for any deception that violates either pg-
monotonicity or pg-stationary monotonicity of f, it must be that either the deception cannot
be supported with evidence or a firm can supply evidence that would not be available if the
firms were not deceiving.

Thus, we now assume that in each period ¢, firm i € I possesses a set of evidence E;(0") #
@, which only depends on the state of the world of that period, 8’ € ®. A generic piece of
evidence of firm i is denoted as e;. In state 6, firm i can only present evidence that it has,
that is, e; € E;(0). We refer to {E;(0)}ic1oco as an evidence structure. For simplicity, the evi-
dence structure does not change over time. Let E(0) = E;(0) x ... x E,(0) for every 6 and
E = UycoE(0), with a generic element e = (eq, ..., e,). Besides the firms’ messages, the out-
come function of a mechanism now also depends on the evidence supplied by the firms, g:
M"x E — R’i.ls We also slightly modify u' by including the evidence that is provided by the
firms, in the history of messages. That is, let now u' = (u/~!, (m'~!, ¢'~1)) for all t > 0. No

18 This formulation assumes that firm i can only submit a single piece of evidence. In order to allow it to submit
more than one piece of evidence, we can assume that if ¢;, ¢} € E;(6) for some 6, then there is also ¢/ € E;(9) such
that e = {e;} U {e]}.
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other changes in notation are required. In particular, the definitions of regime and strategies
remain the same (given the modified history of messages).
We refertoe: ® - E s.t.e(9) € E(9) for all 6 as an evidence function.

DEerFINITION 5. A regime r satisfies forthrightness w.r.t. f if there exists an SPE s s.t.
s(h',0") = (m(9"), e(6")) and r(h')(m(6"), e(9")) = f(#") for all ¢, 6', and A’ s.t. p(h'|h°,s) > 0
and e is some evidence function.

Let A’ be the set of all deceptions, which violate either pg-monotonicity or pg-stationary
monotonicity of f, that is, for any « € A/, part (a) in either Definition 3 or 4 holds, but part
(b) does not.

DerINITION 6. f satisfies evidence monotonicity if there is an evidence function e s.t. for ev-
ery o € A/, there existi € [ and 6 € © s.. either e;((9)) & Ei(9) or E; (0) € E; (a (0)).

In order to keep matters simple, we make the following assumption:
ASSUMPTION A6. fiss.t f(0)# f(0') forall9,0" € ©.

Given this assumption, we can replace Al.f(f(a(e))) with L;(f(«(8)), v(f), «(8)) in Defini-
tions 3 and 4.

ProrosITiON 5. Suppose f satisfies Assumption A6. If f is repeatedly implementable in SPE
with a regime that satisfies forthrightness w.r.t. f, then f satisfies evidence monotonicity."

ProrosiTioN 6. Suppose Assumptions A3 and A6 hold. If f satisfies evidence monotonicity,
then f is repeatedly implementable in SPE with a regime that satisfies forthrightness w.r.t. f.

Even though we assume the symmetry of firms and the SCF, we do not require that the evi-
dence structure is also symmetric in Proposition 6.

We finish this section by providing an example of natural evidence structure, which guaran-
tees that f¢ is repeatedly implementable.

ExaMpLE 5. Suppose that f¢ is such that Assumption A5 holds. (Hence, Assumption A6
also automatically holds.) Assume that the evidence structure is such that for any 6,6’ € ©,
if 7;(f°(6'),0) > m;(f°(0'),0") for all i € I, then E; (6) € E; (0) for some j € I. The moti-
vation for this assumption is that firm j can prove in state 6 that it can earn higher profits
with the output profile f<(6") than in state 6’. (It seems reasonable to assume that it is easier
to underreport profits than to overreport them.) We argue that in this case, f¢ satisfies evi-
dence monotonicity. We already know that f¢ satisfies pg-monotonicity. Therefore, A/ only
contains those deceptions that violate pg-stationary monotonicity of f*.

Take any deception « € A/* such that v;(f¢ o @) > v;(f¢) for all i. (Note that we are in the
symmetric setup.) There must exist a state 0 such that «(6) > 60, that is, the firms exaggerate
their costs in order to produce less. Therefore, m;(f(«(0)), 0) > m;(f(«(0)), «(6)) holds for
all i € I. Given the assumed evidence structure, E; (0) € E; (« (0)) for some j € I. From the
definition of evidence monotonicity, any such « cannot violate evidence monotonicity of f°.

Take now any deception o € A/ such that v;(f¢) > vi(f oa) for all i. In this case,
Li(f(x(®)), v(foa),0) S Li(f(x(8)), v(f°),0) holds for all i and 6. Therefore, if pg-
stationary monotonicity of f¢ fails for this «, then pg-monotonicity of f¢ must also fail for the
same «, which is a contradiction.

19 The proofs of this section are similar to those of Propositions A0 and 1 and, therefore, are relegated to the On-
line Appendix.
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We conclude that f* satisfies evidence monotonicity given the assumed evidence structure
and, according to Proposition 6, f¢ is repeatedly implementable in SPE with a regime that sat-
isfies forthrightness w.r.t. f¢. Finally, we can choose any evidence function e because the above
argument does not rely on some evidence not being feasible (i.e., e;(«(0)) & E;(6) for some i,
«, and 0).

8. DISCUSSION

8.1. Alternative Solution Concepts.

8.1.1. Nash equilibrium. Because we consider a dynamic setup, it is natural to use SPE as
a solution concept. However, the results we obtain are in fact stronger because the proposi-
tions remain true if instead we use NE as a solution concept. For instance, in the proof of the
necessity of pg-dynamic monotonicity in Proposition A0, we argue that if a strategy profile §
fails to implement an SCF, there must exist a profitable deviation on the path of play. There-
fore, § not only fails to be an SPE, but also an NE. From this it follows that if an SCF is repeat-
edly implementable in NE, then it must also satisfy pg-dynamic monotonicity. The same is
true about the other definitions of monotonicity in the article. Likewise, in the proof of suffi-
ciency in Proposition 1, it is still true that only the mechanism g will be selected on the path of
any NE play (i.e., the result of Lemma B2 extends to NE). pg-monotonicity and pg-stationary
monotonicity then ensure that only the desired output profiles are produced on the equilib-
rium path in any NE. Again, the same is true for the other proofs of sufficiency in the article.
Mezzetti and Renou (2017, p. 266) made a similar observation about the equivalence of NE
and SPE for their results.

8.1.2. Mixed strategies. The regime that is used to prove the sufficiency part in Proposi-
tion 1 employs mechanism g, which contains the so-called modulo game. Its purpose is to
eliminate pure-strategy equilibria in inconsistent messages. However, because of this mod-
ulo game, there can be mixed-strategy equilibria. Although we only consider implementation
in pure strategies, we now briefly discuss how one can tackle mixed-strategy equilibria. We
base our discussion on Lee and Sabourian (2015) who show how one can rule out undesir-
able mixed-strategy equilibria in the repeated setup if firms have a preference for less com-
plex strategies.

If firms randomize when facing mechanism g, there is a positive probability that they will
announce inconsistent messages, in which case the regime singles out one of the firms, say,
firm i and determines its target continuation value, v;. The regime in Proposition 1 is designed
so that in the continuation, firm i expects a profit of v; in each of future periods. Alternatively,
the continuation regime could be modified so that firm i still expects v; in the continuation,
but some of the periods it does not produce anything and gets a profit of 0.2 In these latter
periods, the other firms can be inflicted very large losses by requiring them to produce very
large outputs. Therefore, if the firms were to earn profits higher than v(f) in a mixed-strategy
SPE, they must announce consistent messages with a sufficiently high probability and so face
g again in the next period. Furthermore, those losses can be chosen so that in any mixed-
strategy SPE, the firms randomize with different probabilities in different periods whenever
they face g. If the firms have a preference for simpler strategies, any firm will opt for a strategy
that gives the same profit, but assigns the same probabilities in different periods. Potentially
low profits and complexity of mixed-strategy equilibria help to rule them out; for details, see
Lee and Sabourian (2015).!

20Tt is possible that v; = ;, which is given to firm i in order to incentivize it to deviate from some undesirable mes-
sage profile. However, because the incentives to deviate must be strict and because its discounted profit is continuous
in v;, it is always possible to give v; < v; while still preserving the right incentives.

2l In a recent paper, Chen et al. (2022) study one-shot implementation in mixed-strategy NE when transfers and
lotteries are available. Because the continuation values can play the role of transfers, the insights of their paper could
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8.2. Other Applications. This study considers repeated implementation in a specific envi-
ronment that has been motivated by the industrial organization literature on collusion. How-
ever, certain results also extend to other environments. For example, there exists extensive lit-
erature on one-shot implementation that selects the Walrasian equilibrium allocation in multi-
good economies in every state; for references, see Corchdon (1996, subsection 5.6) or Jackson
(2001, subsection 3.7). One can adapt our model to study implementation of the Walrasian
SCF in the repeated setup. Suppose there are L perishable goods that cannot be saved from
one period to another. I now is a set of consumers. Each period consumer i € I receives the
same endowment w; € Ri. qi € Ri now is an L-dimensional consumption bundle of consumer
i and his utility from consuming the bundle is 7;(g;, 6) in state 6. With these modifications, we
can study whether an SCF f: 0 — {g e R"/| Y, ,q; = Y ,,; w;} and, in particular, the Wal-
rasian SCF is repeatedly implementable.

Based on this modified environment, we make a couple of observations. First, it is easy
to see that the definitions of forthrightness and monotonicity are context-free. The same
is true about the proof of the necessity of pg-dynamic monotonicity in Proposition A0.??
Hence, it follows that in the repeated exchange economy, an SCF must still satisfy pg-dynamic
monotonicity if it is implementable with a forthright regime. Only the definitions of consis-
tent messages, m(0) for 6 € ©, and the intersection of lower contour sets would depend on
the application. For example, assuming interior allocations in exchange economies, consis-
tent messages m(0) for each 6 are such that m;(0) = (p;, g¢;) with p; = Vr;(q;,0) for alli e I
and (q1,...,q9,) = f(6), where Vm;(q;,0) denotes the (normalized) gradient vector. If f is
the Walrasian SCF, then with consistent messages, all consumers announce the same Wal-
rasian equilibrium price vector. The intersection of lower contour sets now is Aif (q,0) =
Nyer1(q0)Li(q, v(f),0") where (g, 0) :={0' € ©lg = f(0') and V7i(¢;,0") = V7i(qi, 0)}.

Second, the regime that is used to prove the sufficiency of pg-dynamic monotonicity is spe-
cific to the application that we consider. Among other things, the proof assumes the existence
of a sufficiently bad outcome g;, which firm i receives if it is one of several whistle-blowers in
some period. Therefore, the situation when there are multiple whistle-blowers, will never arise
on the equilibrium path. Saijo et al. (1996) require that in exchange economies, the mecha-
nism always selects a balanced allocation: g(m) € {g € R Y, q; = Y., »;} for all m. In this
case, when everyone is a whistle-blower, the outcome (g, ..., g,) cannot be too bad and, in
fact, it might be an equilibrium outcome in some state. Because of that, Saijo et al. (1996)
show that for an SCF to be implementable, besides a version of Maskin monotonicity, it must
additionally satisfy Condition PQ. We expect similar additional necessary conditions in the re-
peated setup once we impose further restrictions on the regime besides forthrightness.

9. CONCLUDING REMARKS

To our knowledge, we are the first to study repeated collusion by firms as an implemen-
tation problem. The main message is that if either of the necessary monotonicity conditions
fails, the CA cannot achieve its objective. There are no restrictions on the regime r in Propo-
sition 1 (or in Proposition A0 when the symmetry is not assumed) once a deviation from the
equilibrium path has occurred. However, in a more realistic setup, the CA would face con-
straints on rewards and punishments that it can apply. Clearly, even less objectives can be im-
plemented in this case. Said differently, our results characterize the largest set of objectives
that the CA can possibly implement. Other takeaways are that the CA should also encourage
buyers to act as whistle-blowers and that the CA should exploit the variation in the available
evidence (e.g., in profits) across the states.

also be used in the repeated setup. However, in their mechanism, agents report states (even multiple times when
transfers are small), which we do not allow.

22 We focus here on pg-dynamic monotonicity because restricting attention to a symmetric setup in exchange
economies is not interesting.
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This research can be extended in several interesting directions. For example, one could
identify further desirable restrictions, besides forthrightness, that r needs to satisfy, and study
necessary and sufficient conditions for repeated implementation in their presence. Also, one
could allow the evidence structure in Section 7 to change over time depending on the past
messages or outputs. Further, in the model, the CA controls the output, while the firms
can only influence it indirectly via their messages. In a more complex model with several
profit-relevant variables, the firms could directly decide on some of these variables, whereas
the other variables would be controlled by the CA. Finally, in the exchange economy that
we briefly discuss in the previous section, it is not immediate how the necessary conditions
change if the consumers can save which affects their feasible consumption in the future.

APPENDIX A: Pg-DYNAMIC MONOTONICITY

Here, we define pg-dynamic monotonicity and prove that it is necessary and sufficient for
the repeated implementation of SCF using forthright regimes.

A dynamic deception allows firms to deceive differently in different periods. Thus, a dy-
namic deception B specifies a state §' € ® for every ¢t and ¢' = (¢'~1,6"): B(¢'71,0") =6'2
Given t and ¢', let [(¢!|¢") = 1 and for any 7 > ¢, let

ety JHETIEONO) it = (7, 0),
1) = .
0 otherwise.

For any ¢ and ¢', the discounted value of future profits of firm i if the firms follow the dy-
namic deception S is

w(foBE)=1=8)Y D D 8T IO )m(f(BET,67)),67).

>t (r—l ot

DeriNiTION Al. f satisfies pg-dynamic monotonicity if for any 8, (a) implies (b):

a ALCFB(E,0))) € Li(F(B(6)), o(F o B(1,0)).67) for all 1, icl, and
(¢'71,0") € @1,
b. f(B(¢'71,6Y) = f(6") forallt and (¢, 0") € @+,

Clearly, pg-monotonicity and pg-stationary monotonicity are special cases of pg-
dynamic monotonicity. The former restricts attention to dynamic deceptions S s.t.
B(¢',0) =6 for all # €®, ¢ € ®F, and t >0, whereas the latter restricts attention
to B st. B(¢,0)=p(¢"1,0) for all # €®, ¢'e®F and t>0. Also, if we replace
Al.f(f(ﬂ(g”l,et))) with  L;(f(B(c,6Y)), v(f), B(¢"71,6")), we obtain the definition
of dynamic monotonicity (Mezzetti and Renou, 2017). Because Alf (F(B(¢"71,0M))) €
Li(f(B('=,6M)), v(f), B(¢'=1,8Y) for all ¢, i, and (¢'~',6"), pg-dynamic monotonicity im-
plies dynamic monotonicity.

ProrosiTioN AQ. f is repeatedly implementable in SPE with a regime that satisfies forthright-
ness w.r.t. f if and only if f satisfies pq-dynamic monotonicity.

Proor oF ProrositioN AOQ.
Necessity. Suppose f is repeatedly implementable in SPE with a regime that satisfies
forthrightness w.r.t. f. Thus, there exists an SPE s s.t. s(#',0") = m(0") and r(h')(m(0")) =

23 Firms could also condition their deception on the history of messages that they send and on the history of mech-
anisms that are selected by the regime. However, because the firms select their messages deterministically and the
regime also selects the mechanisms deterministically, it is sufficient to condition the deception only on the history
of states.
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f(0") for all ¢, 6", and ' s.t. p(h'|h°, s) > 0. Fix this s. Given s, we define another SPE §, which
we will then use to prove that f must satisfy pg-dynamic monotonicity. We first explain §
in words. § only differs from s when a unilateral deviation from the equilibrium play occurs.
Specifically, suppose that 8,0 € f~'(f(#)) for some 6. Suppose that firm i deviates from s in
period ¢. Then, the continuation values that the firms expect starting period ¢ + 1, can differ
depending if period  state is § or § because the firms can condition their future play on period
t state. § will have a property that the continuation values are the same whether period ¢ state
is 4 or . The reason why such an equilibrium exists is that because of forthrightness, the CA
cannot infer from the messages whether the state is 9 or § and, hence, cannot offer different
mechanisms in the continuation.

We now proceed with defining § formally. First, let (4, 6') = s(h', 6') = m(6") for all ¢, 6",
and /' s.t. p(h'|h°, s) > 0. Next, take any ¢, ', i = (u!, ¢'~') s.t. p(K'|h°, s) > 0. Suppose that
period ¢ state is some 4" € f~'(f(#")). Note that s(h', §") = m(6"). Take any firm i. We now
define the output-value pair that firm i induces by announcing some m; # m;(6"):

(g, v(8")) = (r(u")(mi,m_i(6")), v(sI((1', (mi, m—i(6"))), (¢'~1.6)))).

Although, given (m;, m_;(")), g does not depend on 6’, v(#") can depend on it since firms
can condition their future messages on the state in period ¢. Firm i will not have incentives
to deviate from m;(6") in state 6" if (g, v(9")) € L:(f(8"), v(f),8"). Although it is not guaran-
teed that (g, v(9")) € A;f(f(e’)) for all 8 € f~'(f£(6")), this must be true for the state in which
v;(6") is minimal among &' € f~'(f(6")). Suppose that this state is §', that is, (g, v(4")) €
A/ (f(6")) holds.

§ will be defined in such a way that for every 6’ € f~1(f(#")), the continuation value af-
ter the history ((,bL (mi,m_(6"))), (7", 0")) is v(#") instead of v(#"). Thus, let ¢/ = (¢, 6")
for any §' € f~'(f(6')) and let {' = ({’ 1.8"). For all = >t and all 07, let ¢* = (¢71,67)
and ¢7 = ({771, 07). Let w'*! = (u!, (mi,m ~i(6")). For all T >¢+1 and all m", let ;ﬁ“
(u, m"). Let § be such that §(u?, ¢7) = s(u®, £7) for all © > ¢. Intuitively, § does not depend
on which exact state in ffl(f(e’)) is realized in period ¢ (given A’ and (m;, m_;(6"))). By con-
struction, it follows that v(s|(u'*!, ¢%)) = v(s|('*1, £')) and

(A1) (r(u")(mi, m_i(8")), v($I (', ¢))) € AL (£(6")).

Since s are SPE strategies of the subgame starting after history (u/*!, ) and because profits
from period ¢ + 1 onwards do not depend on period ¢ history of states, it must be that § forms
SPE strategies of the subgame starting after history (u/*1, ¢%).

Now, repeat the above process for all ¢, 8, h' s.t. p(h'|h°, s) > 0, and all i and m; # m;(6").
The only remaining histories are the ones that occur after there has been a multilateral de-
viation from the equilibrium path of s. For any such history /' in any period ¢ and any 0, let
S(h',0) =s(H,0).

The constructed § is also SPE of the game induced by r. By construction, (A1) holds for all
6,0, h = (u', ¢ 1) st p(h'|h°, s) > 0, and all i and m; # m;(6"), which means that no unilat-
eral deviation from the equilibrium path is profitable. Also, from the definition of §, it follows
that § forms NE strategies in the subgames that are reached after a (unilateral or multilateral)
deviation from the equilibrium path.

We now use § to prove that f must satisfy pg-dynamic monotonicity. Suppose, on the con-
trary, that f does not satisfy pg-dynamic monotonicity. That is, there exists 8 such that in Def-
inition A1, part (a) holds, but part (b) does not. Fix this . Given § and 8, we now define an-
other strategy profile §. We first explain § in words. Under §, the firms follow strategies §, but
they deceive according to 8 as long as no deviation has occurred. If a deviation ever occurs,
the firms start conditioning § on the true states, but they still behave as if the states that were
drawn up to and including the period of first deviation, were the ones given by the deception.
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Formally, § is defined recursively with the help of a couple of auxiliary variables. Let
%= p(") and d(u’, %) =1. The period 0 strategies are §(u, %) =§(u, ¢%). Also, let
d(u', e") =d(u° &%) - 10 c0)=(s(u0.0,c0y» Where 1(x) is an indicator function taking value 1 if
X is true and 0 otherwise. In period 1, if d(u', ¢') =1, then ¢! = (¢, B(¢')); otherwise, ¢! =
(€%, 0"). Let (u', ¢') =8§(u', &) and d(1?, ¢2) = d (', &) - Vit iy, o0 )m((ut 502 6101 - S~UP'
pose we have defined the variables up to period ¢ — 1. In period ¢, if d(u', ¢') =1, then ¢’ =
(§1, B(¢")); otherwise, &' = (¢!, 6"). Let S(u', ¢') = $(u', &) and d (™', ¢"*1) = d(p', ¢") -
Lt e0)= (Gt 561, 8).000)

By assumption, there exist 7 and ¢* = (¢771, 87) such that f(8(¢7)) # f(67). Therefore, the
constructed strategy profile § selects an undesirable outcome on its path. Since it is assumed
that r implements f, § cannot be an SPE. Because the future profits do not depend on the his-
tory of states, by construction, § implies NE play in the subgames that follow after a deviation
from the path of § has occurred. That is, if § are not SPE strategies, it must be because there
is a profitable deviation on the path. Thus, there exist ¢, 6', i = (u', ') s.t. p(B'|H°, 5) > 0, i,
and m; such that

(q.v) = (r(u")(mi, m_i(B(E"))), vEI((1', (mio m_i(B(E)))). £)))
¢ Li(f(B(g). v(f o B(¢).09).

By part (a) in Definition Al, (g, v) ¢ Aif(f(,B(;’))). Also, from the definition of §, there exists
¢'~1 such that

(g, v) = (r(u")(mi, m_i(B(£"))), vSI((1', (mis m_i(B(E)))). (€1, BEED)))-

However, this contradicts (A1), which must hold for all ¢, §', &' s.t. p(A'|h°,s) > 0, and all i
and m; # m;(0"), including 6" = B(¢') and A = (u', £'~"). It follows that for any g, if part (a)
in Definition A1 holds, then part (b) must also hold when f is repeatedly implementable. That
is, f must satisfy pg-dynamic monotonicity.

Sufficiency. The proof is similar to the one of Proposition 1 below and, therefore, it is rele-
gated to the Online Appendix. O

APPENDIX B: PROOFS OF SECTION 4

Before proving Proposition 1, we introduce some additional notation. Let 8Aif(q) de-
note the boundary of the set Alf (g)- In particular, if (¢’,v) € 8A[ (q), then there does not
exist v’ st. (¢, v') € A/(q) and v; < v} < 7. Note that A/ (£(8)) € Li(f(6), v(f),#') if and
only if aAl.f(f(G)) C L;(f(0),v(f),0"). For each i, let g, be such that (1 — §)7;((g;,0-;),0) <
(1 =8)mi(f(0"),0)+ §min{0, v;(f)} for all (0,6’). q; represents a bad outcome for firm
i. If 7;(f(0"),0) >0 for all (6,6"), then we can choose g; =0. Otherwise, g; must be
large enough for the firm to earn a negative profit. Also, if v;(f) >0, g, can be cho-
sen independently of the value of §. Only when v;(f) <0, g; must increase in §. Let
Q-i:=224) #i(qi, O, 0) :=mi(q, 0), i(Qi, 0) := argmaxy, #i(qi, O, 6) and v;(Q;) :=
> o 1(0)7i(qi(Q-i,0), O, 0). Note v;(0) = v;. Let v;(qi) := ), [(0)mi((gi, 0_;), 0). Finally, let
| X'| denote the cardinality of set X.

PrOOF OF PrOPOSITION 1.

Necessity. Because both pg-monotonicity and pg-stationary monotonicity are implied by
pgq-dynamic monotonicity, their necessity follows directly from Proposition AO.

Sufficiency. We start by defining a regime. After any history, the regime will call one of two
mechanisms and this will be done with the help of an auxiliary mapping d.
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Regime 7. Let d(1) = (0,0). For any ¢ > 0 and u/, if d(') = (0, 0), then r(u') = §; other-
wise, r(u') = & How d is determined for ¢ > 0 and u' is given in the description of mecha-
nisms below.

Mechanism . Suppose the mechanism is called after the message history u'. Given m =
((p1.q1)s - (Pnsqn)), let D(m):={i € I|13m]s.t. (m;, m_;) = m(0) for some 6} denote the
set of potential deviators when the firms announce m. Because of Assumption A3, m;(0) =
m;(0) for all i, j € I and |D(m)| € {0, 1, n}. |[D(m)| = n and m # m(6) for any 6 can only oc-
cur when n = 2. Otherwise, when n > 2, |D(m)| = n only if m = m(0) for some 6.

The outcome function of the mechanism is as follows:

i If m = m(0) for some 6 € O, then g(m) = f(0). Set d* = (0, 0).

i If m#m(0) for any 6 € ® and D(m) = {i}, then g(m)=q st g;=g; and ¢,
max{0, (p~'(p:) — q;)/(n — 1)} for all j # i. Let v be s.t. (¢, v) € dA! (i, g_;) where §;
g; for some j # i.** Set d* = (i, v;).

iii If m#m(0) for any 6 € ® and |D(m)| =n =2, then g(m)=(q;,q,). Set d* =
(1, v,(@1))-

iv If m # m(9) for any 0 € ® and D(m) = ¢, then g(m) = (¢q;,0_;) where i = (Zjd {pﬂ) (
mod 1) + 1 is the winner of the “modulo game”.> Set d* = (i, v;).

Let u*! = (u', m) and d(u'*') = d*.

Mechanism g. Suppose the mechanism is called after the message history ' and d(u') =
(i, v;). Given m = ((p1,q1), - - -» (P, qn)), if max{0, v;(q;)} < vi < v;, then g(m) = (qi, q";) s.t.
V(X ;2q;) = vi. (It is irrelevant how ;¢ is divided among j # i.) If v; < max({0, v;(g;)},
then g(m) = (q;, 0_;) s.t. v,(q}) = vi.

Let u*! = (u', m) and d(u'*") = d(u").

LemMA B1. There exists an SPE s s.t. s(h', 0") = m(0") and r(h')(m(0")) = f(0") for allt, 6',
and h' s.t. p(h'|h°, s) > 0.

Proor oF LEMma B1. For all ¢, 6, and h' = (i, ¢'~1), let s be defined as follows:

o Ifd(u') = (0,0), then s;(H', 6") = m;(6") for all i.
o If d(u') = (i, v;), then s;(H', 0") = (-, q;(Q_;, 0")) where Q_; is s.t. v;(Q_;) = max{0, v;}.
(The first coordinate in i’s message can be any p;.) s;(h', 6") for j # i can be anything.

If the firms follow the specified strategies, then the mechanism § is selected for every ¢, and
the outcome is f(#") for every 6', that is, the desired output is implemented in every period.
Next, we verify that no firm has incentives to deviate from s. First we consider deviations in
the subgames off the path and next we consider deviations in the subgames on the path.

Consider any ¢, ', and i = (u', ') s.t. d(u') = (i, v;) for some i € I and v; < v;. Thus, the
firms face the mechanism g. Since the firms are also facing exactly the same problem in all fu-
ture periods irrespective of what their period ¢t messages are, the best that firm i can do is to
announce m; = (-, q;(Q_;,0")) where Q_; is s.t. v;(Q_;) = max{0, v;}. Any messages by other
firms are optimal because their messages do not affect the outcome. (If v; < max{0, v;(g;)},
then the message of firm i also does not affect the outcome.) Also note that given s, after his-
tory A', but before period ¢ state is realized, firm i expects exactly the continuation value of v,.

Consider any ¢, 0, and h' = (u', ¢'~1) st. d(u') = (0,0), in which case the firms face the
mechanism g. Given that other firms follow s, if firm i deviates, the messages will fall under
part (ii) or possibly part (iii) of the mechanism. By construction, any deviation will result in

24 Given ¢, v; is the same for all v s.t. (¢, v) € 3/\,{[(@1‘, q-i)- Thus, by announcing (p;, g;), firm i not only specifies g,
but also v;. The exact v_; is irrelevant because the present discounted profit of firm i does not depend on it.
% [p;1 denotes the smallest integer greater than or equal to p;.
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an output-value pair (g, v) € A;f (f(8")) and, therefore, is not profitable. We conclude that s
is indeed an SPE. It also follows that r satisfies forthrightness w.r.t. f. O

In the continuation, for any 7 and A’ = (u', ¢'™!) s.t. d(u') = (i, v;) for some i € I and v; <
v;, it should be understood that firm i behaves as specified in the second bullet point in the
proof of Lemma B1. This guarantees that it receives the continuation value of v;, which is the
best it can get.

LemMMA B2. There does not exist an SPE s s.t. r(h') = g for some t and h' s.t. p(h'|h°, s) > 0.

Proor or LEmmaA B2. If g is played on the equilibrium path, there must be some 7 < ¢, 67,
and A" = (u%, 77V st p(hT|R%,s) > 0, d(u”) = (0,0), and s(h?,67) # m(#) for any 4. That
is, period t messages fall under parts (ii)-(iv) of mechanism g. If s(h*, 67) falls under part
(i), any firm j ¢ D(s(h™, 07)) expects strictly less than its (discounted) monopoly profit (1 —
8)mi((q;(0,07),0_;),6%) + 6v,(0), which because of Assumption Al, is strictly positive. To
see that its profit is indeed strictly less than its monopoly profit, note that if d(u*, s(h*,07)) =
(i, v;) with v; # 0, then firm i must be producing a positive output in every period 7’ > t and
firm j # i cannot be a monopolist, whereas if v; = 0, then from the description of g, it follows
that q? = 0. Firm j can obtain its monopoly profit by deviating to a message that triggers part
(iv) of g and wins the modulo game. Similarly, if s(h*, 87) falls under part (iv), each firm has
incentives to win the modulo game.

If n =2 and s(h", 07) falls under part (iii), there exists 0 s.t. s,(h%,0%) = my(0) = (p2, q2).
Firm 1 can trigger part (ii) and obtain profits arbitrarily close to (1 — 8)m1(f(6),07) + dvi(f)
by announcing m; = (p, + €, q2) Where € is a small positive number. (If it announced m; =
(p2, q2), then because of Assumption A3, part (i) of § would apply.) By definition of g, these
profits are strictly higher than (1 — 8)m1((q;, q,), 07) + 8v,(g; ) that firm 1 obtains if part (iii)
of g applies. We conclude that s s.t. 7(h') = g for some t and i’ s.t. p(h'|h°, s) > 0 cannot be an
SPE. O

LemMA B3. In any SPE s, s(h', 6") = m(6") and r(h')(m(0")) = f(0") for all t, 6", and I’ s.t.
o(H'|h°,s) > 0.

Proor oF LEMMA B3. From Lemma B2, we know that in any SPE s, the mechanism g is
always selected on the equilibrium path. Therefore, for every ¢, ', and ' s.t. p(h'|h°, s) > 0,
it must be that s(h', 8") = m(6") for some &'. Fix some SPE s. Given s, dynamic deception f
is defined as follows. For every ¢ and ¢’ = (¢'71,0"), let B(¢") = 6" where & is s.t. s(u', ¢') =
m(6") and y' is the history of messages that is induced by s and ¢'~!. In fact, as long as no de-
viation from s has occurred, we can think that firms’ strategies are given by . Also, given any
t,0', and ¢'~1, firm i expects a profit of

(1= 8)m(f(B(.6").6") +8ui(foB(s".6"))

if the firms follow s or, equivalently, 8.

We can think that for a given ¢ and ¢’, B(¢', -) specifies a static deception that the firms use
in period ¢ + 1 and which we denote as «¢'. (Thus, the static deception that the firms use in pe-
riod 0 is denoted o ' (-) := B(¢ ', -).) Since © is assumed to be finite, the number of possible
static deceptions is also finite. Among all static deceptions «¢ for all > —1 and ¢/, find the
one for which v(f o «f') is maximal. (Recall that the firms are symmetric.) Suppose this de-
ception is played in period v + 1 when period t history of states is ¢* and let us denote this
deception simply as «(-). Further, suppose that a(6) & f~'(f(8)) for some 4. Since f satisfies
pg-stationary monotonicity, then for any i (since firms are symmetric) and some 6’, there ex-
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ists (g, v) € dA! (F(a(6"))) sit.
(1 =8)mi(q,0") + 8v; > (1 = 8)mi(f((8)), 0") + svi(f o )
> (1 =8)m(f(B(£7,0),0") + 8vi(foB(s,0")).

Because firm i only cares about the total output of its competitors, we can assume that g
is s.t. g; = qy for all j, k # i. Further, firm i can secure (g, v;) after the history (¢7,6") by an-
nouncing (p(3_;; q;) i), which triggers part (ii) of & Since (g, v;) gives higher profit to firm
i, it wants to deviate from the deception 8, which contradicts that s is an SPE.

Thus, among the static deceptions that are selected by g, any deception « that results in the
highest continuation value, is s.t. «(9) € f~'(f(#)) for all 8 and, hence, v(f o ) = v(f) holds.
That is, v(f) is the maximal continuation value that the firms can obtain by deceiving. (There-
fore, if  is s.t. v(foa) = v(f), then a(8) € f~1(f(0)) for all §.) It also follows that for all
t>—land¢', o isst.v(foat) < v(f).

Now, if for some ¢ > 0 and ¢’ = (¢/~",0"), ¢ is s.t. v(foal') < v(f), then v(f o B(¢")) <
v( f) also holds. We claim that any firm i again has a profitable deviation: it can trigger part (ii)
of g in period ¢ and obtain profits arbitrarily close to (1 — 8)m;(f(B(¢")), 6") + Sv;(f) by an-
nouncing m! = (p; + €, q;) for a small € where (p;, q;) :=m;(B(¢")) for any j # i. Thus, it is
true that for allz > 0 and ¢’, &' (9) € f~'(f(9)) for all 6.

The only remaining case is that ¢ ' is s.t. v(foa® ') < v(f). (Here, we cannot invoke the
argument of the previous paragraph because a firm would need to deviate before the start
of period 0, which we do not allow.) Because v(foa’ ') < v(f), it must be that ot (0) &
f~1(f(8)) for some 6. Since f satisfies pg-monotonicity, then for any i, there exists (g, v) €
A (F(@f7(6))) st

(1 - 8)mi(q, 0) +6v; > (1= 8)m(f(a° (8)). )+ sui(f)
= (1=8)m(f(B(".0).0)+svi(fop(c".0)).

Again, we can assume that q is s.t. g; = g for all j, k # i because the profit of firm i only de-
pends on )., ¢;- Firm i can secure (g, v;) by triggering part (ii) of § in state 6 of period 0
and, therefore, it will want to deviate from the deception 8. Thus, & ' (8) € f~'(f(#)) must
hold for all 6.

We have shown that for s to be an SPE, it must be the case that for all t >0
and ¢ = (¢, 0"), ot (") = B(¢'71,0") € F(f(0")) holds. Since m(0) =m(0') for all
6,6 € f71(f(6")), it follows that s(h',0") = m(B(¢'~1,0")) = m(#") for all t, ', and K s.t.
p(h'|h°, s) > 0. Also, the description of & implies that r(h')(s(h', 0")) = f(6") for all ¢, 6, and
h' s.t. p(h'|h°, s) > 0. Finally, since s was an arbitrary SPE, the same applies to all SPE and,
hence, r implements f in SPE. O

O
APPENDIX C: PROOFS OF SECTION 5

Proor of ProrosiTiON 2. In order to prove that f¢ satisfies pg-monotonicity, we will show
that for any 6,0’, f°(0) # f°(9’) implies that there exists firm i, for which Alf (feo) ¢
L;(f°(0),v(f),0) holds. That is, there exists (q,v) s.t. (q,v) € Aif(’(fc(e)), but (q,v) &
Li(f°(0), v(f).0). As it turns out, we can choose v = v(f), while g is s.t. 3, q; =3, f7(0).
To see it, consider Figure C1, which shows iso-profit lines of firm i as a function of its own

26 Tt is enough to consider o stat! (0") = 0’ for all ' # 0 because the firms do not deceive after period 0 any-
more.
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output, g;, and the aggregate output of all the other firms, Q_; := )" j+i4qj- One can think that
in the competitive equilibrium of state 0, firm i is choosing g; and O _; to maximize its profit
#i(qi» Q—i, 0) := mi(q, 0) subject to the constraint g; + Q_; = }_; f{(6), meaning that the ag-
gregate output and, hence, price remain constant. The optimum is at (f7(6), >_;; f;(6)). The
slope of iso-profit line is

dQ-i _ p'(Q)gi+ p(Q) —ci(gi.0)
dg; P'(Q)ai ’
which is equal to —1, the slope of the constraint, in the competitive equilibrium where
p(X; f7(0)) = ci(f{(9),0) holds because f7(¢) > 0. The same is true in all other states of
the world, for which f¢(6) remains the competitive equilibrium outcome. It follows that the
points on the constraint g; + Q—; = }_; f(0), together with v = v(f), belong to Al.f(f(e)).
Now, suppose that f¢(6) is not a competitive equilibrium outcome in state 6’. Then, be-
cause the solution to (1) is unique according to Assumption A4, there exists a firm, say,
firm i, for which p(}_; f¢(6)) # c/(f{(6),6').”” It means its iso-profit line through point
(f7(0),2_;4 f7(0)) is crossing the constraint in state 6. Therefore, given the assump-
tion that f;j(#) >0 for all j, we can find a point on the constraint that firm i strictly
prefers to (f{(6), ;. f7(6)). It follows that there exists ¢ st. > ,q; =23, fj(#) and
(q,v(f)) € Alff(f“(e)) but (g, v(f)) & Li(f°(0),v(f),0"). We can conclude that f¢ satisfies
pg-monotonicity. |

Proor or ProrposiTiON 3. Since we are in a symmetric environment, we will consider
the incentives of firm 1 to deviate from a deception. We start with a couple of observa-
tions. First, we know from Proposition 2 that f¢ satisfies pg-stationary monotonicity for § =

27Tf we also impose Assumption A3 and, hence, only consider symmetric competitive equilibrium outcomes, then
fe(0) # f<(¢") implies p(3_; f;(@)) # ¢(f{(8),6") without assuming uniqueness. That is, we do not need to rule out
the existence of additional asymmetric equilibrium outcomes.
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0. Therefore, in the following, we assume that § € (0, 1). Second, because of Assumption
A5,0 < f(0) < f(0') if 6 > 6'. One implication is that f<~'(f(9)) = {8} and A! (f°(9)) =
Li(f<(0),v(f),0) foralld € ®.

Consider any stationary deception « s.t. «(8’) # 6’ for some 6’ € ®. This deception would
result in an undesirable output profile in state 6’. In order to incentivize firm 1 to deviate
when the firms deceive according to «, but not to deviate when they behave truthfully, we
need to find (q, v1) s.t.

(C1) (1 =8)mi(f9(0).0) + dvi(f°) = (1 = 8)mi(q, 0) + vy,
(C2) (1 =8)m(f(0),0) +svi(fSoa) < (1—=238)m(q,0)+ vy,

for some 6, 6’ s.t. «(0) = 0 # 0'. Suppose that vi(f¢ o) < v1(f¢) holds. Then, we can choose
v; = v1(f°) and, according to Proposition 2, we can find ¢ that satisfies (C1) and (C2). There-
fore, in the continuation, we assume that vy (f¢ o a) > v1(f¢) holds. It means that there must
exist 0,60’ s.t. «(6') =6 > 6'. That is, the firms will increase their profits if they produce less
than the competitive output, which requires that they exaggerate their costs. Next, we ask
when firm 1 will have incentives to deviate from « in this particular state 6’.

We can equivalently rewrite (C1) and (C2) as:

(1 =8)[0(c(q1) — c(f1(0)) + p(nfi(0)) fi(0) — p(Q)g1] + vi(f*) = vy
(®3) >(1=0)[6"(c(q1) — c(f1(6)) + p(nfi(0)) fi(0) — p(Q)q1] + vi(f 0 ).

(C3) tells what values v; can take, given g. It can, however, be that any v; that satisfies the
inequalities in (C3), is not feasible because it exceeds the ex ante monopoly profit of firm 1,
v;. It is easier to satisfy the feasibility constraint if we set g_; = 0_;, which we can always
do. That is, if (g, v1) satisfies (C3), then so does ((q1,0-1), v;) where v is given by §(v| —
v1) =1 -=38)(p(Q) — p(q1))q1 < 0. Thus, in the continuation, we assume that g_; = 0_; and
p(Q) = p(q1) in (C3).

If we take the right-most and left-most expressions in (C3) and simplify, we find that ¢;
must satisfy the following inequality:

(C4) (1=8)(6 —0")c(g1) > (1 =8)(6 —6)c(f1(6)) + 8(ui(f o) = vi(f)).

From (C4), it follows that q; > f{(0) because 6 > 6’ and v (f° o ) > v1(f°).

To sum up, if we can select g; that satisfies (C4) and v; that satisfies (C3) (with g_; = 0_1),
then we can incentivize firm 1 to deviate from deception « in state 6’. Now, for any § € (0, 1),
we can always find g; that satisfies (C4). Therefore, we only need to determine when we can
find v; < v, that satisfies (C3).

Let g7 and v} be the values of g; and vy, respectively, such that both inequalities in (C3) are
in fact equalities. (Hence, (C4) also holds with equality.) Using (C4) when g; = ¢} and v; =
v}, we can eliminate § in the first line of (C3) to obtain that

(C5) vl = o (f) + vi(fCoa)—vi(f°) {9 _ pla}gi — p(nfi(6))fi(6) }

6 —¢ c(qy) — c(f{(9))

If v{ < vy, then we can always find g; > ¢} and v; < v; that satisfy (C3) and (C4). Therefore,
next we study when v < vy holds.
Part I: The term in the curly brackets of (C5) can be written as

—(p(g7) — p(nfi(0)))qi +6lc(gr) — c(f{(9)) — ¢ (f1(0)) (a7 — 1(6))]
c(qy) — c(f1(9))




FIGHTING COLLUSION 29

where we have used that p(nf(0)) = c'(f{(6)). When g7 is sufficiently close to f{(6), the
above expression is negative because the expression in the square brackets is close to zero
and p(q7) > p(nf;(6)). Hence, v{ < v; holds. From (C4), there is an increasing one-to-one
relationship between é and gj. Therefore, we can conclude that there exists § > 0 such that
vi < v is satisfied for 8 € (0, §). Since o and 6" were arbitrary, this completes the proof of the
first part of the proposition.

Part 2: For any € > 0, we can pick §; such that the term in the curly brackets of (C5) is

less than 6 + ¢ for all ¢t > §y. If 71 > vy (f¢) + 22l () Kolds, then there exists g, or,

ming gr5- g 0—6"

equivalently, § such that v{ < vy is satisfied for all g7 > g, or, equivalently, for all § € (6,1).
This proves the second part of the proposition.
Part 3: Finally, the term in the curly brackets of (C5) can be upper-bounded, for exam-

: p(nfi(0))f7(6)
ple, with & + T @y-cron

that as long as f{(6) > 0, % < 0, whereas %‘;(0) > (. Thus, the term in the curly brack-
ets is decreasing in n. Likewise, W™ 0 and U < 0; the latter with strict inequality if
v1(f¢) > 0. Since v (f™) > vi(f o), v1(f o) must also tend to 0 as n increases. We con-
clude that there exists 7z such that v{ < v is satisfied for all n > 7. This proves the final part of
the proposition. |

for all g7 > f{(0) or, equivalently, all § € (0, 1). One can verify

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information sec-
tion at the end of the article.
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