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Abstract

For over 70 years, aquaculture practices have relied on the same methods for biose-

curity, however epidemics remain a primary limitation of global aquaculture yields with

billions in revenue being lost every year due to disease. The intense nature of fish and

shellfish farming necessitates the regular use of synthetic chemicals as both preventive

and treatment measures, covering broodstocks to hatching and continuing through all

stages of rearing. This practice, however, results in the contamination of rearing envi-

ronments with persistent xenobiotics. A specific drawback in this foundational strategy

for aquaculture biosecurity is highlighted in the current review: the consistent use of a

water-soluble polymer polyvinylpyrrolidone (PVP) across most, if not all, stages of rear-

ing aquacultural livestock. PVP is used intensively within aquaculture practices as it is a

ubiquitous additive within commercially available germicidal, prophylactic, and thera-

peutic products applied to control and prevent disease outbreaks within aquacultural

farms. As a polymer, PVP is synthetic and biodegradation-resistant, and has recently

been described as an emerging contaminant of freshwater ecosystems. It is well docu-

mented that other persistent, synthetic polymer pollutants such as microplastics,

reduce the fecundity, growth, and significantly deplete immune function in commer-

cially important aquatic species. Despite this, intentionally added persistent soluble

polymers, such as PVP, have not been considered in the context of aquaculture pro-

ductivity. This review explores the potential impact of PVP on fish and shellfish

highlighting the need for aquaculture to adopt sustainable chemical practices, drawing

inspiration from advancements in nanotechnology applied within human medicines to

address biosecurity protocol deficiencies.
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1 | INTRODUCTION

Fish are the most efficient and sustainable source of animal protein

when compared to conventional livestock, mainly due to their low

food conversion ratio.1,2 With this, a blue transformation is envisioned

for the food sector to safeguard future food security amid ongoing

exponential human population growth. However, despite being

labelled the ‘fastest growing food industry’ for over 30 years, fish and
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seafood production is plagued by disease outbreaks, which massively

constrain annual yields.3 It is predicted that by 2050, upwards of 1 in

7 people will suffer protein deficiency.4 Freshwater fish now account

for 75% of global aquaculture stocks intended for human consump-

tion, and although this still falls short of supplying even 20% of con-

sumed animal protein globally,5–7 it constitutes over 50% of the total

animal protein intake in some tropical regions where it is not uncom-

mon for aquaculture fisheries to experience 40% annual stock losses

due to disease.8–10 Intensive feeding, mass waste production and

chemical treatment of stock tanks create polluted rearing environ-

ments, whilst high stocking densities facilitate rapid spread of infec-

tious diseases. Together, pollution and disease occurrence are major

limiting factors of aquaculture productivity with the two having syner-

gistic interactive effects.11–13 Pollution is known to enhance fish and

shellfish susceptibility to disease, leaving them vulnerable to patho-

genic viruses,14 bacteria,15 fungi,16 micro and macroparasites,12,17,18

resulting in mass morbidity and lethal epidemics causing billions (USD)

worth of annual stock losses time and again.19,20

Safeguarding of livestock within intensive aquacultural rearing

involves the application of immersion disinfectants and chemical

water additives in preventative and therapeutic biosecurity protocols

including: (i) chemical baths to reduce stress and mortalities during

transport to and from farms21 (ii) prophylactics to reduce the risk of

introducing disease from imported stock22 (iii) water conditioning and

remediation for rearing/breeding stocks23,24 (iv) treatment of fertilised

eggs produced from breeding stocks25,26 (v) intermittent or continu-

ous prophylactic/therapeutic treatment for grow-out stocks27

(vi) alternative antimicrobials for multi-drug resistant pathogens28 and

(vii) general surface disinfectants.29 Chemical use is relentless in the

industry and although fundamental to biosecurity, cumulative evi-

dence suggests long-term use and bioaccumulation of these chemicals

may facilitate disease occurrence.30 One biodegradation-resistant

chemical is used in all these stages of commercial stock rearing: the

water-soluble synthetic polymer, polyvinylpyrrolidone (PVP).

As illustrated in Figure 1, use of biosecurity products within the

fish (and shellfish) industries may mean continuous, high dosing of

PVP due to its high percentage composition in some products (up to

100 g PVP complex per litre of product,31) and their use as prophylac-

tics as well as therapeutic treatments implying continuous dosing into

closed, semi-closed or open rearing systems. Whilst still in their

infancy, detection methods for PVP in environmental samples are rap-

idly developing since the report of 0.18 mg/L PVP in river surface

waters in Germany, as well as a peak detection of 7.1 mg/L in waste-

water effluent.32 This 2011 study applied continuous-flow off-line

pyrolysis coupled with gas chromatography/mass spectrometry,

determining PVP as ‘environmentally stable’ due to its high contami-

nation levels inferring environmental persistence. More recently how-

ever, novel quantification methods are emerging; Tarring et al.33

published a foundational method for the detection and quantification

of water-soluble polymers by exhibiting the quantification of

F IGURE 1 Illustrating the stages of fish culturing (blue) and the associated biosecurity procedures (orange) indicating the extensive exposure
of all rearing stages to polyvinylpyrrolidone-containing products.
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polyethylene glycol (PEG) standards, using gel-permeation chromatog-

raphy (GPC) coupled with matrix-assisted laser desorption/ionisation

time-of-flight mass spectrometry. This method was then applied to

successfully quantify PEG concentrations within a shaving gel

product,33 with further development this technique can be extended

to detect PEG in wastewater and environmental samples. Moreover,

it also provides a foundation for method development to enable

detection of other water-soluble polymers including PVP; although

method error and viability is heavily dependent on the type of water-

soluble polymer and how they interact with the GPC. Further work is

needed before it can be applied accurately to determine environmen-

tal/commercial water-soluble polymer contaminant levels.33

The race to accurately detect PVP in environmental samples

arose following Anti�c et al.32 work which found ‘enormous' concen-

trations of PVP contaminating freshwater environments in the mg/L-

range. Although, considerable evidence of the persistence of PVP in

environmental compartments, including freshwater ecosystems, sur-

faced a decade before methods of environmental detection were

beginning to be developed. In 2001, Trimpin et al.34 studied the

extent of aerobic biodegradation of PVP by river water determining

that at low molecular weight, no oxidation and therefore no degrada-

tion of the polymer had occurred in 30 days, indicating the poor bio-

degradability of PVP.34 Moreover, PVP is resistant to enzymatic

biodegradation due to its affinity for sorption to enzymes and their

active substances, reinforced with more reports of no degradation

occurring in 4 weeks.35–37 Together with Figure 1, these studies con-

vey the urgency to accurately quantify PVP levels within aquaculture

rearing environments, especially within closed systems, as the envi-

ronmental stability of PVP implies its ability to persist and therefore

accumulate in these environments rapidly, particularly given the inten-

tional and repeated additions of PVP to aquaculture rearing practices.

2 | USES OF POLYVINYLPYRROLIDONE
FOR AQUACULTURE BIOSECURITY

Water-soluble synthetic polymers (WSSPs) are invisible to the eye

when in solution, once dissolved they disperse and swell in water

modifying the functional properties of aqueous media.38 They have

global applications in domestic and industrial products, with a myriad

of human medical uses spanning from nanotechnology, to wound

dressing, to the binding and coating of pharmaceuticals.39–41 They

also have valuable applications for food security from slow-release

fertilisers through to food packaging to preserve the quality and fresh-

ness of packaged goods.42,43 Within the aquaculture industry, WSSPs

are widely used within products applied for biosecurity where syn-

thetic polymers such as PVP behave as surfactants, capping and dis-

persing agents at low molecular weights (Table 1).

Regarding its direct application in aquaculture, low molecular

weight PVP is an additive within many antimicrobial products, such as

Argovit® (12.6 ± 2.7 kDa)44 and povidone-iodine (10–360 kDa).45

Knowledge of the chronic toxicity of PVP is still limited but recent

investigations demonstrate that at a molecular weight of 10 kDa, PVP

inflicts acute toxicity to zebrafish (Danio rerio) embryos at concentra-

tions of 1 μg/L and exerts chronic effects on juvenile guppy (Poecilia

reticulata) growth and metabolism at 10 μg/L.46–48 To the best of our

knowledge these are the only studies so far to demonstrate significant

detrimental effects of PVP on freshwater vertebrates. These initial

studies imply fish physiology is affected by low molecular weight PVP

exposure even at levels far below those regularly applied in aquacul-

ture. Assuming farms adopt the scientifically supported biosecurity

recommendations for use of the aforementioned antimicrobial prod-

ucts as immersion disinfectants for cultured fish and shellfish,49–51 we

estimate that PVP could be regularly dosed into closed aquaculture

systems at a concentration of approximately 1000–3000 μg/L.49–51

Whereas for egg disinfection protocols, treatments completed in

accordance with manufacturer instruction, such as those for Ova-

dine®, would equate a 100 mg/L dose of PVP complex.52

Despite having similar sources and the same routes of environ-

mental leaching as microplastics, WSSPs such as PVP remain

completely unregulated.32,53,54 Under the current European commis-

sion Annex XVII 2023 dossier concerning the Registration, Evalua-

tion, Authorisation and Restriction of Chemicals (REACH), it is

proposed that water-soluble polymers are excluded from all scopes

of regulation because they do not present long-term persistence

risks and in turn do not contribute to the identified risk of synthetic

plastics.55 This is despite WSSPs such as PVP being detected in riv-

ers at levels far higher than the most prominent insoluble microplas-

tic polymers, inferring their environmental persistence.32,39 There is

a current European Commission review on low molecular weight

water-soluble polymers being included into REACH, but more evi-

dence is required to identify what size of polymer impose significant

risks for aquatic organisms.56

The potential impact of persistent synthetic polymers on the

aquaculture industry has only been considered in the context of insol-

uble polymers, where it is identified that micro and nanoplastics (NPs)

are unintentionally added via equipment weathering and contami-

nated feed.57 Such NP exposure can increase fish disease

susceptibility.58–60 NPs are more bioavailable than larger molecules

and therefore may pose greater risk to organisms as they can translo-

cate across lipid membranes becoming internalised, accumulating

within the tissues of commercial species that we consume.61,62 Low-

molecular weight PVP is used within aquaculture products due to its

surfactant properties at this size (Table 1). Its use in nanodelivery of

targeted drugs in human medicine implies its ability to be translocated

and internalised within tissues at this size, having systemic

effects.56,63,64 Moreover, internalisation within Japanese medaka has

been demonstrated for PVP coated nanoparticles as embryos

immersed in solution had nanoparticles present in gill, brain, eye and

heart tissues.65 Therefore, the PVP potentially accumulating within

aquaculture systems could theoretically have analogous routes of tox-

icity to insoluble NP polymers.66–69 Moreover, additional effects of

non-internalised polymer surfactants reside with their surface-active

effects on, or in the vicinity of outer membranes, interfering directly

with membrane function or indirectly by complexation with essential

nutrients.56 The intentional addition of nanosized PVP throughout the
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TABLE 1 Summary of polyvinylpyrrolidone use in aquaculture practices.

Compound Aquaculture use References

Argovit/Argovit-4® (PVP coated

silver nanoparticles)

Immunostimulant and growth enhancement in Rohu (Labeo rohita) challenged with bacterial

pathogen Aeromonas hydrophila

99

Cichlidogyrus sp.; metazoan parasitic treatment 49

Antiprotozoal effect on pathogenic ciliates Tetrahymena sp. in vitro without evidence of harming

pike silverside (Chirostoma estor) host

100

Antiviral agent applied in shrimp farms, weekly feeding of AgNPs results in increased survival

against white spot syndrome viral epidemics

50,66,93,101–
103

PVP capped silver nanoparticles Treatment of multi-drug resistant pathogenic bacterial strains Aeromonas hydrophila and

Aeromonas caviae

28

More effective than antibiotic oxytetracycline at inhibiting growth of fungal Aphanomyces

invadans and bacterial Aeromonus salmonicida pathogens

92

Antibacterial activity against antibiotic resistant bacterial pathogen of the Nile tilapia

(Oreochromis niloticus), Aeromonas veronii

104

General disinfectant: Antifungal, antiviral, antibacterial 69,105

Antimicrobial activity via immersion increases survival of infected Rohu (Labeo rohita) challenged

with Edwardsiella tarda bacterial pathogen

106

Effective in vitro treatment of viral diseases including Spring Viraemia of Carp Virus (SVCV),

European Catfish Virus (ECV), Ictalurid Herpes Virus 2 (IcHV-2)

107

Increased survival in gilt-head bream (Sparus auratus) epidemics of Vibrio alginolyticus bacterial

infection

108

PVP capped gold nanoparticles Stimulant for purple sea urchins (Paracentrotus lividus) immune cells exposed to Vibrio

anguillarum bacterial pathogen in vitro

109

PVP Bacteriophage encapsulation; phage therapy for bacterial disease control as an alternative

antimicrobial treatment

110–113

Encapsulation of drugs/vaccines for targeted delivery 114

Copper oxide nanoparticles

imbedded with PVP

Removal of pollutants from recirculating aquaculture systems (RAS) and aquaculture effluent

encouraging the formation of sludge, preventing immunodeficiency of stocks and the

proliferation of opportunistic pathogens

23,24

PVP-K30: PVP modified

nanoscale zero valent iron

Removal of tetracycline antibiotics from aquaculture systems remediating antibiotic

accumulation and evading the proliferation of multi-drug resistant pathogenic bacteria

115–118

Stress coat® with PVP Enhance mucus layer and wound healing in cyprinid fishes as well as reduce losses from

transport stress by enhancing epithelial mucus which is the first defence against invading

organisms

119

Water conditioner to promote fish health during transport 120

PVP-iodine Improved resistance of Chinese mitten crab (Eriocheir sinensis) to pathogen Aeromonas

hydrophila

121

Disinfects pathogenic Aeromonas liquefaciens from brown trout (Salmo trutta) eggs 122

Disinfection of Chinook salmon (Oncorhynchus tshawytscha) broodstocks and fertilised eggs

reducing the risk of Aeromonas salmonicida and Renibacterium salmoninarum infection causing

furunculosis and bacterial kidney disease outbreaks respectively

123

Disinfection of outsourced stock before introduction via chemical bath: antifungal, antiviral,

antibacterial

22,124

Inhibits viral release and spread in salmonid farms, increasing stock survival against viral

epidemics including infectious pancreatic necrosis virus (IPNV); infectious haematopoietic

necrosis virus (IHNV); viral haemorrhagic septicaemia virus (VHSV)

114,125–129

Equipment disinfectant; inactivation of spores of pathogenic parasite Ichthyophonus hoferi 130

Betadine® (PVP-I) Reduces mortality rate and protects against Aeromonas hydrophila bacterial infection during fish

transportation

131

Egg disinfectant for pathogenic bacteria Aeromonas salmonicida; Aeromonas liquefaciens; Vibrio

anquillarum; Cytophaga psychrophia; Flavobacterium columnare; Corynebacterium sp.; and

pathogenic fungi Phoma herbarum

26,132–134

Ovadine® (PVP-I) General disinfectant: Antifungal, antiviral, antibacterial 29

Effective disinfectant against fungal Veronaea botryosa for cultured sturgeon (family

Acipenseridae) aquaculture

27
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aquaculture industry may be causing it to accumulate to immune-toxic

thresholds, increasing disease susceptibility of stock (Table 1).

The diverse uses of products containing PVP as a substantial

additive within aquaculture biosecurity (Figure 1) raises concerns

regarding the concentrations of this biodegradation-resistant polymer

that may be accumulating within aquacultural rearing environments,

particularly closed systems, such as those commonly adopted for

shrimp farming.70 Aquatic invertebrates are acutely and chronically

sensitive to PVP exposure at very low doses; far below those pre-

dicted to be present within aquacultural rearing environments. In

2019, Pimentel-Acosta et al. demonstrated that PVP alone increased

the cumulative mortality of Cichlidogyrus monogenean.49 A more

recent study generated analogous results, where another monoge-

nean parasite, Gyrodactylus turnbulli, also experienced decreased sur-

vival when chronically exposed to 1 mg/L PVP.48 Mondellini et al.71

reported an increase in ROS production of Daphnia magna and a

reduced number of reproductive cycles when exposed to 5 mg/L PVP

for 21 days.71 Lacave et al.72 assayed the acute effects of a

PVP (73%): Polyethylenimine (23%) respective mixture whilst investi-

gating the toxicity of antimicrobial silver nanoparticles (coated with

the polymer mixture) on brine shrimp (Artemia sp.), concluding that

the polymer mixture alone was non-toxic at both 24 and 48 h expo-

sure. However, at 48 hours exposure when the experiment was termi-

nated, survivability of brine shrimp nauplii did begin falling below

80%.72 These studies highlight the risks of PVP exposure to aquatic

invertebrates and such toxicity could be impairing industry productiv-

ity, conveying the need for more chronic exposure assessments on

commercially important shellfish species, to assess the potential

impairment caused by accumulating levels of this chemical and gain a

comprehensive understanding of its impact on productivity in the

industry.

Table 1 provides 27 references for the direct use of PVP-

containing products applied specifically to promote fish health, treat

and prevent disease occurrence in aquaculture. Anecdotal inferences

from the literature imply the use of antimicrobial compounds in the

industry is proactive as well as reactive for fish rearing, so all kinds of

rearing environments (but particularly re-circulating systems) are at

risk of accumulating high concentrations of environmentally stable

PVP, and for fish reared in these environments, chronic exposure is

probable. Studies investigating chronic exposure of PVP are beginning

to emerge for freshwater vertebrates. Zebrafish (D. rerio) embryos dis-

played behavioural toxicity to PVP at concentrations at least a

thousand-fold lower than those dosed into aquacultural rearing envi-

ronments.46 Fish were hypoactive even at this low exposure; where a

later study investigating the underlying mechanisms behind this toxic-

ity implied that protein modulation related to eye development was

significantly affected by PVP exposure.46,47 More recently, PVP has

been demonstrated to be detrimental to another aquatic vertebrate

species. Juvenile guppies were exposed to PVP at either 0.01 and

1 mg/L for 45 days, experiencing significantly inhibited growth

and increased standard metabolic rate respectively.48 Exposed

guppies were then presented with an immune challenge in the form

of parasitic infection with the ectoparasite, Gyrodactylus turnbulli. The

guppy-Gyrodactylus host-pathogen-pollutant interaction with PVP

was antagonistic, where the metazoan parasites were more sensitive

to PVP than their host, as indicated by the increased mortality rate of

the parasites.48 However, parasite numbers remained the same when

fish were exposed to a higher concentration of PVP implying a trade-

off between depleted immune function of the host and decreased sur-

vival of the parasites when chronically exposed to 1 mg/L PVP.48

Enhanced pathogen-specific susceptibility of hosts at 1 mg/L PVP is

concerning, as it is unknown how this pollutant might impact other

host-pathogen interactions and the fish holobiome. It is imperative we

understand more about how PVP affects stock susceptibility to dis-

ease, as well as its impact on productivity in the form of wasted

energy via inefficient metabolic rate and reduced growth.

3 | ALTERNATIVE RELEASING AGENTS
FOR CHEMICAL DISINFECTANTS

Iodophors are chemical disinfectants widely used in aquaculture, con-

sisting of iodine complexed with a water-soluble polymer that is

released when in solution. The most widely used iodophor in aquacul-

ture is polyvinylpyrrolidone-iodine, more commonly known as

povidone-iodine (PVP-I), commercially available in products such

as Ovadine® and Betadine® (Table 1). For over 50 years, iodophor dis-

infection has been applied as a standard practice on fish farms, to

reduce the risk of disease spread during spawning, safeguard fish eggs

during rearing, treat parasitic diseases, as an antiseptic agent and gen-

eral surface disinfectant.73–75 PVP-I antimicrobial action is attributed

to the iodine; free iodine ions, like chlorine ions, kill pathogens. The

ions are functionalised and maintained at a controlled equilibrium in

solution by the water-soluble polymer PVP releasing agent.76,77 The

benefit of using PVP-I over other disinfectants, such as those functio-

nalising chlorine in the same way, is that free iodine appears to be less

harmful to fish than chlorine and has a shorter half-life in aqueous

medium.77 Although this heavy reliance on PVP-I chemical disinfec-

tants within aquaculture raises the question of whether the

biodegradation-resistant PVP ubiquitously pollutes aquaculture sys-

tems and exerts its own toxic effects. PVP-I has been shown to

reduce the innate immunity of crayfish and alter immune function in

koi carp.78,79 However, these toxic effects are attributed to the iodine

in the iodophor complex.76,77 To date, only the antimicrobial efficacy

and toxicity of chlorine versus iodine disinfectants have been com-

pared, rather than potential effects of the polymer releasing

agent.80,81 Few have assessed iodophor and the releasing agent toxic-

ity separately.72,82

Despite the adverse effects of PVP-I, alternative surfactants have

merely been considered to replace PVP as a releasing agent. Altering

the releasing agent can greatly alter toxicity of the therapeutic agent

to aquatic vertebrates whilst maintaining excellent antimicrobial activ-

ity.83 For example, toxicity of an alternative polymeric surfactant poly-

vinyl alcohol (PVA) was directly compared to PVP on juvenile guppy

(P. reticulata) growth where, unlike PVP, it had no significant impact

on growth after 45 days exposure at 10 μg/L.48 PVA also had no sig-

nificant impact on zebrafish (D. rerio) embryos, whereas PVP caused

behavioural toxicity.46,84 PVA is also considered to be readily
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biodegradable and therefore possesses less environmental and bioac-

cumulation risk.85 Despite the importance of the iodophor disinfec-

tants in both human and animal disease management, development of

new, improved iodophors has not been achieved since the design of

PVP-I 70 years ago.40 However, recent assessment of the toxicity of a

polyvinyl alcohol-iodine (PVA-I) complex revealed no observable

effects on human cell lines or exposed mice.40 In the knowledge that

PVA appears to exert lower toxicity on organisms along with the

lower accumulation potential of PVA, iodophor development incorpo-

rating PVA as a releasing agent could present less risk to cultured fish

species, preventing xenobiotic pollution build up and eventual immu-

nosuppression of commercial stocks, whilst also performing as an

effective antimicrobial for the industry. Together these studies high-

light the value in seeking alternative releasing agents for disinfectants

regularly applied in aquaculture.

4 | ALTERNATIVE CAPPING AGENTS FOR
ANTIMICROBIAL AGENTS

Another antimicrobial agent widely applied within biosecurity proto-

cols in aquaculture includes nanoparticles, commonly in the form of

PVP capped silver nanoparticle (AgNP), commercially available in

products such as Argovit-4® (Table 1). Nanoparticles have an affinity

for aggregation once administered in solution, hence polymer modifi-

cation or ‘capping’ allows for bacteriostasis optimisation, which

significantly improves their antimicrobial effect.86 Nonetheless, nano-

particles are xenobiotics ubiquitously added to aquaculture systems

for immersion disease control, causing accumulation to levels which

have a myriad of adverse effects on commercial fish species directly

impacting productivity, including behavioural toxicity,87 reduced

growth and reproductive success.88,89 Moreover, AgNPs are known

to cause immune suppression in commercial species important for

food security such as the common carp (Cyprinus carpio),90 Nile tilapia

(Oreochromis niloticus)89 and rohu (Labeo rohita).91 Together these

findings imply that long-term use and accumulation of AgNPs may

contribute to enhanced disease susceptibility of fish stocks. Nonethe-

less AgNPs are effective in the treatment of fish pathogens and in

some cases are more effective than antibiotic treatment.92 Emerging

research suggests that altering the polymer modifier, or capping agent,

significantly affects the antimicrobial effect of nanoparticle prophylac-

tics and in turn, alters the effect on the non-target fish/shellfish spe-

cies.83,86,93 Investigative reports on the toxicity of zinc nanoparticles

capped with three different water-soluble polymers concluded that

PVA highly reduced the toxic effect of nanoparticles to both embry-

onic and adult zebrafish (D. rerio) when compared with PVP and PEG

polymer capping.83 The bioavailability and uptake of zinc nanoparti-

cles was also greatly reduced in the PVA treatment, highlighting PVA

as a favourable alternative capping agent to PVP for nanoparticle use

in aquaculture, due to the significantly reduced toxicity for commer-

cial stock but maintained antimicrobial efficacy.83 Thus, further evi-

dence of the aquaculture industries unnecessary reliance on PVP,

where future work should focus on charactering the antimicrobial effi-

cacy and toxicity of PVA capped AgNPs on fish pathogens and

commercial fish species respectively. Alternatively, differing molecular

weights of water-soluble polymers have been shown to exert differing

toxicities. High molecular weight (PEG; 900 kDa) polymers with ethyl-

ene oxide repeat units caused reproductive toxicity of D. magna at

lower concentrations than the equivalent low molecular weight poly-

mer (polyethylene oxide; 1 kDa), suggesting that toxicity of these

polymers increases with increasing molecular weight.71 Existing stud-

ies on the toxicity of PVP have only investigated a PVP standard of

10 kDa molecular weight, future studies could test the toxicity of

lower molecular weight PVP surfactants.

5 | THE POTENTIAL APPLICATIONS OF
BIO-NANOTECHNOLOGY FOR
AQUACULTURE BIOSECURITY

Recent advances in biomaterial research have investigated the efficacy

of biopolymers from natural sources, such as brown seaweeds, as deliv-

ery vessels for nanoparticles or drug therapy treatment; the effective-

ness of such biopolymers in the targeted delivery of drugs have been

demonstrated for aquaculture practices.94,95 Chitosan-N-arginin and

alginate are both biocompatible and biodegradable water-soluble poly-

mers and establish favourable physiochemical interactions with tar-

geted membranes once ingested by freshwater fish, enhancing the

bioavailability of contained nanoparticles allowing for translocation and

internalisation of encapsulated bioactive compounds.94,95 Biopolymer

encapsulation has been shown to successfully dispense the anti-

parasitic drug praziquantel to highly infected cory catfish (Corydoras

schwartzi), resulting in 97% removal of intestinal trematode parasites

after 14 days of oral administration.94 Details of bio-encapsulation for

the delivery of bioactive compounds acting as immunostimulants in

aquaculture has been reviewed96; where encapsulation allows targeted

deliverance of therapeutic and prophylactic agents including drugs, vac-

cines, prebiotics and probiotics, for disease management with low envi-

ronmental impact. To date biopolymer use in iodophors has been

underexplored, but recent studies have shown the antiviral and antimi-

crobial effectiveness of chitosan-iodine.97 Chitosan-iodine antimicrobial

and wound healing performance was also compared against PVP-

iodine, where equivalent antimicrobial activity and improved healing

was evident for the chitosan based iodophor qualifying it as a sustain-

able alternative to PVP based iodophors in vitro.98 Biopolymers such as

this represent favourable substitutions for conventional aquaculture

biosecurity protocols which are classically harsh and polluting. These

targeted delivery vessels remove the need for concentrated drug appli-

cation and reduce the use of synthetic, degradation-resistant chemical

compounds lowering the risk of persistent pollutants accumulating in

aquacultural rearing environments.

6 | CONCLUSION

As capture fishery productivity becomes ever-more stagnant, the reli-

ance on fish farming has resulted in a blue revolution for global food

security, where fast and furious development of the sector has meant
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that for productivity, efficiency and sustainability have been increas-

ingly neglected. This paper discusses a One Health approach to move

towards sustainable growth of the aquaculture industry by proposing

a long overdue re-development of biosecurity protocols for cultured

fish and shellfish stocks. Here, we theorise that heavy reliance on PVP

use in the industry for disease management has led to pollution and

accumulation of this persistent synthetic polymer, which has the

potential to inhibit growth, reproductive success and increase disease

susceptibility of fish and shellfish stocks. Development and better reg-

ulation of chemical use in aquaculture practices may improve produc-

tivity of fish farms through successful and sustainable disease

management. As detection methods for PVP are still in their infancy,

future work should focus on detecting PVP pollution levels on aqua-

culture farms so the toxicity of chronic exposure to industry relevant

PVP concentrations can be clarified. Furthermore, characterising the

in vitro antimicrobial efficacy of biodegradable capping/releasing

agents such as chitosan and polyvinyl alcohol coated iodophors and

nanoparticles will elucidate whether more in vivo toxicity assessments

of biopolymers would be worthwhile to avoid swapping like for like

and ensure sustainable development of the aquaculture industry.
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