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Abstract: The performance of emotive text classification using affective hierarchical schemes
(e.g., WordNet-Affect) is often evaluated using the same traditional measures used to evaluate
the performance of when a finite set of isolated classes are used. However, applying such measures
means the full characteristics and structure of the emotive hierarchical scheme are not considered.
Thus, the overall performance of emotive text classification using emotion hierarchical schemes is
often inaccurately reported and may lead to ineffective information retrieval and decision making.
This paper provides a comparative investigation into how methods used in hierarchical classification
problems in other domains, which extend traditional evaluation metrics to consider the characteristics
of the hierarchical classification scheme, can be applied and subsequently improve the classification of
emotive texts. This study investigates the classification performance of three widely used classifiers,
Naive Bayes, J48 Decision Tree, and SVM, following the application of the aforementioned methods.
The results demonstrated that all the methods improved the emotion classification. However, the
most notable improvement was recorded when a depth-based method was applied to both the testing
and validation data, where the precision, recall, and F1-score were significantly improved by around
70 percentage points for each classifier.

Keywords: sentiment analysis; emotion classification; supervised machine learning; hierarchical
classification; natural language processing

1. Introduction

The proliferation of text-based content created by users across the Internet, including
product reviews, social media posts, and blogs, offers rich information of public opinion
that can influence our own decisions. For example, a negative product review might make
us rethink a purchase. However, the vast amount of available text data overwhelms our
capacity to sift through and find the most pertinent information. Text mining has been
identified as a viable approach to managing this deluge of data, enabling us to efficiently
process and understand large volumes of text from various sources [1]. Specifically, senti-
ment analysis, or opinion mining, is a technique designed to automatically detect, extract,
summarise, and categorise the sentiments, evaluations, feelings, and viewpoints expressed
in textual content [2,3].

Most research activities in this domain have focused on the problem of sentiment
classification, which classifies a text in terms of its polarity: positive, negative, or neutral.
However, one of the main problems with classifying texts by their sentiment polarity is that
it combines diverse emotions into two classes [4]. Positive polarity conflates, for example,
happiness, love, and joy. In response to use cases such as online counselling, where
associating finer-grained and specific emotions with appropriate responses is required,
recent work investigates the extraction and classification of the types of emotions (the
projection or display of a feeling) expressed in text. Several works have classified emotive
text using a set of discrete universal categories of basic emotions. Such works often
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use classification schemes such as Ekman’s six basic emotions [5] (anger, disgust, fear,
happiness, sadness, and surprise) or an extension of such emotions (e.g., [6–8]).

However, given that basic emotion schemes are limited to a small number of broad
categories, such methods do not capture the nuanced spectrum of human emotions. Unlike
such schemes that contain a small but manageable set of classes, affective hierarchies
capture a richer set of emotions, where primary emotions (love, joy, surprise, anger, and
sadness) are further broken down into secondary emotions (e.g., love consists of the
secondary emotions affection and longing). The performance of emotive text classification
occurs when an emotive hierarchical scheme is often evaluated using the same traditional
measures used to evaluate the performance of when a finite set of isolated classes are used.
However, this means the full characteristics of the hierarchy and the relationships between
the entities within the hierarchy are not considered, thus leading to a potentially misleading
assessment of the overall classification performance [9].

To address the aforementioned limitations, to the best of our knowledge, this paper
presents the first comparative investigation into how methods used in hierarchical classifi-
cation problems in other domains (e.g., predicting protein functions [10,11]), which extend
traditional evaluation metrics to consider the characteristics of the hierarchical classifica-
tion scheme, perform when applied in an emotive text classification context. In addition,
applying such measures enables classification of fine-grained emotions that are not limited
to a finite number of classes. This allows more specific emotions to be identified, which is
an important factor to consider in a range of use cases that rely on emotion classification,
including decision making. To support the experiments herein, a large representative
dataset of emotive tweets provided by Go et al. [12] was used. The main contributions of
the work presented in this paper are the empirical investigations into the following:

• The behaviour of a range of supervised models used for classifying emotions expressed
in text distributed as part of a hierarchical scheme;

• Exploring how extended classification methods can be used to capture the characteris-
tics of a hierarchical emotive scheme and increase the overall performance of popular
supervised models.

The study was designed as follows (see Figure 1): (1) automatically map text segments
to emotions in WordNet-Affect, a hierarchically structured emotion classification scheme;
(2) randomly split a dataset of emotive texts into training, testing, and validation sets,
each containing 60%, 20%, and 20% of the data points, respectively; (3) evaluate a range
of supervised classification algorithms and train the identified best-performing models;
(4) apply the trained model on the testing and validation datasets produced in (2); and
(5) apply and evaluate hierarchical classification approaches to the predictions generated
in (4).

The remainder of this paper is divided into the following main sections: Section 2
presents the related work, Section 3 discusses the data used to support the classification
experiments herein, including automatically mapping text segments to emotions within
a hierarchical classification scheme, Sections 4 and 5 discuss hierarchical classification
evaluation metrics and their performance against testing data, respectively, and, finally,
Section 6 concludes the paper.
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Figure 1. An overview of the study design.

2. Related Work

In the context of classifying emotive texts, there exist only a handful of investigations
into hierarchical classification. In the literature, a popular method to address this problem
is to divide the class hierarchy into a set of independent classification problems and apply
classification at each hierarchical level. For example, Esmin et al. [13], Ghazi et al. [14],
Charoensuk and Sornil [15], and Angiani et al. [16] undertook an investigation into a
three-level hierarchical classification approach towards classifying emotions expressed in
text. The first hierarchical level focused on classifying whether the texts were emotive or
not, the second level aimed to classify their sentiment polarity, and, subsequently, the third
level aimed to classify whether texts expressed one of Ekman’s six basic emotions.

Keshtkar and Inkpen [17] explored classifying moods expressed in blog posts. They
used 132 moods and their hierarchical organisation provided by LiveJournal. They first
evaluated the classification performance of a Support Vector Machine (SVM) without
considering the hierarchical structure of the emotive scheme as a baseline and achieved
24.73% accuracy. To address the hierarchical classification problem, they trained a classifier
to discriminate between the 15 emotions on the first level of the hierarchy. Then, a classifier
was trained for each of the emotions in the first level to differentiate among all of its sub-
classes. Similarly, Zhang et al. [18] and Xu et al. [19] employed a hierarchical structure to
classify 19 emotions in Chinese microblogs. They built an SVM model for each emotion to
classify them individually. Such an approach achieved an F1-score of over 80%. However,
the aforementioned approaches do not address hierarchical classification in its true form
as the full structure of the class hierarchy is ignored.
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Mishne [20] also investigated classifying LiveJournal’s 132 moods expressed in blog
posts. As well as classifying each mood individually, they aggregated similar moods
into an active and passive group and a positive and negative group. The purpose of
their experiments was to test whether combining closely related moods improves the
classification performance of the model. Their results show that the SVM achieved 50%
accuracy. However, aggregating emotions into groups of similar ones does not address the
hierarchical nature of the classification problem.

Conclusively, it is evident that there is room to investigate the full characteristics of a
hierarchical scheme and the true relationships between the entities within the hierarchy
during emotive text classification.

3. Data Annotation and Preparation

To explore the behaviours of extended evaluation metrics that consider the hierar-
chical characteristics of WordNet-Affect, a popular lexical model was used for classifying
emotions regarding the performance of supervised classification when the corresponding
data discussed in Section 3.2 were used to train and evaluate a selection of well-known
classifiers. Further justification as to why such classifiers were selected is discussed in
Section 5. The following sections discuss the text corpus, as well as describing the method-
ology behind automatically mapping texts to the emotions in the hierarchy and preparing
their vector representations using word embeddings.

3.1. Hierarchical Classification Framework

Affective hierarchies (e.g., [21–23]) provide a rich set of emotions, focusing on lexical
aspects that can support text mining applications such as sentiment analysis regarding
a detailed structure of emotions, focusing on their lexical characteristics to enhance text
mining applications like sentiment analysis [4]. These frameworks categorise related
emotions into groups, beginning with sentiment polarity (positive or negative) as the
broadest categories. Basic emotions such as happiness, sadness, love, and anger are
positioned at a more specific level within these categories. At the most detailed level,
emotions are further divided into more nuanced states that correspond to their overarching
polarity, for example, optimism (a form of happiness), misery (a form of sadness), and
passion (a form of love).

WordNet is a comprehensive English lexical database that organises nouns, verbs,
adjectives, and adverbs into sets of cognitive synonyms, or synsets, offering a rich net-
work of meaningfully related words [24]. To extend its utility into the emotional domain,
WordNet-Affect was developed [25] as a specialised lexical framework. It serves to cate-
gorise emotions and affect, both directly (with words like joy, sad, and happy) and indirectly
(with words like pleasure, hurt, and sorry), into an organised hierarchy of synsets. This cat-
egorisation facilitates the analysis of moods, situational emotions, and emotional responses.
WordNet-Affect has become an invaluable resource for numerous NLP studies, particularly
in sentiment analysis (e.g., [8,26]) as it helps in understanding and processing emotional
content in text.

Figure 2 shows an excerpt from the WordNet-Affect hierarchy. The local version of
the lexicon used in this paper consists of 1532 affective terms, including all derivational
and inflectional forms of the 798 word senses originally found in WordNet-Affect. Table 1
shows the distribution of emotions across the seven levels of WordNet-Affect’s hierarchical
structure, as well as examples of emotions on each level.
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Figure 2. An excerpt from the WordNet-Affect hierarchy.

Table 1. Distribution of emotions across the WordNet-Affect hierarchy.

Level Examples of Emotions No. of Emotions

1 Positive, Negative, Neutral, Ambiguous 4

2 Love, Surprise, Sad, Fear 162

3 Adore, Amusement, Distress, Embarrassed 582

4 Jolly, Peaceful, Annoyed, Confused 527

5 Pride, Fulfilment, Aggressive, Livid 198

6 Remorse, Contrite, Guilt, Woeful 46

7 Covet, Jealousy, Greedy, Green-eyed 12

3.2. Text Corpus

Emotive language analysis has been applied to a range of texts from different do-
mains [4]. Studies have focused on emotions expressed in film reviews (e.g., [27–29]),
product reviews (e.g., [30]), financial data (e.g., [31,32]), political data (e.g., [33]), news
articles (e.g., [34,35]), health care texts (e.g., [36]), e-mails (e.g., [37]), etc.

Spurred by the recent growth in microblogging, platforms such as Twitter are a popular
source of data for sentiment analysis studies (e.g., [38–41]). Twitter is a social networking
service that enables users to send and read tweets—text messages consisting of up to
280 characters. Given this character limit, classifying the sentiment of tweets is the most
similar to sentence-level sentiment analysis [42].

The use of Twitter as a means of self-disclosure makes it a valuable source of emo-
tionally charged text. In particular, Go et al. [12] used distant learning to acquire sen-
timent data from Twitter. In their approach, sentiment-baring tweets were acquired
by using the Twitter Search API to collect tweets using keyword search and whether
they included positive emoticons (e.g., “:)” or “:-)” for expressing positive sentiment
or negative emoticons (e.g., “:(” or “:-(”) for expressing negative sentiment. Their dataset
(https://www.tensorflow.org/datasets/catalog/sentiment140 (accessed on 12 December
2023)) consists of 1,600,000 unique tweets, with 800,000 positive and 800,000 negative data
points. Due to the large volume of tweets, as well as the fact that they were collected for
sentiment analysis purposes, this dataset was used to support the experiments presented
in this paper.

3.3. Mapping Texts to Emotions

The added overhead associated with the manual annotation of large datasets is known
as being one of the key obstacles in supervised machine learning. Manual annotation is both
labour-intensive and, without specific training, can be highly error-prone [43]. In particular,
the task of manually annotating large datasets with large annotation schemes such as

https://www.tensorflow.org/datasets/catalog/sentiment140
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WordNet-Affect is tedious for the annotator, and, subsequently, finer-grained emotions
may be lost. When its utility from a human perspective was studied by Williams et al. [4],
WordNet-Affect demonstrated to be a challenging scheme to use to manually annotate the
emotive text. It was reported as being too much information to the users, who could not
pinpoint which emotion to choose as there were too many options.

In this case, and inspired by Go et al. [12], a simple string-matching approach was
applied to automatically annotate tweets if they contained an emotion that could be mapped
to WordNet-Affect. Table 2 reports examples of tweets mapped to emotions.

More specifically, a total of 1,167,995 tweets (73% of the original dataset) did not
contain emotions and, therefore, were omitted from the dataset. A total of 431,975 tweets
(27% of the original dataset) contained an expression that could be mapped to emotions
from the WordNet-Affect lexicon discussed in Section 3.1, with 363,528 tweets containing
one emotion. For the 68,447 tweets containing more than one emotion, the following three
rules were adopted to break the ties:

1. If all emotions originate from the same root (i.e., Positive, Negative, Neutral, and Am-
biguous), assign the emotion that is located the deepest in the hierarchy. The following
is an example of a tweet that was allocated the emotion Bored as a consequence of
being located on the fourth hierarchical level, as opposed to Hate, which is located on
the third: “I hate this time, I am super bored but everyone is sleepin”.

2. If all emotions originate from the same root but are located on the same hierarchical
level, assign the root emotion. The following is an example of a tweet that was
allocated the emotion Positive as a consequence of containing the emotions Love and
Joy, which are both located on the second hierarchical level: “When spreading love
and joy to others—also remember yourself!”.

3. Omit the tweet if the emotions it contains do not originate from the same root. The fol-
lowing is an example of a tweet that was omitted from the study as a consequence of
containing the emotions Love and Sad, which originate from the root emotions Positive
and Negative, respectively: “Ohhh. I love it. Ps I’m sad we didn’t get to hang out”.

Table 2. Examples of tweets mapped to emotions.

Tweet Emotion

I wish I had someone to talk to. I’m so upset. Upset

I hate when I have to call and wake people up Hate

Is strangely sad about Lilo and Samro breaking up. Sad

Leanne is angry at me. Angry

I’m glad ur doing well. Glad

Love your tattoo! Love

My cluster is back and I’m a happy man. Happy

Is excited for the day. Excited

A total of 20,783 and 10,248 tweets complied with rules (1) and (2), respectively,
whereas 37,416 tweets complied with rule (3) and were therefore omitted from the study.
Subsequently, the final dataset contained 394,559 tweets. Table 3 reports the distribution of
tweets across the hierarchy.

Figure 3 reports the top 22 most frequently used emotions across the annotated dataset
described in Section 3.3. A total of 947 individual emotions from the 1532 in WordNet-Affect
were identified as annotations.
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Table 3. Distribution of emotions across the WordNet-Affect hierarchy.

Level No. of Tweets Percentage of Tweets

1 11,213 2.8

2 84,149 21.3

3 200,711 50.9

4 46,432 11.8

5 47,321 12.0

6 1347 0.3

7 3385 0.9

Figure 3. Top 22 most frequently used emotions across the dataset.

3.4. Vector Representation

In automatic text classification, the most traditional vector representation of text is bag-
of-words (BOW). The BOW model is used to form a vector representing a document using
the frequency count of each term in the document. Others use term-weighting methods to
assign appropriate weights to the terms to improve the performance of text classification.
However, the high dimensionality of the representation, loss of correlation with adjacent
words, and loss of semantic relationship between terms are among their limitations [44].

Recently, words have been represented through dense vectors derived from various
training methods, inspired by the modelling of languages through neural networks. Such
representations are referred to as word embeddings [45]. Word embeddings make natural
language computer-readable. Subsequently, further implementations of mathematical
operations on words can be used to detect their similarities. A well-trained set of word
vectors places similar words close to each other in that space. For instance, the words
‘women’, ‘men’, and ‘human’ might cluster together, whilst ‘yellow’, ‘red’, and ‘blue’ cluster
together. Such representations have proven to be efficient to train, and are highly scalable
for large corpora [46].

Word2vec is a popular technique to learn word embeddings using a two-layer neural
network. There are two main training algorithms for word2vec: continuous-bag-of-words
(CBOW) uses context to predict a target, whilst skip-gram uses a word to predict a target
context. Generally, the skip-gram method achieved better performance as it can capture
two semantics for a single word (e.g., Apple may have two vector representations, one for
the company and another for the fruit).

In this paper, Genism [47], an open-source Python library for representing documents
as semantic vectors, was used to develop word embeddings by training a skip-gram
word2vec model on the dataset of tweets. The data preparation required for this model was
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conducted using Python (version 3.7.2), where traditional NLP techniques were applied,
including the following:

• Converting text to lowercase.
• Removing mentioned usernames and URLs using regular expressions.
• Removing punctuation and digits using regular expressions.
• Removing stop words using Python’s natural language package, Natural Language

Toolkit (NLTK) [48] (version 3.4.1).
• Tokenising text using the pre-built tokeniser as part of the NLTK package.
• Lemmatising tokens using the WordNet Lemmatiser as part of the NLTK package.

To train a word2vec model, the following parameters were set: the size (the number
of dimensions of the embeddings) was set to its default, 100, the window (the maximum
distance between a target word and words around the target word) was set to 3, the min-
imum count (the minimum count of words to consider when training the model; words
with occurrence less than this count will be ignored) was set to 1 in order to capture all
words, the workers (the number of partitions during training) was set to its default of 3,
and sg (the training algorithm) was set to 1 to represent the skip-gram model. The time
taken to train the word2vec model was reported at 42.78 s. The total number of words in
the vocabulary was reported as 144,494. Such training was performed on a MacBook Pro
2019, with 16 GB memory, an Intel Core i9 CPU, and running Ventura macOS.

4. Hierarchical Classification Evaluation Metrics

A vast majority of text classification problems involve assigning data points to a class
from a finite number of isolated classes (e.g., classifying sentiment polarity). This is often
referred to as flat classification. In contrast, in several other problems, the classes are
disposed in a hierarchical structure. Such problems are often referred to as a hierarchical
classification problem [49].

The performance of hierarchical classification is often evaluated using measures com-
monly adopted for evaluating the performance of flat classifiers. However, Sun and Lim [9]
argue that such measures are inadequate in evaluating the performance of hierarchical
classification as they do not consider the full characteristics of the hierarchical problem,
and therefore inaccurately report the overall performance.

As shown in the literature, a popular method in emotive text classification is to divide
the class hierarchy into a set of flat classification problems, often treating each class level as
an independent classification problem. Flat classification measures may be used to evaluate
the performance of each level. One of the disadvantages of this approach is that errors
made in higher levels of the hierarchy are propagated down through the more specific
levels [49].

Other methods apply the classification model to the whole class hierarchy and apply
extended measures to evaluate performance. Those reviewed by Costa et al. [49] and
Cerri et al. [50] can be grouped into five measures: relational, distance, depth, semantic,
and hierarchical classification measures. The following sections discuss the methods
considered in this paper and how the performance of such hierarchical classification
methods is evaluated. As the hierarchical-based measure [51] evaluates the performance of
each predicted instance and not for each class, the evaluation is not directly comparable to
the other measures and is therefore omitted from this study.

The following notations are adopted: Ca = actual class, Cp = predicted class, TP = True
Positives, FP = False Positives, FN = False Negatives, P = Precision, R = Recall, and F =
F1-score, where

• Ca—the known input to the classifier.
• Cp—the predicted output from the classifier.
• TP—tweets are correctly classified as the class of interest.
• FP—tweets are incorrectly classified as the class of interest.
• FN—tweets are incorrectly classified as not the class of interest.
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• P—measures the number of retrieved tweets that are relevant.
• R—measures the number of all the relevant tweets that are successfully retrieved.
• F—the harmonic mean of P and R, and provides a single weighted metric to evaluate

the overall classification performance.

4.1. Flat Hierarchical Classification

Hierarchical problems discussed in the literature often involve flat hierarchical classifi-
cation, where classes from the class hierarchy are treated in isolation with no definition of
the hierarchical relationships among them. Traditional supervised algorithms (e.g., Naive
Bayes, Maximum Entropy, and SVM) can be applied and their classification performance
evaluated using P, R, and F based on the numbers of correct (TP) and incorrect (FP and
FN) predictions. However, such approaches carry difficulty for classifiers when provided a
large hierarchical scheme such as WordNet-Affect as more classes increase the opportunity
for misclassification.

P =
TP

TP + FP
R =

TP
TP + FN

F = 2 ·
(

(P · R)
(P + R)

)
(1)

4.2. Relational-Based Classification

Most hierarchies are designed so that lower-level classes are specialisations of higher
level classes, which can be represented by transitive relations such as ‘is-a’ [52]. In this case,
it is assumed that a class on any hierarchical level corresponds to its ancestor. For instance,
if Cp = Positive when Ca = Happiness, it is assumed that this is correctly classified as
Happiness is a descendant of Positive. Conversely, if Cp = Anger when Ca = Positive, it is
assumed that the classification is incorrect. Classification performance can be evaluated
using standard P, R, and F (Equation (1)).

One of the drawbacks of this approach is that it does not address hierarchical clas-
sification in its true form. That is, similar to Mishne’s [20] approach, emotions that are
aggregated into groups represented by their parent node do not allow for finer-grained or
implicit emotions to be directly classified.

4.3. Distance-Based Classification

Classes that are closer to each other in the class hierarchy tend to be more similar to
each other than other classes [49]. In this case, distance-dependent approaches consider the
distance between Ca and Cp in order to compute and evaluate the classification performance.

Sun and Lim [9] extended the conventional flat hierarchical classification measures
of P and R for the context of distance-based classification. To consider the contribution
of FP and FN, an acceptable distance (Disθ) between Ca and Cp is determined. With the
methodology that it is less forgivable to misclassify classes further away from one another
in mind [9,53,54], in this paper, Disθ = 3.

For each instance, the contribution of each FP (Con(x, Cp)) is calculated in Equation (2),
where Dis(Cp, Ca) denotes the distance between Cp and Ca, that is, the number of branches
between Cp and Ca. For example, when Ca = Joy and Cp = Happiness, Dis(Cp, Ca) = 1,
but, when Ca = Elation and Cp = Positive, Dis(Cp, Ca) = 2. Subsequently, Dis(Cp, Ca) is
divided by Disθ . A refined-contribution RCon(x, Cp) in Equation (3) normalises Con(x, Cp)
between the range of −1 and 1. Finally, the contribution of FP for each class (FPConi)
(Equation (4)) is obtained by calculating the sum of RCon(x, Cp) for each instance where
the Ca is wrongly predicted. The contribution of FN (FNConi) is also obtained for each
class by calculating the sum of RCon(x, Cp) for each example of FN instances.

Con(x, Cp) = 1 −
Dis(Cp, Ca)

Disθ
(2)

RCon(x, Cp) = min(1, max(−1, Con(x, Cp))) (3)
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FPConi = ∑
x∈FPi

RCon(x, Cp) (4)

The contributions of FP and FN are used in the extended measures of P (Equation (5))
and R (Equation (6)) to evaluate the performance of each class i, where TPi, FPi, and FNi
represent the number of TP, FP, and FN, respectively, for each class. The harmonic mean
of Pi and Ri is used to calculate Fi (Equation (1)). To derive a comprehensive understanding
of the model’s performance across all classes, the overall P, R, and F of the approach may
be computed by averaging the individual class-specific measures (i.e., Pi, Ri, and Fi).

Pi =
max(0, |TPi|+ FpConi + FnConi)

|TPi|+ |FPi|+ FnConi
(5)

Ri =
max(0, |TPi|+ FpConi + FnConi)

|TPi|+ |FNi|+ FpConi
(6)

One of the drawbacks of distance-based classification is the fact that it does not
consider that classification at deeper levels of the hierarchy is more challenging than
classification at shallower levels. This is often a consequence of having fewer training
examples belonging to deeper classes in comparison to classes at higher levels [10].

4.4. Depth-Based Classification

To address the drawbacks of the distance-based method, depth-based classification
considers greater classification costs for higher class levels in comparison to deeper class
levels. Holden and Freitas [10] adopted the depth-based method by assigning weights to
each level in the class hierarchy. The values of these weights are inversely proportional
to the hierarchical level, i.e., a higher level in the class hierarchy has a larger weight in
comparison to a deeper level. The hypothesis behind this is that misclassification at a
deeper level is more forgivable than misclassifying at a higher level.

Once each level in the class hierarchy has been assigned a weight, the degree of
misclassification (M) associated between Ca and Cp is provided by the summation of the
weights of all the levels between them. For example, based on [10], in Figure 4, M = 0.1
when Happiness is misclassified as Joy. However, M = 0.6 when Positive is misclassified
as Negative, which is consistent with the fact that this misclassification is less forgivable
than the aforementioned example, which shares a similar valence. Intuitively, if Ca = Cp,
then M = 0. The weights 0.3, 0.2, 0.1, 0.08, 0.06, 0.04, and 0.02 were assigned to the seven
hierarchical levels of the local WordNet-Affect used in this paper.

Figure 4. An excerpt from the WordNet-Affect hierarchy with weighted edges for computing the
degree of misclassification.

The contributions of misclassification of FP and FN can be calculated using a similar
approach to distance-based classification, where an acceptable weight between Ca and Cp
is determined. With the methodology that misclassification is less forgivable at higher
levels of the hierarchy in mind, Mθ = 0.5. This is to ensure that misclassifications from
the third level of the hierarchy and upwards incur increased classification punishment.
For Equation (2), Dis(Cp, Ca) is replaced by M(Cp, Ca), denoting the summation of the
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weighted edges between Ca and Cp. For example, when Ca = Joy and Cp = Happiness,
M(Cp, Ca) = 0.1, but, when Ca = Elation and Cp = Positive, M(Cp, Ca) = 0.3.

4.5. Semantic-Based Classification

Sun and Lim [9] also proposed a semantic-based method, which uses the concept of
class similarity to evaluate hierarchical classification performance. The hypothesis behind
measuring the similarity between Ca and Cp is that it is more forgivable to misclassify Ca
as Cp with a similar valence, in comparison to Cp from a different polarity sub-tree.

The similarity between Ca and Cp can be calculated using several similarity measures.
Sun and Lim [9] used cosine similarity to measure the similarity values between Ca and Cp,
which are subsequently used to define P and R.

Initially, the cosine similarity (Equation (7)) between every pair of classes (CS(Cx, Cy))
is computed, where x and y represent two non-zero vectors in an n-dimensional space,
with θ denoting the angle between them. Cosine similarity scores can vary from −1
(indicating vectors pointing in opposite directions, equivalent to 180◦) to 1 (indicating
vectors pointing in the same direction, equivalent to 0◦), with a score of 0 signifying
orthogonal vectors. In our study, vector components are always non-negative, leading to
cosine similarity values ranging from 0 to 1, where higher values suggest greater similarity.
Within our framework, ’Positive’ and ’Negative’ types of affect are considered orthogonal.

For each emotion listed in the hierarchy, its respective feature in the vector representa-
tion is assigned a value of 1, along with the values corresponding to all ancestor emotions in
the hierarchy. For instance, if C represents Excitement, then both Positive and Joy categories
are set to 1, with all other elements of the vector set to 0. The vector’s length is determined
by the total number of emotions covered in the study, including both those in the testing
dataset and those predicted.

CS(Cx, Cy) = cos θ =
∑n

i=1 xiyi√
∑n

i=1 x2
i

√
∑n

i=1 y2
i

(7)

These similarities are used to define the average category similarity (ACS) in
Equation (8), where M is the number of classes. Together, the similarity between Ca
and Cp (CS(Cp, Ca)) is used to calculate the contribution of FP and FN for each class using
Equations (3), (4), and (9). P and R measures are obtained using the extended measures
shown in Equations (5) and (6).

ACS =
2 · ∑M

i=1 ∑M
k=i+1 CS(Cp, Ca)

M · (M − 1)
(8)

Con(x, Cp) =
CS(Cp, Ca)− ACS

1 − ACS
(9)

5. Evaluating Hierarchical Classification Evaluation Metrics

To explore the performance of WordNet-Affect as a class hierarchy, as well as the clas-
sification behaviours of the aforementioned supervised hierarchical approaches, the per-
formance of each approach was evaluated when the corresponding data discussed in
Section 3.3 were used to train the classification model.

In this paper, Weka [55], a popular suite of machine learning software, was used
to support the classification experiments. The “no free lunch” theorem suggests that no
single learning algorithm outperforms all the others across all possible problems [56]. This
implies that the selection of a learning algorithm should be informed by its effectiveness
in addressing the specific problem at hand and the distinctive characteristics of the data
associated with that problem.
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5.1. Model Identification

Prior to evaluating the hierarchical classification methods, it is necessary to identify
which models are to facilitate the experiments herein based on their performance and ability
to predict emotions within the text when no hierarchical structure is considered. This also
forms the baseline for comparison when extended hierarchical measures are applied in
Section 5.2.

As such, a variety of classifiers distributed as part of Weka were applied regarding the
final dataset of 394,559 tweets discussed in Section 3.3 and evaluated using 10-fold cross-
validation using their default hyper-parameters. The classifiers used herein were chosen
for their capability to handle multi-class classification tasks and manage high-dimensional
feature spaces effectively. This selection encompassed both generative models, which either
account for conditional dependencies within the dataset or operate under the assumption
of conditional independence (e.g., Bayesian Network and Naive Bayes), and discriminative
models, which focus on maximising information gain or directly assign data points to
their respective classes without assuming any underlying probability distribution or data
structure (e.g., J48 Decision Tree and Support Vector Machines (SVMs)).

The performance of text classification methods can be measured in several ways.
In this paper, we are interested in measuring the performance of the final classification
results, i.e., the correctness of assigning categories to a set of documents. Based on the
standard P, R, and F for each class (Equation (1)), in this paper, the performance of the
class label space is obtained using macro-average metrics. A macro-average independently
computes a metric for each class and subsequently treats all classes equally by calculating
the overall average. In this case, and as the distance, depth, and semantic-based hierarchical
classification methods produce metrics for each class, the results in this paper report macro-
average P, R, and F.

Table 4 demonstrates the results following 10-fold cross-validation. From a range of
learning methods, the Naive Bayes classifier achieved the highest F of 28.97%. J48 Decision
Tree and SVM were also able to achieve F scores of 20.67% and 13.57%, respectively.
The Simple Logistic and Random Forest models failed to complete classifications after
running for 2 days. This may be because, due to the size of the dataset, the hardware used
to run the models may not have been sufficient for the increased computational load. Given
the large number of class labels, the poor performance of each classifier is intuitive. The aim
of this paper is to maximise the performance of such classifiers by addressing hierarchical
classification in its true form by considering the full structure of the class hierarchy. In this
case, as Naive Bayes, J48 Decision Tree, and SVM achieved the highest cross-validation
results, we proceeded to investigate whether hierarchical classification methods can be
used to capture the characteristics of WordNet-Affect.

Table 4. 10-fold cross-validation results (N/A indicates no results were able to be reported).

Classifier P R F

Naïve Bayes 27.79 42.11 28.97

J48 Decision Tree 33.48 17.35 20.67

SVM 26.34 11.35 13.57

One R 3.36 0.43 0.48

Bayesian Network 0.02 0.11 0.03

ZeroR 0.02 0.11 0.03

Random Forest N/A N/A N/A

Simple Logistic N/A N/A N/A
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5.2. Hierarchical Classification Experiments

From the final dataset of 394,559 tweets discussed in Section 3.3, a random subset
of approximately 60% (236,735 tweets) of the dataset was selected for training, with the
remaining 20% (78,912 tweets) used for testing and 20% (78,912 tweets) used for validating
the model. Each aforementioned classifier was trained and first evaluated against the
testing and validation datasets using a flat hierarchical approach. The prediction output
from the classification method was then used to evaluate the performance of the remaining
four classification methods discussed in Section 4.

Tables 5–7 report the performance for each hierarchical classification method when
applied to the predictions made by the Naive Bayes, J48 Decision Tree, and SVM models
against the testing and validation datasets. With F scores of as low as 1.63%, the results
demonstrate, for each classifier, that the flat hierarchical classification approach using
traditional evaluation metrics achieved the lowest performance.

Table 5. Classification results using Naive Bayes.

Testing Validation

Method P R F P R F

Flat hierarchical 8.30 9.74 7.33 8.46 9.83 7.53

Relational-based 52.22 50.85 51.19 52.92 51.19 51.60

Distance-based 46.42 41.78 34.82 38.63 71.86 38.75

Depth-based 77.45 77.49 74.79 77.70 77.19 74.78

Semantic-based 18.78 21.42 13.03 20.26 23.08 13.45

Table 6. Classification results using J48 Decision Tree.

Testing Validation

Method P R F P R F

Flat hierarchical 1.98 1.72 1.69 1.86 1.69 1.63

Relational-based 36.38 37.09 36.41 36.09 36.73 36.05

Distance-based 48.38 87.08 58.06 26.88 58.65 33.52

Depth-based 64.69 86.28 71.99 65.46 86.26 72.67

Semantic-based 21.02 20.49 12.51 17.79 19.64 11.03

Table 7. Classification results using SVM.

Testing Validation

Method P R F P R F

Flat hierarchical 17.88 9.18 10.73 17.35 9.22 10.70

Relational-based 72.07 71.36 71.63 72.47 71.84 72.05

Distance-based 76.75 37.50 38.25 38.68 27.21 59.05

Depth-based 61.23 94.97 73.03 61.38 94.89 73.15

Semantic-based 34.98 29.50 21.08 33.90 29.94 20.71

The extended methods that consider the hierarchical characteristics of WordNet-
Affect demonstrate to improve the overall classification performance. In particular, when
the depth-based classification approach is applied, the performance of Naive Bayes is
significantly improved by 67.46 and 67.25 percentage points (from 7.33% to 74.79% for the
testing data and 7.53% to 74.78% for the validation data), J48 Decision Tree by 70.30 and
71.04 percentage points (from 1.69% to 71.99% for the testing data and 1.63% to 72.67% for
the validation data), and SVM by 62.30 and 62.45 percentage points (from 10.73% to 73.03%
for the testing data and 10.70% to 73.15% for the validation data).



Big Data Cogn. Comput. 2024, 8, 38 14 of 18

These results are a consequence of both the distribution of tweets annotated with
emotions across the WordNet-Affect hierarchy (see Table 1), where a large percentage of
the emotions are located on the second, third, and fourth hierarchical levels, as well as
the performance of the flat classification approach, which often predicted emotions that
were close to one another (e.g., Ca = Sad, Cp = Upset and Ca = Happiness, Cp = Exciting).
Subsequently, a large percentage of the predictions for each classifier and for both the
testing and validation datasets conformed to the threshold of the degree of misclassification
set in Section 4.4. Table 8 reports that more than 50% of each dataset did not go beyond
this threshold.

The distance-based method also improved the overall classification performance.
In particular, the performance of J48 Decision Tree was improved by 56.36 percentage
points (from 1.69% to 58.05% for the testing data) and SVM by 48.35 percentage points
(from 10.70% to 59.05% for the validation data). As the classification behaviour of the
distance-based method is similar to the depth-based approach, the reasoning behind the
increase in results is also applicable here. However, this approach did not increase the
classification performance as much as the depth-based approach. This may be explained
by the threshold of the degree of misclassification set in Section 4.3. For instance, for the
depth-based approach, Ca = Emptiness, Cp = Negative is considered as conforming to the
threshold as the summation of the weights between them is less than 0.5. Meanwhile, in
the distance-based approach, they do not conform to the threshold as the distance between
them in the hierarchy is greater than three. Such behaviour, therefore, contributes to the
overall classification performance.

Table 8. Distribution of predictions conforming to the threshold of the degree of misclassification for
the depth-based method.

Testing Validation Testing Validation

Classifier No. of Tweets Percentage of Tweets

Naive Bayes 49,985 49,777 63.34 63.08

J48 Decision Tree 42,357 41,857 53.68 53.04

SVM 61,153 61,278 77.50 77.65

When the relational-based method is applied, the overall classification performance of
the Naive Bayes approach is significantly improved by 43.86 and 44.07 percentage points
(from 7.33% to 51.19% for the testing data and 7.53% to 51.60% for the validation data), J48
Decision Tree by 34.72 and 34.42 percentage points (from 1.69% to 36.41% for the testing
data and 1.63% to 36.05% for the validation data), and SVM by 60.90 and 61.35 percentage
points (from 10.73% to 36.41% for the testing data and 10.70% to 36.05% for the validation
data). The increase in classification performance is also intuitive as generalising emotions
to their parent node reduces the class label space to four classes (Positive, Negative, Am-
biguous, and Neutral), and, in turn, reduces the opportunity for misclassification. However,
the relational-based method did not achieve as much of an increase in its classification
performance in comparison to the depth-based approach. This may be explained by the
fact that, although the flat classification approach predicted emotions close to one another,
misclassifications often occurred. In particular, Naive Bayes incorrectly predicted 24.47%
and 24.78% of the instances from the testing and validation datasets, respectively, and J48
Decision Tree incorrectly predicted 35.99% and 36.48% of the instances from the testing and
validation datasets, respectively. Subsequently, such misclassifications negatively affect the
overall performance of the classifiers.

The semantic-based approach did not report a significant improvement in the classifi-
cation performance of each classifier. The SVM incurred the maximum increase of 10.35
percentage points (from 10.73% to 21.08% for the testing data). This may be a consequence
of the original flat classification approach, which often predicted emotions that were too
dissimilar (e.g., Ca = Worried, Cp = Hopefully). Subsequently, such dissimilarity nega-
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tively affected the average cosine similarity (Equation (8)) and contributed to the overall
performance of the classifiers.

6. Conclusions

In the literature, the performance of emotive text classification using affective hierar-
chical schemes is often evaluated using the same traditional measures used to evaluate the
performance when a finite set of isolated classes are used. However, this means the full
characteristics of the emotive hierarchical scheme and the relationships between the entities
within the hierarchy are not considered, and, thus, the overall classification performance is
inaccurately reported.

To address the aforementioned limitation, this paper provided a comparative investi-
gation of how hierarchical classification methods that extend traditional evaluation metrics
to consider the hierarchical classification scheme can improve the performance of the classi-
fication of emotive texts, as well as classify fine-grained emotions that are not limited to a
finite number of classes. This enables more implicit emotions to be identified, which is an
important factor to consider in a range of use cases that rely on emotion classification.

To support the experiments presented herein, a dataset of emotive tweets was used
to train and test widely used supervised machine learning classifiers. The testing and
validation data were presented to a range of popular and widely used classifiers, including
Naive Bayes, J48 Decision Tree, and SVM. The prediction output from each classifier was
used to evaluate the performance of four extended hierarchical classification evaluation
metrics. Overall, the results demonstrated that each hierarchical method improved the
emotion classification results. The most notable improvement was recorded when a depth-
based method was applied, where, for each classifier, the results improved by around
70 percentage points. This is an indication that such an approach should be adopted when
classifying texts with emotions from a hierarchical scheme.

7. Future Work

The research presented herein has laid a foundational framework for evaluating hi-
erarchical classification metrics in the context of emotive text classification. This work
has the potential to more accurately reflect the performance of classifiers on datasets with
inherent hierarchical structures. As part of future work, there is an opportunity to push the
boundaries of this research by not only using hierarchical metrics for evaluation but also
by incorporating these metrics directly into the classifiers and training methodologies. This
may include modifying classifier architectures to inherently understand and leverage hier-
archical relationships within data. By adjusting the model’s last layer or the loss function
to account for penalising mistakes in a way that is proportional to their severity in the
hierarchical context, classifiers would inherently prioritise the hierarchical structure of
the data, leading to improved classification accuracy and more informative error analysis.
The training process itself presents an opportunity for improvement. Integrating hierarchi-
cal metrics into the training regime could encourage models to prioritise the preservation of
hierarchical relationships, possibly leading to more robust generalisation across hierarchy
levels. This is particularly impactful when considering emotive hierarchies, where the
relationships between classes carry semantic meaning.
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