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Surface potential‑adjusted surface 
states in 3D topological photonic 
crystals
Haedong Park 1,2*, Sang Soon Oh 2* & Seungwoo Lee 1,3,4,5*

Surface potential in a topological matter could unprecedentedly localize the waves. However, this 
surface potential is yet to be exploited in topological photonic systems. Here, we demonstrate that 
photonic surface states can be induced and controlled by the surface potential in a dielectric double 
gyroid (DG) photonic crystal. The basis translation in a unit cell enables tuning of the surface potential, 
which in turn regulates the degree of wave localization. The gradual modulation of DG photonic 
crystals enables the generation of a pseudomagnetic field. Overall, this study shows the interplay 
between surface potential and pseudomagnetic field regarding the surface states. The physical 
consequences outlined herein not only widen the scope of surface states in 3D photonic crystals but 
also highlight the importance of surface treatments in a photonic system.

The discovery of topological insulators opened exciting new realms of  physics1,2, and extensive efforts have 
been made to understand topological physics over the last decade. At this field’s core, it is important to note 
zero-dimensional degeneracies such as  Dirac3–9 or Weyl  points10–19 and one-dimensional degeneracies such as 
nodal  lines20–28. These band degeneracies have been theoretically or experimentally realized using  metals21,29, 
 semimetals30–36, phononic  crystals37–39, electrical  circuits40, and photonic  crystals10,11,18,41–49. Based on the defini-
tion of topological insulators, many studies have proposed several boundary states, such as one-way surface/
edge  states39,50–53, drumhead surface  states40,54–57, and Fermi  arcs47,48,58–61.

Beyond them, one can adjust the boundary state with surface/edge  potential36,62–68 and pseudomagnetic 
 field13,37,69. A realistic system always has surfaces/edges, and the surfaces/edges act benefit or obstacle for the 
theoretical predictions to be realized by experimental performances. In condensed matters, the surface/edge 
 potential36,62–65 arises from the passivation on the surface/edge of a given  material66–68. Such potentials have ena-
bled the edge state adjustment, similar effect to the application of an external field, and imposing a perturbation. 
The surface/edge  potential36,62–64 has been successfully implemented in two-dimensional (2D) materials includ-
ing  graphene66, boron  nitride67, and semimetals;36,65,68 consequently, the excitation and manipulation of surface/
edge states came to the fore. However, such driving and using surface potential are yet to be much exploited in 
3D topological photonic crystals. Furthermore, there are relatively few studies about the interplay between the 
perturbations by surface/edge and bulk of a finite sized crystal.

Meanwhile, the pseudomagnetic field is a virtual effective field stemming from a spatial reconfiguration 
of the crystal lattice without a real magnetic  field70–73. Like a real magnetic field enabling the quantum Hall 
 effect74,75, the pseudomagnetic field was found to be a gold vista for topologically nontrivial surface/edge states 
in  semimetals76–80, photonic  crystals81–84 and phononic  crystals37,71,72,85. Nevertheless, the surface state’s profiles 
along the zeroth Landau level on a 3D Weyl photonic crystal, driven by the pseudomagnetic field, were out of 
reach.

Here, we demonstrate photonic surface waves that arise from the interplay between surface potential and 
pseudomagnetic field in photonic systems. First, we investigate the effect of the surface potential in a system 
governed by the Weyl equation with a pseudomagnetic field. The pseudomagnetic field is switched on by the Weyl 
points that vary with the unit cell positions along the boundary-boundary direction in the system. Then, we apply 
the effective Hamiltonian description to a photonic system based on double gyroid (DG) photonic  crystals17. 
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The DG photonic crystals are found to exhibit Weyl points due to the geometrical perturbation, which appears 
as a defect-like shape. To realize a pseudomagnetic field, we constitute a photonic array of the DG unit cells with 
a spatial gradient of the perturbation, i.e., the degree of the defect varies with the position. We then compute 
quantized Landau levels and eigenstates along the zeroth Landau level to quantitate the asymmetric localization 
of photonic waves on the surfaces. This observed asymmetry in wave localization evidences the existence of the 
surface potential. Then, we tune the translation of the basis of the unit cell to tame the surface termination. This 
tuning exquisitely controls the surface potential so that the degree of wave localization varies with respect to the 
tuning. Finally, we implement such results to the evasion behaviors of a photonic wave to observe the interplay 
between the surface potential and pseudomagnetic field.

Results
The attraction of waves by the surface potential in the Weyl system
First, let us describe the pseudomagnetic field’s effects using the Weyl Hamiltonian. For this, we consider a system 
periodic along the x1 - and x2-directions for an orthogonal coordinate system. The system consists of N unit cells 
along the x3-direction (the horizontal rightward direction in Fig. 1a-b), and surface boundaries are parallel to 
the x1 - and x2-directions. We assume that this system is governed by

that describes a Weyl point at kw , where σ0 is the 2 × 2 identity matrix, and σi ( i = 1, 2, 3 ) are the Pauli matrices. 
We decompose the Weyl point’s location kw into kw = kw,0 + A

n
w , as introduced in Refs. 13,37,71,85. kw,0 is a constant 

while An
w depends on the unit cell’s index n . We assume that An

w linearly varies with a specific value p (henceforth, 
this value is referred to as perturbation strength) which also linearly varies with n:

(1)σ · (−i∇ − kw)ψ = iσ0
∂ψ

∂t

(2)A
n
w ∝ p(n) = psn+ const.,
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Figure 1.  Effects of surface potential on the wave localization by pseudomagnetic fields. (a, b) Schematic 
illustrations of two systems with opposite ps . The systems are finite along x3-direction (the horizontal direction) 
and periodic along x1 - and x2-direction. In each panel, the varying p is schematically represented as the size of 
yellow circles. Both systems are described by Eq. (1). (c) Comparisons of their eigenstates’ distributions along x3
-direction, exhibiting the mutual symmetric dispersions. The eigenstates are calculated by Eq. (1). (d) Schematic 
plot of Vs , the scalar coefficient of the surface potential. (e) Comparisons of the eigenstates’ distributions of (a 
and b) when Vs is applied. Here, the eigenstates are calculated by Eq. (4). In (c and e) gray dotted lines are the 
symmetric curves with respect to the center for comparisons of the red and blue plots.
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where ps is a proportional constant (refer to Fig. 1a,b). Then, the pseudomagnetic field can be written as 
B = ∇ × A

n
w , which is proportional to ps.

Let us suppose two systems with different signs of slopes, i.e., one system described by ps = −ps,0 (Fig. 1a) 
and the other described by ps = +ps,0 (Fig. 1b) where ps,0 is positive. Their p(n) are schematically illustrated as 
the size of yellow circles in Fig. 1a,b. The pseudomagnetic fields B for these two are in the same magnitudes and 
in opposite directions. Their wave localization of the zeroth Landau level at a specific point in the momentum 
space shows mutually symmetric characteristics for these opposite fields, as shown in Fig. 1c.

Now, let us implement a surface potential V  as follows:

where Vs is nonzero only around the  boundaries36,62,65–67, like Fig. 1d. When we include the surface potential 
term with Vs , further detailed in Methods, Eq. (1) is rewritten as:

By applying the same V  for the two systems in Fig. 1a,b, we can observe mutually asymmetric localization, 
as shown in Fig. 1e. The two localized states commonly show a slight shift in the left direction, implying that the 
surface potential attracts them along that direction.

Derivation of a pseudomagnetic field with Eqs. (1) and (2) and the relevant data in Fig. 1a,c are not new as 
they already have been introduced in several  studies13,37,71,85. The same explanation is applied to the concept of 
the surface  potential36,62,65–67. However, to our knowledge, adopting a surface potential into the pseudomagnetic 
field has not been tried. Thus, the next several sections are discussions about how to interplay them.

Applying surface potential in a finite‑sized array
Although there can be several methods to drive a surface potential into a photonic crystal, we herein adjust the 
surface terminations in a finite-sized array. In a fully periodic crystal, the fields or eigenvectors of a propagating 
mode are invariant under discrete translation, not depending on a specific position of the basis in a unit cell. On 
the contrary, a finite-sized array has terminations at the boundaries. A propagating wave profile depends on the 
terminations according to the variations of the basis’s positions in the unit  cells86, as shown in Fig. 2a. Thus, the 
effect of surface potential can be quantitated with respect to adjusting the surface terminations.

Here, we remark on the followings: (i) Eqs. (1) to (4) do not consider a detailed geometry in each unit cell. 
Thus, observation of the relation between the surface termination and surface potential should be phenomeno-
logically carried out using a real array structure. (ii) A photonic band structure for a finite-sized array displays 
projected bands, called folding of bands. Without the pseudomagnetic field, the zeroth Landau level adheres 

(3)V = Vsσ3,

(4){σ · (−i∇ − kw)+ V}ψ = iσ0
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∂t
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Figure 2.  Schematics on the realization of surface potential. (a) Inducing different surface potentials by 
different surface terminations. The surface terminations are adjusted by the basis’s positions in a unit cell. 
(b) Adding pseudomagnetic field on the systems in (a). Generating surface localization of a photonic wave is 
performed by the pseudomagnetic field, and the degree of localization depends on the surface potential.
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to the bulk bands so that surface states cannot be obtained. Thus, we should use the pseudomagnetic field, as 
shown in Fig. 2b. Our study shows the interplay between the surface potential and pseudomagnetic field; the 
pseudomagnetic field gives the surface localization of a photonic wave, and the surface potential tunes the degree 
of the localization.

To build the array in Fig. 2b and to induce both the surface potential and pseudomagnetic field, we use a DG 
photonic crystal that exhibits Weyl  points17. We adjust the surface terminations by tuning the translation of the 
basis along the normal direction to the boundaries.

Double gyroid photonic array exhibiting pseudomagnetic field
To drive the surface potential by the surface termination, we use a photonic array that exhibits a pseudomagnetic 
field by kw = kw,0 + A

n
w in Eq. (4). We consider the DG, as shown in Fig. 3a. The yellow and blue single gyro-

ids (SGs) are given by a set of x = [x1, x2, x3] such that fSG,Y (x)+ pfp(x) > fD2
> 0 and fSG,B(−x) > fO > 0 , 

respectively, where fD2
 and fO are the level-set values that determine the volume fraction of each SG. The yellow 

SG has selectively the perturbation term pfp(x) to break the inversion symmetry and to generate Weyl points 
in momentum space. Due to this perturbation, the yellow SG exhibits a defect-like narrow region on the arm 
passing the a1a2 surface, as shown in Fig. 3a. The higher perturbation strength p induces the deeper defect-like 
shape; this corresponds to the yellow circle’s size in Fig. 1a,b and Fig. 2. (See Methods for the detailed explana-
tions about the DG crystal.) When this DG photonic crystal is periodic along all three lattice vector directions, it 
can exhibit four Weyl points, as shown in Fig. 3b,c. The Weyl points H0 and N0 (marked with blue and red solid 
points in Fig. 3c, respectively) have positive and negative topological charges, respectively.

Varying p of the DG shifts the positions of the Weyl points, as shown in Fig. 3d. We denote the moved 
positions of the Weyl points N0 and H0 in momentum space by kNw  and kHw  , respectively. Increasing p makes 
the Weyl points shift away from Γ-point on the single plane ( (001)-plane). For the narrow range of p around 
the central value p0 , the traces of all Weyl points exhibit linear shapes so that we can write their positions as 
k
H
w = k

H
w,0 + k̂

H
s δk

H and kNw = k
N
w,0 + k̂

N
s δk

N where k̂Hs  and k̂Ns  are overall directions of the traces (see Fig. 3d). 
The deviations of shifted Weyl points, δkN and δkH , also show linear relations with p , as shown in Fig. 3e.

To generate the pseudomagnetic field, we design a photonic array made of DGs whose p linearly varies with 
respect to the position in the  array13,71,72,87,88. First, we assume a DG-array that consists of DGs with N unit cells 
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along the a⊥-direction between two boundaries, as shown in Fig. 4a. The array is periodic along the a= - and a‖
-directions, but does not preserve the translational symmetry along the a⊥-direction. Next, we apply the non-
uniform geometry on this array using the perturbation strength p that linearly varies along the a⊥:

like the inset linear plot in Fig. 4a. Here, x⊥ is a coordinate along the a⊥ , d0 is a distance between the planes 
at n = 0 , and n = N/2 , and p0 is a central value of p(x) . Thus, the location of the Weyl point varies with 
the a⊥-directional coordinate. From the information in Fig. 4a,b, the pseudomagnetic field has the form 
B = ∇x × A = ps

(
B=â= + B�â�

)
 , which are parallel to the array boundaries (see the orange planes in Fig. 4c,d). 

As a result, the waves can be localized at the boundaries (see Methods for detailed explanations about the array 
and pseudomagnetic field calculations).

Surface potential by surface termination and resulting photonic wave localization
Plugging the design in the previous section to the array of N = 48 primitive cells allows us to generate Landau 
spectra. The detailed explanations of the Landau levels related to the pseudomagnetic field are in Sect. 1, Sup-
plementary Information.

Here, we extract and compare the zeroth Landau levels by two arrays with ps = −2ps,0 and ps = +2ps,0 , as 
illustrated in Fig. 5a. Although the two arrays have different internal geometries due to the different ps values, 
their overall translation status are identical, i.e., they generally use the formulae denoted in Fig. 3a. Thus, we 
consider that their surface terminations are identical. The photonic band structure in Fig. 5a shows that the 
resulting zeroth Landau levels accessible from the two arrays are not equal. Furthermore, the eigenstate intensity 
distributions for the two cases reveal mutual asymmetric (Fig. 5b,c). The distributions in Fig. 5d,e are biased 
toward the n = 48 from the symmetric curve (the gray dotted lines). From the fact that the results in Fig. 5d,e 
exhibit the same tendency as with Fig. 1e, we can conclude that there exists a surface potential in these arrays.

Now, we replace x as x − ha⊥ to apply overall translation h of the DG by h|a⊥| along the a⊥-direction to verify 
the surface termination’s effect, as illustrated in Fig. 6a. Note that the profile of p does not move (see the upper 
right plot in Fig. 6a). For a specific point on the zeroth Landau levels (marked in Fig. 6b), we calculate the field 
intensity for several h values, as shown in Fig. 6c. The discussions so far are about that the surface potential can 
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adjust the degree of localization of surface states generated by the pseudomagnetic field. The results in Fig. 6c 
indicate that the localization degree can be adjusted by the surface termination. The zeroth Landau level in the 
photonic band structure also can be moved to another position by changing h . Due to the relatively small h , 
the overall configuration of the zeroth Landau level and the surrounding bulk bands remains almost intact, as 
shown in Fig. 6b.

Evasion behavior of photonic wave
We embody the evasion behavior of a photonic wave in a DG structure using oppositely graded p . Adjusting the 
propagation path of a photonic or phononic wave has been an interest in photonics or wave mechanics. These 
have been proved using materials with negative-refractive  indices16,89–91 or Dirac/Weyl crystals exhibiting one-
way propagations of  waves3,12,13,44,92. Such proofs are related to invisibility-cloaking. Here, we perform the behav-
ior by pulling a photonic wave that was originally propagating on one boundary toward the opposite boundary.

DG arrays that consist of 8 cells with ps = −2ps,0 , 0 , ps,0 , 3ps,0 , and 5ps,0 are prepared, based on the array in 
Fig. 4a, ( ps,0 > 0 ). (The number of cells is counted based on the body-centered cubic primitive cell.) The reason 
for using a smaller number of cells than in the previous case is to broaden intervals between Landau levels. We 
classify these arrays into groups with ps = −2ps,0 and the others with ps ≥ 0 . The directions of ∇xp for these two 
groups are opposite to each other (see the inset of Fig. 7a,b). The band structures for ps < 0 and ps ≥ 0 (plotted in 
Fig. 7a,b, respectively) exhibit Landau levels along ŴH′-direction. From these plots, we consider ωa/2πc = 0.49 
as an optimized frequency for the evasion behavior because this frequency between the bulk bands and all zeroth 
Landau levels commonly meets this frequency only once. We then constitute a DG array, as shown in Fig. 7c, 
using the 8-cells arrays depicted in the inset of Fig. 7a,b. Each system consists of 8 and 32 cells along a⊥ - and 
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a=-directions, respectively, and it is assumed to be infinitely periodic along â‖-direction. The blocks m = [0, 8] 
and m = [24, 32] use negative-valued ps , and the central region between the two sections has positive-valued ps.

The DG array reveals the evasion behavior of photonic waves. At ωa/2πc = 0.49 , a photonic wave is localized 
in the section of ps = −2ps,0 around the boundary at n = 0 . We then input an incident photonic wave around 
the localization region, as marked by the star symbols in Fig. 7d–g. If the blocks m = [8, 24] are the same as 
the other blocks, the localization would continue in the central region. We simulate here the situations that the 
central region’s ps is respectively 0 , ps,0 , 3ps,0 , and 5ps,0 . The results show the gradual attraction of the photonic 
waves onto the boundary at n = 8 with increasing ps (see Fig. 7d–g).

In addition, we observe the attraction of waves towards the n = 0 boundaries. In the blocks m = [0, 8] 
and m = [24, 32] , the waves are localized on the boundary. On the contrary, the localized waves in the blocks 
m = [8, 24] exhibit biased behaviors even when the central blocks’ ps is 3ps,0 or 5ps,0 . This coincides to the mutual 
asymmetric distributions of the waves shown in Fig. 5e, and we see here the existence of a surface potential in 
the blocks. Then, we can conclude that this arises from surface potential and surface termination. If we adjust 
the surface termination, we may observe the bias towards the opposite direction. All these show the interplay 
between surface potential and pseudomagnetic field.

Discussion
We have demonstrated the asymmetric localization of photonic waves via an interplay between surface potential 
and pseudomagnetic field using a DG photonic crystal. The pseudomagnetic field has induced the surface states 
of the photonic waves and the surface potential adjusted the degree of localization. The pseudomagnetic field 
was formed by the graded location of Weyl points, and the surface potential was applied using surface termi-
nation by tuning unit cells’ basis translation. We have observed the shift of the surface states as a result of the 
surface potential. In fact, the interplay by the surface potential and pseudomagnetic field generates natural and 
predictable results so that this might be underestimated. However, the various methods of applying a surface 
potential (even though they have been utilized in metals, semimetals, or acoustics) can be interplayed with a 
pseudomagnetic field in photonics in the near future. Thus, we expect that our current study will be a starting 
point of these directions.

In the case of  graphene66, boron  nitride67, and  semimetals36,65,68, surface potentials can be applied using mate-
rials’ surface/edge passivation. Although this study used surface termination by crystal’s basis translation, we 
believe that there could be several types of photonic passivation, for example, doping with a thin material such 
as a dielectric sheet, imposing perfectly magnetic conductor boundary condition, cutting position of the crystal, 
or attaching a band-gap material. Then, this study and the follow-up studies will open the various possibility of 
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terminations. Observation of the surface potentials is carried out by adjusting the basis’s positions in each unit 
cell. The upper left three structures are enlargements of the bottom right arrays. The lower left three figures are 
respectively the schematics of the upper left structures, and they clearly show the translation of the structures 
along a⊥-direction. The right upper plot indicates that the perturbation p versus the position n is the same for all 
three cases. (b, c) Simulation results: zeroth Landau levels (b) and eigenstate intensities (c) at the point marked 
in (b) for three different surface terminations tuned by translation h along the a⊥-direction when N = 48 and 
ps = 2ps,0 are used.
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using topological photonic crystals. Meanwhile, there is no example of the detailed analysis of the surface states 
along the zeroth Landau level by the Hall effect and pseudomagnetic field in three-dimensional Weyl photonic 
crystals. Therefore, this study will fill this gap thereby this study will positively affect the other studies on the 
three-dimensional quantum (spin) Hall  effect93–98.

Materials and methods
Eigenstates localization by Weyl Hamiltonian
We apply Eq. (1) or (4) to the finite system illustrated in Fig. 1a-b to observe the wave localization like Fig. 1c or 
e. Instead of deriving the Landau level analytically using ladder  operators33,99, we use a traveling wave solution 
ψ(x, t) = uei(k·x−ωt) to consider the finite array. The traveling wave solution can be rewritten as the product 
of a state un that depends on only n and an exponent ei(k1x1+k2x2−ωt) that depends on only other variables: 
ψ(x, t) = une

i(k1x1+k2x2−ωt) . The surface localization is obtained by substituting this into Eq. (1) or (4). To 
consider the surface potential in Eq. (3), we used the plot in Fig. 8 as Vs . Detailed derivations, explanations, and 
additional results related to Fig. 1 are given in Sect. 2, Supplementary Information.

Preparations of DG photonic crystal
In the following, we give detailed explanations of the DG photonic crystal and array. In this study, we consider 
the DG, reported in ref.17. The body-centered cubic primitive cell of this structure is defined by the lattice vectors 
ai = a/2[1, 1, 1]− ax̂i , where [x̂1x̂2x̂3] = I . The mathematical formulae of fSG,Y (x) , fp(x) , and fSG,B(x) denoted 
i n  F i g .   3 a  a r e  fSG,Y (x) = sinX1cosX2 + sinX2cosX3 + sinX3cosX1 ,  fp(x) = sin(X1 + X2) ,  a n d 
fSG,B(x) = sinX̃1cosX̃2 + sinX̃2cosX̃3 + sinX̃3cosX̃1 , respectively. Here, the local coordinates are given by 
X = [X1,X2,X3] = (2π/a)(x − ass) and X̃ =

[
X̃1, X̃2, X̃3

]
= (2π/a)x , where a is a lattice constant, s = 0.0578 

is the shift coefficient that describes the translation of the yellow SG, and as = a1 + a2 + 2a3 is the translation 

Figure 7.  Evasion behavior of photonic waves using heterogeneous blocks. (a, b) Zeroth Landau levels by the 
8-block system with several perturbation fields, where ps,0 = 7.0711× 10−3a−1 . The perturbation fields used 
in (a, b) are opposite. (c) Heterogeneous DG system. The PEC is applied to the pink and green boundaries. In 
pink and green colored bounded blocks, the perturbation fields’ directions are opposite as marked. The system 
is periodic only along â‖-direction. (d–g) Evasion behavior of photonic waves with several ps > 0 values of the 
central blocks with fixing ps < 0 values of the blocks around both ends. Incident points are marked as the star 
symbols.
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direction. For the inequalities marked in Fig. 3a, the level-set values fD2
= 1.15 and fO = 1.1 are used that 

determine the volume fraction of each SG. The refractive indices of the two SGs are commonly 4.0, and the 
outside region of them is filled with air whose refractive index is 1.0.

The perturbation strength p plays an important role in our work. If p becomes zero, the space group of this 
DG is Ia3d (no. 230), and this does not exhibit Weyl  points18. A DG with appropriate nonzero-valued p exhibits 
four Weyl points in the momentum space between the fourth and fifth  bands17. Due to the inversion symmetry 
of the momentum space, the positions of these four Weyl points are inversion symmetric to Ŵ-point. When 
p = p0 = 0.195 is used, we can get the four Weyl points, as shown in Fig. 3b,c. They are on a single (001)-plane 
passing ŴN = (−b1 + b2)/2 and ŴH = (b1 + b2 − b3)/2 where the reciprocal primitive vectors bi are defined 
by [b1b2b3]T = 2π[a1a2a3]

−1 . These Weyl points are also denoted as N0 and H0 in Fig. 3d. The Chern numbers 
of the Weyl points N0 and H0 are −1 and +1 , respectively (see Sect. 3, Supplementary Information).

DG photonic array for pseudomagnetic field
First, we assume 48 DGs along the a⊥-direction between two parallel perfect electric conductor (PEC) bounda-
ries, where a⊥ = a2 + 0.5(a1 + a3) is normal to the boundaries (see Fig. 4a). The array is periodic along a= - and 
a‖-directions, where a= = −a1 + a3 and a� = a1 + a3 . The boundaries are parallel to a1 and a3 , while the (001)
-plane shown in Fig. 4b is parallel to a1 and a2 (see Fig. S6 in Sect. 4, Supplementary Information). Thus, the 
boundaries and (001)-plane are neither parallel nor perpendicular. The Weyl points N0 and H0 on the (001)-plane 
is partially conserved by projecting it onto the boundary, as shown in Fig. 4b. Then, the perturbation strength 
is given by the position-dependent form, i.e., p = p(x) . It linearly varies with the distance from the boundary 
at n = 0 along the a⊥ , i.e., ∇xp ∝ a⊥ , and it equals p0 at the midplane between the boundaries, as schematically 
illustrated in the inset of Fig. 4a. The DGs in the primitive cells in Fig. 4a exhibit different shapes. Especially, the 
yellow parts show a stronger defect-like shape with larger p.

The reasons that we utilized the PEC boundary are (1) the PEC boundary corresponds to a metal cap, and 
(2) implementation of the PEC boundary requires less computations than using a band gap material outside 
the boundaries.

To calculate Figs. 5 and 6, we use ps = ±ps,0 where ps,0 = 2.9463× 10−4a−1 . The details not mentioned here 
are the same as the explanations in Sect. 1, Supplementary Information.

Pseudomagnetic field by DG photonic array
Let us assume that the effective Hamiltonian around a Weyl point is expressed as Heff =

∑3
i,jvij(ki − kw)σj where 

kw is the Weyl points locations ( kHw  or kNw  ), vij is the velocity tensor, and σj are the Pauli  matrices13,15. kw can be 
decomposed into kw = kw,0 + k̂sδk = kw,0 + A where the superscripts N or H of all terms are omitted. Only the 
last term A relies on the real space coordinate-dependent p , i.e., A = A

(
p(x)

)
 . From the information in Fig. 4a,b, 

the resulting pseudomagnetic field is, therefore, written as

where â= and â‖ are the unit vectors of a= and a‖ , respectively, placed on the boundary (see Fig. 4a). The com-
ponents B= and B‖ are determined by the trajectories in Fig. 3d,e. Meanwhile, the proportional constant ps is 
the gradient of geometrical non-uniformity and is defined by the ratio of the p change to the distance between 
these two boundaries (see the inset in Fig. 4a). (Detailed derivations and explanations of this result are given in 
Sect. 4, Supplementary Information.) Because the length between the two boundaries can be written in terms of 
the lattice constant a , the proportional constant ps can be expressed in terms of a−1.

The pseudomagnetic field B in Eq. (6) has the linear combination form of â= and â‖ , parallel to the bounda-
ries, so the field is parallel to the boundaries, as marked in Fig. 4c,d. In other words, the common perpendicular 
direction of â= and â‖ coincides with the surface normal to the boundaries. As a result, we can quantitate the 
overall Hall effect driven by the pseudomagnetic field B and the resultant wave localization around boundaries.

The photonic behavior when a pseudomagnetic field with a nonlinear perturbation is described in Sect. 5, 
Supplementary Information.

(6)B = ∇x × A = ps
(
B=â= + B�â�
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Figure 8.  Plot of the surface potential’s scalar coefficient Vs. This is the discretized function from Fig. 1d. Plots 
in Fig. 1c,e were obtained using this Vs.
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Evasion of the photonic wave
Like the other photonic band structure calculations in this study, Fig. 7a,b is calculated using the array 
that consists of DG primitive cells, as illustrated in Fig. 9. The perturbation strength slope is counted by 
ps,0 = 7.0711× 10−3a−1 , e.g., ps = 3ps,0 . Figure  7d–g are calculated using the array that consists of big 
cells whose lattice vectors are 2a⊥ , a= , and a‖ , where a⊥ = (a/2)[1, 0, 1] , a= = −a1 + a3 = a[1, 0,−1] , and 
a� = a1 + a3 = a[0, 1, 0] , respectively. We regard that the one big cell coincides with two DG primitive cells 
because the projections of a2 and a3 onto the plane of â⊥ − â= are half of 2a⊥ and a= , respectively. Thus, the 
array marked with m = 32 and n = 8 in Fig. 7c consists of 16 and 4 big cells along â= and â⊥-directions, respec-
tively. Along with a‖ , only one cell layer was used with periodic boundary conditions. To get Fig. 7d–g, the ‘Fre-
quency Domain’ solver of COMSOL Multiphysics® was used with an input frequency of 0.49(2πc/ωa) , marked 
in Fig. 7a,b in the main text.

Simulation details
All photonic structure simulations were performed using COMSOL Multiphysics®. To input periodicity, the 
Floquet periodic boundary condition was imposed on all periodic boundaries. All band structures were obtained 
using the ‘Eigenfrequency’ solver. In each band structure, we plot only nine bands above and below the zeroth 
Landau level so that only 19 bands are displayed in a band structure.

Data availability
The datasets generated during this study are available from the corresponding author on reasonable request.

Code availability
The custom codes used in this study are available from the corresponding author on reasonable request.
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