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Abstract 34 

 35 

In response to a growing interest in refining brain connectivity assessments, 36 

this study focuses on integrating white matter fibre-specific microstructural 37 

properties into structural connectomes. Spanning ages 8-19 years in a 38 

developmental sample, it explores age-related patterns of microstructure-informed 39 

network properties at both local and global scales. 40 

 41 

First the diffusion-weighted signal fraction associated with each tractography-42 

reconstructed streamline was constructed. Subsequently, the Convex 43 

Optimization Modelling for Microstructure-Informed Tractography (COMMIT) 44 

approach was employed to generate microstructure-informed connectomes from 45 

diffusion MRI data. To complete the investigation, network characteristics within 46 

eight functionally defined networks (visual, somatomotor, dorsal attention, ventral 47 

attention, limbic, frontoparietal, default mode, and subcortical networks) were 48 

evaluated. 49 

 50 

The findings underscore a consistent increase in global efficiency across child 51 

and adolescent development within the visual, somatomotor, and default mode 52 

networks (p<.005). Additionally, mean strength exhibits an upward trend in the 53 

somatomotor and visual networks (p<.001). Notably, nodes within the dorsal 54 

and ventral visual pathways manifest substantial age-dependent changes in 55 

local efficiency, aligning with existing evidence of extended maturation in these 56 

pathways. The outcomes strongly support the notion of a prolonged 57 

developmental trajectory for visual association cortices. 58 

 59 

This study contributes valuable insights into the nuanced dynamics of 60 

microstructure-informed brain connectivity throughout different developmental 61 

stages. 62 

  63 
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1. Introduction 64 

 65 

The transition from childhood to adolescence is a period of profound 66 

neurobiological and cognitive development where the human brain undergoes 67 

significant changes to refine neural substrates prior to adulthood (Blakemore & 68 

Choudhury, 2006). Essential to this process are the white matter pathways 69 

that form a structural scaffold facilitating connections and communication 70 

between cortical regions. Their development follows a stereotypical pattern of 71 

myelination, which closely mirrors the functional capacity of neural systems. 72 

For example, primary sensory, motor and visual pathways typically complete 73 

myelination by the first two years of life (Deoni et al., 2015), whereas frontal 74 

and temporal association regions continue to develop well into adulthood, with 75 

peak myelination happening in the second decade of life (Bartzokis et al., 76 

2012; Yakovlev & Lecours, 1967). The process of axonal development is less 77 

clear, with early ex vivo studies indicating stabilization of corpus callosum 78 

axonal count by six months of age (LaMantia & Rakic, 1990) and further 79 

work indicating changes to axonal and myelin properties at pubertal onset 80 

(Genc et al., 2023; Juraska & Willing, 2017; Paus, 2010).  81 

 82 

Developmental studies using magnetic resonance imaging (MRI) have revealed 83 

that white matter volume steadily increases over childhood and adolescence 84 

(Giedd et al., 1999; Lenroot & Giedd, 2006), likely by way of coupled radial 85 

growth of the axon and myelin sheath. In tandem, functional MRI (fMRI) 86 

studies suggest a greater degree of temporal network connectivity, which 87 

remodels from infancy to early adulthood (Grayson & Fair, 2017). Early in 88 

childhood, sensorimotor systems become well integrated and coordinated, and 89 

show little change into adulthood (Gu et al., 2015). Later in adolescence, 90 

functional hubs such as fronto-parietal, attentional and salience networks 91 

become increasingly segregated, allowing for flexibility as the adolescent brain 92 

becomes more adaptable to increase performance and efficiency (Danielle S 93 

Bassett et al., 2011). 94 

 95 

Diffusion magnetic resonance imaging (dMRI) has enabled novel discoveries in 96 

spatial and temporal patterns of white matter fibre development (Geeraert et 97 

al., 2019; Genc et al., 2018; Herting et al., 2017; Lebel & Beaulieu, 2011; 98 

Palmer et al., 2022; Tamnes et al., 2018). Structural connectivity has been 99 

studied using diffusion MRI tractography (Hagmann et al., 2007) to reconstruct 100 

white matter pathways or connections between nodes of interest (e.g., between 101 
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distinct predefined cortical regions). Connection strength is commonly defined 102 

using streamline count, i.e., the number of streamlines, derived from 103 

tractography, that run between nodes. However, this notion can be arbitrary, 104 

since streamline count is not biologically informative and can heavily depend 105 

on acquisition and processing parameters (D. K. Jones et al., 2013; Yeh et 106 

al., 2021; Zhang et al., 2022). Recent studies have attempted to improve the 107 

status quo in determining biologically informative determinants of connection 108 

strength using diffusion MRI (Smith et al., 2020; Zhang et al., 2022), 109 

however, the question remains: which measures are optimally informative? 110 

 111 

To define more informative edge weights for the structural connectome, the 112 

‘tractometry’ approach was introduced in (Bells et al., 2011; Jones et al., 113 

2006; Kanaan et al., 2006) and employed to study typical white matter 114 

development (Chamberland et al., 2019). This approach includes the mapping 115 

of microstructural measures along tractography-reconstructed pathways and 116 

computing average values for quantitative comparisons between measures. A 117 

challenge arises when multiple bundles pass through the same imaging voxel 118 

(an extremely prevalent phenomena; see Jeurissen et al. (2013); Schilling et 119 

al. (2022)) leading to biased measures assigned to each constituent bundle 120 

(Schiavi et al., 2022). The Convex Optimization Modelling for Microstructure 121 

Informed Tractography (COMMIT) (Daducci et al., 2015; Daducci et al., 2013) 122 

approach address this problem by deconvolving specific microstructural features 123 

on each streamline to recover individual contributions to the measured signal. 124 

By replacing the commonly used streamline count with intra-axonal signal 125 

fraction (IASF), it offers a quantitative and more biologically informative 126 

assessment of brain connectivity (Bergamino et al., 2022; Gabusi et al., 2022; 127 

Schiavi et al., 2022; Schiavi, Ocampo-Pineda, et al., 2020; Schiavi, Petracca, 128 

et al., 2020). 129 

 130 

To investigate age-related differences in structural connectivity among various 131 

canonical or domain-specific networks, graph theory provides a powerful 132 

analytical tool (Fornito et al., 2016; Zhang et al., 2022). Graph theoretical 133 

analysis permits the computation of networks at different levels of organization 134 

(Fornito et al., 2016; Yeh et al., 2021), using measures classified as (i) local 135 

(quantifying properties of individual nodes), (ii) mesoscale (describing 136 

interconnected clusters of nodes); and (iii) global (describing whole-brain 137 

connectivity properties) (Fornito et al., 2016; Rubinov & Sporns, 2010). At the 138 

global scale, graph measures reveal how the brain’s structural wiring facilitates 139 
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information communication between distant regions and cognitive systems. While 140 

structurally connected regions can communicate directly, signal propagation 141 

between unconnected nodes requires a sequence of one or more intermediate 142 

connections (Zhang et al., 2022). Thus, investigating these measures across 143 

and between predefined cognitive systems during development can shed light 144 

on the structural mechanisms behind functional expression (Seguin et al., 145 

2019). 146 

 147 

Given it has been shown that white matter microstructure, at the voxel and 148 

tract level, continues to develop well into the third decade of life (Lebel & 149 

Beaulieu, 2011; Lebel & Deoni, 2018), we were interested in studying how 150 

network properties mature from childhood to adolescence when weighted by 151 

their microstructural properties. Here we construct microstructure-informed 152 

connectomes and study age-related patterns of commonly-used local and global 153 

structural brain network properties in a typically developing sample aged 8-19 154 

years.  155 

 156 

 157 

2. Materials and methods 158 

2.1. Participants 159 

 160 

We enrolled a sample of typically developing children and adolescents aged 161 

8-19 years recruited as part of the Cardiff University Brain Research Imaging 162 

Centre (CUBRIC) Kids study, with ethical approval from the School of 163 

Psychology ethics committee at Cardiff University. Participants and their 164 

parents/guardians were recruited via public outreach events, and written 165 

informed consent was obtained from the primary caregiver of each child 166 

participating in the study. Adolescents aged 16-19 years additionally provided 167 

written consent. Children were excluded from the study if they had non-168 

removable metal implants, or a reported history of a major head injury or 169 

epilepsy. All procedures were conducted in accordance with the Declaration of 170 

Helsinki. A total of 88 children (Mean age = 12.6, SD = 2.9 years) were 171 

included in the current study (46 female). 172 

 173 

 174 

2.2. MRI acquisition 175 

 176 
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Images were acquired on a 3T Siemens Connectom system with ultra‐strong 177 

(300 mT/m) gradients. As described in (Genc et al., 2020), the protocol 178 

comprised: (a) a 3D Magnetization Prepared Rapid Gradient Echo (MPRAGE) 179 

for structural segmentation (TE/TR = 2/2300ms; voxel size 1×1×1mm3); (b) 180 

multi‐shell dMRI acquisition (TE/TR = 59/3000 ms; voxel size = 2×2×2mm3) 181 

with b[500, 1200, 2400, 4000, 6000] s/mm2 in 30, 30, 60, 60, 60 directions 182 

respectively and additional 14 b = 0 s/mm2 volumes. Diffusion MRI data were 183 

acquired in an anterior-posterior phase-encoding direction, with one additional 184 

posterior-anterior volume. 185 

 186 

2.3. MRI processing 187 

 188 

A summary of image processing steps is illustrated in Figure 1. T1-weighted 189 

data were processed using FreeSurfer version 6.0 190 

(http://surfer.nmr.mgh.harvard.edu) to derive a white matter mask and parcellate 191 

the cortical grey matter according to the Destrieux atlas (Destrieux et al., 192 

2010). Next, we registered the Yeo functional atlas (Yeo et al., 2011) in MNI 193 

space to each individual subject’s space using a non-linear transformation as 194 

implemented in FNIRT of FSL (Smith et al., 2004). This allowed us to obtain 195 

eight functionally relevant cortical canonical networks (herein referred to as 196 

“Yeo7”) for further interrogation (visual, somatomotor, dorsal attention, ventral 197 

attention, limbic, frontoparietal, default mode network, subcortical). Subsequently, 198 

we grouped regions of interest (ROIs) from the Destrieux atlas into the eight 199 

Yeo atlas networks. To merge the two atlases within each subject, we 200 

employed a data-driven approach (see Baum et al. (2017)). Briefly, each 201 

parcellated brain region was assigned to one of eight canonical functional 202 

brain networks (Yeo et al., 2011) by considering the maximum number of 203 

voxels in the intersection between the masks. We ensured that the same 204 

overlap was confirmed in the homologous ROIs and for at least 80% of the 205 

enrolled subjects, discarding any Destrieux ROIs that did not meet these 206 

criteria. The final subdivision can be seen in Figure 2 and Table S2. Finally, 207 

we linearly-registered the T1-weighted images and the corresponding 208 

parcellations on dMRI data using FLIRT (Jenkinson et al., 2002) with 209 

boundary-based optimization (Greve & Fischl, 2009). To investigate whether 210 

any result was robust against atlas choice, we repeated the same process 211 

with cortical parcellation using the Desikan-Killany atlas (Desikan et al., 2006) 212 

and by grouping nodes into five distinct lobes (frontal, parietal, temporal, 213 

occipital, subcortical). 214 

http://surfer.nmr.mgh.harvard.edu/
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 215 

Diffusion MRI data were pre-processed as detailed in Genc et al. (2020). 216 

Briefly the preprocessing pipeline involved FSL (Smith et al., 2004), MRtrix3 217 

(Tournier et al., 2019), and ANTs (Avants et al., 2011) tools using the 218 

following steps: denoising (Veraart et al., 2016); slice-wise outlier detection 219 

(Sairanen et al., 2018); and correction for drift (Vos et al., 2017); motion, 220 

eddy, and susceptibility-induced distortions (Andersson et al., 2003; Andersson 221 

& Sotiropoulos, 2016); Gibbs ringing artefact (Kellner et al., 2016); bias field 222 

(Tustison et al., 2010); and gradient non-uniformities (Glasser et al., 2013; 223 

Rudrapatna et al., 2021). We performed multi-shell multi-tissue constrained 224 

spherical deconvolution (MSMT-CSD; Jeurissen et al. (2014)) and generated a 225 

whole-brain probabilistic tractogram seeding from the white matter comprising 3 226 

million streamlines (Tournier et al., 2010). 227 

 228 

We then applied COMMIT (Daducci et al., 2015, 2013) using a stick-zeppelin-229 

ball model (Panagiotaki et al., 2012) to effectively filter out implausible 230 

connections while obtaining the intra-axonal signal fraction for each streamline, 231 

as described in Schiavi, Petracca, et al. (2020). For a set of fixed intra- and 232 

extra- axonal diffusivities, we assume that the IASF is constant along the 233 

streamline. To set the diffusivity parameters in COMMIT, we performed voxel-234 

wise estimations in one younger participant (8-year-old female) and one older 235 

participant (17-year-old female). In the white matter, diffusivities had minimal 236 

variation between the younger and older participant (Table S1). As a result, 237 

for all subjects we set the following diffusivities dpar=dpar_zep=1.7×10-3 mm2/s, 238 

dperp=0.61×10-3 mm2/s, diso in [1.7,3.0]x10
-3 mm2/s for all participants. 239 

 240 

For each subject, the connectomes were built using nodes from the individual 241 

T1-based parcellation by assigning the total IASF associated to each bundle 242 

as edge-weights as in Schiavi, Petracca, et al. (2020) and Gabusi et al. 243 

(2022). Briefly, for each subject, the microstructure-informed connectomes (i.e., 244 

obtained using COMMIT weights reflecting IASF associated to each streamline 245 

as entries) were built using the GM parcellation described above and 246 

computing the weighted average intra-axonal signal contribution of each bundle: 247 

 248 𝑎𝑖𝑗 = ∑ 𝑥𝑖𝑗𝑘 ∙ 𝑙𝑘    𝑁𝑖𝑗𝑘=1∑ 𝑙𝑘𝑁𝑖𝑗𝑘=1𝑁𝑖𝑗
 249 

 250 
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where 𝑖, 𝑗 are the indices of ROIs connected by the bundle, 𝑁𝑖𝑗 is bundle’s 251 

number of streamlines, 𝑥𝑖𝑗𝑘 is the weight of the streamline, 𝑘, obtained by 252 

COMMIT, and 𝑙𝑘, its length. In this way, each entry contained the total IASF 253 

associated to the bundle given by the weighted average of the streamline 254 

contribution multiplied by its length and divided by the average length of the 255 

bundle. 256 

 257 

2.4. Network analysis  258 

 259 

To investigate the relationship between network characteristics and age, we 260 

used the Brain Connectivity Toolbox for Python (Rubinov & Sporns, 2010) to 261 

compute the following weighted network measures:  262 

 263 

• Modularity according to Newman’s spectral community detection 264 

(Newman, 2013) with resolution parameter gamma=1; 265 

• Global efficiency as the average of the inverse shortest path length 266 

(Rubinov & Sporns, 2010); 267 

• Local efficiency as the global efficiency computed on the neighbourhood 268 

of the node (Rubinov & Sporns, 2010) 269 

• Clustering coefficient as the mean of a node’s clustering coefficient 270 

computed as the average intensity of triangles around each node; and 271 

• Mean strength as the average of all the nodal strengths, computed as 272 

the sum of the weights of links connected to the node. 273 

 274 

We computed these global network measures for the entire connectome, and 275 

again using smaller graphs containing only the nodes within each subnetwork 276 

of the Yeo7 atlas. 277 

 278 
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2.5. Age-relationships 279 

To investigate age-related patterns of network characteristics across the eight 280 

Yeo7 networks and five lobes, we applied linear mixed effects modelling using 281 

lme4 (Bates et al., 2015) in R (RStudio v3.4.3). We built a linear model 282 

which included age (linear term), sex and Yeo7 network as predictors, with 283 

intracranial volume (ICV) included as a covariate. We examined four network 284 

characteristics (modularity, global efficiency, clustering coefficient, mean strength) 285 

and compared the fit of the standard linear model with alternative models that 286 

incorporated interaction terms. To identify the most appropriate model, we used 287 

the Akaike Information Criterion (AIC) (Akaike, 1974), selecting the model with 288 

the lowest AIC as the most parsimonious. Individual general linear models 289 

were run to determine age-related differences in specific network characteristics 290 

in all eight Yeo7 networks. Evidence for an association was deemed 291 

statistically significant when p < .005 (Benjamin et al., 2018).  292 

 293 

2.6. Feature importance 294 

 295 

To identify locally important nodes that contribute to developmental patterns 296 

within networks (identified in section 2.5), we performed age-prediction using 297 

linear regression and ElasticNet regularization in scikit-learn (i.e., L1 and L2 298 

penalties). We investigated feature importance using the ROIs comprised in 299 

each network for age-prediction of local efficiency. First, we randomly split the 300 

data into training and validation sets using an 80-20 ratio, resulting in 80% 301 

of the data being allocated for training purposes and the remaining 20% for 302 

model evaluation (total N=88: 70 training; 18 testing). Then, we performed 303 

feature scaling to ensure that all variables were on a similar scale. To 304 

assess the generalization performance of the ElasticNet model and to prevent 305 

overfitting, we employed a 5-fold cross-validation approach. We performed a 306 

grid search to determine the optimal values for the L1 ratio ([0.1, 0.5, 0.7, 307 

0.9, 0.95, 0.99, 1]) based on the regression coefficient (R2).  308 

 309 

The performance of the model was assessed using the validation dataset. 310 

Finally, the features with the largest weight coefficients were extracted to 311 

identify specific cortical regions driving age-relationships in local network 312 

efficiency. 313 

 314 

 315 
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 316 
 317 

Figure 1: Workflow for constructing structural connectivity networks based on 318 

COMMIT derived streamline weights: a) MRI data were acquired on a 3T 319 

system with 300 mT/m gradients; b) T1 and dMRI data were pre-processed; 320 

c) canonical cortical networks derived from a functional atlas (Yeo et al., 321 

2011) were co-registered to individual subject space; d) COMMIT (Daducci et 322 

al., 2015, 2013) was applied using a stick-zeppelin-ball model to filter out 323 

implausible connections, where computed weights reflect the intra-axonal signal 324 

fraction of each connection (brighter values = higher IASF); e) interconnected 325 

nodes coloured by canonical cortical network; f) connectivity matrix 326 

demonstrating connection strength between nodes within in each network 327 

(brighter values = higher IASF).  328 

 329 

3. Results 330 

 331 

3.1. Global network characteristics 332 

 333 

Linear models revealed a positive relationship between age and modularity (R2 334 

= .08, p = .002), global efficiency (R2 = 0.31, p < 0.001) and mean strength 335 

(R2 = .38, p < .001) (Figure 2b). The relationship between age and clustering 336 

coefficient was not statistically significant (R2 = .16, p = .02). As shown in 337 

the circle plot in Figure 2a, we also noted strong intra-regional connectivity 338 
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and strength within the visual and somatomotor networks, indicating robust 339 

interactions among regions within these networks. 340 

 341 

To test whether specific networks were driving these developmental patterns of 342 

network properties, we tested age-by-network interactions using a linear mixed 343 

effects model. The various models tested, and the model selection results are 344 

summarised in Table S3. The best fitting model for all four graph measures 345 

included an age by network by sex interaction term. We observed significant 346 

age-by-network interactions in modularity (F = 6.6, p < .001), global efficiency 347 

(F = 6.7, p < .001), clustering coefficient (F = 3.3, p = .002), and mean 348 

strength (F = 23.9, p < .001). As these results indicated that there were 349 

age-related differences in network properties between the networks, we 350 

performed subsequent analyses to test for age associations within networks, to 351 

discern whether developmental patterns differed regionally. The various networks 352 

tested and their corresponding anatomical tractography depictions are illustrated 353 

in Figure 2c. 354 

 355 

 356 
 357 
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Figure 2: Relationship between age and global network measures computed for 358 

the whole connectome realized with Destrieux parcellation. a) Interconnected 359 

nodes obtained using the intra-axonal signal fraction estimated with COMMIT, 360 

coloured by canonical cortical network; b) Association between age and 361 

network characteristics between networks (R2 and p-value); c) Depiction of 362 

atlas-derived cortical functional networks and representative white matter tracts 363 

traversing these networks, for an 8-year-old female participant.  364 

 365 

 366 

Figure 3: Spatial representation of the eight canonical cortical networks, with 367 

connections between nodes coloured by strength. 368 

 369 
 370 

3.2. Sub-network characteristics 371 

 372 

We identified regional differences in the age-related development of specific 373 

sub-networks (Table 1 and Figure 4). Through linear regression analyses 374 

within individual networks, we found statistically significant relationships between 375 
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age and global efficiency in the default mode (R2 = .38, p = .001), 376 

somatomotor (R2 = .28, p < .001) and visual networks (R2 = .43, p < .001). 377 

Clustering coefficient was positively associated with age in the visual network 378 

(R2 = .37, p < .001). Moreover, age exhibited a positive association with 379 

mean strength in the somatomotor network (R2 = .33, p < .001) and the 380 

visual network (R2 = .46, p < .001). We also observed a negative association 381 

between age and modularity in the ventral attention network (R2 = .13, p < 382 

.001). These results were replicated when including connection density as a 383 

covariate to each linear model, with the additional correlation observed 384 

between clustering coefficient and age in the somatomotor network (R2 = .63, 385 

p < .001; Table S4). Overall, our results highlight the distinct age-related 386 

developmental patterns in the visual and somatomotor networks. 387 

 388 

Sex differences were observed, where males had higher clustering coefficient 389 

in the visual network (𝛽[95%CI] = .67 [.29, 1.06], p=.0009), and higher mean 390 

strength in the default mode network (𝛽[95%CI] = .71 [.34, 1.08], p=.0002), 391 

compared with females. Sex interactions (slope of M>F) were apparent in 392 

modularity of the limbic network (𝛽[95%CI] = .74 [.31, 1.17], p=.0009). 393 

 394 

To confirm that the age-dependence of visual network properties were 395 

significantly different from other networks, we performed linear mixed-effects 396 

modelling to discern whether age-by-network interactions were significantly 397 

different between the visual network and the seven remaining sub-networks. 398 

Where the age-relationship in the visual network was significantly stronger than 399 

each subsequent network, this is summarised in Table S5 and annotated in 400 

Table 1. In summary, the most marked observations were in network strength, 401 

where the visual network had a significantly stronger age-dependency 402 

compared to each individual network, apart from the somatomotor network 403 

which also had a positive relationship with age.  404 

 405 

Table 1: Summary statistics for the relationship between age and global sub-406 

network characteristics.  407 

Network   Modularity   
Global 

efficiency  

Clustering 
coefficient  

Mean 
strength 

   R2 
p-

value 
 R2 p-value 

 
R2 p-value 

 
R2 p-value 

Default mode .04 .55  .38 .001  .10 .59†  .43 .13† 
Dorsal attention -.03 .81  .06 .41†  .09 .20  .06 .23† 
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Fronto-parietal .07 .66  .03 .58  -.01 .96  .07 .51† 
Limbic .07 .14  .19 .92  .14 .81  .21 .53† 
Somatomotor .01 .75  .28 < .001  .30 .20  .33 < .001 
Subcortical  .08 .27  .03 .26  .01 .72  .02 .47† 
Ventral 
attention .13 < .001 

 
.19 .006 

 
.11 .47† 

 
.22 .12† 

Visual .11 .17   .43 < .001   .37 < .001   .46 < .001 

Note: Adjusted R2 determined using a linear model including age, sex and 408 

total intracranial volume. Bold values indicate p<.005. † denotes a significant 409 

difference in the slope of the age relationship compared with the visual 410 

network. 411 

 412 

 413 
Figure 4: Association between age and network properties within sub-networks. 414 

Significant age relationships are annotated (+++: p<.005). Top panel represents 415 

circle plots of within-network nodes, with brighter yellow connections indicative 416 

of higher mean strength. Nodes within the circle plots are labelled by number 417 

(see Table S2). 418 
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 419 

3.3. Feature importance of local efficiency 420 

 421 

Age prediction of local efficiency in the visual network yielded a regression 422 

coefficient of 0.45 (RMSE: 2.2, p=.001, Figure 5a) on the validation set 423 

(optimal value for L1=0.1). Feature importance in the visual network identified 424 

specific nodes (Figure 5) driving age-related increases in local efficiency. The 425 

10 most sensitive nodes were balanced between hemispheres (5 nodes in 426 

right hemisphere, and 5 in the left) and accounted for 75% of variation in 427 

total weights (of a total of 26 nodes). Figure 5b summarises the regions 428 

ranked by weight, and Figure 5c depicts these regions in axial, sagittal and 429 

coronal views in 3D. Nodes with high feature importance for age clustered 430 

together, including nodes which form the dorsal (left superior occipital gyrus 431 

and middle occipital gyrus and sulcus) and the ventral (right medial occipito-432 

temporal sulcus and gyrus, and right lingual gyrus) visual pathways.  433 

 434 

Age prediction for local efficiency of the somatomotor network yielded a 435 

weaker regression coefficient of 0.10 which was not statistically significant 436 

(p=.10). Feature importance identified specific regions driving age-related 437 

increases in local efficiency. Six nodes balanced between hemispheres (3 438 

nodes in right hemisphere, and 3 in the left) accounted for 70% of the 439 

variation in total weights (of a total of 16 nodes). Nodes with high feature 440 

importance for age included the bilateral precentral gyrus, right postcentral 441 

gyrus, bilateral central sulcus, and left transverse temporal gyrus.   442 

 443 

 444 

 445 
 446 

Figure 5: Feature importance for age-prediction of local network efficiency in 447 

the visual cortex. A) predicted age was significantly associated with actual 448 

age; B) top 10 ranking regions that contributed most to age-related patterns 449 
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displayed on C) axial, sagittal, and coronal glass brain views, where nodes 450 

are scaled and color-coded by weight. Nodes with high feature importance 451 

included left superior and middle occipital gyrus and right medial occipito-452 

temporal gyrus. 453 

 454 

 455 

 456 

4. Discussion 457 

 458 

We used microstructure-informed tractography to investigate global and local 459 

network characteristics in canonical cortical networks among a group of 460 

typically developing children and adolescents. Our study revealed three main 461 

findings: 462 

 463 

First, whole-brain network-based measures of modularity, global efficiency and 464 

mean strength increased with age. This indicates that as children move 465 

through adolescence, the shortest path between nodes (in this case, regions 466 

from the Destrieux parcellation) decreases, resulting in a more efficient transfer 467 

of information. As a result, the nodes tend to cluster together to form hubs, 468 

and the strength of each white matter connection increases with age. These 469 

findings align with known age-related increases in global efficiency during 470 

adolescent development (Baker et al., 2015; Khundrakpam et al., 2013; Koenis 471 

et al., 2018; Van den Heuvel & Sporns, 2013). Additionally, previous white 472 

matter studies have shown substantial increases in intra-axonal signal fraction 473 

with age (Chang et al., 2015; Genc et al., 2020; Palmer et al., 2022), 474 

aligning with our observations of age-related increases in mean strength. 475 

 476 

Second, sub-network analyses revealed specific networks with substantial age-477 

related differences occurring from childhood to adolescence. In the default 478 

mode, somatomotor, and visual networks, global efficiency was higher with 479 

older age. Additionally, clustering coefficient was higher with age in the visual 480 

network, and mean strength was higher with age in the somatomotor and 481 

visual networks. Notably, brain structures, such as the primary visual and 482 

somatomotor cortex have highly organized and specialized structures that are 483 

closely related to their function, such as discriminating visual features 484 

(Wandell, 1999) and performing specific motor functions (Gordon et al., 2023).  485 

 486 
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Together, our findings of age-related maturation of network efficiency and 487 

strength suggests a high degree of integration and communication within motor 488 

and visual processing regions, potentially reflecting the ongoing maturation of 489 

visual information processing and motor coordination capabilities during 490 

development. Our specific findings in the visual network align with previously 491 

observed temporal patterns of white matter microstructural maturation in the 492 

visual cortex (Colby et al., 2011; Genc et al., 2017) which are likely to be 493 

closely linked to age-related increases in axon density in humans (Genc et 494 

al., 2020) and rodents (Juraska & Willing, 2017).  495 

   496 

Age-prediction in the visual cortex pointed to a smaller cluster of five regions 497 

per hemisphere that contributed to >75% of the observed age-related 498 

differences in local network efficiency. Our data driven approach suggests that 499 

connections between nodes in the left dorsal (middle and superior occipital) 500 

visual pathway and the right ventral (middle occipito-temporal) visual pathway 501 

are driving developmental improvements in local network efficiency. The visual 502 

system undergoes early establishment during prenatal development and 503 

continues to mature through life (Gogtay et al., 2004; Knudsen, 2004). While 504 

myelination in the visual cortex is largely completed by the first year of life 505 

(Deoni et al., 2015), recent research indicates that myelination follows a 506 

protracted course in ventral temporal cortices (Natu et al., 2019). Ongoing 507 

intra-cortical myelination of the ventral temporal cortex may underlie MRI-508 

derived estimates of cortical thinning, previously attributed to synaptic pruning 509 

(Gomez et al., 2017; Natu et al., 2019). 510 

 511 

The maturation of association visual cortices supports higher level visual 512 

processing (e.g. recognising and discriminating objects, motion perception etc.) 513 

(Gomez et al., 2018). Our findings align with task-based fMRI studies 514 

involving object and shape recognition tasks, which demonstrate protracted 515 

development of dorsal and ventral visual pathways (Freud et al., 2019; Ward 516 

et al., 2023). These developmental improvements in shape-processing 517 

mechanisms likely contribute to microstructure-specific strengthening of global 518 

network efficiency and strength of white matter connections within the visual 519 

network through child and adolescent brain development. The age-related 520 

increases in local network efficiency in lateral temporo-occipital cortices may 521 

facilitate improvements in visual processing and function between these 522 

association cortices. 523 

 524 
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The myelination of these visual pathways may help to refine and optimize the 525 

neural connections and improve visual processing capabilities. Whilst we did 526 

not directly study myelination here, the intra-axonal signal fraction explains a 527 

significant proportion of the age-related variance in network efficiency and 528 

connection strength. Taken together, our findings suggest that white matter 529 

connections within the visual cortex undergoes protracted development through 530 

childhood and adolescence. While our study primarily focuses on white matter 531 

microstructure for exploring graph-based measures, our observations of higher 532 

efficiency and connection strength with older age is predominantly due to 533 

ongoing microstructural maturation in the visual cortex. 534 

 535 

4.1. Methodological advantages of the current approach 536 

 537 

We employed a data-driven approach to establish correspondence between a 538 

structural parcellation and functional atlas in each participant (Baum et al., 539 

2017). This involved selecting the maximum number of voxels in the 540 

intersection between a smaller cortical region with its corresponding larger 541 

functional network. By ensuring that this overlap was consistent with the 542 

homologous ROIs and in at least 80% of the participants, we generated 543 

canonical cortical networks for the basis of regional graph-based analyses. 544 

 545 

One of the significant advantages of the COMMIT framework is its ability to 546 

assign specific microstructural properties to individual tractography-reconstructed 547 

streamlines, which sets it apart from conventional (voxel-wise or vertex-wise) 548 

approaches. Without taking these factors into account, complex intra-voxel 549 

heterogeneity (Schilling et al., 2022) and nodal size (Danielle S. Bassett et 550 

al., 2011) can bias estimates. By allowing a distribution of microstructural 551 

values to be assigned to a voxel, i.e., the number of values is equal to the 552 

number of unique streamlines passing through the voxel and retained for 553 

analysis, COMMIT offers a more quantitative estimation of network properties. 554 

In the context of graph theory, we can capture the dynamic strengthening 555 

and weakening of connections based on their underlying microstructure, known 556 

to mature rapidly through childhood and adolescence.  557 

 558 

Indeed, when repeating the analysis of age-related differences in network 559 

properties using the reconstructed number of streamlines (NOS) as edge-560 

weights, we observed differences in results. Age-related increases in network 561 

properties were present in the fronto-parietal and somatomotor networks but 562 

absent from the visual and default mode networks (Table S7). Upon further 563 
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investigation, we observed a significant positive relationship between age and 564 

the number of reconstructed streamlines in the fronto-parietal and somatomotor 565 

networks (Table S8) – suggesting that the total NOS may be driving these 566 

age-related increases in network properties. Various factors unrelated to the 567 

underlying microstructure, such as tract shape, length and curvature, can 568 

impact the number of streamlines reconstructed (Derek K Jones et al., 2013; 569 

Maier-Hein et al., 2017). One example is depicted in Figure 2c; in the visual 570 

network the Meyer’s loop of the optic radiation contains fibres which undergo 571 

large turns, which can result in a smaller number of valid streamlines 572 

recovered by tractography and many false positives (Chamberland et al., 573 

2018). As such, we need to exercise caution when interpreting results using 574 

connectomes weighted by NOS. 575 

 576 

Overall, the COMMIT framework offers a nuanced and detailed characterization 577 

of microstructural properties along individual streamlines, countering complex 578 

intra-voxel heterogeneity, making it a powerful tool for a more meaningful 579 

assessment of brain connectivity (Gabusi et al., 2022; Schiavi et al., 2022; 580 

Schiavi, Ocampo-Pineda, et al., 2020; Schiavi, Petracca, et al., 2020). 581 

 582 

4.2. Limitations and future directions 583 

 584 

It is important to acknowledge that certain functional networks utilised in our 585 

study here contain fewer nodes than others, potentially influencing our 586 

interpretations. Although we adopted a robust method to generate reproducible 587 

cortical nodes for each functional network, it resulted in some networks having 588 

a small number of nodes. Using a parcellation method with finer granularity 589 

(Glasser et al., 2016; Schaefer et al., 2017) and replicating analyses in a 590 

larger independent cohort such as the adolescent brain development cohort 591 

(Casey et al., 2018) would be warranted. 592 

 593 

While there is a certain relationship between brain structure and function, 594 

structure-function coupling occurs in a spatially-dependent hierarchical manner 595 

(Baum et al., 2020). The brain is a complex and dynamic organ, with 596 

function influenced by a variety of factors, including structural organisation 597 

(Chamberland et al., 2017) and neural activity. Combining task-based or 598 

resting-state fMRI with microstructure-informed connectomes may better elucidate 599 

structure-function coupling across the developing brain (Suárez et al., 2020). 600 

 601 
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Despite running a ‘gold-standard’ dMRI pre-processing pipeline, susceptibility-602 

induced distortion artefacts may introduce an additional source of variance into 603 

the diffusion MRI data, especially in fronto-parietal regions with an air/bone 604 

interface such as the nasal cavity. Whilst the aforementioned factors may help 605 

explain why we did not observe an age dependence of network-based 606 

measures of brain connectivity in regions known to remodel in adolescence 607 

(e.g. the fronto-parietal network), it is known that functional networks that are 608 

in close range demonstrate stronger white matter connectivity (Hermundstad et 609 

al., 2013), which may explain why our findings of global efficiency and mean 610 

strength were confined to the somatomotor and visual networks. Future work 611 

could involve examining changes in edge weight and connection density of 612 

short vs long-range connections in younger vs older participants which might 613 

reveal other interesting changes in topology. 614 

 615 

Finally, new frontiers in characterising the developing connectome using 616 

biologically meaningful mathematical models of brain connections are promising 617 

(Akarca et al., 2023; Seguin et al., 2023). Recent updates to the COMMIT 618 

framework offer the opportunity to incorporate additional imaging contrasts, 619 

such as myelin-sensitive contrasts, leading to improved delineation of 620 

anatomically accurate whole-brain tractography (Leppert et al., 2023; Schiavi et 621 

al., 2022).  622 

 623 

5. Conclusion 624 

 625 

Incorporating microstructural information into network analyses has shed light 626 

on distinct regional age-related development of brain networks. Notably, we 627 

observed unique characteristics within the visual network throughout 628 

development, supporting its ongoing maturation, reaffirming previously reported 629 

patterns of protracted development in the dorsal and ventral visual pathways. 630 

Overall, our study demonstrates the power of microstructure-informed 631 

tractography to decipher intricate developmental patterns, reinforcing the 632 

potential for deepening our understanding of brain connectivity and 633 

development.   634 
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8. Supplementary  1060 

8.1. Information 1061 

 1062 

A total of 88 children (Mean age = 12.6, SD = 2.9 years, range= 8 – 19 1063 

years) were included in the current study (46 female). Figure S1 shows the 1064 

age distribution of the cohort. The attending parent was asked to complete a 1065 

brief survey on their demographics and educational attainment. Majority of 1066 

parents (69/88) had completed a university degree (78%), 11 completed a 1067 

certificate or diploma (13%) and 8 respondents completed year 12 or less 1068 

(9%). The Strengths and Difficulties Questionnaire (SDQ) was administered as 1069 

a measure of emotional/behavioural difficulties (Goodman, 1997). In a 1070 

subsample of children and adolescents (N=79, 40 males, 39 females), parent-1071 

reported total scores (summation of all SDQ modules) were generally low 1072 

(mean=6.45, SD=3.90, range=0-19) suggesting low levels of internalising and 1073 

externalising problems in the cohort. 1074 

 1075 

8.2. Figures 1076 

 1077 

 1078 
Figure S1: Age distribution of cohort. 1079 

  1080 
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 1081 

 1082 

Figure S3: Circle plot demonstrating connection strength of canonical networks. 1083 

 1084 

 1085 

 1086 
 1087 

Figure S3: Sex differences in network properties over age. Associations with 1088 

network measures are annotated in terms of difference in absolute values 1089 

(main effect: +++=p<.005, ++=p<.01) and in slope over age (interaction term: 1090 

***=p<.005, **=p<.01). Red: female, blue: male. 1091 
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8.3. Tables 1092 

 1093 

 1094 

Table S1: Voxel-wise diffusivity parameters estimated in a white matter mask 1095 

for one younger (8-year-old) and one older (17-year-old) participant. Values are 1096 

reported as mean (SD). 1097 

 1098 

 da dpar dperp 

Younger  2.27 (0.71) 2.01 (0.57) 0.61 (0.28) 

Older 2.35 (0.62) 1.71 (0.58) 0.62 (0.27) 

 1099 

 1100 

 1101 

Table S2: Regions from the Destrieux parcellation assigned to each canonical 1102 

cortical network. Results for left hemisphere shown (equivalent in right 1103 

hemisphere). Only nodes overlapping the same network in >80% of 1104 

participants were included in the analysis. 1105 

 1106 

Region Name X Y Z Yeo7_name 

2 G_and_S_occipital_inf 23 60 180 visual 
3 G_and_S_paracentral 63 100 60 somatomotor 
4 G_and_S_subcentral 63 20 220 somatomotor 
5 G_and_S_transv_frontopol 13 0 250 dmn 
6 G_and_S_cingul-Ant 26 60 0 dmn 
7 G_and_S_cingul-Mid-Ant 26 60 75 ventralattention 
9 G_cingul-Post-dorsal 25 60 250 dmn 
10 G_cingul-Post-ventral 60 25 25 dmn 
11 G_cuneus 180 20 20 visual 
12 G_front_inf-Opercular 220 20 100 ventralattention 
13 G_front_inf-Orbital 140 60 60 dmn 
15 G_front_middle 140 100 180 frontoparietal 
16 G_front_sup 180 20 140 dmn 
17 G_Ins_lg_and_S_cent_ins 23 10 10 ventralattention 
18 G_insular_short 225 140 140 ventralattention 
19 G_occipital_middle 180 60 180 visual 
20 G_occipital_sup 20 220 60 visual 
21 G_oc-temp_lat-fusifor 60 20 140 visual 
22 G_oc-temp_med-Lingual 220 180 140 visual 
23 G_oc-temp_med-Parahip 65 100 20 limbic 
24 G_orbital 220 60 20 limbic 
25 G_pariet_inf-Angular 20 60 220 dmn 
26 G_pariet_inf-Supramar 100 100 60 ventralattention 
27 G_parietal_sup 220 180 220 dorsalattention 
28 G_postcentral 20 180 140 somatomotor 
29 G_precentral 60 140 180 somatomotor 
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31 G_rectus 20 60 100 limbic 
32 G_subcallosal 60 220 20 limbic 
33 G_temp_sup-G_T_transv 60 60 220 somatomotor 
35 G_temp_sup-Plan_polar 65 220 60 limbic 
38 G_temporal_middle 180 60 60 dmn 
41 Lat_Fis-post 61 60 100 somatomotor 
42 Pole_occipital 140 20 60 visual 
43 Pole_temporal 220 180 20 limbic 
44 S_calcarine 63 180 180 visual 
45 S_central 221 20 10 somatomotor 
46 S_cingul-Marginalis 221 20 100 ventralattention 
48 S_circular_insula_inf 221 20 220 ventralattention 
49 S_circular_insula_sup 61 220 220 ventralattention 
50 S_collat_transv_ant 100 200 200 limbic 
51 S_collat_transv_post 10 200 200 visual 
52 S_front_inf 221 220 20 frontoparietal 
56 S_intrapariet_and_P_trans 143 20 220 dorsalattention 
57 S_oc_middle_and_Lunatus 101 60 220 visual 
58 S_oc_sup_and_transversal 21 20 140 visual 
60 S_oc-temp_lat 221 140 20 dorsalattention 

61 
S_oc-
temp_med_and_Lingual 141 100 220 

visual 

62 S_orbital_lateral 221 100 20 frontoparietal 
63 S_orbital_med-olfact 181 200 20 limbic 
65 S_parieto_occipital 101 100 180 visual 
69 S_precentral-sup-part 21 20 200 dorsalattention 
71 S_subparietal 101 60 60 dmn 
73 S_temporal_sup 223 220 60 dmn 
74 S_temporal_transverse 221 60 60 somatomotor 
76 Left-Thalamus-Proper 0 118 14 subcortical 
77 Left-Caudate 122 186 220 subcortical 
78 Left-Putamen 236 13 176 subcortical 
79 Left-Pallidum 12 48 255 subcortical 
80 Left-Hippocampus 220 216 20 subcortical 
81 Left-Amygdala 103 255 255 subcortical 
82 Left-Accumbens-area 255 165 0 subcortical 

  1107 
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Table S3: Results of mixed-effect model selection for first level global graph 1108 

network analysis. Values reported are Akaike Information Criterion (AIC) of 1109 

each model fit. 1110 

 1111 

Note: Bold indicates lowest AIC for each graph measure; * indicates if the 1112 

age by network term was significant at p<.005 1113 

 1114 

Footnote: Models tested are as follows: 1115 

M1a <- lmer(measure ~ age + sex + network + (1|ID), REML=FALSE, 1116 

data=data) 1117 

M2a <- lmer(measure ~ age * sex + network + (1|ID), REML=FALSE, 1118 

data=data) 1119 

M3a <- lmer(measure ~ age * network + sex + (1|ID), REML=FALSE, 1120 

data=data) 1121 

M4a <- lmer(measure ~ age * sex * network + (1|ID), REML=FALSE, 1122 

data=data) 1123 

M1b <- lmer(measure ~ age + sex + network + ICV + (1|ID), REML=FALSE, 1124 

data=data) 1125 

M2b <- lmer(measure ~ age * sex + network + ICV + (1|ID), REML=FALSE, 1126 

data=data) 1127 

M3b <- lmer(measure ~ age * network + sex + ICV + (1|ID), REML=FALSE, 1128 

data=data) 1129 

M4b <- lmer(measure ~ age * sex * network + ICV + (1|ID), REML=FALSE, 1130 

data=data)  1131 

Model Modularity 
Global 
Efficiency 

Clustering 
Coefficient Mean Strength 

M1a -2816.78 -2549.70 -3792.68 244.49 
M2a -2821.03 -2553.69 -3796.30 237.85 
M3a -2832.02 -2565.74 -3795.91 167.79 
M4a -2860.55 -2575.29 -3814.42 90.46 
M1b -2825.11 -2569.99 -3801.41 215.66 
M2b -2826.42 -2570.17 -3802.19 214.00 
M3b -2840.35 -2586.03 -3804.65 138.97 
M4b -2865.94* -2591.77* -3820.31* 66.60* 
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Table S4: Summary statistics for the relationship between age and global sub-1132 

network characteristics, adjusted for connection density.  1133 

Network   Modularity 
  Global 

efficiency 

 
Clustering 
coefficient 

 
Mean 

strength 

   R2 
p-

value 

 

R2 p-value 

 

R2 
p-

value 

 

R2 p-value 

Default mode 0.07 0.91  0.37 0.003  0.63 0.06  0.43 0.10 
Dorsal 
attention -0.05 0.82 

 
0.06 0.41 

 
0.16 0.19 

 
0.05 0.24 

Fronto-parietal 0.13 0.68  0.12 0.59  0.00 0.95  0.17 0.52 
Limbic 0.08 0.09  0.24 0.80  0.20 0.53  0.31 0.87 
Somatomotor 0.08 0.70  0.27 0.001  0.63 < .001  0.33 < .001 
Subcortical  0.20 0.21  0.03 0.25  0.11 0.74  0.01 0.47 
Ventral 
attention 0.14 0.002 

 
0.19 0.02 

 
0.42 0.22 

 
0.23 0.07 

Visual 0.19 0.05   0.43 < .001   0.57 < .001   0.46 < .001 
Note: Adjusted R2 determined using a linear model including age, sex, total 1134 

intracranial volume and connection density. Bold values indicate p<.005.  1135 

 1136 

 1137 

Table S5: Results from comparison of age-associations of graph measures with 1138 

reference to the visual network. Bold values indicate networks which have 1139 

significantly different slopes to the age-relationship in the visual network, 1140 

generated using linear mixed efforts models. 1141 

 1142 

Network   
Global 

efficiency  

Clustering 
coefficient  

Mean strength 

  t p-value  t p-value  t p-value 

  Visual 
(reference) 

     
 
  

Default mode -1.65 .10  -2.91 .004  -4.08 < .001  
Dorsal attention -2.96 .003  -1.17 .24  -5.25 < .001  
Fronto-parietal -1.64 .10  -1.66 .10  -3.91 < .001  
Limbic -2.04 .04  -1.87 .06  -4.01 < .001  
Somatomotor -0.60 .55  -1.16 .25  -1.78 .08 
Subcortical  -2.19 .03  -2.19 .03  -4.55 < .001  
Ventral attention -1.93 .05   -3.05 .002   -4.34 < .001  
  Somatomotor 
(reference)         
Default mode -1.05 .29  -1.05 .29  -2.30 .02 
Dorsal attention -2.36 .02  -2.36 .02  -3.48 < .001 
Fronto-parietal -1.04 .30  -1.04 .30  -2.13 .03 
Limbic -1.45 .15  -1.45 .15  -2.23 .03 
Subcortical  -1.60 .11  -1.60 .11  -2.78 .006 



Genc et al. 2023Developmental differences in microstructure-informed brain networks – R1 36

Ventral attention -1.33 .18  -1.33 .18  -2.56 .011 
Visual 0.60 .55   0.60 .55   1.78 .08 
Note: model used was the best fitting model deduced from Table S3. 1143 

 1144 
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Table S6: Summary statistics for the relationship between age and network 1145 

statistics computed in parcels obtained from the Desikan Killany atlas for five 1146 

distinct lobes.  1147 

 1148 

Lobe   Modularity   
Global 
efficiency  

Clustering 
coefficient  

Mean strength 

   R2 p-value  R2 p-value  R2 p-value  R2 p-value 

Frontal  0.12 0.82  0.53 < .001†  0.52 < .001  0.60 < .001† 
Parietal  0.09 0.02  0.42 0.002  0.38 0.001  0.45 < .001† 
Temporal  0.06 0.07  0.33 0.25  0.52 0.90  0.36 0.19 
Occipital  0.05 0.21  0.25 0.002†  0.15 0.03  0.29 0.001† 

Subcortical   0.21 0.22   0.03 0.24   0.10 0.76   0.01 0.47 

 1149 

Note: Adjusted R2 determined using a linear model including age, sex, total 1150 

intracranial volume and connection density. Bold values indicate p<.005. † 1151 

indicates statistically significant results without connection density as a covariate 1152 

in the linear model. 1153 

 1154 

 1155 

Table S7: Summary statistics for the relationship between age and global sub-1156 

network characteristics, adjusted for connection density. Computed using 1157 

number of streamlines without COMMIT.  1158 

Network     Modularity     Global efficiency  
  

Clustering 
coefficient    

Mean strength  

     R2  p-value    R2  p-value    R2  p-value    R2  p-value  

Default mode  .13  .12    -.01  .32    .23  .50    -.03  .42  
Dorsal 
attention  .08  .05  

  
.08  .49  

  
.03  .57  

  
.07  .49  

Fronto-parietal  .30  < .001    .33  .002    .38  .004    .42  < .001  
Limbic  -.01  .15    .19  .34    .11  .56    .19  .52  
Somatomotor  .11  .32    .25  < .001    .08  .02    .27  .003  
Subcortical  .27  < .001    .02  .77    .06  .34    .02  .61  
Ventral 
attention  .28  .07  

  
.17  .85  

  
.23  .26  

  
.02  .68  

Visual  .15  .95     .00  .93     .01  .94     .02  .98  

 1159 

 1160 

Table S8: Summary statistics for the relationship between age and number of 1161 

reconstructed streamlines without COMMIT.  1162 

Network     
Number of 
streamlines  

   

     R2  p-value    
Raw whole-brain  0.22  < .001    
Default mode  -0.01  0.49    
Dorsal attention  0.01  0.23    
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Fronto-parietal  0.19  < .001    
Limbic  0.06  0.02    
Somatomotor  0.23  < .001    
Subcortical  0.03  0.07    
Ventral attention  -0.01  0.50     
Visual  -0.01  0.72   

 1163 


