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BACKGROUND: Exposure to green space can protect against poor health through a variety of mechanisms. However, there is
heterogeneity in methodological approaches to exposure assessments which makes creating effective policy recommendations
challenging.
OBJECTIVE: Critically evaluate the use of a satellite-derived exposure metric, the Enhanced Vegetation Index (EVI), for assessing
access to different types of green space in epidemiological studies.
METHODS: We used Landsat 5–8 (30 m resolution) to calculate average EVI for a 300 m radius surrounding 1.4 million households
in Wales, UK for 2018. We calculated two additional measures using topographic vector data to represent access to green spaces
within 300m of household locations. The two topographic vector-based measures were total green space area stratified by type
and average private garden size. We used linear regression models to test whether EVI could discriminate between publicly
accessible and private green space and Pearson correlation to test associations between EVI and green space types.
RESULTS: Mean EVI for a 300m radius surrounding households in Wales was 0.28 (IQR= 0.12). Total green space area and average
private garden size were significantly positively associated with corresponding EVI measures (β = < 0.0001, 95% CI: 0.0000, 0.0000;
β= 0.0001, 95% CI: 0.0001, 0.0001 respectively). In urban areas, as average garden size increases by 1 m2, EVI increases by 0.0002.
Therefore, in urban areas, to see a 0.1 unit increase in EVI index score, garden size would need to increase by 500 m2. The very small
β values represent no ‘measurable real-world’ associations. When stratified by type, we observed no strong associations between
greenspace and EVI.
IMPACT:

● It is a widely implemented assumption in epidiological studies that an increase in EVI is equivalent to an increase in greenness
and/or green space.

● We used linear regression models to test associations between EVI and potential sources of green reflectance at a
neighbourhood level using satellite imagery from 2018.

● We compared EVI measures with a ‘gold standard’ vector-based dataset that defines publicly accessible and private green
spaces.

● We found that EVI should be interpreted with care as a greater EVI score does not necessarily mean greater access to publicly
available green spaces in the hyperlocal environment.
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INTRODUCTION
Exposure to green space in the home neighbourhood has been
associated with positive impacts on physical and mental health
outcomes; including mortality, cardiovascular disease and
well-being [1–3]. Evidence suggests that various behavioural

mechanisms such as viewing and spending time in the green
space supports good health through being physically active,
reducing stress, allowing social connectedness and time to relax
[4, 5]. Factors such as socioeconomic deprivation may modify this
relationship and studies have highlighted inequalities in the
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quality and accessibility to green space [6, 7]. However, long-
itudinal evidence is lacking [8] and there are no accepted
frameworks for quantifying exposure to green space.
Therefore, definitions of exposure to green space are often

nuanced, context‐specific, and application-dependent [9]. Past
epidemiological and public health studies have assessed neigh-
bourhood exposure to green space using many different
measures. Vegetation indices based on remotely sensed data
from satellite imagery [10–12] represent green vegetation and are
widely used as a measure of greenness or green space [13].
Vector-based measures such as land cover maps [14–16], mapping
agency data, crowdsourced data (e.g. openstreetmap) [17] and
local government audits tend to be used to represent area based
measures of exposure to green space such as size of nearest green
space from the home location or proporation of an area-level
boundary that contains green space. Survey data that record self-
reported visits tend to represent exposure to green space as time
spent in a green space or distance travelled to a green space
[11, 18, 19]. Furthermore, different approaches to defining and
managing the green space among local and national government
bodies can present challenges to understanding the impact of
green space on health and well-being outcomes, and for
translating evidence into policy and action [20, 21].
Remote sensing is widely used for extracting information about

the environment [22] through satellite sensors recording reflected
and emitted radiance from the earth’s surface. This radiance is
classified into different wavelength ranges and the reflective
range (0.4–2.5 µm) is used to identify the presence of vegetation
within a pixel. The nature of remotely sensed data means that
there are numerous advantages compared to other approaches
[23]. Data are: easily obtainable for large spatio-temporal ranges;
open-source (e.g. 30 m from Landsat [24]); uniformly collected and
therefore subject to less variability in the way data are defined;
collected for municipal and administrative areas; and able to
measure exposure in an objective and uniform way [25].
Conversely, the challenges of working with satellite data include
spatial and temporal resolution, cloud cover, shadows cast by
buildings in dense urban areas [26], and missing smaller urban
green spaces such as trees and pocket parks found in urban areas
[27, 28]. Furthermore, finding appropriately cloud-free satellite
data at the correct time of year can be particularly challenging for
northern-hemisphere climates. Satellite data processing includes
adjustments and masks to mitigate some issues of cloud cover,
but it remains challenging to work with at a national level and
may lead to exposure misclassification [27].
Satellite-derived vegetation indices (VIs) such as Normalised

Difference Vegetation Index (NDVI), Enhanced Vegetation Index
(EVI), Soil-adjusted Vegetation Index (SAVI) and Leaf Area Index
(LAI) have been found to be positively associated with mental and
physical health outcomes and health-promoting behaviours
[29–33]. However, when defining exposure to green space, VIs
have been implemented as a measure of both exposure to
greenness [34–36] and green spaces [37–40]; with studies
interpreting a greater index score to represent greater access to
green space [41, 42]. Greater VI values have been interpreted as
representing greater access to green space by area because VIs
are indicators of green vegetation which is inherently what makes
a green space. However, VIs are a dimensionless measure of green
reflectance and therefore may not be linearly associated with
2-dimensional measures of access to green space [43]. Recent
studies have begun to acknowledge that there is a difference
between greenness and green spaces when defining exposure to
green space [11, 44, 45]. Despite this, there have been few
attempts to examine the association between VIs and objective
area-based measures of green space [27, 46] to contribute to
understanding what changes in mean VI values mean to policy
makers and planners. As studies begin to investigate muti-
dimensional aspects of green space attributes e.g. type and

quality to understand more specifically how green spaces support
good health and wellbeing, it is important to understand how to
interpret changes in VIs in relation to changes in vegetaion
amount and type [47].

Study overview
We wanted to evaluate the assumption that an increase in EVI is
equivalent to an increase in accessible green space. To do this we
used linear regression models to test associations between EVI and
potential sources of green reflectance at a neighbourhood level
using satellite imagery from 2018. We compared EVI measures with
a ‘gold standard’ vector-based dataset that defines publicly
accessible and private green spaces for 2018. We used EVI because
it was developed to optimise the vegetation signal compared to
NDVI by improving its sensitivity to high biomass regions and
vegetation monitoring by reducing atmospheric noise [48, 49]. This
was pertinent when considering Wales’ climate and topography.
We hypothesised that EVI would be positively associated with

amount of publicly accessible and private green space by area
(m2). For publicly accessible green spaces we predicted that the
association would vary by green space type. Specifically, we
defined our research questions as:

1. Is mean EVI positively associated with green space found
within 300m of households in Wales?

2. Are any associations modified by green space type?
3. Is mean EVI positively associated with private green space

(i.e. average garden size) within 300 m of households
in Wales?

METHODS
Study background
The cross-sectional work reported in this paper was conducted as part of a
wider longitudinal study called the Green-Blue Spaces project [45, 50, 51]
where we developed a national level annual exposure variable for 1.49 million
households over 11 years (2008–2019) using satellite derived EVI. Interpreting
EVI scores in space and over time in relation to different types of green space
was challenging and provoked us to conduct this cross-sectional evaluation to
support the interpretation of the impacts of greenspace on mental health and
wellbeing. We used 300m buffers to coincide with World Health Organisation
guidelines of green space access [52] and implemented a cross-sectional
design for this investgation because we wanted to understand base-line
associations before including more complex methodological considerations in
the study design such as temporally aligning the EVI and aceess to green space
data and seasonal changes in EVI values.

Study area and study subjects
This study was based in Wales (Fig. 1), a small nation (population: 3.17
million people; total area: 20,735 km2) with a moderate sea climate [53].
Wales has relatively mild winters and precipitation all year, with regions of
elevated terrain and coastal exposure to prevailing westerly winds
contributing to its high rainfall and cloud cover. Two thirds of the
population live in cities and urban settlements.

Generating exposure data
Satellite image data processing. We used Landsat 8 (30m resolution) to
create a measure of EVI for every residential address (n= 1.49 million) in Wales
in 2018. We acquired images captured between May and July to temporally
align EVI measures with peak greenness and minimise data gaps through
cloud cover [54]. We pre-processed the images using the Semi-Automatic
Classification Plugin tool in QGIS [55] and applied DOS1 atmospheric
correction to each image [22]. We created cloud masks using the Cloud
Masking for Landsat Products plugin [56] to set pixels covered by cloud in the
satellite imagery to NULL. This prevented these values from influencing the
final greenness metrics. We produced an annual composite image of Wales in
QGIS by mosaicking different coverages together for the same year.
Calculating exposure metrics: EVI was calculated using the red, blue and NIR

reflectance bands found within the Landsat satellite-imagery and processed
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using the vegetation index GRASS tool in QGIS [57]. This resulted in a raster
dataset which contained EVI values for the whole of Wales with a range of −1
(water) to +1 (vegetation) [58], with healthy vegetation values typically found
in the 0.2 to 0.8 range [58]. To assign a neighbourhood EVI exposure value to
each residential address location in Wales (n= 1.49 million), we created a
Euclidean buffer of 300m and created averages of EVI values that were found
in assigned area (area of buffer with 300m radius = 282,743 m2). For coastal
households, the buffer was clipped to the coastline to avoid underestimates of

greenness. Using this buffer layer, we performed an intersection analysis with
the EVI layer to estimate the density of green vegetation (Fig. 2).

Topographic vector data processing. We produced a UK-relevant typology
to classify green spaces for urban and rural areas (supplementary material
Table A, [45]). This addressed the need for typologies that facilitate cross-
disciplinary and inter-sectoral work by developing a peer-reviewed
typology of green space. We consulted with more than 30 stakeholders
from across Wales working in Policy, Planning and the Third Sector to
iteratively develop our final typology. Farmland was not included in the
typology. Although farmland constitutes large areas in rural regions, it is
privately owned land and therefore not publicly accessible. We only
included publicly accessible green spaces and private gardens because our
overarching aim was to contribute evidence about modifiable aspects of
the built environment for planning and policy guidelines. Although private
gardens are not publicly accessible, we included this private green space
as private garden space will make up the majority of green space within
300m of an individual’s home location.
We used topographic vector data from multiple sources to create a map

of green spaces in Wales for 2018. In summary, vector data from the UK’s
national mapping agency (Ordnance Survey’s Master Map [59]) and local
government audits were collated to create a dataset of all publicly
accessible green spaces in Wales [60]. We categorised land parcels
according to the typology (see 2.2) and extracted private garden size from
OS Master Map Wales [61]. Finally, we calculated access to green space in
terms of publicly accessible and private spaces within 300m network
distance of each household in Wales to coincide with World Health
Organisation guidelines [52]. We defined green space access as: (1) the
total area of green spaces (subset by type) and (2) average garden size,
within a 300m linear buffer of the household point location.

Statistical analysis
We employed linear regression to investigate associations between EVI
and total area of green space and average garden size (m2). We stratified
our analyses by urban and rural settings as classified by the Office for
National Statistics (ONS) urban-rural classification [62]. We also used
Pearson correlation to explore the association between EVI green space by
type using our typology.

RESULTS
Table 1 shows the three exposure assessment measures for 1.4 million
households in Wales in 2018. We successfully linked 1.4 million
households (95%) with an EVI and comparator vector-based green
space measures. We lost comparators where garden size metrics
weren’t available (n= 5753) or there was no access point to publicly
accessible green space (n= 60,930), as defined by the typology,
within a 300m network distance of a household. A consort diagram
of data linkage is included in the supplementary material (Fig. A).

Fig. 2 Methodological steps to calculate household level EVI. a represents the raw satellite data which contains 30m × 30m grid squares.
b represents the processed satellite data. Each grid square has been assigned an EVI value. c shows the EVI values overlain with a 300m
circular buffer around a household location.

Fig. 1 Map of Wales including urban and rural regions. The purple
regions with white lines indicate urban areas in Wales. The dark
green regions represent rural areas. Wales shares a boarder with
England, which is represented in a light green colour.
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National temporal and spatial variation
The average EVI for 300m buffers around residential addresses in
Wales was 0.28 (Table 1). This falls within the healthy-vegetation
range for EVI (0.2–0.8). The spatial distribution of household
greenness across Wales is consistent with the theoretical
principles of an EVI estimate, with rural areas having higher EVI
values than urban regions. Figure 3 shows the distribution of
greenness for households. Areas where there are no households
to are shown in white. Figure 3 shows rural areas have higher
average EVI scores than those found in coastal and more

populated areas. The northwest, southwest and mid-Wales have
the highest greenness scores. These are the most rural regions of
the country and there are several managed green spaces,
including national parks, forests found in these areas. Residential
locations in south Wales cities and coastal towns consistently had
the lowest EVI values across the study period.

Associations between EVI values and green space type
Table 2 shows that for a nation-scale model, when total green
space area is 0, EVI is predicted to be 0.24. This is comparable with
the mean EVI of 0.28 reported in Table 1. The Pearson correlation
coefficient is 0.33 and the adjusted r2 highlights that total green
space area accounts for 11% of the variation in EVI for Wales. The
difference between urban and rural mean EVI are described by the
intercept values of 0.25 for urban areas and 0.34 for rural areas. In
urban areas, the Pearson correlation coefficient is 0.57 and the
adjusted r2 highlights that total green space area accounts for
32% of variation in EVI in urban areas. In rural areas, the Pearson
correlation coefficient is 0.26 and the adjusted r2 highlights that
average garden size can account for 7% of the variation in EVI in
rural areas.
Table 4 shows that when average garden size is 0, the model

predicts that EVI will be 0.25 (mean EVI= 0.28, Fig. 1). The Wales-
wide model predicts that when average garden size increases by 1
m2, EVI increases by 0.0001. Conversely, to see a 0.1 unit increase
in EVI index, garden size would need to increase by 100 m2

(average garden size = 275 m2, Table 1). The Pearson correlation
coefficient is 0.45 and the adjusted r2 highlights that average

Fig. 3 Mean EVI scores per household for Wales in 2018. Low EVI values are represented with purples and blues. Higher EVI values are
represented with greens and yellows. The total range of EVI is 0–1.

Table 1. Descriptive statistics for Enhanced Vegetation Index and total
green space area (m2) within 300m of household locations in Wales
and average garden area (m2).

Average EVI Total green
space area
(m2)

Average
garden area
(m2)

Mean 0.28 54,673 275

Standard
deviation

0.10 37,914 331

Minimum 0.00 0.00 0.00

25% 0.22 25,300 140

50% 0.27 47,102 208

75% centile 0.34 76,601 286

Maximum 0.81 276,225 40,349
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garden size can account for 20% of the variation in EVI. This means
that 80% of the variation in EVI cannot be explained by average
garden size alone. The difference between urban and rural mean
EVI are described by the intercept values of 0.21 for urban areas
and 0.33 for rural areas. In urban areas, as average garden size
increases by 1 m2, EVI increases by 0.0002. Therefore, in urban
areas, to see a 0.1 unit increase in EVI index score, garden size
would need to increase by 50 m2. The Pearson correlation
coefficient is 0.40 and the adjusted r2 highlights that averge
garden size accounts for 16% of variation in EVI in urban areas. In
rural areas, average garden size does not contribute to a
measurable increase in EVI (β= 0.0000, 95% CI: 0.0000, 0.0000).
The Pearson correlation coefficient is 0.34 and the adjusted r2

highlights that average garden size can account for 11% of the
variation in EVI in rural areas. The very small β values in Tables 3
and 4 suggest no measurable, real world relationship.
When stratifying total publicly accessible green space by type,

we observed no moderate or strong positive associations with EVI
using Pearson correlation (Table 4).

DISCUSSION
In this paper, we calculated three exposure assessment
measures for a national population located across rural and
urban regions. We compared a satellite-derived greenness
exposure measure (EVI) with two vector-based measures of
access to public and private green space. Our results indicated
that satellite-derived measures such as EVI offer the opportunity
to measure exposure to greenness for populations across large
spatial and temporal scales in an objective and uniform way. EVI
quantifies vegetation greenness and is an indicator of biomass
[63] therefore, greater EVI values may indicate more vegetation
by area and/or by volume (i.e. a greater EVI value does not
necessarily equal a larger green space by area). Therefore, care
should be taken when interpreting defined incremental

changes of EVI (e.g. 0.1 or interquartile range) within a 300 m
buffer zone as it is not possible to translate what incremental
changes in EVI represent beyond changes in overall greenness.
Our results are generalisable for temperate climates in the
Northern Hemisphere.
Our work supports recent findings where a measure of access to

green space was weakly correlated with NDVI [64]. Our results also
support previous research findings that satellite-derived measures
may be the most efficient way to measure population-wide,
longitudinal exposures. Increases in both greenness and access to
green space are positively associated with health outcomes
around the globe [65–68]. Previous findings have reported that a
defined increment of EVI (e.g. 0.1 or interquartile range) within a
300m buffer zone is associated with improvements in health
outcomes [69]. However, these studies do not indicate how these
incremental changes can be translated for policy and practice in
how to specifically modify the built environment to provide
health-promoting environments [47]. Beyond promoting general
greening policy, current evidence is not able to articulate which
modifiable aspects of the built environment should be promoted
or invested in by planners and policy makers. Therefore, the
results of this study are an important contribution in interpreting
epidemiological evidence on the relationship between EVI and
health outcomes.
Our results highlight that EVI values do not readily map on to

planning and policy defined green space types because these
green space types are generally not characterised by a single
vegetation type. This highlights the challenge of translating
vegetation indices into actionable recommendations for planners
and policy makers. Given current data availability for longitudinal
research, satellite data derived EVI measures have limited ability to
identify hyperlocal variations ( < 300m) in public green spaces
where multiple facilities or features may be present within the
vicinity (e.g., a park, roadside trees, or allotments). Our findings
suggest that greenness and total greenspace are not linearly

Table 3. Regression coefficients for Enhanced Vegetation Index and average garden size (m2) for Wales and stratified by urban/rural status.

Coefficient 95% CI P value R Adjusted r2

Wales 0.45 0.20

Intercept 0.2493 (0.249, 0.250) < 0.001

Average garden size (m2) 0.0001 (0.000, 0.000) < 0.001

Urban 0.40 0.16

Intercept 0.2060 (0.206, 0.206) < 0.001

Average garden size (m2) 0.0002 (0.000, 0.000) < 0.001

Rural 0.34 0.11

Intercept 0.3311 (0.331, 0.331) < 0.001

Average garden size (m2) 0.0000 (0.000, 0.000) < 0.001

Table 2. Regression coefficients for Enhanced Vegetation Index and total green space area (m2) for Wales and stratified by urban/rural status.

Coefficient 95% CI P value R Adjusted r2

Wales 0.33 0.11

Intercept 0.2444 (0.244, 0.245) < 0.001

Total green space area (m2) 0.0000 (0.000, 0.000) < 0.001

Urban 0.57 0.32

Intercept 0.1878 (0.188, 0.188) < 0.001

Total green space area (m2) 0.0000 (0.000, 0.000) < 0.001

Rural 0.26 0.07

Intercept 0.3346 (0.334, 0.335) < 0.001

Total green space area (m2) 0.0000 (0.000, 0.000) < 0.001
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related and both measures should be acknowledged as distinct
exposures. It is challenging to produce policy that improves
complex public health issues when there is heterogeneity in the
methods used to defining exposure to greenness and access to
green space [7]. Distinguishing more clearly between greenness
and access to greenspace will help researchers, policy makers and
practitioners to better understand exposures and mechanisms
that drive health outcomes. A further implication of this finding is
that multi-exposure models should be implemented to better
understand the cumulative impact of different aspects of nature
on health outcomes (i.e. household greenness and local neigh-
bourhood access to green spaces). A final implication for future
research is that our study highlights the need to investigate more
detailed features of green spaces including manmade features
(e.g. footpaths, kiosks, toilets).
Estimating green space exposure using satellite imagery was

challenging because Wales does not experience many cloud-free
days; even fewer when considering the cycle of a satellite
recording data. As such we adopted a flexible approach to
estimating EVI (i.e., we used different Landsat sensors to enable
EVI measures to be calculated throughout the study period). We
acknowledge that finer-resolution satellite data may yield different
results, but it was not possible to obtain cloud free images for the
wider study period [45, 50] (2008–2019) with any other open
source satellite data. We found that either the data were not
recorded for the entire study period, or it was not possible to
create an annual image of Wales with the data available. However,
satellite schemes such as Sentinel [70] offer the potential for
higher resolution data and are recorded more frequently from
2016. We also excluded land that was privately owned such as
farmland. Although this rural land type potentially provides
valuable opportunities for exposure (e.g. via views), we chose to
reflect the potential to access a parcel of land. We acknowledge
that ‘accessibility’ is in fact a much more complex construct
dependent on multiple characteristics of spaces, individuals,
communities, and transport/pedestrian networks. Our classifica-
tion is necessarily pragmatic and restricted to the data available at
a national scale. However, it allows a nuanced understanding of
green spaces which can inform the protection, improvement,

management, planning and funding of green and blues spaces. A
final limitation to note was that the EVI buffers were Euclidean
distances, and the access buffers were calculated from 300m
network distance. Although the buffers are not a like for like
comparison in shape, at this scale, we are confident that this did
not significantly impact our results. The buffers were appropriate
representations of how individuals would engage with greenness
(e.g., viewing green space in a straight line) and publicly and
privately accessible green spaces (e.g., walking along a footpath to
a park).
Our study explores associations within the hyperlocal environ-

ment (300 m). Further work should be undertaken to explore
whether the relationships reported remain for other vegetation
indices and commonly defined activity spaces e.g., 500 m, 800m
and 1600 m around the home environment. Future studies should
also focus on qualities of green spaces and facilities within the
green spaces to shed light on which modifiable aspects of green
spaces should be focussed on by planners, to enable local
planning authorities to consider design quality. More could be
drawn from EVI as an indicator of biomass in future studies
because areas of greater biomass tend to be associated with areas
of greater biodiversity [71, 72]. This may prove particularly useful
in providing evidence to support health policy as evidence
suggests that biodiversity may support pathways linked with
positive health outcomes [73].
Satellite-derived measures such as EVI offer the opportunity to

calculate objective and uniformly measured exposures of expo-
sure to green space. There are many advantages of satellite-
derived green space exposures, and currently these are the only
feasible option for studies investigating large spatial and temporal
scales. However, differences between EVI values do not necessarily
reflect greater or lesser access, or different types of publicly
accessible green space, nor capture greenspace signatures in
three dimensions. Our results suggest that when characterising
the hyperlocal green space environment, exposure to greenness
and access to green spaces are distinct features of the
environments that we live, work and play in. When investigating
the impact of exposure to green spaces on health outcomes,
particularly understanding mechanisms that rely on using a green
space, satellite-derived measures should be supplemented with
alternative data sources such as administrative and crowd-sources
data to characterise green space boundaries and the facilities
within them.

DATA AVAILABILITY
The data used in this study were generated and stored in the Geographic Information
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University, Swansea, UK. All proposals to use data from the GIS SeRP are subject to
review by an independent Information Governance Review Panel (IGRP). Information
on the application process can be found at: https://www.saildatabank.com/
application-process.
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